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Abstract

Object grasping and manipulation are important capabilities for domestic service robots, with
extensive research done in this area. This work proposes a grasping pipeline with a visual-servoing
main component, used to precisely control the end-effector of a robotic arm towards the target object
using visual feedback. A depth-camera, fixed to a mobile robot’s head, observes both the object and the
end-effector and estimates their positions using different methods: a neural network is used for object
detection and combined with depth data for localization, and the end-effector position is obtained by
tracking AR tags in the arm wrist. These camera-frame positions are used to calculate an error value
which is independent from calibration of both the camera and the arm’s joints. A proportional control
law outputs the required end-effector velocity to minimize the error, and the arm is actuated using
differential kinematics. The pipeline is used to successfully grasp several household objects in different
positions, obtaining good results in a benchmark scenario to be used in European Robotics League
competitions.
Keywords: Robotics, Manipulation, Visual-Servoing

1. Introduction

This work focuses on improving the grasping and
manipulation functionalities of MBot, a domestic
service robot. The goal is to develop a new system
to grasp several household objects in a way that
is less prone to calibration errors, with the purpose
of achieving better results in benchmarks and robot
competition challenges. This system should be inte-
grated in the existing ROS ecosystem of the SocRob
@Home team, such that members can easily config-
ure and extend the system.

To improve the hardware capabilities of the MBot
platform we installed a new robotic arm, designing
and assembling new parts to accommodate it. The
arm and its drivers were integrated with the existing
software.

We propose a novel grasping system that can
detect several household objects using supervised
learning, and obtain their position using depth-
sensor data. After moving the arm to a pregrasp
pose, position-based visual-servoing is used to guide
the gripper to the desired position, using visual
markers on the gripper to track it. Since both the
target and gripper positions are described in cam-
era frame, the servoing error is not affected by either
camera or joint calibration errors.

More precisely, the target object’s position is ob-

tained by combining the bounding-box output by
a convolutional neural network for object detec-
tion, with depth information from the center of the
bounding-box. The end-effector is located by track-
ing AR tags placed around the arm wrist.

A complete grasping pipeline is developed which
obtains the scene’s octomap, moves the arm to a
pregrasp pose where the end-effector is visible to
the camera, and activates visual servo control.

The system obtained good results in a grasping
benchmark, and was shown to be tolerant to kine-
matic measurement errors. The solution was im-
plemented as a ROS package, added to the SocRob
team repository, and existing MBot packages were
updated to use the new grasping capabilities.

2. Related Work

2.1. Robotic Grasping and Visual-Servoing

To make robotic grasping applicable to dynamic en-
vironments, a fixed point-to-point control scheme
— used for decades in industrial robots [24] — is
not enough. Vision-based grasping systems were
developed for this purpose: using a camera to ob-
tain the target object’s pose, the manipulator can
adapt to it.

Initial visual systems [17] were open-loop: the
arm controller operated separately from vision. The
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accuracy of this method depends directly on the
accuracy and calibration quality of the camera and
the manipulator [8].

The control loop is closed by using visual-
feedback: in addition to the target object, the arm’s
end-effector pose is continuously estimated by the
vision system, and corrected in real-time [22, 7].
This approach came to be known as visual-servoing
(VS).

Visual-servoing has been widely used and devel-
oped in research, leading to the appearance of sev-
eral variants. One of the most recent — Direct
Visual-Servoing (DVS) [4, 2] — uses the full cam-
era image as an input, removing the traditional re-
quirement of placing artificial markers on the target
object.

2.2. Object Grasping using Machine Learning
Standard visual-servoing approaches require
application-specific engineering: manually-designed
image features, a priori knowledge of the target
object’s 3D model, predefined grasp points, etc.
More recently, machine learning methods have been
applied to object grasping to make systems more
general. Experiments have been developed using
different types of learning for visual-servoing [5, 2],
3D pose estimation [25] and grasp pose detection
[12, 10]. End-to-end learned systems have also been
developed [13, 9], using reinforcement learning to
train an agent that performs the full grasping task
based only on input images.

In [5] the authors use an artificial neural network
to compute the required end-effector movement to
align a 3-DoF arm with a target object containing 4
visual markers. The image coordinates of the mark-
ers form the input vector for the neural network.
Advances in deep-learning allow for a more recent
approach [2] to use all the image pixels as input
for a convolutional neural network (CNN), which
calculates the required arm movement to reach a
desired target image.

3. Theoretical Background
3.1. Kinematics
Frame Transformations In robotics it is com-
mon to deal with multiple frames of reference. In
the example of a robot with a camera, it’s useful to
translate the spatial coordinates of a point from the
camera frame to the robot frame.

We can represent a relationship between two
frames by using a homogeneous transformation ma-
trix. In Fig. 1, if pc are the cartesian coordinates
of a point P in the camera frame, and we wish to
obtain pr, the coordinates of P in the robot frame,
we can do so by using T rc , the homogeneous trans-
formation matrix from c to r:

pr = T rc p
c (1)

Figure 1: A point P described in different frames

This notation is used in the rest of this work.
Direct Kinematics Frame transformations are

also used for manipulator kinematics. In direct
kinematics we wish to compute the pose of the end-
effector as a function of the joint angles q. A co-
ordinate frame can be attached to each robot link,
and the transformation describing the pose of link
n with respect to link 0 is given by the kinematic
chain:

T 0
n(q) = A0

1(q1)A1
2(q2) · · ·An−1n (qn) (2)

where Ai−1i is the homogeneous transformation ma-
trix between two consecutive link frames, function
of qi, the current angle of joint i connecting the
links.

Inverse Kinematics For manipulation tasks
it is necessary to transform end-effector poses and
motions into joint values and velocities. This is the
inverse kinematics problem.

Regarding the direct kinematics equation (2),
given a set of joint angles there is always one solu-
tion for the end-effector pose. The inverse kinemat-
ics problem is more complex: given an end-effector
pose there can be multiple solutions, infinite solu-
tions, or no solutions for the joint values. Calculat-
ing all exact solutions is challenging, as they depend
on the degrees-of-freedom, mechanical joint limits
and dexterous workspace of the manipulator [21].

The direct kinematics equations can be inverted
to enumerate all solution branches, but this only
works when the number of constraints for the end-
effector pose is equal to the degrees-of-freedom of
the robot. More general numerical techniques exist
that can find approximate solutions for any kind of
manipulator.

Differential Kinematics Differential kinemat-
ics is used to obtain the relationship between joint
velocities and the corresponding end-effector veloc-
ity. This is done by calculating the Jacobian matrix,
which depends on the manipulator configuration.
End-effector velocity ve is given by

ve = J(q)q̇ (3)

where q̇ is the vector of linear joint velocities, and
J(q) is the Jacobian matrix, dependent on joint an-
gles q.
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Determining the joint velocities required for a
certain end-effector velocity is possible by inverting
(3):

q̇ = J−1(q)ve (4)

This is the inverse differential kinematics prob-
lem. Since J may not be square or invertible, ob-
taining J−1 is not always possible. Instead, we
can calculate the Moore-Penrose inverse (or pseu-
doinverse) J†, which is defined and unique for all
numerical matrices. It can be obtained in several
ways, but the most common computational method
is using singular value decomposition, from which
results:

J = UDV T , J† = V D†UT (5)

Computing J† this way, and using it in place
of J−1 in equation (4) provides a computational
method to obtain the joint velocities required for a
desired end-effector velocity.

This method can be extended to solve inverse
kinematics: instead of the desired end-effector ve-
locity ve, we can use direct kinematics to compute
∆p = p(q0 + ∆q)− p(q0), the change in end-effector
position given the current joint angle changes ∆q.
∆q can be iteratively improved using the Newton-
Raphson method, minimizing an error function that
measures distance to the desired end-effector posi-
tion (error = ||p(q0 + ∆q)− pdesired||) [23].

3.2. Visual-Servoing

Visual-servoing is a method of robot control which
uses visual feedback to control the robot’s actua-
tors continually, in closed-loop. Over time, sev-
eral visual-servoing approaches have been devel-
oped, broadly characterized based on their camera
configuration and control architecture.

Camera Configuration There are two typical
configurations for the camera in visual-servoing sys-
tems: end-effector mounted (eye-in-hand), or fixed
in the workspace (eye-to-hand) [8]. Fig. 2 shows a
comparison between the two.

In eye-in-hand systems there is a fixed transform
between the camera and the end-effector’s pose,
making for a more direct estimation of the target.
Eye-to-hand systems can obtain a more panoramic
view of the workspace, independent of the arm’s
orientation, however additional work is required to
estimate the end-effector’s pose in the image.

There have also been experiments on multi-
camera systems which implement hybrid eye-in-
hand / eye-to-hand approaches, merging informa-
tion from both camera configurations [15].

Figure 2: Camera configurations. Left: eye-in-
hand. Right: eye-to-hand. On the latter, T ce needs
to be computed by the vision system

Control Architecture Sanderson and Weiss
[20] describe a taxonomy of visual-servoing systems
including four categories, based on the way they
answer two questions:

1. Does the system apply joint inputs (angles
and/or velocities) directly, or does it use a joint
controller for stabilization?

2. Is the error signal defined in terms of image
features, or in 3D workspace frame using pose
estimation?

The first question distinguishes between classical
and dynamic visual-servoing. In the former, joint
inputs are directly applied to the manipulator mo-
tors, while the latter uses joint sensor feedback to
stabilize the motion. Since nowadays many manipu-
lators include joint controllers, most recent systems
use dynamic VS.

The second question distinguishes between
image-based (IBVS) and position-based (PBVS)
systems. In IBVS the error is calculated in the fea-
ture space of the 2D camera image. While simple,
this method achieves only local asymptotical stabil-
ity [3] as there is a loss of dimensional information.
PBVS performs 3D localization of the object based
on its features, and the resulting pose is used to con-
trol the manipulator in Cartesian coordinates. This
operation can be expensive, but PBVS is shown to
achieve global asymptotic stability [3].

Fig. 3 illustrates the internal architecture of eye-
to-hand, dynamic position-based visual-servoing,
the approach used in this work.

PBVS Control In eye-to-hand PBVS the kine-
matic error function is given by [8]:

E(T 0
e , h

e, g0) = T 0
e h

e − g0 (6)

T 0
e is the transformation matrix from the end-

effector frame (e) to the arm’s root frame (0), which
is the variable we can control by actuating the arm
(the matrix is function of the joint angles). he are
the coordinates, in end-effector frame, of a point on
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Figure 3: Dynamic position-based visual-servoing

the arm (the tool or hand) which we want to place
in a fixed goal position g0.

We wish to apply a linear velocity u0 to the end-
effector to minimize this error. Open-loop position-
ing can be achieved by applying the proportional
control law

u0 = −k (T̂ 0
e h

e − T̂ 0
c ĝ

c) (7)

where T̂ 0
e is shown as an estimate (as it is sub-

ject to errors in the arm’s joint sensors), T̂ 0
c is the

estimated transformation matrix from the camera
frame to the root frame (usually based on fixed
transforms from manual measurements) and ĝc is
the estimated pose of the goal in camera frame,
given by the vision system. k > 0 is a proportional
feedback gain.

Because they are estimated, errors in T̂ 0
e , T̂ 0

c or
ĝc will lead to end-effector positioning errors.

The control loop can be closed by continuously
observing he (the hand) and estimating its position.
Doing this, (7) turns into

u0 = −k T̂ 0
c (ĥc − ĝc) (8)

where ĥc are the camera frame coordinates of the
observed hand point, as estimated by the vision sys-
tem.

In this equation u0 doesn’t depend on T̂ 0
e any-

more. Also, if ĥc and ĝc (dependent on the same
camera calibration) are equal, then u0 = 0 and equi-
librium is reached, independently of errors in robot
kinematics or camera calibration. This is the cru-
cial advantage of visual-servoing algorithms.

3.3. Object Detection
To detect the object to grasp, our system employs
the YOLO algorithm, which uses a convolutional
neural network (CNN) for real-time object detec-
tion. This section introduces neural networks, ex-
plains CNNs, and specifies how YOLO uses them.

Neural Networks A neural network is a su-
pervised learning technique which uses a connected
network of artificial neurons (also called percep-
trons) for classification. For each neuron, its input

Figure 4: Architecture of a single neuron in a neural
network [6]

vector x is multiplied by a weight vector w and a
bias value b is added. The result is fed to an activa-
tion function σ which computes the neuron’s output
y. Fig. 4 illustrates this process.

Given a dataset consisting of several input/target
pairs {x,t} the goal is for to learn a model of the
relationship between x and t. To train the neural
network is to obtain the weight vector w that pro-
duces a function y as close as possible to t.

For every training dataset example {x,t} an error
signal is calculated:

e = ||t− y(x)||2 (9)

with y(x) given by the network with current weight
vector w. While this corresponds to quadratic er-
ror, other error functions can be used.

Then, the weights are adjusted using gradient de-
scent, in a direction which minimizes the error:

wn+1 = wn − η
δe

δw
(10)

η is the learning rate parameter, which can be set
to a constant or be a decreasing function over the
training time. The derivative of the error in respect
to the weights ( δeδw ) can be calculated as a product
of derivatives between each layer of the network,
using the backpropagation algorithm [11].

Convolutional Neural Networks A Convo-
lutional Neural Network (CNN) is a type of neu-
ral network architecture, commonly used to process
images. The main component of CNNs is the con-
volutional layer : it consists of a set of learnable
filters that slide through the image space and acti-
vate when they detect visual features such as edges
or special shapes. The initial convolutional layer
detects simple shapes, while deeper layers detect
more complex patterns.

Between consecutive convolutional layers, pooling
layers are inserted. Their purpose is to downsample
the image representation, reducing its spatial size
and therefore the amount of parameters, making the
network more efficient and less susceptible to noise.
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Figure 5: Full CNN architecture [16]

Figure 6: YOLO model predictions: bounding
boxes and class probabilities are combined to ob-
tain the final result: object labels and their bound-
ing boxes [18]

Pooling layers don’t add learnable parameters to
the network, since they apply a fixed operation on
the input.

Fully connected layers are commonly placed at
the end of the CNN, after the highest level feature
outputs. This is done so that nonlinear combina-
tions of these high-level features can be learned. In
the case of image classification, the size of the final
output vector is equal to the number of detectable
classes (see Fig. 5).

YOLO Object Detection Initially CNNs
were mostly used for image classification, which
finds the most relevant class (e.g. cat, flower, car,
etc.) given an input image. Later, CNNs were
adapted for object detection: identifying and lo-
cating several objects in an image. Early object
detection systems were simply repurposed classifier
networks, applying them at various image subre-
gions. The location and scale of the subregions can
also be learned parameters. The runtime perfor-
mance of these systems is poor, since the classifica-
tion process must be run many times.

YOLO (You Only Look Once) [18] is an object
detection approach that uses a custom CNN to pre-
dict bounding boxes and class probabilities of ob-
jects. The network runs only once to predict bound-
ing boxes and probabilities for all classes. This im-
proves its runtime performance, making it able to
perform real-time object detection at more than 30
frames per second.

The input image is divided into an S × S grid.
Each cell predicts B bounding boxes centered on
that cell. Confidence scores are assigned to the
boxes, reflecting how likely it is for the box to con-
tain an object, and how accurate the box is, mea-
sured by the intersection-over-union (IOU) metric.

Each cell also predicts object class probabilities
P (Classi|Object) in its vicinity.

The YOLO CNN has 24 convolutional layers,
with maxpool layers in between them. 2 fully con-
nected layers are placed at the end. The first 20
convolutional layers are pretrained on the ImageNet
dataset, 4 additional layers are added to perform de-
tection, and the model is trained based on ground-
truth bounding boxes. The loss function penalizes
a) classification error for cells that contain objects,
and b) bounding box misalignment based on IOU.

4. Implementation
4.1. Robot Platform Integration
In order to improve MBot’s grasping and manipu-
lation capabilities we installed a new robotic arm
and integrated it in the existing ROS ecosystem,
allowing not only for its use in this work, but also
for other future grasping pipelines.

Hardware Integration We replaced the previ-
ous arm in MBot with a Kinova Gen2 arm featuring
more precise joint actuators and sensors, and ROS
driver support. To aid our choice, we prototyped
the arm in simulation before acquiring it.

Because of the arm’s larger length we decided to
mount the arm’s base inside MBot’s body, to make
the whole robot more compact — see Fig. 7. To
achieve this we modified the existing right-side plate
in SolidWorks, adding a hole for the arm to pass
through. Two copies of the part were machined
using 2D CNC milling, and the double layer was
installed in the robot replacing the previous single
layer plate, adding support. We also designed a
new part which attaches the arm’s base to the in-
side of MBot’s left-side plate. This part is made of
acetal (also called polyoxymethylene or POM) and
was machined using 3D CNC milling, according to
our CAD model.

Figure 7: Left: Arm assembly with modified side-
plate and new mounting fixture. Right: final result

Software Integration After installed, the arm
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was integrated with MBot’s ROS packages to allow
for its observation and control. The first step was to
change MBot’s URDF (Unified Robot Description
Format) file to include the arm’s model, adding a
fixed transform from the robot’s body to the base
of the arm, based on measurements. When the arm
is connected, the driver package communicates with
its joint sensors to update the URDF joint states,
making the robot model mirror the actual robot
joints.

The MoveIt! ROS framework includes several
grasping and manipulation utilities including in-
verse kinematics, motion planning, obstacle avoid-
ance based on 3D perception, visualization, inter-
active planning, etc. Its modular design allows for
different algorithms to be used interchangeably. To
make use of the MoveIt! pipeline, not only in this
work but for other manipulation tasks on the same
platform, a MoveIt! configuration package is neces-
sary.

To create this package we use the MoveIt! Setup
Assistant tool to load the URDF configured as
above, select the movable joints and end-effector,
and add pre-defined poses such as the folded rest-
ing pose.

Finally, we added several manipulation-specific
functions to MBot Class — a python package aggre-
gating the main functionalities used by the SocRob
team in robot tasks. We expose several convenient
arm functions such as moving to a certain absolute
or relative pose, getting the current pose of the end-
effector, and opening or closing the gripper.

4.2. Grasping System Implementation

Architecture A traditional visual-servoing con-
trol scheme was chosen, using supervised learning
for the visual feedback, specifically for obtaining the
target object’s position. To achieve this, the YOLO
CNN-based object detection algorithm is used to
output a 2D bounding box over the part of the
image containing the target object. By sampling
image depth, the 3D position of the object’s center-
point is estimated.

Our system takes advantage of MBot’s depth-
camera, fixed to its head. This makes it an eye-
to-hand system, requiring the end-effector’s pose to
be estimated by the vision system. To do this, three
AR markers were added to the arm’s wrist, and the
ALVAR package is used to track their 3D position.

The error is given by the difference between the
target object and end-effector positions, in camera
frame. A proportional control law is used to ob-
tain the end-effector velocity required to minimize
the error. Using singular value decomposition to
compute the Jacobian pseudo-inverse, the joint ve-
locities are calculated and given as inputs to the
arm’s controller. Fig. 8 shows the diagram of the

system.

As opposed to using a more end-to-end approach,
our solution uses supervised learning as a ”sensor”
that provides the object position as an input for
a classical position-based visual-servoing control al-
gorithm (PBVS). This creates a separation of con-
cerns between perception and control, facilitating
debugging and error analysis. Assuming the target
is correctly localized, the system takes advantage
of the well-studied stability guarantees of PBVS
[8, 3], whereas end-to-end systems must learn the
control function through examples, requiring a large
dataset of experimental data.

Target Position Estimation To localize the
target object, a YOLO v3 CNN receives RGB im-
ages from the head-camera and outputs 2D bound-
ing boxes around the recognized objects. We used a
pre-trained network capable of identifying 80 com-
mon objects from the COCO dataset [14]. The net-
work consists of 75 convolutional layers with leaky
ReLU activation. Instead of pooling layers, down-
sampling is done by convolutional layers with a
stride of 2 (sliding 2 pixels at a time), preventing
the loss of low-level features. Bounding box detec-
tions are performed at three different image scales
[19].

Since our system assumes knowledge about the
type of object to grasp, only the bounding boxes
corresponding to that class are considered. A re-
gion of points in the center of the bounding box is
sampled, and the depth values of those points are
obtained from the captured depth image. The 25th

percentile depth value is chosen as representative of
the surface’s depth d.

A pinhole camera model, created from the camera
calibration parameters, is used to obtain a rectified
image without lens distortion. The center pixel of
the bounding box is chosen and a ray is projected
from the lens, intersecting the rectified pixel. This
ray is represented by the unit vector r = [x y z]T

which points in the direction of the object’s center-
point. The depth value is multiplied by this vector
to obtain the 3D position of the goal point in camera
frame: ĝc = d · r.

End-Effector Pose Estimation To localize
the end-effector, the ALVAR ROS package was
used. ALVAR is an open source library for tracking
and localizing AR tags based on the size and angle
of the observed visual features, and a priori knowl-
edge of the marker’s size and the camera’s intrinsic
parameters,

Only one visible marker is needed for accurate 3D
pose estimation, but to improve camera visibility of
the wrist independently of its rotation, we placed
three different markers (IDs 0-2) around the wrist,
as seen in Fig. 10. A bundle file is created which
stores the relative position of two markers (IDs 1
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YOLO CNN + Depth
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u0 = −k T̂ 0
c
(ĥc

− ĝc) q̇ = J†(q) u0 Arm
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Figure 8: Diagram of the visual-servoing architecture.

Figure 9: Target position estimation: YOLO
bounding box and 3D position estimation based on
the depth of the box’s central region.

Figure 10: ALVAR markers used for end-effector
pose estimation

and 2) relative to the main marker (ID 0), as well as
the size of the markers. When any marker is visible,
the ALVAR package outputs M̂ c

m — the pose of the
main wrist marker m in camera frame. However, for
visual-servoing it is useful to locate the end-effector
tool (or hand) which we want to bring closer to the
target object. To do this, a fixed transform tmh is
defined from the hand to the marker frame, based
on measurements. A simple frame transformation
gives the hand pose: ĥch = M̂ c

mt
m
h .

Pregrasp Pose Selection The purpose of this
work was more on using visual-servoing to achieve a
given grasp point, and less focus was put on select-
ing an appropriate grasp pose. However, since our
system is designed to be modular and extensible, a
simple grasp selection algorithm was developed to
showcase the capability.

Our selection criteria is based on how high the
object sits on the table. The estimated height of
the object is subtracted from the table’s height and

compared to a threshold. If it’s taller, the wrist is
placed parallel to the table, as if to pick up a water
bottle or coke can. Otherwise if the object is short,
the robot’s wrist is lifted in order to avoid colliding
with the table.

These serve as pregrasp poses. Since the pregrasp
phase cannot benefit from visual feedback (the AR
tags are still not visible to the camera), the arm
is placed at a small distance from the object, close
enough to make the AR tags visible to the camera.
For the final approach (grasp phase) visual-servoing
starts and controls only the linear velocity of the
end-effector: its orientation stays the same as in
the chosen pose.

Visual Servo Control Having obtained the
required variables to calculate the positioning error
as the difference between the target and end-effector
estimated positions, PBVS control can start: we use
the proportional control law given in (8) to obtain
the linear velocity required for the end-effector tool
to approach the target object at every timestep:

u0 = −k T̂ 0
c (ĥc − ĝc) (11)

Controlling the arm using this law naturally
makes the error (ĥc − ĝc) diminish through time.
For the control loop to stop, we set a stopping dis-
tance parameter s: the acceptable error value at
which visual-servoing stops, so that the object is
grasped by the gripper. s is easily configurable,
and we use s = 0.01 (1cm) in experiments.

Although the arm’s driver supports Cartesian ve-
locity control of the end-effector (sending u0 di-
rectly to the controller), this mode of operation
has some flaws, e.g. not being able to activate the
mode for certain arm positions. For this reason we
decided to calculate the required joint velocities q̇
and send those to the driver’s joint velocity control
mode, which works well. Doing this means solv-
ing the inverse differential kinematics problem de-
scribed in section 3.1. The Jacobian matrix J(q)
is calculated at every timestep, based on the arm’s
kinematic structure and current joint angles q pub-
lished by the arm driver. Singular value decompo-
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sition is performed to obtain the Jacobian pseudo-
inverse J†(q):

J = UDV T , J† = V D†UT (12)

The joint velocities can now be obtained, replac-
ing J−1(q) with J†(q) in (4):

q̇ = J†(q) u0 (13)

We make use of the Eigen C++ library to perform
numerical operations efficiently.

Complete Pipeline The developed visual-
servoing control scheme is capable of making the
end-effector approach the target object, but by it-
self does not constitute a grasping system. A com-
plete pipeline was developed making use of the ROS
framework, primarily the MoveIt! package. The
pipeline is implemented as a state machine:

Function GraspObject(object type):

start localizer(object type)
sweep head()
turn head to object(object tf)
pose ← select pregrasp(object tf)
pregrasp(pose)
visual servo()
close gripper()
lift and lower eef()
open gripper()
go to pose(’mbot resting’)

Algorithm 1: Object grasping pipeline

The system is started by running a ROS launch
file with configuration parameters, and a grasp can
be triggered by calling a ROS service, passing the
YOLO class of the object as the input.

When the service is called, the object local-
izer node is started, which loads and runs the
YOLO network (using the robot’s GPU for accel-
eration) and the depth estimator for the given ob-
ject type. This node publishes the object’s position
(object tf) as a ROS tf transform.

The head is sweeped left and right to build an
octomap of the scene for obstacle avoidance. The
head is then pointed to the object, and the pre-
grasp pose is selected based on the object’s height.
A motion plan to the selected pose is obtained
through the MoveIt! planner and executed by with-
out visual feedback. With the end-effector in frame,
visual-servoing starts for the final approach, un-
til the end-effector is at the stopping distance, at
which point the gripper is closed, and the object
is lifted. Finally the arm returns to the rest po-
sition. Fig. 11 shows the pipeline’s steps, and a
video showing several grasps can be seen at https:
//youtu.be/CZaLNTZ_ITU.

Figure 11: Steps of the grasping pipeline

5. Results

5.1. Grasping Benchmark

Setup To test our system we use the ”Object
Grasping and Manipulation” functionality bench-
mark [1] from European Robotics League. De-
signed to be used in ERL Consumer competitions
for domestic robots, this benchmark focuses solely
on evaluating grasping and manipulation capabil-
ities. By using ERL’s referee, scoring and bench-
marking box (RSBB), tests can be done in a semi-
autonomous way and result logs with performance
information are automatically saved.

To automatically score the benchmark, the RSBB
communicates with a motion capture (MoCap) sys-
tem: retroreflective markers are attached to the ob-
jects so that MoCap cameras can detect their pose.
We use the ”successful grasp” evaluation criteria,
which is positive if the object is lifted more than
2cm.

A 25x20cm rectangular region of a dining table
was divided into 9 positions (3x3). Five household
items were chosen and placed at each position, for a
total of 45 test grasps. The total percentage of suc-
cessful grasps was measured, as well as the success
rate per-object and per-position. We also captured
internal data from the robot to better analyze and
debug the system. During each grasp we recorded
the pose of the end-effector and target object, and
during visual-servoing we recorded its error signal.

Benchmark Results The system achieved an
overall grasping success of 82.2% — 37 successful
grasps out of 45. Tables 1 and 2 show the grasp suc-
cess per-position and per-object, respectively. Fail-
ures close to the robot happened due to the robot
not being able to see the end-effector marker after
pregrasping, while failures far from the robot were
caused due to the arm reaching a kinematic limit
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x(m)

y(m)
-0.125 0.00 0.125

0.20 60% 60% 60%

0.10 100% 100% 100%

0.00 80% 80% 100%

Table 1: Grasp performance by table position. Ag-
gregate of all 5 objects.

Bottle Tall mug Large coffee Espresso Orange

88.8% 88.8% 100% 66.6% 66.6%

Table 2: Grasp performance by object

during visual-servoing.

The error plots (Fig. 12) show the expected sys-
tem behavior: A smooth motion is applied to the
arm while pregrasping, and when visual-servoing
starts the error follows an asymptotic function con-
verging to 0, stopping at the desired distance of
1cm.

5.2. Error Tolerance Tests

To test our system’s ability to handle calibration
errors, we added an erroneous translation to the
arm in relation to MBot’s body, moving it 8cm to
the right in the URDF measurements. We then
tested two versions of the pipeline: a modified ver-
sion which does not use visual feedback, making
the final approach to the object only based on joint
sensors and measurements, and our version which
uses visual-servoing for the final approach. Three
objects were placed in the same table position for a
fair comparison between the versions.

As expected, the version with no visual feedback

Figure 12: Error plots for two grasps

Figure 13: Comparison of grasping with and with-
out visual feedback, with a wrong arm measurement

places the hand incorrectly and fails to grasp the
objects. When using our pipeline, while the pre-
grasp pose also places the end-effector to the left,
visual-servoing then activates and starts correcting
the error, guiding the arm to a successful grasp on
all three objects. Fig. 13 shows error plots for both
versions.

6. Conclusions
The proposed system shows success in grasping sev-
eral household items in different positions. Using
visual-servoing makes it tolerate calibration errors
in the camera and the arm kinematics, allowing for
a precise final grasp position.

Our target localization system using supervised
learning proves to be useful for SocRob’s purposes:
many household items are detectable by pretrained
models, and a specific detector can be trained to
make the system able to grasp other objects. Ad-
ditionally our grasping pipeline is easily usable as a
part of more involved domestic and assistive robot
tasks.

As future work, the grasping pipeline can be ex-
tended by adding navigation: after identifying the
target object’s position, the robot can move to an
advantageous position for grasping. Grasp feasibil-
ity checks could be added to prevent visual-servoing
from reaching kinematic limits. This work could
also be augmented by adding a more robust grasp
pose selection algorithm, using available data from
the depth sensor, or even several viewpoints of the
object, obtained by moving MBot’s base, and using
3D stitching for reconstruction
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