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Instituto Superior Técnico, Universidade de Lisboa, Portugal

November 2020

Abstract

In this work, an evaluation of losses due to gravity and steering is done for high thrust spacecraft
maneuvers, which are normally approximated as instantaneous maneuvers on preliminary studies. For
this purpose an optimization method was used, the so called direct shooting. Three steering cases were
studied: constant thrust direction; constant rotation and thrust aligned with velocity. Then, the various
steering cases are studied in function of the specific impulse and thrust over weight. The case with the
least performance is the case of constant thrust direction, as expected, while the results obtained show
some surprises, which are discussed. The results are also compared to a known approximation of the
literature where the losses are upper bounded. At the end as an alternative to direct maneuvers, it is
studied the consequences of multiple apogee raising maneuvers to minimize the gravity losses.
Keywords: Gravity losses, Multiple maneuvers, Direct shooting

1. Introduction
1.1. Objectives and Motivation
In this thesis the problem of determining gravity
losses for a generalized spacecraft maneuver is anal-
ysed. Heuristics that estimate these losses are re-
viewed to confirm their validity by comparison with
numerical calculations and a procedure to minimize
losses with a multi-impulse maneuver is presented.

1.2. Spacecraft maneuvering
In preliminary mission design a first approximation
of the trajectories must be determined, while the
spacecraft hardware is yet to be completely devel-
oped. Since high accuracy is not required, some
simplifications and assumptions can be used. These
assumptions involve simplifying orbital maneuvers
to determine a delta-v budget, in which an error is
introduced that must be evaluated and taken into
account [24]. It is important to have good initial
guesses for mission design, as better approximations
can yield faster convergence of the orbit design and
other systems such as the propulsion system.

1.3. Types of maneuvers
Orbital maneuvers can be divided in two types:
high thrust maneuvers, which typically last a few
minutes and are eventually approximated as instan-
taneous, and the so called continuous thrust ma-
neuvers, where the thrust is very small but the
thrusters are highly efficient.

The high thrust maneuvers are produced by
chemical energy, where the engines can be solid,
liquid (bipropellant or monopropellant) or hybrid.

Other options, such as nuclear thermal engines,
which are being studied but still have not been used.
Typically, these engines perform maneuvers such as:
Hohmann transfers, apogee raisings, apogee maneu-
vers or interplanetary injections. Continuous thrust
maneuvers are propelled by electric energy (for ex-
ample: ion gridded thrusters, arcjets, resistojets
and others) generally for long maneuvers where the
spacecraft are small and higher efficiency is impor-
tant. This work focus on finite high thrust maneu-
vers produced by chemical thrusters.

1.4. Impulsive Approximation

In preliminary mission analysis, high thrust ma-
neuvers, are often approximated as an instanta-
neous change in the velocity. This is convenient
because it separates the problem of the maneuver
from the problem of specifying the spacecraft, but
implies an error, usually fairly small, as the actual
burns typically occur only during a small part of
the orbital period [24]. This approximation con-
siders that the spacecraft changes from one state
to another instantly, simply connecting two ordi-
nary two-body problems (another approximation),
making the problem description simple, with only
two orbits and a change of the velocity vector in a
point in space, ∆v.The calculated ∆v can be used
to estimate the propellant mass needed for a given
thruster and payload mass [4].

Nevertheless, the impulsive approximation is only
valid to a certain degree. The burn always occurs
in a finite interval of time and the real maneuver
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is different from the instantaneous one. The ∆v
from both is therefore different and so will be the
predicted propellant for the maneuver.

1.5. Literature review

The real finite burn maneuvers can be determined
numerically or analytically with an optimization
method that can be direct or indirect.

In [11] it is theorized the modelling, design and
optimization of finite burn maneuvers for a gener-
alized trajectory. The issues associated with con-
trolled engine burn maneuvers of finite thrust mag-
nitude and duration are presented in the context
of designing and optimization for a wide class of fi-
nite thrust trajectories. Although the link between
a theoretical optimal thrust solution and its feasi-
bility is debatable, as it depends on each specific
spacecraft system design, the state of the art opti-
mization method can be considered the optimal nu-
merical solution for a finite-burn maneuver. It has
been implemented in Copernicus [10], a trajectory
design and optimization system, that unfortunately
is not available to the wide public.

On the other hand, an open source software
[7], General Mission Analysis Tool, developed by
NASA, private industry, public, and private con-
tributors can be used to simulate the environment.
However the results are subject to the tool avail-
able numerical and optimization methods (shooting
methods) and to the weak costumer support it has.
Nevertheless, some representative results can be ob-
tained using this software and can be used for code
validation.

A Matlab script of optimal Finite-burn for inter-
planetary injection from Earth orbit [5] is used as
the basis for the main script computing the finite
burns. The original script uses SNOPT optimizer
[6] to compute optimal thrust angles for given seg-
ments of the burn via direct shooting. The modified
version, uses different settings of thrust and differ-
ent optimization constraints.

Analytic approaches can be used, but most stud-
ies determine a trajectory under some assumptions
that limit the application of the final expressions,
which make them unhelpful for this work.

For example, in [25] expressions that describe the
trajectory of a high thrust maneuver are presented
under the assumption that the thrust’s direction is
normal to the focal radius of the trajectory and the
focal radius’ change is small during the thrusting
time interval. The expressions obtained are hardly
useful for gravity loss analysis as the radial distance
variation is considered to be small and the steering
policy is adequate for thrust parallel to the LVLH
frame, but nor for the types of maneuvers consid-
ered in this work.

Finite-thrust escape and capture trajectories are

considered from either circular or elliptic orbit and
the efficiency and certain parameters are deter-
mined [23]. The efficiency penalty due to finite-
thrust is solved by applying a correction factor to
the impulsive velocity increment. It considers tan-
gential steering (thrust vector parallel to the ve-
locity vector) and numerically integrates the ma-
neuvers. The results are shown graphically for a
wide range of jet velocity values and initial dimen-
sionless acceleration and can then be used to apply
to any particular similar case of interest — a spe-
cific planet, parking orbit, propulsion system and
hyperbolic velocity. It is also shown that the differ-
ence between tangential steering and optimal steer-
ing is negligible. Nevertheless, as mentioned earlier,
the specific constraints of the system are not always
compatible with tangential steering, and this type
of maneuver is not always optimal.

An intuitive analysis on the finite burn losses in
which an analytic formula is determined for com-
puting the losses is done in [14]. It considers that
the finite thrust steering is of constant angular mo-
tion. It can be used for a general impulsive maneu-
ver as long as the burn time is short enough. It
must be mentioned that the expression needs nu-
merical experimentation, which has not been found
in the literature.

2. High thrust maneuvering

In this chapter, we will describe how maneuvers
can be determined analytically and numerically and
how spacecrafts perform them.

2.1. Problem definition

Real maneuvers take some time and while the burn
is occurring the spacecraft goes through different
instant Keplerian orbits. As a result, it is non triv-
ial to obtain the exact orbit equal to the one from
an instantaneous approximation. Generally the real
maneuver is not planned to obtain exactly the in-
stantaneous orbit but instead to accomplish certain
objectives, such as the simple cases of reaching an
apogee or energy level, these are simple cases. This
raises the question of how accurately the finite burn
losses of the finite maneuver can be compared to the
instantaneous approximation. In this work maneu-
vers in which either the apogee or the asymptotic
velocity V∞ are the same on both maneuvers are
considered.

To solve the maneuver problem variables such as
burn duration and thrust direction need to be de-
termined so that the objectives are accomplished.
At the same time it is important that the ∆v is
minimized, thus an optimization method must be
used.

The equations of motion that describe a thrusting

2



arc on the main body inertial frame are [12]:

ṙx(t) = vx(t), (1)

ṙy(t) = vy(t), (2)

ṙz(t) = vz(t), (3)

v̇x(t) = − µ

r(t)
3 rx(t) +

Tx(t)

m(t)
, (4)

v̇y(t) = − µ

r(t)3
ry(t) +

Ty(t)

m(t)
, (5)

v̇z(t) = − µ

r(t)3
rz(t) +

Tz(t)

m(t)
, (6)

ṁ(t) =
T

g0Isp
, (7)

where r is the radius to the main body, v is the
velocity, µ is the standard gravitational parameter,
rx ry rz vx vy vz Tx Ty Tz are the radius, velocity
and Thrust in the inertial axes, Isp is the specific
impulse and g0 is the gravity acceleration at the
surface of the Earth.

The following assumptions were made:

• Thrust magnitude is constant, being similar to
bi-propellant liquid motors;

• Specific impulse is constant;

• Initial and final orbit are keplerian;

• maneuvers are two-dimensional, x and y plane

Because thrust and specific impulse are considered
constant throughout the burn, the mass-flow rate is
constant (7).

We consider three steering laws in this work iner-
tially fixed thrust direction, inertially fixed constant
thrust rotation and thrust parallel to velocity.

In the cases considered minimizing ∆v is the same
as minimizing the burn duration t because the mass
flow rate and specific impulse are constant.

2.2. Analytic estimate and trajectories
It is possible to obtain an approximation or bounds
for a ∆v. In this work the analytic solution tested
is the expression obtained in [14], (8). The expres-
sion explicitly gives a maximum value for what the
finite burn losses can be. It is determined by adding
to the instantaneous velocity change (of the usual
instantaneous maneuver approximation) a position
displacement compensation factor obtained from a
maneuver done with thrust being applied at an ar-
bitrary constant angular velocity.

This upper limit is

FiniteBurnlosses ≤ 1

24
(wst)

2∆v, (8)

where
w2

s =
µ

r3
(9)

(which is related to a maximum optimal angular
rotation of the thrust), t is the burn time and ∆v
is the instantaneous approximation velocity change.
The burn time must be computed previously for the
specific impulse and thrust over weight.

The Tsiolkovsky rocket equation [21]:

mp = mi

(
1 − e

−∆v
Ispg0

)
, (10)

where mp is the propellant mass spent on a maneu-
ver with a certain ∆v, mi is the initial mass, Isp
is the specific impulse and g0 is the gravitational
acceleration at the surface of Earth. Knowing the
mass flow rate (7), which is constant as a result
of the thrust and specific impulse being considered
constant in this work, we can determine the time it
would take to spend that mass:

t =
g0Ispmp

T
=
Isp

(
1 − e

−∆v
Ispg0

)
T
W0

, (11)

where W0 is the probe weight, and T is the thrust
magnitude, related by

T

W0
=

T

g0mi
, (12)

2.3. Numerical determination of high thrust ma-
neuvers

The keplerian orbit is described by the 6 classical
orbit elements which can be determined by the po-
sition and velocity at a given point in time. The
instantaneous approximation is just the difference
of the final minus the initial velocities, whereas in
the real finite maneuver it becomes a problem of op-
timization or targeting. The parameters involved,
such as the burn time and direction, are obtained
to meet the constraints.

2.4. Optimization methods
Trajectory optimisation methods can be either di-
rect or indirect. In the next paragraphs we will
follow [8].

Indirect methods are based on a variational cal-
culaus principle: the Pontryagin minimum princi-
ple. It is possible to formulate a two-point bound-
ary problem with a set of adjoint variables and a
switch function, the solution of which will yield a
history of the time-dependent controls, the so called
Hamiltonian system.

Direct methods differ from the indirect in that the
time-dependent controls are described by a finite set
of parameters. The effect of such a limitation on the
optimal solution in most problems is negligible. In
this thesis the direct method single shooting is used
since it is simpler and there is available in literature
a script that uses it [5].

The so called single shooting is conceptually the
simplest method [8]. The initial state vector values
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are specified and the trajectory is progagated for-
ward in time, with the control variable values ob-
tained from the parameterised representation. At
the end of the propagation, some of the required
constraints may be met and others not. Because
both the system and the constraints are non-linear,
non-linear programming is used to solve the min-
imisation problem.

This work uses SNOPT [6] and YUKON (from
GMAT [7]) as optimization algorithms for the non-
linear programing problem, both use sequential
quadratic programming which is an iterative pro-
cedure that models the non-linear problem by it-
eration with quadratic programming sub problems
(where the objective function is a quadratic func-
tion arranged with information obtained from the
differentiation of the problem, the gradient and the
Hessian) [15].

Types of constraint can be applied to the trajec-
tory. Regarding the control variables, such as the
burn duration, the initial angle of the Thrust or the
rotation, they are constrained within certain values.

For the case of escape maneuver we use the char-
acteristic energy C3, which is equivalent to the
asymptotic velocity. For a Hohmann transfer to
higher orbit we use the apogee.

2.5. Typical approaches to real maneuvers

In Mars Observer mission for example [3], the or-
bit insertion by the upper stage was planned to oc-
cur at a constant radius, velocity and flight path
angle. Such strategy simplified the system guid-
ance software. Meanwhile, the satellite performed
all maneuvers by pitching at a constant rate about
an inertial fixed axis.

In the Mars Global Surveyur mission the space-
craft used a ”pitch-over” steering strategy for the
Mars orbit insertion in order to maximize the effi-
ciency of the burn. ”Pitch-over” works by using the
attitude control thrusters to slew the spacecraft at
a constant rate during the 20 minute to 25 minute
burn in an attempt to keep the thrust tangent to
the trajectory arc [17].

Considering the above practical examples, the
choice of the three steering cases are within the real
maneuvers.

2.6. Typical spacecraft systems

In Table 1 some important parameters are shown
for different types of spacecraft.

Table 1: Propulsion and payload values parameters
for different types of missions

Spacecraft Isp, s T/W0 Utility ref
Fregat 332 0.2687 Upper stage [1]
Centaur 450 0.4387 Upper stage [22]
VEO 317 0.0339 Interplanetary probe [18]
MGS 318 0.0582 Interplanetary probe [16]
Cassini 305 0.0080 Interplanetary probe [9]
INSAT-3D Na 0.0212 Geostationary probe [19]

For apogee maneuvers in Geo Stationary satel-
lites generally the engines have typically 490 N of
thrust and 310 Isp [13].

Considering the above examples of spacecrafts,
for this work we used a range for T/W0 of 0.03 to
0.5, for specific impulse of 300s, 400s and 600s.

2.7. Multiple apogee raising maneuver
We can use the technique of apogee raising to min-
imize the burn losses. By dividing the direct ∆v in
smaller ones, each burn will be shorter and closer to
the main body, taking advantage of the Oberth ef-
fect. Whereas a direct maneuver would last longer
and the burn would take place in a trajectory that
would eventually be further away from the main
body. Thus multiple apogee raising maneuvers save
∆v and have a significant impact on mission plan-
ning as in the mission chandrayaan-2 [20].

2.8. Cases studied
In this work the maneuvers determined start from a
circular parking orbit of 200 km altitude, with ideal
∆v ranging from 1 km s−1 to 5 km s−1 with a step of
0.5 km s−1, for T/W0 from 0.03 to 0.5 with a step of
0.01 for a specific impulse of 300 s, 400 s and 600 s
for the three steering laws.

Then as an alternative to direct maneuvers, the
multiple apogee raising maneuver is studied for a
specific impulse of 300 s and T/W0 = 0.15 for a
transfer orbit to Mars and for a geostationary trans-
fer orbit (GTO).

3. Numerical implementation of the direct
shooting

In this chapter the details and process of computing
the maneuvers numerically are presented. There are
two types of algorithms developed, one that deter-
mines single maneuvers (developed in MATLAB)
and other that computes multiple maneuvers (de-
veloped in GMAT and MATLAB).

3.1. Single maneuver and multiple maneuvers
For both single and multiple maneuvers we used
only the direct shooting method. In single maneu-
vers, since more than one steering law is studied it
was developed in MATLAB, because it allows for
more flexibility in programming the steering mech-
anisms. For multiple maneuvers, for the case where
thrust is parallel to the velocity it was developed in
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GMAT because of its simplicity of implementation,
whereas for the other steering laws it was imple-
mented in MATLAB.

3.2. Single maneuver: Algorithms implemented

To determine the optimum single maneuver we used
the optimization parameters:

• Thrust duration

• Initial inertial angle for thrust direction

• Inertial rotation of the thrust direction

The inputs are: the orbital elements of the initial
orbit, the type of steering law and the spacecraft pa-
rameters (initial mass, specific impulse and the de-
sired T/W0 which then determines the thrust mag-
nitude). The outputs are the final velocity, radius
and mass (which are then converted to orbital ele-
ments), the optimal steering variables and the burn
duration.

The algorithm takes the initial guesses for the op-
timization variables and integrates the equations of
motion of the thrusting arc and returns the final
values of the constraints (apogee or C3) and the
objective function (which is the minimization vari-
able, burn duration) to the optimizer. By iteration
it attempts to obtain the optimal values that met
the constraints.

3.3. Propagator

The integration of the equations (1) to (7) were
done with ODE45 function of MATLAB, which uses
explicit Dormand-Prince method of order 4.

3.4. Optimizer

The Optimization problem was solved using direct
shooting with the package SNOPT.

The shooting method is very sensible to the ini-
tial optimization variable guesses, thus various ini-
tial guess methods were tested. The final results
are a mixture of optimal results obtained with from
different techniques.

3.5. Multiple Maneuvers — MATLAB algorithm

The algorithm was further enhanced to perform
multiple maneuvers. It was done for the purpose
of studying a mission to Mars where the spacecraft
could be large and have low maneuverability, having
inertial fixed thrust steering.

The algorithm was arranged by adding a new op-
timization variable, the true anomaly in which the
new burn starts, the burn duration, the angle direc-
tion and the angle rotation for each extra maneuver.

3.6. Multiple Maneuvers — GMAT algorithm

GMAT is used for multiple apogee raising maneu-
vers with thrust aligned with velocity.

We considered that the burn times of each ma-
neuver are the variables. Starting from a circu-
lar orbit it propagates the first maneuver and then
propagates to the new perigee where two variables
are used: one for backward propagation defining the
initial point of the new burn and the other the burn
time. The boundary end constraint is the semima-
jor axis and it determined after the final maneu-
ver. The semimajor axis is equivalent to the or-
bit’s energy, and so to the asymptotic velocity. The
minimization variable is the sum of the time of the
maneuvers performed, which is again equivalent to
minimizing ∆v, since the thrust and specific im-
pulse are modelled constant.

3.7. Code test and validation

We compared the program developed with the one
offered by GMAT for various T/W0 for the case
of thrust parallel to velocity and the results were
0.001 % different which is acceptable. This is prob-
ably due to the GMAT optimizer not reaching the
exact target, having higher tolerance values.

4. Results for real maneuvers

In this chapter the finite burn losses and effects on
the final orbit are determined and discussed. The
three steering cases are compared to each other and
to the heuristic from literature [14] and effects on
the perigee are shown.

4.1. Baseline Solution — real maneuvers

We study a maneuver equivalent to an impulsive
maneuver of the stated ∆v. The ∆v is increased
from 1 km s−1 to 3 km s−1, where the orbit after the
maneuver is elliptical, and can be though as a trans-
fer orbit of a Homann transfer. Above 3 km s−1, the
resulting orbit is hyperbolic and can be though of
as an escape maneuver, resulting in a certain C3.
The raise of ∆v was though to cover many interest-
ing cases from apogee raising maneuvers to GTO
transfers and escape trajectory to Mars. We study
the ∆v losses as a function of T/W0 for a specific
impulse of 300 s, (but also for 400 s, 600 s) deemed
a representative value for modern technology.

For a specific impulse of 300 s, figure 1 shows the
results for thrust parallel with velocity (vnb), figure
2 with fixed direction (c), and figure 3 with inertial
fixed rotation (w):

All cases present the same pattern where the fi-
nite burn losses highly increase bellow a certain
T/W0, whereas for higher T/W0 the curves are
quite close to each other, as the maneuvers dura-
tion are shorter and the steering law has less ef-
fect on the losses. It can also be seen that figures
1 and 3 look similar. For T/W0 = 0.05, for the
lowest ∆v, the finite burn losses on both cases are
around 75 m s−1, while on figure 2 they are around
250 m s−1. In other words, a comparison of figures
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Figure 1: Finite burn losses with direction of the
Thrust parallel to the velocity (vnb) Isp = 300 s

Figure 2: Finite burn losses with inertial fixed di-
rection (c) of the Thrust Isp = 300 s

Figure 3: Finite burn losses with inertial fixed ro-
tation (w) of the Thrust Isp = 300 s

1 and 3 shows that the difference in burn losses be-
tween the cases of Thrust parallel to velocity and
thrust with constant rotation is very small. On the
other hand, the performance of thrust with constant
direction is clearly worst.

4.2. Comparing losses with different specific im-
pulse

We can compare the burn losses of the cases of
thrust parallel to velocity between the specific im-
pulses 400 s and 300 s. Contrary to what we could
expect, the burn loss is higher for the higher specific
impulse as shown in figure 4 (the same happens for

the other steering cases).

Figure 4: Difference of the finite burn losses be-
tween Isp = 400 s minus Isp = 300 s

This result is unexpected because intuitively it
seems that a higher specific impulse should lead to
lower losses. However with a higher specific impulse
there is a lower mass flow rate for the same mag-
nitude of Thrust. Since the acceleration increases
while the spacecraft’s mass decreases, if less fuel is
spent, the spacecraft mass will not decrease as much
and the acceleration increase rate will be lower, re-
sulting in a longer maneuver. This is confirmed on
figure 5 where the duration of the burn is compared
between the two specific impulses and it is larger for
a specific impulse of 400 s.

Despite the longer burn time, the fuel carries
more energy (because of the higher specific impulse)
and at the end of the maneuver the total mass is
now larger. This means that the higher specific im-
pulse maneuver is still more efficient, as it can ac-
celerate more payload mass. That would be clear if
we start with the same dry mass in both cases.

Figure 5: Difference of the burn duration between
Isp = 400 s and Isp = 300 s

4.3. Comparison of the steering solutions for Isp =
300 s

The difference between the burn losses with direc-
tion of the thrust parallel to velocity and constant
direction of thrust is shown on figure 6 and on figure
7 it is shown the difference between constant direc-
tion and rotation. We can see that inertial fixed
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thrust direction is outperformed by the other steer-
ing options specially for lower T/W0 ratios where
the burn is longer, the velocity direction through-
out the burn undergoes bigger changes and the mis-
alignment between velocity and thrust is large. The
higher the T/W0 ration (above 0.3), the smaller the
difference (reaching values around 0.5 % of the im-
pulsive approximation).

In figure 8 it is shown the comparison of the
cases of thrust parallel to the velocity and thrust
with fixed rotation. We can see a surprising re-
sult, where the rotation case performs slightly bet-
ter above T/W0 =0.1 but for lower ratios that have
higher ∆v, thrust parallel to the velocity has lower
losses. In general both are very close to each other
as the difference is lower than 1 % of the impulsive
approximation, except around T/W0 =0.05 where
it is approximately 2 %.

This is an important observation because simu-
lating a maneuver with thrust parallel to velocity
is easier than using constant rotation. Since both
are similar on certain ranges we may estimate the
burn losses on preliminary design stages with thrust
parallel to velocity.

We can observe with more detail the compar-
ison of these two cases by viewing the orbits of
T/W0 = 0.15, figure 9 for a ∆v = 4.5 km s−1. An
interesting effect occurs where the case with rota-
tion starts pointing slightly to inside the orbit and
stays closer to the Earth throughout the orbit and
takes better advantage of the Oberth effect even
though the thrust isn’t aligned with the velocity (in
which case there is no loss of energy to the velocity
due to misalignment of the thrust and velocity vec-
tors). The thrust vector starts by pointing slightly
to the main body and ends up being aligned with
the velocity, achieving both proximity to the main
body and effectiveness in steering.

Figure 6: Difference between finite burn losses with
direction of the Thrust parallel to the velocity and
constant direction of Thrust

Figure 7: Difference between finite burn losses with
constant direction of Thrust and inertial fixed rota-
tion of the Thrust

Figure 8: Difference between finite burn losses with
direction of the Thrust parallel to the velocity and
and inertial fixed rotation of the Thrust

Figure 9: Orbits with angular rotation (the one
with arrows that show the thrust direction) and
with thrust aligned with velocity. The circle rep-
resents the Earth.

4.4. Effects of finite burn on the perigee

It is important to analyse what happens to the
variables describing the real orbit, such as the new
perigee.
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Figure 10: Perigee after burn for inertial constant
thrust direction

Figure 11: Perigee after burn for inertial constant
rotation thrust direction

Figures 10 and 11 show the perigee after the burn
for each steering mechanism except for thrust paral-
lel to velocity which is similar to inertial fixed rota-
tion. We can see that for higher T/W0 (above 0.2)
the dislocation of the perigee is small being around
1 to 10 km. For the cases of thrust rotation and
parallel to velocity the perigee always increases, re-
sulting in higher energy orbits since the apogee is
the same for all the maneuvers so a higher perigee
means a larger semi-major axis. On the other hand,
if the thrust direction is constant the final perigee
is lower; less energy was put into the orbit.

4.5. Analytic estimate

In the figure 12 the finite burn losses as foreseen by
the solution developed from [14] and explained in
chapter 2 is presented for 300 s.

Figure 12: Finite burn losses from [14]

The burn losses curves are similar as observed in
the real case, except for the case of constant di-
rection where the losses are only predicted above
T/W0 0.1 for ∆v higher than 3.5 km s−1. We can
compare the percentage of the losses from the esti-
mation (figure 12) with the real losses (figures 1, 2,
and 3) using the relative difference of losses (13).

RelativeBurnlosses % =
estimate − real losses

real losses
100

(13)
In figures 13 and 14 it is shown the results for the
expression (13) for specific impulse of 300 s (thrust
parallel to velocity is similar to the case of con-
stant rotation). If the estimation is similar to the
real losses, we would expect a behaviour where the
predicted losses would be in percentage somewhat
constant to the real losses. Instead in figure 13 we
obtained similar results with a linear behaviour in
some cases (for apogee targeting maneuvers) and on
other cases exponential behaviour (for C3 maneu-
vers). This may suggest the expression, despite giv-
ing above estimates for those cases, around 125 %,
it is not that reliable. The expression does not pre-
dict well for the case of constant thrust direction,
where it is only good in a small region of T/W0 (0.1
to 0.25).

Figure 13: Difference between analytic estimation
and numerical finite burn losses for intertial con-
stant rotation thrust direction
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Figure 14: Difference between analytic estimation
and numerical finite burn losses for inertial constant
thrust direction

4.6. Multiple apogee raising maneuver — Mars
transfer orbit

A maneuver to Mars at the starting orbit requires
an impulsive approximation ∆v of 3.6127 km s−1 to
achieve the elliptical Hohmann transfer orbit. A
specific impulse of 300 s and T/W0 = 0.15 was used
to obtain these results because they are conserva-
tive according to the existing technology from the
Human Exploration of Mars Design Reference Ar-
chitecture 5.0 [2]. On this Mars mission design,
the trans-Mars insertion maneuver is planned to be
done with 2 burns (1 extra burn in relation to a
direct maneuver).

The table 2 shows the burn losses of multiple
apogee raising maneuver to Mars. From table 2, we

Table 2: finite burn losses of multiple apogee ma-
neuvers to Mars

Burns Constant dir. Constant rot. T//V
Direct 4047.12 m s−1 3811.91 m s−1 3824.95 m s−1

1 extra 3719.67 m s−1 3667.94 m s−1 3676.68 m s−1

2 extra 3660.45 m s−1 3638.03 m s−1 3644.90 m s−1

3 extra 3640.58 m s−1 n/a 3631.34 m s−1

see that for multiple maneuvers, the more apogees
raising are performed, the steering losses become
more and more negligible. The initial difference of
a direct maneuver of 4047 m s−1 versus 3824 m s−1

became just of 9 m s−1 at three extra maneuvers.
In fact, the case of constant direction gains a lot
more from multiple maneuvers than the other cases,
reaching a 10 % efficiency with three extra maneu-
vers in relation to the direct maneuver, whereas the
thrust parallel to velocity case gains close to 4 %
and is stabilizing. This indicates that it is a good
orbit design option to make multiple maneuvers for
a crewed Mars mission, especially if constant thrust
direction is used (a single extra burn already saves
8 % ∆v). Of course the more burns the more com-
plex the orbit design becomes, and as planned on
the reference 5.0 mission design [2] one extra ma-
neuver may be enough for saving sufficient ∆v.

4.7. Geostationary Transfer Orbit

It was also determined multiple apogee raising ma-
neuver for Geostationary Transfer Orbit (GTO).
The GTO requires a impulsive approximation ∆v
of 2.3357 km s−1, the results obtained are presented
on table 3. The aim of studying a GTO was to ob-
serve a case that is not an escape orbit and thus
does not require a large maneuver at the end.

Again, constant direction with just one extra ma-
neuver reduces the relative losses significantly in re-
lation to the the others cases, by 5 % of the direct
value whereas thrust parallel to velocity reduces
around 1.4 %.

Table 3: finite burn losses of multiple apogee ma-
neuvers to Geostationary orbit

Burns Constant dir. Constant rot. T//V
Direct 2512.33 m s−1 2405.45 m s−1 2408.79 m s−1

1 extra 2378.76 m s−1 2354.75 m s−1 2373.03 m s−1

2 extra 2359.16 m s−1 2345.08 m s−1 2347.08 m s−1

3 extra 2347.41 m s−1 n/a 2345.86 m s−1

5. Conclusions

As expected the worst performing steering law is the
one with constant thrust direction while the other
two cases have similar performances. Thus, thrust
parallel to velocity, which is the easiest to compute,
can be used to estimate the ∆v in the early stages of
orbit design since it has similar performance in re-
lation to thrust with fixed rotation. Higher specific
impulse does not result in lower losses but spends
less fuel mass. The attempt to predict the finite
burn losses in a simple way is found to be non-
trivial. The analytical estimate from [14] does not
predict the losses reliably, especially for thrust with
constant direction. Although, it is still better than
a blindfold guess, being around 125% of the finite
losses value for the cases of thrust parallel to veloc-
ity and inertial fixed rotation. The multiple apogee
raising maneuver lowers significantly the losses par-
ticularly for the case of constant thrust direction (
where it is saved 10% of the direct maneuver losses
with three extra burns), that may be useful for a
future mission to Mars.

5.1. Future Work

The analytic estimate (8) may have other ap-
proaches and solutions where we could have a bet-
ter prediction for the burn time of the maneuver.
Another SQP based algorithm could be used. Fur-
thermore, it would be interesting to do a similar
study but starting on an elliptical orbit because it
allows for more degrees of freedom.
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