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Resumo

Neste trabalho é realizada uma avaliação das denominadas perdas por gravidade em manobras de

impulso considerável, que costumam ser aproximadas por manobras instantâneas em estudos prelim-

inares. Para tal foi utilizado um método de optimização, direct shooting. Foram estudados três tipos de

manobras: direção da propulsão constante; rotação constante e propulsão alinhada com a velocidade.

Os vários casos são estudados em função do impulso especifico e razão força/peso, bem como

analizadas as suas vantagens e desvantagens relativas. O caso que apresenta menor desempenho

é o de propulsão com direção constante, como seria de esperar, sendo que os resultados obtidos

apresentam algumas surpresas, que são discutidas.

Os resultados são também comparados com uma aproximação conhecida da literatura e estudadas

as consequências de utilizar manobras de elevação de apogeu para minimizar as perdas por gravidade.

Palavras-chave: perdas por gravidade, multiplas manobras, direct shooting
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Abstract

In this work, an evaluation of losses due to gravity and steering is done for high thrust spacecraft ma-

neuvers, which are normally approximated as instantaneous maneuvers on preliminary studies. For this

purpose an optimization method was used, the so called direct shooting. Three steering cases were

studied: constant thrust direction, constant rotation, and thrust aligned with velocity.

Then, the various steering cases are studied in function of the specific impulse and thrust over

weight. The case with the least performance is the case of constant thrust direction, as expected, while

the results obtained show some surprises, which are discussed.

The results are also compared to a known approximation of the literature where the losses are upper

bounded. At the end as an alternative to direct maneuvers, the consequences of multiple apogee raising

maneuvers to minimize the gravity losses are studied.

Keywords: gravity losses, multiple maneuvers, direct shooting
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Chapter 1

Introduction

1.1 Objectives and Motivation

In this thesis the problem of determining gravity losses for a generalized spacecraft maneuver is anal-

ysed. Heuristics that estimate these losses are reviewed to confirm their validity by comparison with

numerical calculations and a procedure to minimize losses with a multi-impulse maneuver is presented.

1.2 Spacecraft maneuvering

In preliminary mission design a first approximation of the trajectories must be determined, while the

spacecraft hardware is yet to be completely developed. Since high accuracy is not required, some

simplifications and assumptions can be used. These assumptions involve simplifying orbital maneuvers

to determine a delta-v budget, in which an error is introduced that must be evaluated and taken into

account [1]. It is important to have good initial guesses for mission design, as better approximations can

yield faster convergence of the orbit design and other systems such as the propulsion system.

1.2.1 Types of maneuvers

Orbital maneuvers can be divided in two types: high thrust maneuvers, which typically last a few minutes

and are approximated as instantaneous, and the so called continuous thrust maneuvers, where the

thrust is very small but the thrusters are highly efficient.

The high thrust maneuvers are produced by chemical energy, where the engines can be solid, liq-

uid (bipropellant or monopropellant) or hybrid. Other options, such as nuclear thermal engines, which

are being studied but still have not been used. Typically, these engines perform maneuvers such as:

Hohmann transfers, apogee raisings, apogee maneuvers or interplanetary injections. Continuous thrust

maneuvers are propelled by electric energy (for example: ion gridded thrusters, arcjets, resistojets and

others) generally for long maneuvers where the spacecraft is small and higher efficiency is important.

This work focus on finite high thrust maneuvers produced by chemical thrusters.
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High thrust maneuvers are typically performed by interplanetary probes and upper stages. Such

spacecrafts typically use bipropellant liquid thrusters as their main engine with a specific impulse around

300 s and thrust magnitude on the order of 500N. These thrusters are used for the main maneuvers such

as: planet insertion maneuver or apogee maneuver. Upper stages use liquid propellant engines with a

typical specific impulse from 350 s to 450 s and thrust levels from 20 kN to 90 kN [2] [3]. In this work both

upper stages and small spacecraft are studied for a wide range of impulsive maneuvers.

1.2.2 Impulsive Approximation

In preliminary mission analysis, high thrust maneuvers, are often approximated as an instantaneous

change in the velocity. This is convenient because it separates the problem of the maneuver from the

problem of specifying the spacecraft, but implies an error, usually fairly small, as the actual burns typically

occur only during a small part of the orbital period [1]. This approximation considers that the spacecraft

changes from one state to another instantly, simply connecting two ordinary two-body problems (another

approximation), making the problem description simple, with only two orbits and a change of the velocity

vector in a point in space, ∆v.The calculated ∆v can be used to estimate the propellant mass needed

for a given thruster and payload mass [4].

Nevertheless, the impulsive approximation is only valid to a certain degree. The burn always occurs

in a finite interval of time and the real maneuver is different from the instantaneous one. The ∆v from

both is therefore different and so will be the predicted propellant for the maneuver.

1.2.3 High thrust finite burn maneuver

To gain insight about the shortcomings of an impulsive approximation, let us consider a simplified apoap-

sis raising maneuver that can be thought of as an Hohmann transfer. The spacecraft starts from a circular

or elliptical orbit and wants to reach an elliptical orbit with the apoapsis equal to the radius of the final

orbit. Prior to the burn, the spacecraft is on the initial orbit, and a constant thrust is applied to reach the

desired orbit as shown in figure 1.1.

On an impulsive approximation, when the ”burn” occurs, that point simply becomes the periapsis of

the new orbit. The real maneuver always takes a certain amount of time and that causes the so called

finite burn losses. In the example, we can observe that:

• The burn does not occur solely at the periapsis (one point in space), where the gravity loss (ex-

plained bellow) is minimal, but also around it;

• The required direction of the thrust during the burn for achieving the desired final orbit is non-trivial

and may be non-optimal, leading to steering losses (explained bellow);

• The spacecraft mass is decreasing as the propellant mass is expelled at a certain mass flow rate

and the thrust’s acceleration varies (depending on how the mass flow rate is controlled);

2



Figure 1.1: Apogee raising maneuver with GMAT software [5]. The yellow line is the initial orbit with an
orbital period of approximately 1h:40m, the red line is the finite burn trajectory which takes about 20 m
and the fade blue line is the state propagation until the new apoapsis

• The current orbit is constantly changing and the maneuver has to take that into account and it

can be difficult, impossible, or undesirable to reach the exact planned final orbit obtained with the

impulsive approximation (explained bellow).

Initial thrust to weight ratios (T/W0) also influence the finite burn losses. Lower thrust to weight ratios

lead to longer maneuvers and therefore higher finite burn losses and cases below a ratio of T/W0=0.5

should be subject to further study [4].

How each of these factors influence the final result of a delta-v produced versus the estimated is

crucial to estimate accurately the performance of the real maneuver.

Gravity loss is a phenomenon first suggested by Herman Oberth and it is sometimes referred as the

Oberth’s effect [6]. It is the recognition that, in the presence of a gravitational well, the same amount

of propellant on a spacecraft can have different energetic outcomes for the spacecraft final motion.

The burn’s efficiency is larger if the spacecraft is at lower gravity potential points of its orbit, ideally the

periapsis, because propellant is expelled with lower potential energy and higher kinetic energy .

Steering losses derive from the geometrical difference between the impulsive approximation and the

actual finite burn trajectory and thrust direction. Although an optimal thrust direction can be computed,

we also have to consider the feasibility of such optimal steering for the spacecraft system in question. In

practice, the steering may have constraints. This work considers the three cases of optimal maneuvers

with the constraints of: constant thrust direction; constant angular rate (as done in Cassini insertion

maneuver [7] and upper stages), that covers most relevant cases, and thrust aligned with the velocity.

Regarding the instantaneous orbital change, since the maneuver is made through an arc and not a

point, reaching the planned maneuver becomes a problem of reaching all 6 orbital elements of the final

orbit. What generally happens is that, in this level of guidance, targets are defined which are different for

3



each mission. For example, it can be an escape velocity and the direction in space or in the Hohmann

transfer presented an apogee. This implies that we are not comparing the finite burn maneuver to

an equivalent impulsive maneuver but to one that achieves some objectives in the best possible way

(optimized).

Burn losses can then be defined as the difference between the ideal impulsive maneuver and the

real finite one, optimized taking the constraints into account.

1.3 Literature review

The real finite burn maneuvers can be determined numerically or analytically with an optimization

method that can be direct or indirect.

In [8] it is theorized the modelling, design and optimization of finite burn maneuvers for a generalized

trajectory. The issues associated with controlled engine burn maneuvers of finite thrust magnitude

and duration are presented in the context of designing and optimization for a wide class of finite thrust

trajectories. Although the link between a theoretical optimal thrust solution and its feasibility is debatable,

as it depends on each specific spacecraft system design, this state of the art optimization method can

be considered the optimal numerical solution for a finite-burn maneuver. It has been implemented in

Copernicus [9], a trajectory design and optimization system, that unfortunately is not available to the

wide public.

On the other hand, an open source software GMAT [5], General Mission Analysis Tool, developed

by NASA, private industry, public, and private contributors can be used to simulate the environment.

However the results are subject to the tool available for numerical and optimization methods (shooting

methods) and to the weak costumer support it has. Nevertheless, some representative results can be

obtained using this software and can be used for code validation.

A Matlab script of optimal Finite-burn for interplanetary injection from Earth orbit [10] is used as the

basis for the tool computing the finite burns. The original script uses SNOPT optimizer [11] to compute

optimal thrust angles for given segments of the burn via direct shooting. The modified version, uses

different settings of thrust and different optimization constraints.

Analytic approaches can be used, but most studies determine a trajectory under some assumptions

that limit the application of the final expressions, which make them unhelpful for this work.

For example, in [12] expressions that describe the trajectory of a high thrust maneuver are presented

under the assumption that the thrust’s direction is normal to the focal radius of the trajectory and the

focal radius’ change is small during the thrusting time interval. The expressions obtained are hardly

useful for gravity loss analysis as the radial distance variation is considered to be small and the steering

policy is adequate for thrust parallel to the LVLH frame, but nor for the types of maneuvers considered

in this work.

Finite-thrust escape and capture trajectories are considered from either circular or elliptic orbit and

the efficiency are determined in [13]. The efficiency penalty due to finite-thrust is solved by applying a

correction factor to the impulsive velocity increment. It considers tangential steering (thrust vector paral-
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lel to the velocity vector) and numerically integrates the maneuvers. The results are shown graphically

for a wide range of jet velocity values and initial dimensionless acceleration and can then be used to

apply to any particular similar case of interest — a specific planet, parking orbit, propulsion system and

hyperbolic velocity. It is also shown that the difference between tangential steering and optimal steering

is negligible. Nevertheless, as mentioned earlier, the specific constraints of the system are not always

compatible with tangential steering, and this type of maneuver is not always optimal.

An intuitive analysis on the finite burn losses in which an analytic formula is determined for computing

the losses is done in [14]. It considers that the finite thrust steering is of constant angular motion. It can

be used for a general impulsive maneuver as long as the burn time is short enough. It must be mentioned

that the expression needs numerical experimentation, which has not been found in the literature.
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Chapter 2

High thrust maneuvering

In this chapter, we will describe how maneuvers can be determined analytically and numerically and

how spacecrafts perform them.

2.1 Problem definition

Real maneuvers take some time and while the burn is occurring the spacecraft goes through different

instant Keplerian orbits. As a result, it is non trivial to reach the exact orbit equal to the one from an

instantaneous approximation. Generally the real maneuver is not planned to obtain exactly the instan-

taneous orbit but instead to accomplish certain objectives, such as the simple cases of reaching an

apogee or energy level. This raises the question of how accurately the finite burn losses of the finite

maneuver can be compared to the instantaneous approximation. In this work maneuvers in which either

the apogee or the asymptotic velocity V∞ are the same on both maneuvers are considered.

To solve the maneuver problem variables such as burn duration and thrust direction need to be

determined so that the objectives are accomplished. At the same time it is important that the ∆v is

minimized, thus an optimization method must be used.

The equations of motion that describe a thrusting arc on the main body inertial frame are [15]:

ṙx(t) = vx(t), (2.1)

ṙy(t) = vy(t), (2.2)

ṙz(t) = vz(t), (2.3)

v̇x(t) = − µ

r(t)
3 rx(t) +

Tx(t)

m(t)
, (2.4)

v̇y(t) = − µ

r(t)3
ry(t) +

Ty(t)

m(t)
, (2.5)

v̇z(t) = − µ

r(t)3
rz(t) +

Tz(t)

m(t)
, (2.6)

ṁ(t) =
T

g0Isp
, (2.7)
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where r is the radius to the main body, v is the velocity, µ is the standard gravitational parameter,

rx, ry, rz, vx, vy, vz, Tx, Ty, Tz are the radius, velocity and Thrust in the inertial axes, Isp is the

specific impulse and g0 is the gravity acceleration at the surface of the Earth.

The following assumptions were made:

• Thrust magnitude is constant, being similar to bi-propellant liquid engines;

• Specific impulse is constant;

• Initial and final orbit are keplerian;

• maneuvers are two-dimensional, x and y plane

Because thrust and specific impulse are considered constant throughout the burn, the mass-flow rate is

constant (2.7).

We consider three steering laws (for the Thrust Tx Ty Tz) in this work: Inertially fixed thrust direction:

Tx = cos(α)T, (2.8)

Ty = sin(α)T, (2.9)

Tz = 0, (2.10)

where T is the thrust magnitude.

For thrust direction resulting from a constant rate about a single inertially fixed axis we modify the

angle to:

α = α0 + α̇t, (2.11)

Thrust direction aligned with the velocity:

Tx =
vx
v
T, (2.12)

Ty =
vy
v
T, (2.13)

Tz = 0, (2.14)

where v is the velocity magnitude.

Considering that

C3 = v2∞, (2.15)

the optimization problem can be formally defined as:
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minimize ∆v

w.r.t α0, α̇, t

subject to C3finite = C3impulsive for escape or

apogee radiusfinite = apogee radiusimpulsive for apogee raising

steering law

In the cases considered minimizing ∆v is the same as minimizing the burn duration t because the

mass flow rate and specific impulse are constant.

2.1.1 Maneuver dynamics

T/W0 and Isp are important parameters in maneuvers and they define how the maneuvers can differ.

As we can see the acceleration magnitude is dependent on them; recalling the mass flow rate equation

(2.7):
a(t)

g
=

T
W0

1− T
W0

1
Isp
t
, (2.16)

The acceleration of the thrust magnitude as a function of time depends only on these two variables.

2.2 Analytic estimate and trajectories

In order to predict the ∆v of a maneuver we can describe the transfer orbit with an expression. The

process of determining the spacecraft motion under continuous thrust is typically as follows [16]: we

define the state equations on a given frame carefully chosen and a thrust steering rule. Then we define

the boundary conditions which can be: the initial orbit is circular (and it becomes easy to describe it).

The integration can be left dependent on the burn time or a specific boundary end condition.

The end condition in the literature is generally a simple case and on specific reference frames, which

limits the solutions to low range of applicability [16] [13] [12]. To generalise this process into other

boundary end conditions we would have to describe each boundary end condition with an expression

that contains the orbital elements from the state equations defined earlier. Since there are no analytic

trajectories that describe the cases used in this work, trajectory expressions are not used.

On the other hand it is possible to obtain an approximation or bounds for a maneuver’s ∆v. In this

work the analytic estimate tested is the expression obtained in [14], (2.17). The expression explicitly

gives a maximum value for what the finite burn losses can be. It is determined by adding to the instan-

taneous velocity change (of the usual instantaneous maneuver approximation) a position displacement
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compensation factor obtained from a maneuver done with thrust being applied at an arbitrary constant

angular velocity.

This upper limit is

FiniteBurnlosses ≤ 1

24
(wst)

2∆v, (2.17)

where

w2
s =

µ

r3
(2.18)

(which is related to a maximum optimal angular rotation of the thrust), t is the burn time and ∆v is

the instantaneous approximation velocity change. The burn time must be computed previously for the

specific impulse and thrust over weight.

The Tsiolkovsky rocket equation [17]:

mp = mi

(
1− e

−∆v
Ispg0

)
, (2.19)

where mp is the propellant mass spent on a maneuver with a certain ∆v, mi is the initial mass, Isp is

the specific impulse and g0 is the gravitational acceleration at the surface of Earth. Knowing the mass

flow rate (2.7), which is constant as a result of the thrust and specific impulse being considered constant

in this work, we can determine the time it would take to spend that mass:

t =
g0Ispmp

T
=
Isp

(
1− e

−∆v
Ispg0

)
T
W0

, (2.20)

where W0 is the probe weight, and T is the thrust magnitude, related by

T

W0
=

T

g0mi
, (2.21)

2.3 Numerical determination of high thrust maneuvers

The keplerian orbit is described by the 6 classical orbit elements which can be determined by the position

and velocity at a given point in time. The instantaneous approximation is just the difference of the final

minus the initial velocities, whereas in the real finite maneuver it becomes a problem of optimization

or targeting. The parameters involved, such as the burn time and direction, are obtained to meet the

constraints.

2.3.1 Optimization methods

Trajectory optimisation methods can be either direct or indirect. In the next paragraphs we will follow

[18].

Indirect methods are based on a variational calculus principle: the Pontryagin minimum principle. It is

possible to formulate a two-point boundary problem with a set of adjoint variables and a switch function,

the solution of which will yield a history of the time-dependent controls, the so called Hamiltonian system.
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Direct methods differ from the indirect in that the time-dependent controls are described by a finite set

of parameters. The effect of such a limitation on the optimal solution in most problems is negligible. In

this thesis the direct method single shooting is used since it is simpler and there is available in literature

a script that uses it [10].

The so called single shooting is conceptually the simplest method [18]. The initial state vector values

are specified and the trajectory is progagated forward in time, with the control variable values obtained

from the parameterised representation. At the end of the propagation, some of the required constraints

may be met and others not.

This work uses SNOPT [11] and YUKON (from GMAT [5]) as optimization algorithms for the non-

linear programing problem. Both use sequential quadratic programming which is an iterative procedure

that models the non-linear problem by iteration with quadratic programming sub problems (where the

objective function is a quadratic function arranged with information obtained from the differentiation of

the problem, the gradient and the Hessian) [19].

Two types of constraint can be applied to the trajectory:

• functions of the state and control variables over regions of the trajectory

• functions of the state and controls at the end of the trajectory or at a fixed event

Regarding the control variables, such as the burn duration, the initial angle of the Thrust or the rotation,

they are constrained within certain values. For terminal conditions we can generally use the charac-

teristic energy C3 for an interplanetary insertion maneuver, or a certain apogee for an orbiting satellite.

Some constraints and their relation to the orbital elements on an onboard guidance algorithm of the

Inertial Upper Stage Rocket are shown in table 2.1.

Table 2.1: Orbital element constraints relationships shown in [20]. γ is the flight path angle, h is the
angular momentum and C3 is the characteristic energy, R is the magnitude of the radial distance vector,
V is the magnitude of the velocity vector.

Constraint elements Equivalent constraint

C3 or R and V for a circular orbit a Semimajor axis

h and C3 or R,V and γ for a circular orbit e Eccentricity

h and hz or ~h for (i=0) i Inclination

h, hz, ez and C3 ω Argument of perigee

hx and hy Ω Right ascension of ascending node

The characteristic energy is defined as

C3 = v2∞ (2.22)

where V 2
∞ is the asymptotic velocity at infinite distance of an hyperbolic keplerian orbit.
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In this work some of the constraints are not used such as the inclination or direction of an hyper-

bola, these can be considered to be accomplished by the booster and time of launch. For the case

of escape maneuver we use the characteristic energy C3, which is equivalent to the asymptotic velocity

(2.22). For a Hohmann transfer to higher orbit we use the apogee, applicable for general orbiting probes,

interplanetary orbiters (when reaching a planet) or some geostationary satellites.

2.4 Typical approaches to real maneuvers

Information about real maneuvers is scarce in literature but there are a few examples. Generally, upper

stages perform maneuvers with constant thrust direction or constant rotation probably because their

mass and size makes it difficult to control the attitude, whereas satellite maneuvering is more flexible

since they are smaller and can be more maneuverable.

In Mars Observer mission [21], the orbit insertion by the upper stage was planned to start burning at

a defined radius with constant flight path angle. Such strategy simplified the system guidance software.

Meanwhile, the satellite performed all maneuvers by pitching at a constant rate about an inertial fixed

axis.

In the Apollo missions in the Trans-Lunar Insertion performed by the upper stage is suggested to

have been done in constant pitch direction in [22].

In the Mars Global Surveyer mission the spacecraft used a ”pitch-over” steering strategy for the Mars

orbit insertion in order to maximize the efficiency of the burn. ”Pitch-over” works by using the attitude

control thrusters to slew the spacecraft at a constant rate during the 20 minute to 25 minute burn in an

attempt to keep the thrust tangent to the trajectory arc [23].

Considering the above practical examples, the choice of the three steering cases are within the real

maneuvers.

2.4.1 Typical spacecraft systems

In the table 2.2 some important parameters are shown for different types of spacecraft.
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Table 2.2: Propulsion and payload values parameters for different types of missions

Spacecraft Thrust, N Isp, s Mass, kg T/W0 Utility ref

Fregat 19 850 332 7 538 0.2687 Upper stage [2]

Centaur 99 200 450 23 073 0.4387 Upper stage [3]

Venus express orbiter 414 317 1 245 0.0339 Interplanetary satellite [24]

Mars Global Surveyur 596 318 1 052 0.0582 Interplanetary satellite [25]

Cassini 440 305 5 574 0.0080 Interplanetary satellite [26]

INSAT-3D 440 Na 2 120 0.0212 Geostationary satellite [27]

For apogee maneuvers in Geostationary satellites generally the engines have typically 490 N of

thrust and 310 Isp [28].

Considering the above examples of spacecrafts, for this work we used a range for T/W0 of 0.03 to

0.5, for specific impulse of 300s, 400s, and 600s.

2.4.2 Multiple apogee raising maneuver

We can use the technique of apogee raising to minimize the burn losses. By dividing the direct ∆v in

smaller ones, each burn will be shorter and closer to the main body, taking advantage of the Oberth

effect. Whereas a direct maneuver would last longer and the burn would take place in a trajectory that

would eventually be further away from the main body. Thus multiple apogee raising maneuvers save ∆v

and have a significant impact on mission planning such as in the mission chandrayaan-2 [29].

2.5 Cases studied

In this work the maneuvers determined start from a circular parking orbit of 200 km altitude, with ideal

∆v ranging from 1 km/s to 5 km/s with a step of 0.5 km/s, for T/W0 from 0.03 to 0.5 with a step of 0.01 for

a specific impulse of 250 s, 300 s, 400 s and 600 s for the three steering laws.

Then as an alternative to direct maneuvers, the multiple apogee raising maneuver is studied for a

specific impulse of 300 s and T/W0 = 0.15 for a transfer orbit to Mars and for a geostationary transfer
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orbit (GTO).
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Chapter 3

Numerical implementation of the

direct shooting

In this chapter the details and process of computing the maneuvers numerically are presented. Two

types of algorithms were developed in this work, one that determines single maneuvers (developed in

MATLAB) and other that computes multiple maneuvers (developed in GMAT and MATLAB).

3.1 Single maneuver and multiple maneuvers

For both single and multiple maneuvers we used only the direct shooting method. In single maneuvers,

since more than one steering law is studied it was developed in MATLAB, because it allows for more

flexibility in programming the steering mechanisms. For multiple maneuvers, for the case where thrust

is parallel to the velocity it was developed in GMAT because of its simplicity of implementation, whereas

for the other steering laws it was implemented in MATLAB.

3.2 Single maneuver: Algorithms implemented

To determine the optimum single maneuver we used the optimization parameters:

• Thrust duration

• Initial inertial angle for thrust direction

• Inertial rotation of the thrust direction

The inputs are: the orbital elements of the initial orbit, the type of steering law and the spacecraft param-

eters (initial mass, specific impulse and the desired T/W0 which then determines the thrust magnitude).

The outputs are the final velocity, radius and mass (which are then converted to orbital elements), the

optimal steering variables and the burn duration.
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The algorithm takes the initial guesses for the optimization variables and integrates the equations

of motion of the thrusting arc and returns the final values of the constraints (apogee or C3) and the

objective function (which is the minimization variable, burn duration) to the optimizer. By iteration it

attempts to obtain the optimal values that met the constraints. Figure 3.1 roughly illustrates the structure

of the program.

Figure 3.1: Structure of the program

The program is composed by: an optimizer, functions that apply the equations of motion, a propa-

gator, a function that initiates the maneuver and provides the constraints and objective function to the

optimizer, and functions that convert velocity and position to the orbital elements and vice-versa.

3.2.1 Propagator

The integration of the equations (2.1) to (2.7) were done with ODE45 function of MATLAB, which uses

explicit Dormand-Prince method of order 4.

Initially a Runge-Kutta of the 8th order was used but it proved to be too slow with insignificant im-

provements and so it was later changed to ODE45.

Since the angle rotation was not included as a state equation, it should be mentioned that for the

case of fixed rotation, the rotation is done with a step of the order of 2 seconds for T/W0 lower than 0.15

and 4 seconds for higher T/W0. Lower values were not used because the optimization took too long.

3.2.2 Optimizer

The Optimization problem was solved using direct shooting with the package SNOPT.

The shooting method is very sensitive to the initial optimization variable guesses, thus various initial

guess methods were tested. The final results are a mixture of optimal results obtained with from different

techniques:

• using the burn duration of thrust parallel to velocity as initial guess for the other cases;
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• using the results obtained from previously computed T/W0 for the initial angle and rotation angle;

• providing the angle rotation as if it would behave as a circular orbit (using the burn duration for

averaging the initial and final angle of thrust parallel to velocity);

• or a typical value for angle rotation stated in [14],

α̇ = 0.5

√
µ

r3
. (3.1)

Extra attention was paid to avoid local optima by using multiple starting points.

3.3 Multiple Maneuvers

3.3.1 MATLAB algorithm

The algorithm was further enhanced to perform multiple maneuvers. It was done for the purpose of

studying a mission to Mars where the spacecraft could be large and have low maneuverability, having

inertial fixed thrust steering.

The algorithm was arranged by adding a new optimization variable, the true anomaly in which the

new burn starts, the burn duration, the angle direction and the angle rotation for each extra maneuver.

The structure is the same.

3.3.2 GMAT algorithm

GMAT is used for multiple apogee raising maneuvers with thrust aligned with velocity. The program

works with objects such as a spacecraft, a thruster or a tank. Then we can associate the created

thruster or tank to a spacecraft.

For example, The thrusters can be defined in several axes such as an Earth equatorial inertial axis,

a LVLH (Local Vertical, Local Horizontal) frame and the one used: VNB (Velocity, Normal, Binormal, x

axis aligned with the velocity). These axes define the steering law. Simply by using VNB axis, we can

compute the case of thrust parallel to velocity.

We considered that the burn times of each maneuver are the variables. Starting from a circular

orbit it propagates the first maneuver and then propagates to the new perigee where two variables are

used: one for backward propagation defining the initial point of the new burn and the other the burn

time. The boundary end constraint is the semimajor axis and it determined after the final maneuver. The

semimajor axis is equivalent to the orbit’s energy, and so to the asymptotic velocity. The minimization

variable is the sum of the time of the maneuvers performed, which is again equivalent to minimizing ∆v,

since the thrust and specific impulse are modelled constant.
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3.4 Code test and validation

We compared the program developed with the one offered by GMAT for various T/W0 for the case of

thrust parallel to velocity. The difference in the results was 0.001% which we considered acceptable.

The difference is probably due to larger tolerance in the GMAT optimizer when reaching the target.
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Chapter 4

Results for real maneuvers

In this chapter, the finite burn losses and effects on the final orbit are determined and discussed. The

three steering cases are compared to each other and to the heuristic from literature [14] and effects on

the perigee are shown.

4.1 Burn losses for the three types of steering considered

We study a maneuver equivalent to an impulsive maneuver of the stated ∆v. The ∆v is increased from

1 km/s to 3 km/s, where the orbit after the maneuver is elliptical and can be thought of as a transfer orbit

of a Homann transfer. Above 3 km/s, the resulting orbit is hyperbolic and can be thought of as an escape

maneuver, resulting in a certain C3. The raise of ∆v was thought to cover many interesting cases from

apogee raising maneuvers to GTO transfers and escape trajectory to Mars. We study the ∆v losses as a

function of T/W0 for a specific impulse of 300 s, (but also for 250 s, 400 s, 600 s) deemed a representative

value for modern technology.

In this work the maneuvers determined start from a circular parking orbit of 200 km altitude, with ideal

∆v ranging from 1 km/s to 5 km/s with a step of 0.5 km/s, for T/W0 from 0.03 to 0.5 with a step of 0.01 for

a specific impulse of 250 s, 300 s, 400 s and 600 s for the three steering laws.

Then as an alternative to direct maneuvers, the multiple apogee raising maneuver is studied for a

specific impulse of 300 s and T/W0 = 0.15 for a transfer orbit to Mars and for a geostationary transfer

orbit (GTO).

The finite burn losses can be defined as

FiniteBurnLosses = Real ∆v − Impulsive ∆v (4.1)

For a specific impulse of 300 s, figure 4.1 shows the results for thrust parallel with velocity (vnb), figure

4.2 with fixed direction (c), and figure 4.3 with inertial fixed rotation (w).

The baseline results are similar to existing literature, as seen in figure 4.4 [4], although no information

about how those results were obtained is available.
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Figure 4.1: Finite burn losses with direction of the Thrust parallel to the velocity (vnb) for Isp = 300 s. Dv
represents the impulsive ∆v in m/s and k stands for thousand.

Figure 4.2: Finite burn losses with inertial fixed direction (c) of the Thrust for Isp = 300 s. Dv represents
the impulsive ∆v in m/s and k stands for thousand.
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Figure 4.3: Finite burn losses with inertial fixed rotation (w) of the Thrust for Isp = 300 s. Dv represents
the impulsive ∆v in m/s and k stands for thousand.

Figure 4.4: Finite burn losses from [4]

All cases present the same pattern where the finite burn losses highly increase below a certain T/W0,

whereas for higher T/W0 the curves are quite close to each other, as the duration of the maneuver are

shorter and the steering law has less effect on the losses. It can also be seen that figures 4.1 and

4.3 look similar. For T/W0 = 0.05, for the lowest ∆v, the finite burn losses on both cases are around

75m/s, while on figure 4.2 they are around 250m/s. In other words, a comparison of figures 4.1 and 4.3

shows that the difference in burn losses between the cases of Thrust parallel to velocity and thrust with

21



constant rotation is very small. On the other hand, the performance of thrust with constant direction is

clearly worst.

For a specific impulse of 400 s figure 4.5 shows the results for thrust parallel with velocity (vnb), figure

4.6 with fixed direction, and figure 4.7 with with inertial fixed rotation.

Figure 4.5: Similar to figure 4.1, we can see the finite burn losses with direction of the Thrust parallel to
the velocity for Isp = 400 s

Figure 4.6: Similar to figure 4.2, we can see the finite burn losses with inertial fixed direction of the
Thrust for Isp = 400 s
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Figure 4.7: Similar to figure 4.3, we can see the finite burn losses with inertial fixed rotation of the Thrust
400 s

For a specific impulse of 600 s figure 4.8 shows the results for thrust parallel with velocity, figure 4.9

with fixed direction, and figure 4.10 with with inertial fixed rotation:

Figure 4.8: Similar to figure 4.1, we can see the finite burn losses with direction of the Thrust parallel to
the velocity for Isp = 600 s
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Figure 4.9: Similar to figure 4.2, we can see the finite burn losses with inertial fixed direction of the
Thrust for Isp = 600 s

Figure 4.10: Similar to figure 4.3, we can see the finite burn losses with inertial fixed rotation of the
Thrust for Isp = 600 s

24



4.1.1 Comparing losses with different specific impulse

We can compare the burn losses of the cases of thrust parallel to velocity between the specific impulses

400 s and 300 s. Contrary to what we could expect, the burn loss is higher for the higher specific impulse

as shown in figure 4.11 (the same happens for the other steering cases).

Figure 4.11: Difference of the finite burn losses between Isp = 400 s minus Isp = 300 s

This result was unexpected because intuitively it seems that a higher specific impulse should lead

to lower losses. However, with a higher specific impulse, there is a lower mass flow rate for the same

magnitude of Thrust. Since the acceleration increases while the spacecraft’s mass decreases, if less

fuel is spent, the spacecraft mass will not decrease as much and the acceleration increase rate will be

lower, resulting in a longer maneuver. This is confirmed in figure 4.12 where the duration of the burn is

compared between the two specific impulses and it is larger for a specific impulse of 400 s.

Despite the longer burn time, the fuel carries more energy (because of the higher specific impulse)

and at the end of the maneuver, the total mass is now larger as shown in figure 4.13 where in some

cases 10% of the initial mass is saved compared to the specific impulse of 300 s. This means that the

higher specific impulse maneuver is still more efficient, as it can accelerate more payload mass. That

becomes clear if we start with the same dry mass in both cases, we can see those results chosen for a

middle value of T/W0 = 0.25 for a specific impulse of 300 s and ∆v of 3.5 km s−1 on table 4.1, where we

can see that the ∆v for the same dry mass is lower for higher specific impulses.

Table 4.1: Finite burn losses for different specific impulses with the same dry mass
Isp, s ∆v, ms−1 new T/W0
300 3579.3 0.25
400 3556.6 0.34
600 3541.2 0.46
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Figure 4.12: Difference of the burn duration between Isp = 400 s and Isp = 300 s

Figure 4.13: Difference of the final mass between Isp = 400 s minus Isp = 300 s in relation to the same
initial mass. The change in the type of the curve corresponds to the change of the type of the final orbit
after the maneuver: elliptic (apogee raising) up to ∆v = 3 km/s and hyperbolic (escape) for higher ∆v.
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4.1.2 Comparison of the steering solutions for Isp = 300 s

Before analyzing the results, we would expect the thrust parallel to velocity to be one of the best per-

forming cases, where the thrust energy is fully converted to the velocity, having the least steering losses.

On the other hand, we would expect the worst performing method to be the constant thrust direction.

While with rotation, it is less predictable because it is nontrivial what happens, as we will see below.

The difference between the burn losses with thrust direction parallel to velocity and constant thrust

direction is shown in figure 4.14 and figure 4.15 shows the difference between constant direction and

rotation. We can see that inertial fixed thrust direction is outperformed by the other steering options spe-

cially for lower T/W0 ratios where the burn is longer, the velocity direction throughout the burn undergoes

bigger changes and the misalignment between velocity and thrust is large. The higher the T/W0 ratios

(above 0.3), the smaller the difference (reaching values around 0.5% of the impulsive approximation).

Figure 4.16 shows the comparison of the cases of thrust parallel to the velocity and thrust with fixed ro-

tation. We can see a surprising result, where the rotation case performs slightly better above T/W0 =0.1

but for lower ratios that have higher ∆v, thrust parallel to the velocity has lower losses. In general, both

are very close to each other as the difference is lower than 1% of the impulsive approximation, except

around T/W0 =0.05 where it is approximately 2%.

This is an important observation because simulating a maneuver with thrust parallel to velocity is

easier than using constant rotation. Since both are similar on certain ranges we may estimate the burn

losses on preliminary design stages with thrust parallel to velocity.

We can observe with more detail the comparison of these two cases by viewing the orbits of T/W0 =

0.15, figure 4.17, and T/W0 = 0.05, figure 4.18, for a ∆v = 4.5 km/s. An interesting effect occurs where

the case with rotation starts pointing slightly to inside the orbit and stays closer to the Earth throughout

the orbit and takes better advantage of the Oberth effect even though the thrust isn’t aligned with the

velocity (in which case there is no loss of energy to the velocity due to misalignment of the thrust and

velocity vectors). The thrust vector starts by pointing slightly to the main body and ends up being aligned

with the velocity, achieving both proximity to the main body and effectiveness in steering.

For the T/W0 = 0.05 where the rotation performs worst the results from figure 4.18 suggests that it is

a long maneuver, more than half an orbit. One hypothesis of why it is worse is because now the steering

effects overcome the Oberth effect gained from being closer to the main body. Nevertheless, this case

is not very realistic because a maneuver taking half a period is not usually performed.

On another note, these results contradict a conclusion in [13] where it is stated that the difference of

the burn losses between thrust aligned with velocity and an optimal solution is negligible, which may not

be. Especially because the case of rotation is only a constrained sub-optimal case and not the optimal

one.
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Figure 4.14: Difference between finite burn losses with direction of the Thrust parallel to the velocity and
constant direction of Thrust

Figure 4.15: Difference between finite burn losses with constant direction of Thrust and inertial fixed
rotation of the Thrust

28



Figure 4.16: Difference between finite burn losses with direction of the Thrust parallel to the velocity and
and inertial fixed rotation of the Thrust

Figure 4.17: Orbits with angular rotation (the one with arrows that show the thrust direction) and with
thrust aligned with velocity. The green circle represents the Earth.
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Figure 4.18: Orbits with angular rotation (the one with arrows that show the thrust direction) and with
thrust aligned with velocity. The green circle represents the Earth.

4.1.3 Effects of finite burn on the perigee

By targeting only the apogee, we are not able to obtain the transfer orbit obtained in the impulsive

approximation. The perigee will be different, both the value and the argument of the perigee. So it is

important to analyze what happens to the variables describing the real orbit, such as the new perigee

(in altitude), the velocity at the apoapsis, and the argument of the perigee.

Figures 4.21, 4.19, and 4.20 show the perigee after the burn for each steering mechanism. We

can see that for the case of constant thrust, for higher T/W0 (above 0.2) the dislocation of the perigee

is small being around 1 to 10 km. For the cases of thrust rotation and parallel to velocity the perigee

always increases, resulting in higher energy orbits since the apogee is the same for all the maneuvers so

a higher perigee means a larger semi-major axis. On the other hand, if the thrust direction is constant the

final perigee is lower; less energy was put into the orbit. This is confirmed by analyzing the results from

figures 4.22, 4.23, and 4.24 which show the impulsive approximation ∆v necessary for circularization at

the apogee for each steering mechanism. For the constant direction case it is higher for lower T/W0,

and for the other steering cases it is lower.

Higher ∆v have lower values of circularization ∆v because the transfer orbit has higher energy and

reaches the apogee with higher velocity. The ∆v for circularization starts to decrease after a certain

initial transfer orbit ∆v. Figure 4.25 shows the result of an impulsive approximation Hohmann transfer

where it is shown that after a certain ∆v at the perigee, the circularization ∆v starts to decrease.
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Figure 4.19: Perigee after burn for inertial constant thrust direction for specific impulse of 300 s

Figure 4.20: Perigee after burn for inertial constant rotation thrust direction for specific impulse of 300 s
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Figure 4.21: Perigee after burn for thrust direction paralel to velocity for specific impulse of 300 s

Figure 4.22: Impulsive ∆v for circularization at the apogee of the orbit resulting from the initial maneuver
for inertial constant thrust direction
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Figure 4.23: Impulsive ∆v for circularization at the apogee of the orbit resulting from the initial maneuver
for inertial constant rotation thrust direction

Figure 4.24: Impulsive ∆v for circularization at the apogee of the orbit resulting from the initial maneuver
for thrust direction paralel to velocity
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Figure 4.25: Impulsive ∆v for circularization at the apogee for impulsive Hohmann transfer

The argument of the perigee also gets displaced differently between the steering cases. For both

cases of thrust parallel to velocity and constant rotation the argument displacement has close values

whereas for the constant direction case, its displacement is bigger, for a T/W0 = 0.1 on the first two

cases its around 25◦ while for the constant direction is around 35◦. It is also important to note that

we start from a circular orbit (which does not have perigee), so displacements of this order are to be

expected; on an elliptical orbit the burn starts before the perigee and does not result in huge changes

as seen on a circular orbit (as will be seen in the next chapter, on figure 5.2 where the argument of the

perigee remains close on multiple maneuvers).

Figure 4.26: Argument of perigee for thrust parallel to velocity for specific impulse of 300 s
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Figure 4.27: Argument of perigee for thrust with constant rotation for specific impulse of 300 s

Figure 4.28: Argument of perigee for thrust constant direction for specific impulse of 300 s
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4.1.4 Robustness of analytic estimate

In the figure 4.29 the finite burn losses as foreseen by the solution developed from [14] and explained in

chapter 2 is presented for a specific impulse of 300 s.

Figure 4.29: Finite burn losses from [14] for a specific impulse of 300 s

In figures 4.30, 4.31, and 4.32 it is shown the difference between the solution developed and the

real case for specific impulse of 300 s. The burn losses curves are similar as observed in the real case,

except for the case of constant direction where the losses are only predicted above T/W0 0.1 for ∆v

higher than 3.5 km/s. We can compare the percentage of the losses from the estimation (figure 4.29)

with the real losses (figures 4.1, 4.2, and 4.3) using the relative difference of losses (4.2).

RelativeBurnlosses % =
estimate− real losses

real losses
100 (4.2)

In figures 4.33, 4.34, and 4.35 it is shown the results for the expression (4.2) for a specific impulse of 300 s

for each steering type. If the estimation is similar to the real losses, we would expect a behavior where

the predicted losses would be in percentage somewhat constant to the real losses. Instead in figures

4.33 and 4.34 we obtained similar results with a linear behavior in some cases (for low ∆v maneuvers,

apogee targeting) and in other cases exponential behavior (for high ∆v maneuvers, C3 targeting). This

may suggest the expression, despite giving above estimates for those cases, around 125%, it is not

that reliable. Furthermore, the expression does not predict well for the case of constant thrust direction

(figure 4.35), where it is only good in a small region of T/W0 (0.1 to 0.25) just for the case of high ∆v.
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Figure 4.30: Difference between analytic estimation and numerical finite burn losses for intertial constant

rotation thrust direction

Figure 4.31: Difference between analytic estimation and numerical finite burn losses for thrust direction

parallel to velocity for a specific impulse of 300 s
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Figure 4.32: Difference between analytic estimation and numerical finite burn losses for inertial constant

thrust direction for a specific impulse of 300 s

Figure 4.33: Difference between analytic estimation and numerical finite burn losses for intertial constant

rotation thrust direction for a specific impulse of 300 s
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Figure 4.34: Difference between analytic estimation and numerical finite burn losses for thrust direction

parallel to velocity for a specific impulse of 300 s

Figure 4.35: Difference between analytic estimation and numerical finite burn losses for inertial constant

thrust direction

Figures 4.36, 4.37, 4.38, 4.39, and 4.40 show the results for specific impulse 250 s, 400 s, and 600 s,

and for a specific impulse of 300 s starting from a circular orbit for different altitudes of 1000 km, and

5000 km. The altitude of 5000 km was chosen based on the gravity acceleration in Mars at an altitude of

300 km, where typically probes orbit. We can see that for all of the above scenarios, for thrust parallel to

velocity the formula is always an upper bound to the losses.
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Figure 4.36: Difference between analytic estimation and numerical finite burn losses for specific impulse

of 250 s for thrust parallel to velocity

Figure 4.37: Difference between analytic estimation and numerical finite burn losses for specific impulse

of 400 s for thrust parallel to velocity
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Figure 4.38: Difference between analytic estimation and numerical finite burn losses for specific impulse

of 600 s for thrust parallel to velocity

Figure 4.39: Difference between analytic estimation and numerical finite burn losses for specific impulse

of 300 s and altitude of 1000 km for thrust parallel to velocity
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Figure 4.40: Difference between analytic estimation and numerical finite burn losses for specific impulse

of 300 s and altitude of 5000 km for thrust parallel to velocity

4.2 Discussion of the results

All the cases exhibit the same pattern for the finite burn losses. They highly increase for smaller T/W0

(around 0.1), whereas for higher T/W0 (above 0.4) the curves are quite close to each other, as the

duration of the maneuvers are shorter and the steering law has less effect on the losses (figures 4.2, 4.3,

and 4.1). Of the three steering cases considered, constant thrust direction has the worst performance

while constant thrust rotation and thrust parallel to velocity have similar losses. This is an important

conclusion, because simulating thrust parallel to velocity is easier than optimizing a constant thrust

rotation, and can be used as a first estimate for the losses in early mission design stages at least for

T/W0 not too small.

Comparing different specific impulses, we can see that higher specific impulses result in higher

losses for the same ratio of T/W0. However, sice the simulations were made with the same initial mass,

the higher specific impulse case carries more dry mass. This happens because we are comparing

cases for the same T/W0. Whenn we compare different specific impulses for the same dry mass we

observe smaller burn losses for higher specific impulses, and therefore a higher T/W0 at launch. The

approximation from the literature [14], (2.17), is confirmed to be an upper bound for the cases of constant

rotation ad thrust parallel to velocity, overestimating the losses by 125% for T/W0 above 0.1, figures 4.34,

and 4.33. For lower T/W0, the maneuvers are long and can no longer be considered impulsive, being

beyond the limits of validity of the upper bound. The expression is an upper bound but exceeds the real

value considerably, which is good for risk mitigation but no so much for an estimate.

42



Chapter 5

Results for multiple apogee raising

maneuver

In this chapter, the finite burn losses obtained from the alternative of multiple apogee raising maneuver

are studied for a transfer orbit to mars and a geostationary transfer orbit.

5.1 Real burn losses on multiple apogee raising maneuver

The goal is to take advantage of the Oberth effect by having multiple maneuvers executed at low altitudes

instead of a direct one that goes further away from the main body during its execution. Thus, it is

important to analyze each perigee of the maneuvers, because the closer to the main body the better.

Figure 4.19 from the previous chapter, where the perigee is studied for direct maneuvers for constant

thrust direction, shows that it is the only steering case in which the perigee is closer to the main body.

So, a priori, there is an interesting phenomenon at play where, on the one hand, it is the least effective

steering law, on the other hand, it allows for the spacecraft to be closer to the main body thus suggesting

it takes better advantage of multiple maneuvers. However, with constant rotation, such results could also

be obtainable because the constant direction is the case where the rotation is 0 rad/s.

On the table 5.1 results for the finite burn losses of multiple apogee raising maneuver to Mars are

shown. As expected the best performance is for constant rotation where, as explained in the previous

chapter, it can achieve both steering effectiveness and proximity to the main body. Although, we can see

that constant direction has a better improvement over the other two.

It is important to note that these results may be local optima. With two forces at play here, the Oberth

effect and the steering effectiveness, it is less trivial to analyze the results and conclude whether they

are local optimum results. Nonetheless, the results obtained were analyzed (the optimal variables such

as the beginning of the burn, the angles, and rotation) and we can state that at the very least they are

realistic optima and thus acceptable for analysis.
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5.1.1 Mars transfer orbit

We analyzed a case study of a crewed mission to Mars (where we want to spend the least ∆v possible).

The spacecraft may be large and thus have low maneuverability, and uses constant thrust direction as

steering.

A maneuver to Mars at the starting orbit requires an impulsive approximation ∆v of 3.6127 km/s to

achieve the elliptical Hohmann transfer orbit. A specific impulse of 300 s and T/W0 = 0.15 was used to

obtain these results because they are conservative according to the existing technology from the Human

Exploration of Mars Design Reference Architecture 5.0 [30]. On this Mars mission design, the trans-Mars

insertion maneuver is planned to be done with 2 burns (1 extra burn in relation to a direct maneuver).

The table 5.1 shows the burn losses of multiple apogee raising maneuver to Mars and figure 5.1

shows in percentage the performance gained relative to the direct maneuver for the cases of constant

direction and thrust parallel to velocity. From table 5.1 and figure 5.1, we see that for multiple maneu-

Table 5.1: finite burn losses of multiple apogee maneuvers to Mars

Maneuvers Constant direction Constant rotation Thrust parallel to velocity

Direct 4047.12 m/s 3811.91 m/s 3824.95 m/s

1 extra 3719.67 m/s 3667.94 m/s 3676.68 m/s

2 extra 3660.45 m/s 3638.03 m/s 3644.90 m/s

3 extra 3640.58 m/s n/a 3631.34 m/s

Figure 5.1: ∆v difference in percentage relative to the direct escape maneuver for 1, 2, and 3 apogee
raising maneuvers followed by the escape maneuver for the cases of constant rotation and thrust parallel
to velocity.
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vers, the more apogees raising are performed, the steering losses become more and more negligible.

The initial difference of a direct maneuver of 4047m/s versus 3824m/s became just of 9m/s at three

extra maneuvers. In fact, the case of constant direction gains a lot more from multiple maneuvers than

the other cases, reaching a 10% efficiency with three extra maneuvers in relation to the direct maneu-

ver, whereas the thrust parallel to velocity case gains close to 4% and is stabilizing, as seen in figure

5.1. This indicates that it is a good orbit design option to make multiple maneuvers for a crewed Mars

mission, especially if constant thrust direction is used (a single extra burn already saves 8% ∆v). Of

course the more burns the more complex the orbit design becomes, and as planned on the reference

5.0 mission design [30] one extra maneuver may be enough for saving sufficient ∆v.

Tables 5.2 and 5.3 show the perigee and the apogee of each apogee raising orbit respectively for

three extra burns. It is interesting to observe that for the constant direction case the perigee remains

lower and the apogee increases with maneuvers. Which means more energy was put into the elliptical

orbits, whereas for thrust parallel to velocity the opposite happens. For the last case, we can hypothesize

that it is related to better efficiency being put in the last maneuver as the steering is better. It is important

to note that it is impossible to lower the perigee during the maneuver if we use thrust parallel to velocity

because the semi-major axis is always increasing.

For constant direction, the perigee of the last maneuver is lower than of the previous one (the differ-

ence is just around 80m, but the other steering case increases in the order of 4 km , suggesting that for

the last maneuver the Oberth effect had more impact in obtaining better efficiency. This makes sense

since the steering is not very effective. Figure 5.2 shows the orbits and the direction of the thrust on

each one (the vectors) , all pointing inside.

Table 5.2: Perigee of constant direction and thrust parallel to velocity for 3 extra burns

Maneuver 1st perigee 2nd perigee 3rd perigee

constant direction 6570.90 km 6580.41 km 6580.33 km

thrust parallel to velocity 6578.14 km 6583.57 km 6587.50 km

Table 5.3: apogee of constant direction and thrust parallel to velocity for 3 extra burns

Maneuver 1st apogee 2nd apogee 3rd apogee

constant direction 9391.03 km 15519.46 km 38712.64 km

thrust parallel to velocity 8975.37 km 13128.76 km 21797.45 km
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Table 5.4: orbital elements

Maneuvers orbital element 1 2 3

Constant thrust

e 0.1767 0.4045 0.7094

a 7980 km 11050 km 22646 km

parallel to velocity

e 0.1541 0.3320 0.5358

a 7777 km 9856 km 14192 km

Figure 5.2: Amplified view on the 3 extra maneuvers for constant direction
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For the other extra maneuvers:

Table 5.5: apogee and perigee for 2 extra burns

Maneuvers perigee 1 perigee 2 apogee 1 apogee 2

Constant thrust 6571.09 km 6577.61 km 10875.39 km 26157.91 km

Constant rotation 6614.74 km 6647.09 km 13818.07 km 35188.21 km

Parallel to velocity 6584.51 km 6594.16 km 9788.74 km 16619.88 km

Table 5.6: semi-major axis and eccentricity for 2 extra burns

Maneuvers orbital element 1 2

Constant thrust
e 0.2467 0.5982

a 8723 km 16367 km

constant rotation
e 0.3525 0.6822

a 10216 km 20918 km

parallel to velocity
e 0.1957 0.4319

a 8187 km 11607 km

Table 5.7: apogee and perigee for 1 extra burn

Maneuvers perigee 1 apogee 1

Constant thrust 6560.06 km 13816.65 km

Constant rotation 6629.40 km 15399.69 km

Parallel to velocity 6701.89 km 20171.56 km
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Table 5.8: semi-major axis and eccentricity for 1 extra burn

Maneuvers orbital element 1

Constant thrust
e 0.3561

a 10188 km

constant rotation
e 0.3981

a 11015 km

parallel to velocity
e 0.5012

a 13437 km

5.2 Additional results on multiple maneuvers

Figure 5.3 shows the orbits of one extra maneuver for a case of constant rotation, where the vectors

represent the thrust direction. We can observe the first maneuver starts with thrust pointing inside,

misaligned with the velocity, and on the second it looks like it is almost aligned with the velocity. This

suggests the first maneuver tries to get closer to the main body while the second maximizes the steering

effectiveness.

Figure 5.3: Amplified view on 1 extra maneuvers for constant rotation

It is also of interest to study how the total ∆v affects the intermediate apogees and perigees. Figures

5.4 and 5.5 show the perigees and apogees for various ∆v for extra 5 maneuvers. As the ∆v gets higher
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the perigee tends to move closer to the main body while the apogee gets significantly lower (less energy

is being put into the elliptical orbits). Most probably to take advantage of the Oberth effect on the last

maneuver as it gets longer with higher ∆v. The effect of burn time being longer on the last maneuver is

not observable in figure 5.2, because it is a small ∆v, 3.6 compared to 8, where the last elliptical orbit

should allow the escape maneuver to take advantage of the Oberth effect, thus being closer. Of course,

these cases are for thrust parallel to velocity, in which the perigee always increases no matter what.

Figure 5.4: Perigees for different ∆v for thurst parallel to velocity. For each ∆v there are 5 perigees, the
first one being the lowest

Figure 5.5: Apogees for different ∆v for thurst parallel to velocity. For each ∆v there are 5 apogees, the
first one being the lowest
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5.2.1 Geostationary Transfer Orbit

It was also determined multiple apogee raising maneuver for Geostationary Transfer Orbit (GTO). The

GTO requires a impulsive approximation ∆v of 2.3357 km/s, the results obtained are presented on table

5.9. The aim of studying a GTO was to observe a case that is not an escape orbit and thus does not

require a large maneuver at the end.

Again, constant direction with just one extra maneuver reduces the relative losses significantly rel-

ative to the other cases, by 5% of the direct value whereas thrust parallel to velocity reduces around

1.4%. The optimizer could not find solutions for constant rotation with three extra maneuvers.

Table 5.9: finite burn losses of multiple apogee maneuvers to Geostationary orbit

Maneuvers Constant direction Constant rotation Thrust parallel to velocity

Direct 2512.33 m/s 2405.45 m/s 2408.79 m/s

1 extra 2378.76 m/s 2354.75 m/s 2373.03 m/s

2 extra 2359.16 m/s 2345.08 m/s 2347.08 m/s

3 extra 2347.41 m/s n/a 2345.86 m/s
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Chapter 6

Conclusions

In this work burn losses of space maneuvers around the Earth were analyzed for a wide range of ∆v,

T/W0 for representative specific impulses and three different steering laws. As expected the worst

performing steering law is the one with constant thrust direction while the other two cases have similar

performances. The attempt to predict the finite burn losses in a simple way is found to be nontrivial.

The analytical estimate from [14] does not predict the losses reliably, especially for thrust with constant

direction, being an upper bound to the losses for the other two cases. Although, it is still better than a

blindfold guess, being around 125% of the finite losses value for the cases of thrust parallel to velocity and

inertial fixed rotation. The multiple apogee raising maneuver lowers significantly the losses particularly

for the case of constant thrust direction ( where it is saved 10% of the direct maneuver losses with three

extra burns), that may be useful for a future mission to Mars.

6.1 Achievements

This work shows that thrust parallel to velocity does not always have the best performance in comparison

to optimal steering as stated in [13]. Thrust parallel to velocity, which is the easiest to compute, can be

used to estimate the ∆v in the early stages of orbit design since it has similar performance in relation to

thrust with fixed rotation. Higher specific impulse does not result in lower losses for the same T/W0, but

spends less propellant mass. The analytic estimate from [14] predicts by an excess of 125% the cases,

but its error is much larger for the case of constant thrust direction. The Oberth effect and the steering

losses are nontrivial to study, showing interesting effects when comparing thrust parallel to velocity to

constant rotation, where efficiency in the velocity increment and being closer to the main body are at

play and relevant for real maneuvers. Finally, a crewed mission to Mars would benefit if it used multiple

maneuvers, especially because a large spacecraft with constant direction steering reduces significantly

the steering losses.
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6.2 Future Work

The prediction of the burn losses by using non-linear regression can be tested. The analytic estimate

(2.17) may have other approaches and solutions where we could have a better prediction for the burn

time of the maneuver. Another SQP based algorithm could be used. Furthermore, it would be interesting

to do a similar study but starting on an elliptical orbit because it allows for more degrees of freedom.
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Appendix A

Applying non-linear regression

By applying a non-linear regression of the type

axb (A.1)

where a and b are the coefficients we are looking for, we obtain reasonable good fits as seen on the

following figures for Isp of 300 s with the respective values for the coefficients.

Figure A.1: Non-linear regression of the finite burn losses for inertial constant thrust direction. The

impulsive ∆v used are the same presented in this work

A.2



Figure A.2: Non-linear regression of the finite burn losses for inertial constant thrust rotation. The

impulsive ∆v used are the same presented in this work

Figure A.3: Non-linear regression of the finite burn losses for thrust parallel to velocity. The impulsive

∆v used are the same presented in this work
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Table A.1: Regression coefficients for constant thrust direction

∆v km/s a b

1 0,182621418140826 -2,41930724816744

1,5 0,763263147525853 -2,29801031373019

2 1,51934594448177 -2,31977027038227

2,5 3,51391624132962 -2,16330356239076

3 5,41036045549786 -2,13421718767356

3,5 8,13884744357765 -2,07257393258770

4 11,3815468443650 -2,01194000597137

4,5 14,5570803950671 -1,97935228451181

5 17,8752386129935 -1,95102673408495

A.4



Table A.2: Regression coefficients for constant thrust rotation

∆v km/s a b

1 0,132200921417705 -2,13110625017184

1,5 0,562922830294186 -1,97006126532417

2 1,37693672274018 -1,87680166005664

2,5 2,89737509432496 -1,77012536602349

3 4,37513971591393 -1,77188554346343

3,5 6,88849104294620 -1,72605582753289

4 8,96540322098883 -1,74338761298321

4,5 11,6872205118809 -1,73216838944494

5 14,5995519615021 -1,72159489712090
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Table A.3: Regression coefficients for thrust parallel to velocity

∆v km/s a b

1 0,198912812110450 -2,02687274555810

1,5 0,795624777138190 -1,86234268653217

2 1,96200418676623 -1,74796968143928

2,5 3,62644144402899 -1,68840509139904

3 5,77135661437468 -1,66185128445103

3,5 8,40823447597558 -1,65352224693844

4 10,7538488523413 -1,68223928897934

4,5 14,0878065219998 -1,66999084089922

5 17,6756865413055 -1,65940848887998
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