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Supervisor: Prof. André Ferreira Ferrão Couto e Vasconcelos

Member of the Committee: Prof. Paulo Jorge Fernandes Carreira

September 2020





Acknowledgments

I would like to thank my family for supporting me during this stage, for all encouragement given and

caring over all these years. This project would not be possible without this support.

I would also like to acknowledge my supervisor, Prof. André Vasconcelos for all the orientation given
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Abstract

A no-show is when a patient misses a previously scheduled appointment. No-shows cause an impact in

the healthcare sector, decreasing their efficiency. When a patient misses an appointment it wastes the

clinic resources, postpones his chance to get treated for a medical condition and denies medical service

to another patient. Attenuating this problem is the focus of this thesis. Machine Learning is a branch of

artificial intelligence that provides techniques to find patterns in data and make predictions. These tech-

niques were used in healthcare data and to make no-show predictions. A no-show prediction model was

created to integrate these machine learning techniques into a model that facilitates the testing of these

predictions on different datasets. This prediction model was integrated into the MedClick platform to

allow the models and predictions made to be saved and integrated into a real-time system. To figure out

which machine learning techniques work better and how good the predictions can be, they were tested

on three distinct datasets. With these tests, we were able to find that the best features for predicting

no-shows were waiting time and distance. The results obtained from the prediction algorithms are still

not ideal and a compromise between recall and precision needs to be found.
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Resumo

Um no-show é quando um paciente falha uma consulta previamente marcada. No-shows causam im-

pacto no sector da saúde, diminuindo a sua eficiência. Quando um paciente não comparece a uma

consulta, os recursos da clinica são desperdiçados, o paciente atrasa a sua oportunidade de receber

tratamento e nega serviço médico a outro paciente. Atenuar este problema é o foco desta tese. Apren-

dizagem automática é um ramo de inteligência artificial que providência técnicas para encontrar padrões

nos dados e fazer previsões. Estas técnicas foram usadas nos dados providenciados por clı́nicas e hos-

pitais para fazer previsões de no-show. Um modelo para previso de no-shows foi criado para integrar

as técnicas de aprendizagem automática num modelo que facilite o teste destas previsões em datasets

diferentes. O modelo de previsão foi integrado na plataforma da MedClick para permitir aos modelos

criados e previsões feitas serem guardadas e integradas num sistema em tempo real. Para perceber

quais técnicas de aprendizagem automática funcionam melhor e quo boas as previsões podem ser,

estas foram testadas em três datasets distintos. Com estes testes fomos capazes de descobrir que

os melhores atributos para prever no-shows, foram o tempo de espera e a distância. Os resultados

obtidos pelo algoritmo de previão ainda não são os ideias, e um compromisso entre as métricas ”recall”

e precisão precisa de ser encontrado.
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v





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 7

2.1 Causes of No-Shows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Features for No-show Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Comparing Articles on No-show Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Machine Learning 15

3.1 Prediction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.5 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.6 Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.7 Models Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 One-Hot Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Feature Selection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Recursive Feature Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Boruta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.4 Comparison of Feature Selection Methods . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 SMOTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



3.4.2 Random Under Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.3 SMOTE with Tomek Links Undersampling . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 SMOTE with Edited Nearest Neighbours Undersampling . . . . . . . . . . . . . . . 27

3.5 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.2.A Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.2.B Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.2.C Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2.D Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2.E Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2.F ROC-AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2.G F1-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.2.H Precision-Recall-AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.3 LIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 MedClick 33

4.1 Daniel Sousa’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Inês Ferreira’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Prediction Model 39

5.1 Feature Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Build Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Predict Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 No-show Module Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Dataset Analysis 55

6.1 MD Clı́nica Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.2 Transformed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Brazil Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.2 Transformed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Hospital da Luz Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.2 Transformed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



7 Results and Discussion 67

7.1 Feature Selection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1 MD Clı́nica Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.2 Brazil Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1.3 Hospital da Luz Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.4 Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1.5 Feature Importance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Sampling Techniques Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2.1 MD Clı́nica Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2.2 Brazil Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2.3 Hospital da Luz Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 Prediction Algorithms Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.1 MD Clı́nica Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.2 Brazil Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3.3 Hospital da Luz Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.4 Real-life scenario simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Conclusions 93

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99

ix



x



List of Figures

3.1 Multi-layer perceptron neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Confusion matrix for binary classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Example of a ROC graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Example of a Precision-Recall graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Example of an explanation obtained for an appointment in the MD Clı́nica dataset. . . . . 32

5.1 Prediction Model components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Feature configuration file used for Brazil dataset. . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Feature configuration file used for the dataset from MD Clı́nica. . . . . . . . . . . . . . . . 44

5.4 Feature configuration file used for the dataset from Hospital da Luz. . . . . . . . . . . . . 45

5.5 Feature configuration file used for the data coming from MedClick API. . . . . . . . . . . . 45

5.6 Build Model components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Predict Model components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.8 Plotted explanation obtained using Lime for the Brazil dataset. . . . . . . . . . . . . . . . 49

5.9 Plotted explanation obtained using Lime for the MD Clı́nica dataset. . . . . . . . . . . . . 50

5.10 Example of the calculated probabilities for a part of data from MD Clı́nica dataset. . . . . 50

5.11 Structure of project files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1 Plot with features chosen by RFE in each one of the folds. . . . . . . . . . . . . . . . . . . 70

7.2 Plot with features chosen by Boruta in each one of the folds. . . . . . . . . . . . . . . . . 70

7.3 Chart that compares the feature selection techniques in the dataset from MD Clı́nica. . . 71

7.4 Plot with features chosen by RFE in each one of the folds. . . . . . . . . . . . . . . . . . . 72

7.5 Plot with features chosen by Boruta in each one of the folds. . . . . . . . . . . . . . . . . 72

7.6 Chart that compares the feature selection techniques in the Brazil dataset. . . . . . . . . 73

7.7 Features chosen by boruta for Hospital da Luz dataset for all the 10 folds. . . . . . . . . . 73

7.8 Features chosen by recursive feature selection for Hospital da Luz dataset for all the 10

folds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



7.9 Chart that compares the feature selection techniques in the dataset from Hospital da Luz. 74

7.10 Feature importance graph for the dataset from Hospital da Luz. . . . . . . . . . . . . . . . 75

7.11 Feature importance graph for the dataset from MD Clı́nica. . . . . . . . . . . . . . . . . . 76

7.12 Feature importance graph for the dataset from Brazil. . . . . . . . . . . . . . . . . . . . . 76

7.13 Chart that compares the sampling techniques in the dataset from MD Clı́nica. . . . . . . . 78

7.14 Chart with the results achieved by the sampling techniques on the dataset from Brazil. . . 79

7.15 Chart that compares the sampling techniques in the dataset from Hospital da Luz. . . . . 79

7.16 Boxplot that compares the accuracy of the prediction algorithms. . . . . . . . . . . . . . . 81

7.17 Boxplot that compares the recall of the prediction algorithms. . . . . . . . . . . . . . . . . 82

7.18 Boxplot that compares the specificity of the prediction algorithms. . . . . . . . . . . . . . . 82

7.19 Boxplot that compares the precision of the prediction algorithms. . . . . . . . . . . . . . . 82

7.20 Boxplot that compares the ROC AUC of the prediction algorithms. . . . . . . . . . . . . . 83

7.21 Boxplot that compares the f1-score of the prediction algorithms. . . . . . . . . . . . . . . . 83

7.22 Boxplot that compares the precision-recall AUC of the prediction algorithms. . . . . . . . . 83

7.23 Boxplot that compares the accuracy of the prediction algorithms. . . . . . . . . . . . . . . 84

7.24 Boxplot that compares the recall of the prediction algorithms. . . . . . . . . . . . . . . . . 85

7.25 Boxplot that compares the specificity of the prediction algorithms. . . . . . . . . . . . . . . 85

7.26 Boxplot that compares the precision of the prediction algorithms. . . . . . . . . . . . . . . 85

7.27 Boxplot that compares the ROC AUC of the prediction algorithms. . . . . . . . . . . . . . 86

7.28 Boxplot that compares the f1-score of the prediction algorithms. . . . . . . . . . . . . . . . 86

7.29 Boxplot that compares the precision-recall AUC of the prediction algorithms. . . . . . . . . 86

7.30 Boxplot that compares the accuracy of the prediction algorithms. . . . . . . . . . . . . . . 87

7.31 Boxplot that compares the recall of the prediction algorithms. . . . . . . . . . . . . . . . . 88

7.32 Boxplot that compares the specificity of the prediction algorithms. . . . . . . . . . . . . . . 88

7.33 Boxplot that compares the precision of the prediction algorithms. . . . . . . . . . . . . . . 88

7.34 Boxplot that compares the ROC AUC of the prediction algorithms. . . . . . . . . . . . . . 89

7.35 Boxplot that compares the f1-score of the prediction algorithms. . . . . . . . . . . . . . . . 89

7.36 Boxplot that compares the precision-recall AUC of the prediction algorithms. . . . . . . . . 89

7.37 Graphs that compares the ROC curves in all datasets. . . . . . . . . . . . . . . . . . . . . 91

7.38 Graphs that compares the Precision-Recall curves in all datasets. . . . . . . . . . . . . . 91

xii



List of Tables

2.1 Comparison of articles that used prediction algorithms . . . . . . . . . . . . . . . . . . . . 13

3.1 Comparison of prediction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Comparison of feature selection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Variables in the feature configuration file. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Features in the MD Clı́nica’s original dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Features in the weather dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Features used to test the prediction algorithms in the MD Clı́nica dataset. . . . . . . . . . 59

6.4 Features in the original dataset from Brazil. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Features obtained after pre-processing the Brazil dataset. . . . . . . . . . . . . . . . . . . 61

6.6 Features of the original dataset belonging to Hospital da Luz. . . . . . . . . . . . . . . . . 63

6.7 Features obtained after pre-processing the dataset from Hospital da luz. . . . . . . . . . . 64

7.1 Comparison of the results achieved by the feature selection algorithms on the dataset

from Hospital da Luz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Comparison of the results achieved by the feature selection algorithms on the Brazil

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Comparison of the results achieved by the feature selection algorithms on the dataset

from Hospital da Luz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 Comparison of the results achieved by the sampling techniques on the dataset from MD

Clı́nica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.5 Comparison of the results achieved by the sampling techniques on the dataset from Brazil. 78

7.6 Comparison of the results achieved by the sampling techniques on the dataset from Hos-

pital da Luz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.7 Comparison of the results achieved by the prediction algorithms on the dataset from MD

Clinica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xiii



7.8 Comparison of the results achieved by the prediction algorithms on the dataset from

Brazil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.9 Comparison of the results achieved by the prediction algorithms on the dataset from Hos-

pital da Luz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.10 Comparison of confusion matrices for all datasets and prediction algorithms. . . . . . . . 91

xiv



Acronyms

ANN Artificial Neural Network

GB Gradient Boosting

LASSO Least Absolute Shrinkage and Selection Operator

LR Logistic Regression

RF Random Forest

RFE Recursive Feature Elimination

RUS Random Under Sampler

SMOTE Synthetic Minority Oversampling Technique

xv



xvi



1
Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1



2



A no-show is when a patient misses an appointment that was previously scheduled. This phe-

nomenon happens in all sorts of areas, where there is the need to schedule patients or clients into a

time slot. In this thesis, we are going to focus on the healthcare area. No-shows cause an impact

in every hospital and clinic in the world, attenuating the effects of no-shows in the healthcare area is

something that can provide many economic and social benefits.

When a no-show happens there are two consequences, the first happens to the patient who misses

the appointment who postpones his chance to be treated for a medical condition. The second one affects

the hospital and other patients because there are other patients who could have used that opportunity to

be seen by the doctor. This lost opportunity also means a loss of revenue to the clinic and hospital. Given

the current high demand for healthcare, wasting this percentage of available resources is unacceptable,

as long as there is a list of patients waiting to receive assistance.

To attenuate some of these consequences it is important to figure out what makes patients miss their

appointments and, whether or not there are identifiable patterns that allow us to know how likely are

patients to miss their appointment.

In order to do this, the appointment data stored by hospitals and clinics around the world can be used.

Using this data and combining it with some machine learning techniques we can begin to find some of

these patterns and obtain a probability for how likely is a patient to no-show. If these probabilities are

high then specific actions can be performed by the hospital, like scheduling another patient for that time

slot or contact the patient to try to confirm the appointment.

1.1 Motivation

This thesis was proposed by MedClick and the work will be developed in collaboration with them and

Grupo Luz Saúde.

MedClick is a company with the aim of creating a scheduling platform for patients and at the same

time helping medical service providers increase the efficiency of their practices.

The work developed in this thesis will all be done in the context of this platform, to help MedClick

reach their goals. This platform will have many features but the one this thesis will focus on is on the no-

show prediction system. The goal of this system is to predict no-shows and with these predictions help

medical service providers attenuate the negative effects of no-shows. The successful implementation

of this system will significantly improve the healthcare system in Portugal, helping healthcare providers

and patients.

Grupo Luz Saúde is one of the largest private healthcare providers in Portugal, providing care though

over 30 hospitals and clinics from all over Portugal. With this collaboration, we were able to develop and

apply the algorithms using real world data from an hospital.
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This work was important because it allowed us to test the efficiency of machine learning techniques

in a real-world problem that causes issues in the healthcare area and many others. Helping solve this

no-show problem is something that can provide many economic and social benefits.

1.2 Objectives

The objective of this thesis is to improve and keep developing the no-show prediction system for the

MedClick scheduling platform. The goal of this system is to help clinics and hospitals mitigate the

negative effects of no-shows.

There are three main features of this system: The first one is to notify the patients of the appointments

and to confirm their presence. The second one is a prediction algorithm that uses machine learning

techniques and will return the probability of no-show for an appointment. Finally, if the system detects a

high probability of no-show, it will automatically try to reschedule another patient to that time slot.

This thesis is focused on the second one by improving and testing different machine learning tech-

niques. This thesis focused on three main objectives which are:

• Create a prediction model that automatically returns the no-show probability for the appointments

in the MedClick database, and can efficiently test data from many clinics and hospitals without the

need of an advanced user to tweak the system.

• To test many machine learning techniques and find out which provide the best and most consistent

results across many datasets.

• To find out which features are more important to obtain better results, which prediction algorithm

works best and how accurate can the predictions be in large datasets from real-world clinics and

hospitals.

This work is expected to give a solid foundation to allow the continuation of tests in the no-show

prediction system and give some answers to what results are possible to obtain from these machine

learning methods to tackle the no-show problem.

1.3 Thesis Outline

The thesis was structured in the following way: Chapter 2 is a review of related work, starting with a

brief description of what the problem is and what has been found. Then it focuses on the main causes

for no-shows, what are the best features for predicting no-shows and comparing the results obtained

by the prediction models in previous works. Chapter 3 describes how the prediction algorithms and the
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machine learning techniques used work. Chapter 4 describes the previous work done in the context

of the MedClick application, focusing on the no-show part. Chapter 5 provides information on how the

prediction model created works and how it was adapted into the existing no-show module. Chapter 6

shows the characteristics of the datasets used to test the machine learning techniques and the prediction

algorithms. Chapter 7 is where the results achieved by the different machine learning techniques and

prediction algorithms are analyzed and discussed. Chapter 8 is the conclusion which summarizes the

work done, the conclusions obtained and reveals the main limitations along with suggestions for future

work.
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No-shows are estimated to have a big financial impact on hospitals and clinics [21] and as such many

studies can already be found on analysing the impact of no-shows [7], how to best deal with them and

using new ways to try to predict them. All of this to reduce the level of impact they have in hospitals and

clinics worldwide.

Many of these studies try to pinpoint what are the major causes of a patient no-show [11], whether

they are involuntary or not. They also focus on looking at what are the best practices to reduce the

impact of no-shows, this is normally done by overbooking [14,16], but has discussed in this articles this

practice may have some impact on waiting time and client satisfaction. Machine learning is a technology

that has been emerging and being used in several fields and, as such, some articles studied how to

take advantage of this to reduce no-shows. This technology uses the appointments data, in a clinic

or hospital, and using an algorithm it tries to find patterns in the data that can then be used to make

predictions on no-shows. These predictions can be in form of a probability, which translates to how sure

the algorithm is of that outcome. Using these probabilities a clinic or hospital could then decide whether

or not it would be better to schedule a patient for that time slot.

In the context of MedClick, there has already been a thesis, made by Daniel Sousa [1], on trying to

develop a method that can predict, with accuracy, whether a patient is going to no-show. There is also

one thesis by Inês Ferreira [2] on the same subject, particularly on trying to find out which algorithm can

make better predictions and on further developing the prediction system.

2.1 Causes of No-Shows

Finding causes for no-shows is a good starting point to check if these causes can be prevented from

happening and, whether or not, they can be used as ways of predicting no-shows.

Many studies emphasize finding out what are the causes for a patient to not show to an appointment

[7, 11]. Missing an appointment can be a voluntary or an involuntary act, this last one being when

the patient did not intend to miss the appointment. There are many reasons for not showing to an

appointment these include forgetting the appointment, other competing priorities or conflicts, and the

patient’s health status.

The most common reason is when a patient forgets the appointment [7], for this, many clinics have

already implemented a phone or e-mail reminder, which is reported to reduce no-shows [8,9,15]. Other

reported reasons for no-shows are the health of the patient which may feel better and not need the

appointment anymore, other priorities like a work schedule change or having to take care of another

family member can also lead to no-shows. Scheduling problems due to bad quality of the service can

also cause problems in cancelling the appointment.

The weather can also be a factor if it is raining or snowing people prefer to stay at home and if the
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health problem is not too severe, they can no-show [20]. Financial problems and lack of transportation

were also some of the reported reasons.

2.2 Features for No-show Prediction

To be able to predict whether a patient is going to no-show to an appointment, it is required to have

access to many factors about the appointment and the patient, which in conjunction leads to a prediction

that can be stronger by having access to many factors and many similar cases.

Many studies tackle this problem in an attempt to make their prediction algorithms better [3–5,10,12,

13]. So there is already some information to help figure out which features in the appointment data of a

clinic or hospital have more relevance to predict a no-show.

These features can be divided into two categories: some are relevant to the patient like gender,

age, marital status and insurance status. The others are relevant to the appointment like a day of the

scheduled appointment, the amount of time between the day the appointment was scheduled and the

actual appointment day and the type of clinic.

The feature found, relevant to the patient, which most articles conclude as having the most predictive

power is age, where younger patients seem to no show to more appointments than other age groups [18].

Other features in the patient category also have an impact. These are being unmarried, not having health

insurance, the severity of the illness and the scholarship level. The gender of the patient was considered

by most articles as having very little impact, in other words, there are no differences between men and

women regarding their attendance to previously arranged appointments [3]. In the appointment features,

it is found that the waiting time has a large impact [17,20]. Other characteristics that also have an impact

are the hour of the day, whether it is the patient first appointment [19], the chosen medical speciality, the

hospital centre, whether it is a weekday or weekend, the type of appointment and the distance to the

clinic. Other features are predicted to have an impact, but it is required to use other datasets than the

ones that exist in most clinics like, for example, the weather.

Beyond all these features there is another one that has a huge impact in predicting accurately if a pa-

tient will no-show, which is the prior no-show history, whether the patient has missed the last scheduled

appointments [17,20]. This feature is the one that has the most predictive power.

To obtain some of these features the datasets provided by the clinics needs to be pre-processed.

This allows the use of more specific information that can work as a better predictor, for example, having

a feature that tells you if the previous appointment was a no-show and having the hours of the day and

the age divided into categories. Creating these new features allows for an improvement of the results to

as much as 10% better predictions [5].
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2.3 Comparing Articles on No-show Prediction

Before starting this work it is important to look at the works that already exist for this no-show problem,

what where the techniques used and the results obtained. The following table shows a comparison

between the most important articles found on the no-show prediction that clearly stated which prediction

algorithm was used, the features used, and the results. With this table, it is possible to easily see which

features are used the most, and compare the results from each prediction algorithm.

It is possible to see, in the table 2.1, that four different algorithms seem to have achieved the best

results in their respective articles, these are the Hybrid Model, the Logistic Regression, the Neural

Network and the Gradient Boosting Machine. It is hard, based on these results, to say which algorithm

performed the best since they were not tested with the same datasets, nor with the same conditions.

Also, it is possible to verify that the metrics used to evaluate their performance are not always the same.

In the set of features chosen, we can see four features that are always used these are: Age, Gender,

Prior no-show history (different variations of this feature are used), and Date (used to create other

features). Some articles use more features than others, this might be due to the information present or

lack of it, in each dataset. The datasets might also work better with some features than others which

might justify the different choices between articles.

The Hybrid Model was tested against other 12 algorithms and achieved the best results, using the

metric Mean Squared error to compare them. These results indicate that this algorithm performs better

than most but it was tested in just one dataset with the same set of features, which is not enough to

be sure of these results. The Logistic Regression was used in three of these articles, in the first one it

achieves a c-statistic of 0.82 which normally means it makes strong predictions, it also performed well

in the article [4], coming right after the Hybrid model. On the other hand, in the last article from Inês

Ferreira, we can see it is one of the algorithms that performed worse. The Neural network is used in

article [6] and achieved an accuracy of 90% which seems really promising, but as already noted the

accuracy alone is not a strong metric. Finally, the Gradient Boosting achieved really good results in the

last article from Inês Ferreira, but in article [5] it achieved only average results.

With this table, it is possible to see that some promising results were already obtained, but the

algorithms were tested with just one dataset and the same features throughout. This is one of the issues

this work will tackle by using different datasets, different features and different metrics to try to find out if

there is an algorithm that actually has a generally better performance.
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No-Show Modeling for Adult Ambulatory Clinics [3]

Features
used

Age, Race, Provider type, Insurance type, Learning site,
Last appointment was no-show, Time and date of appointment,
New visit, Received telephone reminder, Same day, Overbooked
Days of lead time, Days since last visit

Algorithm Logistic Regression

Results
c-statistic = 0.8236
Data: data obtained from 20 outpatient clinics of a Midwestern hospital.
Includes information from 130,819 patients over a period of 3 years.

An integrated decision-support tool to forecast and schedule
no-show appointments in healthcare [6]

Features
used

Age, Appointment day, Appointment time, Average Income, Distance,
Education level, Events, Father’s employment, Mother’s employment,
Poverty level, Precipitation, Primary payer, Proficiency scores,
Provider name, Provider type, Race, Description, Sex, Temperature

Algorithm Neural Network w/ conjugate gradient as a learning algorithm
Decision Tree to discover rules in the Database

Results Accuracy = 90%
Data: children’s hospital in Midwestern Ohio with 87,000 appointments

A hybrid prediction model for no-shows and cancellations
of outpatient appointments [4]
Features
used

Sex, Marital Status, Insurance, Clinic Type, Age, Distance, Recency,
Closeness to non-work days, Attendance record

Algorithm

Chosen Algorithm: Hybrid Model
Beyond this algorithm another 12 algorithms were tested, after the
hybrid model the 4 algorithms that achieved best results were:
Multinomial Logistic Regression, Multinomial Bayesian update,
UBM(Universal Background Model) and MLP(Multilayer Percepton
Neural Net).

Results

MSE(Mean Squared Error) =0.072 (in the Hybrid Model)
The other algorithms obtained an MSE of 0.111, 0.143, 0.197 and 0.286
respectively.
Data: Veteran Affairs Medical Center in Detroit
(appointments from 10/1/2009 to 2/1/2010 have been used for training
and appointments after 2/1/2010 have been considered for testing)

Machine-Learning-Based No Show Prediction in Outpatient Visits [5]

Features
used

Age, Sex, First appointment, Last appointment, Number of
appointments, Number of days, Days since last appointment
(Speciality, Type of appointment, Consultation, Medical center, Days
since last appointment, Appointment time interval, Day of the week,
Month, Days since it was requested, Days since first appointment,
Attended last appointment) from both the preceding appointment and
the appointment we want to predict

Algorithm Gradient Boosting Machine

Results

Accuracy = 70%
Error of 38% in predicting non-attendance
Error of 28% in predicting attendances
Data: 322,979 appointments from university hospital in Madrid,
The San Carlos Clinical Hospital (January 2015 to September 2016)
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MedClick: Last Minute Medical Appointments No-Show, Daniel Sousa [1]
Features
used Age, Appointment date, Sex, Distance, No-show history

Algorithm Hybrid Model (simpler version)

Results Accuracy = 70% using (70% for training and 30% for testing)
Data: MD Clinica with 608,000 records

MedClick: Last Minute Medical Appointments No-Show Management,
Inês Ferreira [2]

Features
used

MD Clinica: Age, Weekday, Postal code, Previous appointments, Previous
no-shows, no-show ratio, Gender, Insurance, Physician
Brazil Data: Age, Gender, Handicaps, Weekday, Waiting days, Number of
previous appointments, Number of previous no-shows, No-show ratio,
Number of diseases

Algorithm Gradient Boosting, Random Forest, K-Nearest Neighbors,
Logistic Regression

Results

MD Clinica Data with 10,123 records with 17% no-shows
Gradient Boosting:
Accuracy = 0.877, Precision = 0.958, Recall = 0.790, F1 Score = 0.865
Random Forest:
Accuracy = 0.867, Precision = 0.94, Recall = 0.785, F1 Score = 0.855
K-Nearest Neighbors:
Accuracy = 0.644, Precision = 0.725, Recall = 0.462, F1 Score = 0.563
Logistic Regression:
Accuracy = 0.634, Precision = 0.72, Recall = 0.456, F1 Score = 0.556

Brazil Data with 110,527 records with 20% no-shows
Gradient Boosting:
Accuracy = 0.836, Precision = 0.888, Recall = 0.771, F1 Score = 0.825
Random Forest:
Accuracy = 0.825, Precision = 0.889, Recall = 0.746, F1 Score = 0.809
K-Nearest Neighbors:
Accuracy = 0.615, Precision = 0.626, Recall = 0.569, F1 Score = 0.596
Logistic Regression:
Accuracy = 0.633, Precision = 0.642, Recall = 0.612, F1 Score = 0.617

Table 2.1: Comparison of articles that used prediction algorithms
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Machine learning is a branch of artificial intelligence that provides systems with the ability to auto-

matically learn and improve from experience, without being explicitly programmed. The techniques in

machine learning use different methods to identify patterns in data and then use these learned patterns

to make accurate predictions.

It is already possible to find some studies on using machine learning techniques to predict no-shows

[3–6, 12, 13], in these studies it is possible to see different algorithms being tested, in an attempt to get

better predictions, in other words making these predictions as accurate as they can be.

3.1 Prediction Algorithms

There are many prediction algorithms and models that can be applied to a wide range of use cases.

Determining what prediction algorithms are best for your problem is key to getting better results and

leverage the data into making insightful decisions.

In this section, six algorithms are analysed that were shown to make better predictions, which are:

Gradient Boosting, Random Forest, Hybrid model that combines two different algorithms, Bayesian

Inference, Logistic Regression and Neural Networks.

It will be discussed how these algorithms work, their advantages and disadvantages.

3.1.1 Gradient Boosting

Gradient Boosting (GB) is a machine learning technique, which produces a prediction model in the

form of an ensemble of weak prediction models. Boosting in machine learning is a method for creating

an ensemble in which the predictors are not made independently, but sequentially. An ensemble is

a combination of simple individual methods that work together to create a new model more powerful.

Machine learning boosting fits an initial model into the data and afterwards the second model built will

focus on predicting the cases where the other model performed worse. Combining these two models is

expected to yield better results than any of the other models alone. This process of boosting is repeated

many times, with each successive model attempting to solve the mistakes of the previous one. Finally,

the models are all joined together into a more powerful version.

Gradient Boosting is a type of machine learning boosting. It assumes that the best model when

combined with the previous ones will minimize the prediction error. To improve its predictions, gradient

boosting looks at the difference between its current approximation and the known correct target vector,

this is called the residual. It then trains a weak model that maps feature vector x to that residual vector.

Adding a residual predicted by a weak model to an existing model’s approximation pushes the model

towards the correct target. Making lots of these pushes improves the overall model’s approximation.
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Gradient Boosting has shown considerable success in various practical applications. Also, it is ex-

tremely flexible and can easily be customized to different practical needs. The biggest drawback of this

model is that it is sensible to over-fitting and they have high memory consumption, which can affect the

speed of the model’s evaluation [24].

3.1.2 Random Forest

Random Forests are an ensemble learning method, used in classification and regression tasks [31]. As

previously mentioned in Gradient Boosting, the ensemble is a combination of simple and weak models

that together produce a more powerful version. Random Forest does this by creating multiple decision

trees and combining them together to obtain a model which outperforms any of the individual decision

trees.

Random forest trains each of the decision trees with random subsets of data, and then searches for

the best features amongst that subset of data. This causes the decisions trees to have a low correlation

between each other, which is key because if the decision trees where all built in the same way, there

would be no advantage to this method.

The result of a prediction will be the average of all the individual model’s prediction. By doing this

each tree protects one another from their individual errors, if some trees are wrong, many others will be

right, so together they can move into the right direction.

The model performance can be optimized by increasing the number of trees trained, but this can

lead to a slower computation.

3.1.3 Artificial Neural Network

Artificial Neural Network (ANN), are a set of algorithms modelled to try to imitate the human brain. They

are designed to recognize patterns in data and are used for a variety of problems, such as classification,

prediction, pattern recognition, or optimization [6].

An Artificial Neural Network used in prediction problems is composed of several layers. The layers

are made of nodes. A node is a place where the computation happens, loosely patterned on a neuron in

the human brain, which fires when it encounters sufficient stimuli. A node combines input from the data

with a set of coefficients, or weights that either amplify or dampen that input, based on its significance

in trying to make the prediction. Afterwards, the inputs and weight products are summed and then

passed through an activation function, which determines if that signal should progress further through

the network and affect the outcome. If it does then that neuron has been “activated”.

A node layer is a row of these neuron switches that turn on and off as the input is fed through the

net. The output layer is then a result of these subsequent layers, starting from an input layer with your
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Figure 3.1: Multi-layer perceptron neural network.

initial data to a hidden layer where the computations are done 3.4.

Where:

• Input layer contains the Artificial Neurons which receive initial data for the neural network.

• Output layer contains units that produce the result for the given inputs.

• Hidden layer is the intermediate layer between the input and output layer and the place where all

the computation is done. The job of the hidden layer is to transform the input into something that

output unit can use in some way.

3.1.4 Logistic Regression

Logistic Regression (LR) is a method of regression analysis to estimate the parameters of a logistic

model. Logistic regression is used to describe data and to explain the relationship between one depen-

dent binary variable and one or more nominal, ordinal, interval or ratio-level independent variables.

There are different ways of using the logistic regression there is, for example, Multinomial Logistic

Regression, which deals with situations where the response variable can have three or more possible

values.

The central mathematical concept that underlies Logistic Regression is the Logit function [22], which

is used in Logistic Regression like the equation described below 3.1.

P (x1, ..., xk) =
1

1 + e−(β0 + β1x1 + ...+ βkxk)
(3.1)

In the equation, above:
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• k represents the total number of features used in the model;

• xk represents a respective feature;

• β0 is the intercept term;

• βk is a weight associated to its respective feature;

The output of this function is always between 1 and 0, which can be translated into the probability of

that event occurring. The algorithm has two important phases: The first one is the model building, where

the training data is used to estimate the best coefficients to solve the given problem. This phase also

builds a cost function that quantifies the error by comparing the predicted probability with the real value.

Then, using gradient descent, a global minimum can be found of that function and get better coefficients

for that problem. The second phase is the prediction phase, which will use the estimated coefficients

and the logit function to make a prediction, using a set of features. This will return the probability for the

prediction.

Logistic Regression is widely used in solving problems similar to no-shows since it can make pre-

dictions very fast and it is easy to add and remove features, you only need to rebuild the model. The

biggest disadvantages of this model are that it requires a large dataset to be precise, and the features

need to have been previously studied since they can greatly affect the precision of the model.

3.1.5 Bayesian Inference

Bayesian Inference is a method of deducing properties about a population or probability distribution

from data using Bayes’ theorem (equation 3.9). This theorem is useful because it allows us to use some

knowledge or belief that already exits have to help calculate the probability of a related event.

P (H|E) =
P (E|H)P (H)

P (E)
(3.2)

Where:

• P(H | E) corresponds to the posterior probability;

• P(E | H) is the probability of observing E given H, it is called likelihood;

• P(H) is the prior probability;

• P(E) is the evidence;

The Bayesian Inference main goal is to provide a method for incorporating our prior beliefs, having

evidence in hand, in order to produce an updated posterior belief. What makes it a valuable method is

that posterior beliefs can then be used as prior beliefs, under new data, allowing us to continually adjust

our beliefs by repeatedly applying Bayes ‘rule.

This method was used in the hybrid model described in chapter ?? and in Daniel Sousa thesis [1]

with a slight adaptation, which was the following:
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E(ak | y1, y2, ..., yk) =
yk + ak∑k

k=1 yk +
∑k

k=1 ak
(3.3)

Where:

• k corresponds to the posterior probability;

• ak is the probability of observing E given H, it is called likelihood;

• yk is the prior probability;

The advantages of the Bayesian Inference model is that it is fairly easy to compute when using a few

features. The main disadvantage is that it requires us to perform integration over variables, and many of

these computations are analytically intractable. As a result, much contemporary research in Bayesian

approaches to machine learning relies on or is directly concerned with, approximation techniques [23].

3.1.6 Hybrid Model

A hybrid model is a combination of logistic regression, as a population-based method, with Bayesian

inference, as an individual base method. Logistic regression is used to build a model that computes

the initial estimation of the no-show probability for each patient, based on the general behaviour of the

population. Afterwards, it uses Bayesian Inference to adapt the initial probability obtained with each

patient, using their appointment records.

A complex version of this algorithm was created and tested in article [4].

3.1.7 Models Comparison

This table 3.1 provides a comparison of the prediction algorithms described above. The goal of this table

is to provide an easy way to compare the strengths and weaknesses of each algorithm.
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Algorithm Strenghts Weaknesses

Gradient
Boosting

-Strong predictive accuracy
-Not much data pre-processing required

-More sensitive to overfitting if the data
is noisy
-Not easy to understand predictions
-High flexibility means lots of
parameters need to be fine tuned

Random
Forest

-Tends to result in high quality models
-Fast to train

-Can be slow to output predictions
-Not easy to understand predictions

Logistic
Regression

-Highly interpretable
-Does not require any tuning
-Easy to implement and very efficient
to train

-Can be outperformed by more complex
methods
-Needs to have the most important
features identified before making
strong predictions

Bayesian
Inference -Highly interpretable

-Computationally expensive with to
many features
-Needs a good prior distribution to be
effective

Hybrid
Model

-Comprises two different algorithms to
improve the predictions

-Hard to implement
-Features need to be divided to be used
at different stages of the algorithm

Artificial
Neural

Network

-Outperforms other models on large
datasets
-Ability to learn and model non-linear
and complex relationships
-It can infer unseen relationships on
unseen data

-Very slow to train
-Requires large amounts of data to be
effective
-Almost impossible to understand predictions

Table 3.1: Comparison of prediction algorithms

3.2 Pre-Processing

Data pre-processing is a fundamental step in Machine Learning since the capability of our model to learn

will depend on the quality of the data and the information that can be extracted out of it. Pre-processing

refers to the transformations applied to our data before it is fed into the algorithm. The data needs to be

formatted properly, to be applied to some Machine Learning models. Some examples of these are null

values and categorical values which are not accepted in most prediction algorithms. Other techniques

like normalization, data balancing and feature selection try to improve the results of the applied model

by making the data cleaner and easier to learn from. In this chapter, some of these techniques are

discussed.

3.2.1 Normalization

Normalization is a technique used in data pre-processing for machine learning. The goal of normal-

ization is to change the values of numeric columns in a dataset to a common scale, without distorting

22



the differences in the range of values. The reason for applying normalization is that variables that are

measured at different scales do not contribute equally to the model fitting and might end up creating

bias. For example, if some feature in the dataset has values in the range of 0 to 10 and another feature

has values in the range of 0 to 10000, then the result of prediction will be much more influenced by the

second feature, then the first, even if the first one is more important.

By using normalization we counter this problem and prevent the outcome to be wrongly influenced

by a feature with large numeric values.

The type of normalization used is MinMax Scaling and the formula is:

X ′ =
X −Xmin

Xmax −Xmin
(3.4)

Where:

• Xmin corresponds to the minimum value of that feature;

• Xmax corresponds to the maximum value of that feature;

3.2.2 One-Hot Encoding

Many machine learning algorithms cannot operate on label data directly. They require all input variables

and output variables to be numeric. This means that categorical data must be converted to a numerical

form. One-Hot encoding is one solution to this problem where each categorical value will be transformed

into a new feature in the dataset of 1 and 0.

There are other solutions to this problem that transform each categorical value into a different num-

ber, the problem to this approach is that the numbers will have an order and the algorithm might give

more importance to higher values or make calculations using those values and reach wrong conclusions.

One-Hot encoding is a solution to this problem but has the disadvantage of increasing the size of the

dataset which can become very computationally expensive, depending on the size of the dataset and

the number of distinct categorical values.

3.3 Feature Selection Techniques

Most datasets used to obtain predictions have a high dimension, which means they have many features.

This may lead to slow computation times and also to overfitting. Overfitting is when the model has high

variance and low bias on the training set which leads to poor generalization on new testing data.

Feature selection techniques are used to counter this problem since not all features used in a dataset

contribute to the prediction variable. These techniques remove the features that are not important for

the prediction. By doing this we can improve accuracy and reduce the complexity of the model, which in
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turn, reduces the time it takes to train a model.

In this chapter, we will discuss some of the techniques that were tested and their advantages and

disadvantages.

3.3.1 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a technique that selects features by recursively considering

smaller and smaller sets of features. This technique uses an external estimator, which can be logistic

regression or random forests, to assign weights to features. First, the estimator will be trained on that

set of features and the feature importance of each one will be obtained through a coefficient.

Afterwards, the least important features are pruned from the current set of features. This procedure

is recursively repeated on the pruned set until the desired number of features is reached. This technique

can be used with cross-validation to make sure the selected features are the best.

3.3.2 Boruta

The Boruta algorithm is a wrapper built around the random forest classification algorithm. It is a feature

selection technique to choose the most important features in a dataset.

Boruta starts by duplicating the dataset and shuffles the values in each column to remove their

correlation with the target variable. These values are called shadow features. Then it combines the

original ones with the shuffled copies and trains a Random Forest Classifier on the dataset to obtain a

score for the importance of each feature.

Afterwards, a Z score is computed, which is the mean of accuracy loss divided by the standard

deviation of accuracy loss. The maximum Z score among the shadow features is found and it will start

tagging the variables as unimportant, if they have a significantly lower value than the maximum, or has

important if they have a significantly higher value than the maximum Z score. This process is then

repeated for a predefined number of iterations, or until all the attributes are tagged as either unimportant

or important.

3.3.3 LASSO

Least Absolute Shrinkage and Selection Operator (LASSO) is a method that performs two main tasks,

regularization and feature selection.

The LASSO method works by putting a constraint on the sum of the absolute values of the model

parameters, where the sum has to be less than a fixed value (upper bound). To do this a shrinking

(regularization) process is applied that penalizes the coefficients of the regression variables, shrinking

some to zero. During the feature selection process the variables that have a non-zero coefficient, after
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the shrinking process, are selected to be part of the model. The goal of this process is to minimize the

prediction error.

There is an important tuning parameter () that controls the strength of the penalty. The larger the

parameter, the more number of coefficients will be shrunk to zero.

3.3.4 Comparison of Feature Selection Methods

The following table 3.2 provides a comparison of the feature selection techniques described above. The

goal of this table is to provide an easy way to compare the strengths and weaknesses of each algorithm.

Algorithm Advantages Disadvantages

RFE
-For more complicated tasks it can
significantly reduce memory consumption
and speed up calculations

-Computational expensive when used together
with cross validation

Boruta
-More precise and stable than feature
importance values from single random
forests

-May be quite long as several iterations need to be
performed until the algorithm converges

LASSO -Computationally efficient

-Might have worse performance than alternative
methods
-LASSO will only select one feature from a group
of correlated features

Table 3.2: Comparison of feature selection methods

3.4 Sampling Techniques

Sampling techniques are used when there are imbalanced datasets, where there is a severe class

imbalance. This is the case of the datasets used to predict no-shows because there are many more

appointments with shows than no-shows. The challenge of working with imbalanced datasets is that

most machine learning techniques tend to ignore the minority class, which is normally the most important

to have good predictions on.

Sampling techniques help to solve this problem by balancing the data, either by increasing the mi-

nority class or by decreasing the majority class.

3.4.1 SMOTE

One way to solve the problem of imbalanced datasets is to oversample the minority class. This can be

done by simply duplicating examples from the minority class. This can balance the class distribution but

does not provide any additional information to the model.

Synthetic Minority Oversampling Technique (SMOTE) is an improvement on duplicating values by

synthesizing new examples from the minority class. SMOTE works by selecting examples that are close
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in the feature space, drawing a line between the examples in the feature space and drawing a new

sample at a point along that line.

Specifically, a random example from the minority class is first chosen. Then k of the nearest neigh-

bours for that example is found. A randomly selected neighbour is chosen and a synthetic example is

created at a randomly selected point between the two examples in feature space.

This procedure can be used to create as many synthetic examples for the minority class as are

required.

This approach is effective because new synthetic examples from the minority class are created that

are relatively close in feature space to existing examples from the minority class.

A general downside of the approach is that synthetic examples are created without considering the

majority class, possibly resulting in ambiguous examples if there is a strong overlap for the classes.

3.4.2 Random Under Sampler

Another way to solve the problem of imbalanced datasets is to under-sample the majority class. Random

Under Sampler (RUS) is a technique that does just that. It removes random samples from the majority

class until the class distribution is balanced. This technique can work in balancing the data, but it

removes what might be important data from the dataset, it should only be used if you have a large

amount of data and can afford the luxury of “slimming down”.

Another solution that can be used is first using random undersampling to trim the number of exam-

ples in the majority class, and then use SMOTE to oversample the minority class to balance the class

distribution. This way we can help mitigate the disadvantages of both strategies.

3.4.3 SMOTE with Tomek Links Undersampling

Tomek Links is an undersampling technique that identifies pairs of nearest neighbours near the border

of two different classes and removes one or both of the samples in these pairs (such as the examples

in the majority class). This affects the decision boundary of the training dataset making it less noisy and

ambiguous.

The combination with SMOTE works by first applying the SMOTE method to oversample the minority

class to balance the distribution, then examples in Tomek Links from the majority classes are identified

and removed. This combination was shown to provide a reduction in false negatives at the cost of an

increase in false positives for a binary classification task [28].

26



3.4.4 SMOTE with Edited Nearest Neighbours Undersampling

Edited Nearest Neighbours is another undersampling method and involves using k Nearest Neighbours

to locate those samples in a dataset that are misclassified by its neighbours and then removes them.

This can be applied to the whole dataset or just the majority class.

ENN is more aggressive at downsampling the majority class than Tomek Links and provides more

in-depth cleaning [29]. The combination with SMOTE works the same way by first applying SMOTE to

oversample and then using ENN to clean the dataset.

3.5 Evaluation Methods

Evaluation methods are the methods that are used to evaluate how well your model performs, after it

has been trained by a prediction model and, as such, it is an essential part of any project. There are

methods like cross-validation which train the data and simultaneously test it several times to obtain the

performance of the prediction model. This performance will be an average score of each metric in all the

iterations performed by the cross-validation. There are many metrics some of these might be accuracy

or precision. The choice of these metrics depends on the problem at hand since some metrics might be

more important in some cases than others.

3.5.1 Cross Validation

Cross-validation is a widely used technique to estimate how accurately a predictive model will perform.

This method prevents overfitting and ensures that the model has got most of the patterns from the data

correct, and it is not picking up too much noise. There are different types of Cross-Validation Techniques

but the overall concept remains the same.

• To partition the data into a number of subsets.

• Hold out a set at a time and train the model on remaining set.

• Test model on hold out set.

One of the most common techniques and the one used in this project is k-Fold Cross-validation with

the stratified variation.

K-Fold Cross Validation works by dividing the data into k subsets, one of which will be used for

testing the model, and the remaining k-1 subsets will be used for training the model. Then, the process

will be repeated k times so that each data point gets to be used once as a test set. This significantly

reduces bias as we are using most of the data for fitting, and also significantly reduces variance as

most of the data is also being used in the test set. Interchanging the training and test sets also adds

to the effectiveness of this method. As a general rule and empirical evidence, K = 5 or 10 is generally
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preferred, but nothing’s fixed and it can take any value. The error estimation is averaged over all k trials

to get total effectiveness of our model.

There is another variation of this technique called Stratified K-Fold Cross-Validation. This variation

works well on imbalanced datasets. The reason for this is that the splitting of the data into folds is gov-

erned by criteria, which ensures that each fold contains approximately the same percentage of samples

of each target class as the complete set.

3.5.2 Metrics

Several metrics can be used to check how well a model is performing. the choice of these metrics is

an important factor in evaluating how well our model is performing to a given problem. There might be

cases where it is important to be really precise to avoid a wrong diagnosis, others where we can accept

more mistakes because the benefits of having it right outweigh the drawbacks of having it wrong. This

must all be taken into consideration when opting for a model over another one.

3.5.2.A Confusion Matrix

Confusion Matrix is a matrix that describes the complete performance of the model. It shows how many

classes were correctly classified, and how many were not.

Figure 3.2: Confusion matrix for binary classification.

Where:

• True Positives (TP): Number of instances that were correctly assigned to the positive class.

• True Negatives (TN): Number of instances that were correctly assigned to the negative class.

• False Positives (FP): Number of instances that were incorrectly assigned to the positive class.

• False Negatives (FN): Number of instances that were incorrectly assigned to the negative class.

3.5.2.B Accuracy

Accuracy is the fraction of correct predictions made by the model. It is a good measure when there is

an equal number of samples belonging to each class. However, in case of imbalanced datasets, for

28



example, considering a dataset that has 95% of samples of class A and 5% of class B, it is easy to

obtain an accuracy of 95% simple by creating a classification model that predicts all classes as A. For

this reason, accuracy alone is not a good measure when dealing with these types of datasets.

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions
(3.5)

3.5.2.C Recall

Recall it can be called sensitivity or True Positive Rate as well. Recall corresponds to the proportion of

positive data points that are correctly considered as positive, among all actually positive data points. This

metric is good for imbalanced datasets since it focuses on the positive values, which typically belong to

the minority class.

Recall =
TP

FN + TP
(3.6)

3.5.2.D Specificity

Specificity or False Positive Rate corresponds to the proportion of negative data points that are mistak-

enly considered as positive, among all negative data points.

Specificity =
FP

FP + TN
(3.7)

3.5.2.E Precision

Precision corresponds to the number of correct positive results divided by the number of positive results

predicted by the classifier. Like recall, this metric is also good for imbalanced datasets since it focuses

on the positive values, which typically belong to the minority class.

Precision =
TP

FP + TP
(3.8)

3.5.2.F ROC-AUC

ROC-AUC is one of the most widely used metrics for evaluation and is used for binary classification

problems. AUC means Area Under the ROC Curve and measures the area underneath the entire ROC

curve. ROC stands for Receiver Operating Characteristic and it is a graph that plots False Positive Rate

against True Positive Rate. AUC of a classifier is equal to the probability that the classifier will rank a

randomly chosen positive example higher than a randomly chosen negative example. AUC ranges from

0 to 1 and the greater the value, the better is the performance of the model.
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Figure 3.3: Example of a ROC graph.

3.5.2.G F1-score

F1-score is the Harmonic Mean between precision and recall. It represents how precise your classifier

is (how many instances it classifies correctly), as well as how robust it is (it does not miss a significant

number of instances). High precision but lower recall means that the model is very accurate on identi-

fying positive values, but at the same time classifies many positive instances as negative. On the other

hand, when it has low precision and high recall, it means the model identifies correctly many of the

positive instances, but at the same time classifies several Negative instances as positive.

The greater the F1-score, the better is the performance of our model. Mathematically, it can be

expressed as:

F1− score = 2 ∗ 1
1

Precision + 1
Recall

(3.9)

F1-score tries to find the balance between precision and recall.

3.5.2.H Precision-Recall-AUC

Precision-Recall-AUC is the area under the precision-recall curve. It is a graph that plots the precision

against the recall for different probability thresholds. A skilful model is represented by a curve that bows

towards a coordinate of (1,1). A no-skill classifier will be a horizontal line on the plot with a precision that

is proportional to the number of positive examples in the dataset. For a balanced dataset, this will be

0.5.

The focus of the precision-recall curve on the minority class makes it an effective diagnostic for

imbalanced binary classification models. Precision-recall curves (PR curves) are recommended for

imbalanced datasets where ROC curves may provide an excessively optimistic view of the performance.
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Figure 3.4: Example of a Precision-Recall graph.

3.5.3 LIME

LIME provides local model interpretability. It is a technique that tries to understand a prediction model

by modifying a single data sample and tweaking the feature values to understand how the predictions

change. This is also what most people are interested in observing to be able to answer why was the

prediction made and what features caused the prediction. Other model interpretability techniques can

only answer this from the perspective of the entire dataset. For example, feature importance explains

which features are important for the whole dataset. It is possible to verify whether the model is overfitting

to noise but it will be hard to diagnose why a specific prediction was made.

LIME solves this by providing a list of explanations, reflecting the contribution of each feature to the

prediction of a data sample. This provides local interpretability, and it also allows us to determine which

feature changes will have the most impact on the prediction.

An explanation is obtained by approximating the underlying model locally by an interpretable one.

Interpretable models are linear models with strong regularisation like decision trees. These models are

trained on small perturbations of the original instance and should only provide a good local approxima-

tion.

An example of an explanation applied to the no-show problem can be seen in figure 3.5, where the

red means that feature contributes to the prediction being a show and the green to a no-show.

Lime is model-agnostic, which means it can be applied to any machine learning model.
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Figure 3.5: Example of an explanation obtained for an appointment in the MD Clı́nica dataset.
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This thesis is done in partnership with MedClick, which is a start-up that is creating a platform for

hospitals and clinics that allows patients, to easily book appointments, choosing the clinic and medic

most suitable for their case. In the case of the no-shows, the platform will have a functional no-show

prediction algorithm that will allow clinics, to predict if a patient will miss an appointment and in the case,

he is likely to miss, then the platform will automatically try to replace the patients with another one that

has less likelihood of no-showing.

In MedClick there is already some work developed on this subject of no-shows. The first work is a

thesis by Daniel Sousa which focused on developing the algorithm to predict the no-shows and creating

a model to replace patients that have a higher chance of not showing. The last work is another thesis by

Inês Ferreira, which focuses on testing other prediction algorithms and also updated how the platform

behaved.

4.1 Daniel Sousa’s Thesis

The thesis that was done by Daniel Sousa, [1] was mainly focused on developing a no-show prediction

algorithm and a model for replacing patients.

The main objective of the model created for replacing the patients is to find patients interested in

filling the ”last-minute” vacancy slots. It starts with receiving a no-show notification, this can happen

in three different situations: when the patient cancels the appointment, when it fails to respond to the

appointment confirmation, or when it detects the patient will not arrive on time based on his location.

Afterwards, a list is obtained with the patients that have an appointment that day or are close to the

health centre, computing their respective no-show probability. Then it will loop until a candidate is found,

sending notifications to the candidate with the lowest probability of no-show, giving him a short window

of time to answer before skipping to the next candidate. If a candidate answered yes it replaces it,

otherwise, it notifies the health centre it did not find a replacement.

The model used to make the predictions and obtain the probability of no-show was the Hybrid Model.

This solution is a simple version of the one developed in article [4], using both population and individual

approaches.

This model was tested with a dataset from MD Clı́nica. The features chosen to train this model

were the age and sex of the patient, the appointment date and distance to the healthcare centre. First,

the logistic regression part (population approach) was tested alone, and it achieved an accuracy of

70%. Only the accuracy was shown as a metric which, and since this dataset is unbalanced it is not a

reliable metric. The patient history was then added using the last 10 appointments of each patient, and

using the Bayesian Inference equation 3.9, a probability for a no-show for each of the appointments was

calculated. The results achieved while adding the last appointments were not the best since this method
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was not able to predict with much accuracy if the patient was going to miss his next appointment. By

doing this a lot of emphases was given to the patient no-show history, making the other features not

have as much impact. This is not the best approach because human behaviour is unpredictable and

many other factors need to be taken into account.

4.2 Inês Ferreira’s Thesis

The thesis done by Inês Ferreira [2,27], was focused on improving the models for detecting and replacing

patients and in testing different prediction algorithms.

The work started by creating a model to detect no-shows for the prediction system. This model

increases or decreases the probability of no-show, depending on if the patient answered or not to the

appointment confirmation. In case of a negative answer, or if the probability of no-show to the ap-

pointment is higher than a defined threshold for that clinic, three days before the appointment, it will

automatically try to find another patient interested in scheduling an appointment for that time slot.

The model for replacing patients developed by Daniel Sousa [1] was also improved in this thesis. The

main improvements were: In the initial phase of the algorithm, instead of starting to find a replacement

only when the system receives a cancellation notification, it also starts when it detects that a patient has

a very high probability of no-show. The lists obtained were also altered, one is patients that added them-

selves to the waiting list for that day and another is the patients that are scheduled for an appointment

later in the day. The computed no-show probability is now done by using the model to detect no-shows.

Beyond these two new improvements, some features were added: the first one is to notify n candidates

instead of just one and having to wait for the patient to confirm before going to the next one, this n can

be altered by the clinics themselves. The second is to consider the answers of the patients in the second

list so that, in the future, the algorithm has that into consideration and allows other patients to have a

chance.

After this part, the emphasis of the thesis is on testing different prediction algorithms and comparing

the results with the ones achieved by Daniel Sousa.

The prediction algorithms tested were Gradient Boosting Machine, Logistic Regression, Random

Forest and k-Nearest Neighbours. These algorithms were tested with two databases one provided by

MedClick, which is from MD Clı́nica and another obtained online that represents data from medical

appointments in Brazil. Before testing the algorithms different pre-processing techniques were used,

beyond handling the datasets and removing missing values a technique for balancing the datasets was

used. The technique chosen was SMOTE and then the data was split into training and testing using

k-Fold Cross-Validation with k = 10.

The results obtained and the features used are shown in more detail in table 2.1. The algorithms
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that performed better were Gradient Boosting and Random Forest with the first one performing slightly

better. An analysis of feature importance was also done for each dataset. In MD Clı́nica dataset the

most important feature is gender but all features got similar values. On the opposite hand, the data

from Brazil has two features that have much more important than the others, these are waiting time and

age. In this case, it is already possible to see how much feature importance can change in different

datasets and different locations, though, it is also important to note that this MD Clı́nica dataset had a

much smaller quantity of records available than the Brazil data, which might have had an impact on this

analysis.

This is the basis of the work developed in this thesis, there was also some work developed in incor-

porating the prediction system in the MedClick platform that is not discussed here. The work that will be

developed with MedClick is a continuation of the work developed in these two theses.

4.3 Limitations

A lot of work has been done in these two theses, but there is still much to be done to improve the

prediction system.

In Daniel Sousa thesis there was a limitation in the model for replacing patients, where he only

focused on replacing patients at the last minute, this was solved in Inês Ferreira thesis, by using the

no-show’s predictions to replace the patients that have a high probability of not showing before the day

of the appointment. The prediction algorithm developed by Daniel Sousa was also not thoroughly tested,

only four features were used and only the accuracy was used to describe the results. It is required many

more tests to validate any prediction algorithm.

In Inês Ferreira thesis there are also some limitations. The model developed for detecting no-shows

cannot be tested yet, only at further development stages of the scheduling platform. The prediction al-

gorithms developed and tested by Inês Ferreira seemed to yield great results, but one mistake was done

because the SMOTE technique was used in the test data at every split made by the cross-validation. By

doing this you are generating fake samples and then getting results on those, which does not translate

to the real world. The only way to validate these results would be to use the trained model on a dataset

that has not yet been seen by the training model and no sampling technique was used on the test data.

There are still other limitations found, one is in the fact that most datasets are different from each

other with different features. This requires the code for pre-processing the datasets to have to be

changed each time the prediction algorithm is trained. This is not scalable to the needs of the pre-

diction system that MedClick wants to develop, as it will have to work with many clinics and hospitals

from all over Portugal.

Prediction algorithms can also work better with some datasets than others, being able to know how to

37



get the best no-show predictions out of any dataset is really important for the scalability of the prediction

system and the main focus of the solution that will be developed.
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Figure 5.1: Prediction Model components.

This Prediction Model was created to automate the process of constructing prediction models and

obtaining predictions from different datasets, without requiring an advanced user to tweak the model

every time we are faced with a different dataset. Another advantage of this model is that the prediction

model is running in short periods of time, this means that any new appointments that arrive on the

MedClick API will be given a no-show probability value on a short period of time.

The prediction model has two main models and one model that supports the other two and provides

a configuration file for the user. The first main model is a Build Model that, as the name suggests, builds

the model from the given data and saves the model in a file. The name of the file and the final set of

features that were used to save the model is stored in the MedClick API.

The second model is Predict Model. This model receives appointments to predict, from a CSV or the

API, it then loads the model and the features that the model was constructed on, using the same set of

features and the loaded model it returns for each appointment the respective probability of no-show.

Feature configuration is a supporting file that the user must configure to build the model. This sup-

porting file is basically a set of variables that must be assigned a value corresponding to the name of

the feature in the original dataset. This is done so that the Build Model can automatically know which

feature it corresponds to, and then pre-process it into a new feature that can be used by the prediction

algorithm.

5.1 Feature Configuration

Feature configuration is a support file to be used in the build model and predict model phases. The goal

of this configuration file is to make it easier to use any type of dataset, without having to change the way

it was programmed every time a different dataset is used. This configuration file is basically a simple

python file with a set of variables, that need to be filled with the names of the features of the specific
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dataset we are using. These variables are then used by the Build Model to automatically pre-process

the dataset features into the ones that will be used to train the dataset.

This list of variables contains one to specify whether the data comes from the MedClick API or a

CSV file. It has also two variables that are specific to the CSV file, where the path to the CSV should be

placed. The remaining features must be matched with the corresponding feature name of the dataset

that will be used. A table with the variables used in the configuration file, along with a short description,

can be seen in the following table 5.1.

Variable Description

TypeOfInput Should be filled with ’csv’ if dataset is from a CSV or
’json’ if it comes from MedClick API.

CSV Path The path to the CSV file with the appointments dataset.

CSV Path2
The path to the CSV file with the patients dataset.
Should be left empty in case the patients are already
merged with the appointments.

ID The name of the patient id feature in the dataset used.
Age The name of the age feature in the dataset used.

Birthdate The name of the birthdate feature in the dataset used.
Only required if there is no age feature.

Gender The name of the gender feature in the dataset used.
District The name of the district feature in the dataset used.
Postal Code The name of the postal code feature in the dataset used.
Insurance The name of the insurance feature in the dataset used.
Specialty The name of the specialty feature in the dataset used.
ID Medic The name of the medic id feature in the dataset used.
Appointment
Date

The name of the appointment date feature in the
dataset used.

Appointment
Hour

The name of the appointment hour feature in the
dataset used. Only required if the hour comes
separated from the appointment date.

Scheduled
Date

The name of the scheduled date feature in the dataset
used.

NoShow The name of the no-show feature in the dataset used.
NoShow
PositiveValues

The value used to signal a no-show in the no-show
feature, for example, ’Yes’.

Other
Features

The remaining features that will not be used to test
the dataset.

Table 5.1: Variables in the feature configuration file.

The variables used in the configuration file match the most common features present in most health-

care provider’s datasets and to the features that possess stronger predictive power. Other features

that prove to have a strong predictive power can be added in a future stage so that they can be easily

pre-processed.

A dataset does not need to have correspondence to all the variables that are in the configuration file,

variables that do not have a correspondent feature should be left empty. This way any dataset, as long
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as it has the essential features, can be tested. The variables that need to be filled for the dataset to be

tested are patient id, appointment date and no-show. Of course, the more features that are filled, the

more information the prediction algorithms will have to learn from, which will lead to better predictions.

In some of the tested datasets, some features were used that were not in the configuration file. This

was done because these features were unique to that dataset and they were already binary, so no pre-

processing was required. To use these features they should not be placed in the variable Other features.

A dataset where this happened was Brazil dataset which had a lot of binary features that were not in the

other datasets, an example of the configuration file used can be seen in figure 5.2.

The pre-processing done will not look at every possible scenario of input, as this would be almost

impossible to do. This means that some features will be required to have a certain format to work. One

of these cases is postal code, which requires the values to come in the format -. Other features are

more intuitive, age will require numeric values and appointment date will require a date, as expected. If

the datasets do not have these formats they should be manually pre-processed beforehand.

Examples of the features configuration files used for the other datasets can be seen in figure 5.3 and

figure 5.4.

For the case where the dataset comes from the MedClick API, there is also a feature configuration file,

that can be seen in figure 5.5. This feature configuration only needs to be updated if there are changes

in the MedClick API that add or remove features. The MedClick API data will still require an update since

many important features are missing like scheduling date. In later stages, these configuration files are

not going to be required and the pre-processing should be optimized to the MedClick API, since here is

where all the data will come from.

The main advantage of the feature configuration is that it permits many datasets to be worked without

the constant need to change things in the main code. This is great for someone who is not familiar with

the code to be able to easily test the prediction model on a dataset. Also in these early stages, Medclick

will work with many datasets from different healthcare providers, which makes a configuration file like

this essential.
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Figure 5.2: Feature configuration file used for Brazil dataset.

Figure 5.3: Feature configuration file used for the dataset from MD Clı́nica.
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Figure 5.4: Feature configuration file used for the dataset from Hospital da Luz.

Figure 5.5: Feature configuration file used for the data coming from MedClick API.
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Figure 5.6: Build Model components.

5.2 Build Model

Build Model is the model that builds the prediction model, which is then used to obtain no-show predic-

tions on the data. This data can come from a CSV file or directly from the MedClick API. The reason to

have the CSV option is that most datasets, from the majority of clinics and hospitals, come in this format.

Also, it will be important to have a way to quickly test these datasets without integrating them in the API,

since due to data protection measures this will not happen right away.

Build Model receives as arguments the path to the feature configuration file to be used and the

healthcare Id of the associated healthcare provider, this can be seen in figure 5.6. The model is then

divided into four phases:

• Pre-process: Pre-processing is where the data from a specific healthcare provider is transformed

into data that can be used by the prediction algorithms. This transformation adds new features from

the existing ones to give the algorithms more information to learn from. It also removes or replaces

missing values and transforms categorical variables with One-Hot encoding into dummy variables

with values of 1 if true and 0 for false. Beyond this, all the numeric features are normalized into

values in the range of 1 to 0, since the rest of the features are all binary this puts all features in the

same range of values. This allows the algorithms to learn better without giving too much weight to

features with high numerical values. Examples of these transformations can be seen in 6).

• Data optimization: In this phase, the data is ready to be used by the prediction algorithms, but

first it should be optimized to give the best predictions possible. The first step is choosing only the

features that possess stronger predictive power and removing the others. First variance threshold is

used to remove features that are almost constant since these features will not contribute to the pre-

dictions. The next step is using a feature selection algorithm, the one chosen is Boruta. To validate

the features chosen by this algorithm, it is used alongside a 10 fold cross-validation and for each

cross-validation fold, the features chosen are registered and only the ones that appear more than
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80% of the time are chosen. The final stage is to balance the data since most of the data come un-

balanced with many more shows than no-shows. This can cause the prediction algorithms to prefer to

classify appointments as shows in favour of having more accuracy. To mitigate this problem, SMOTE

with Edited Nearest Neighbours is used which balances the data by generating data samples with

SMOTE and then using k Nearest Neighbours it removes those samples that are misclassified by its

neighbours. After the data is balanced, it is now ready to be fed to the prediction algorithms and be

able to find which give better predictions.

• Compare Prediction Algorithms: It is impossible to find a prediction model that will be better for

every scenario and every dataset, things like the size of the dataset and the number of features can

affect the quality of the predictions for some algorithms. To solve this problem in this phase four

different prediction algorithms are run on the dataset on cross-validation with 3 folds only, to prevent

it from being very computationally expensive. The four prediction algorithms are Artificial Neural Net-

work, Gradient Boosting, Logistic Regression and Random Forest. These algorithms were tweaked

to provide better results, but the type of optimizations required for one dataset is not the same for

other datasets. Because of this, general optimization was used in all datasets. After running the

prediction algorithms, the one with the best overall score in the metric f1-score is the one chosen.

This metric was chosen because, for these results, it will be more important to have the right balance

between recall and precision than having good accuracy. At a later stage, this phase of comparing

prediction algorithms can be removed once the data comes solely from the API since at this stage

there will be more control on the features used and the prediction algorithm that generally performs

better can be chosen. This will save computation time which will be more important at that stage.

• Save Model and Features: After we have chosen the model it must be saved, this is done using

a pickle which is a python module that allows us to save the model in a file .dat. This file can then

be easily loaded to make predictions for that healthcare provider. The name of the saved file will

be unique having the id of the healthcare provider, the name of the model used and the accuracy

obtained. This name along with the features chosen in the data optimization phase will be saved in

the MedClick API to be used in the prediction phase. The reason to save the features, as well, is that

the predictions need to be made with the same features the model was trained on, otherwise it will

not work.
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Figure 5.7: Predict Model components.

5.3 Predict Model

The Predict Model is the model used to obtain the probability of a patient missing his appointment. This

model has two functions, one to obtain the probability of no-show for all the appointments scheduled, in

every healthcare, and another to obtain the probability of no-show for a specific healthcare provider. The

first one does not receive any argument and only works for the appointments in the API. This function is

scheduled to be executed every hour or less so that the probabilities can be regularly updated and in the

case, new appointments are added, we can quickly figure out what is the probability of no-show. This

is especially important when appointments are scheduled for the same day or the next day. The other

function is to predict for single healthcare, this function receives as arguments the path to the feature

configuration and the healthcare id. This function also works for data in CSV, and in this case, it should

receive an extra argument with the appointments we want to make predictions on.

The Predict Model has 3 phases, which are:

• Pre-process: In the pre-processing phase, the appointments which we want to predict are joined

with the original dataset. This is done so that it is possible to pre-process the new appointments, in

order for them to have all the features. Also, it is required to be able to put the right values in features

like the number of appointments and the number of no-shows, since this needs to be calculated for

the whole data. After this, the list of features saved in the MedClick API and associated with this

healthcare provider is retrieved. The features that are not in this list of features are removed from

the appointments to predict, this is done so they match the ones where the model was trained on,

otherwise, it would not work. The numeric values are also normalized using MinMax Scaler so that

everything is on the same scale.

• Load model and predict: In this phase, the name of the model used to train the data is retrieved
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from the API and using python module pickle, the model is loaded. Using the loaded model the

predictions for the probability of no-show are obtained for all of the appointments.

• Return probability of no-show: If the appointments come from the API, the list of probabilities must

be uploaded to the API. This is done by using the appointment identifier and for each one uploading

the respective probability of no-show to the API. Beyond this, an explanation of how the algorithm

obtained that prediction is updated with the probability of no-show. This explanation is obtained using

Lime, which gives a value for how relevant the features were to the prediction and returns a list with

the nine most relevant features for that prediction. An example of these explanations plotted can be

seen in figure 5.8 and figure 5.9. With this, it is possible to have a better idea of how the prediction

algorithms are obtaining that probability and, in these early stages, will allow a better understanding

of which features have the most impact and which tweaks can be made to improve it. In case the

appointments come from a CSV file, the main process is the same but the results are saved to a

CSV file, instead of uploading them to MedClick API. This file will have the appointments predicted

with the original dataset features and an extra feature with the probability of no-show. An example of

this file calculated for the MD Clı́nica dataset can be seen in figure 5.10.

Figure 5.8: Plotted explanation obtained using Lime for the Brazil dataset.
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Figure 5.9: Plotted explanation obtained using Lime for the MD Clı́nica dataset.

Figure 5.10: Example of the calculated probabilities for a part of data from MD Clı́nica dataset.
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5.4 No-show Module Integration

To integrate the prediction model with the current version of the no-show module in the MedClick system,

some changes to the algorithms and the way the no-show module behaved were made. These changes

were mainly in the prediction part of the no-show module.

The No-show module has two distinct tasks, the first one corresponds to training the model on the

available data, which will now translate to running the build model on the desired data. This task will run

once a month or until there has been a significant addition of new data to the dataset. The retraining

of the model is important to ensure the model does not become unstable and that it is updated with

fresh data since new events or newly adopted behaviours from the patients can eventually affect the

precision of the predictions. Since this is a computationally expensive task and it takes time for a real

change to occur in the data and affect predictions, this retraining can be done in a larger window of

time. An example of an event that can happen to affect predictions is the current pandemic, since using

trained data before the pandemic to predict appointments during the pandemic will probably not lead to

good predictions. The opposite is also true using data trained during the pandemic will not lead to good

predictions in the future. This means that the time to rebuild the model and the amount of data to build

it must take into consideration the current events.

The second task is one that should be performed daily and in smaller windows of time. This task is

comprised of two sub-tasks, one of them runs daily and is responsible to send reminders to the patients,

with appointments five days from now. No changes were made to this sub-task but these reminders and

patient confirmations will be an important step to prevent no-shows and eliminate false positives. The

other sub-task used to run each day at 8:00 am and was responsible to compute the probability of no-

shows on the appointments three days from now, using the trained model. This sub-task was changed,

it runs the Predict Model instead and runs every hour of the day. The reason it runs every hour instead

of just at the beginning of the day is that appointments are constantly being updated and rescheduled

so having these predictions just at the beginning of the day would be very limited. Appointments can

also be scheduled for the same day or the next day, and even though the risk of a no-show in this

cases is lower, it is important to have the no-show probabilities so healthcare providers have time to

act. Another change made was on the appointments that will have their probability computed, instead

of just computing for the next three days, it will compute the probability for all the appointments and it

will be up to each clinic and hospital, to define the window of time to replace the patients that have high

probabilities of no-show. This way smaller clinics and hospitals that would struggle to find a last-minute

replacement can have more time to find a replacement. While larger healthcare providers with many

interested patients in their waiting lists can decide to replace the patients latter when they are more

certain that the high no-show probability will translate to a no-show.
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5.5 Project Structure

The prediction model was developed in python and using NodeJS. In this section, the most relevant

files used to create the model and connect it to the API are shown. The structure and the way they are

connected can be seen in figure 5.11.

• app.js: this file is used to call the functions to run the prediction model. It is used to run the Build

Model and the Predict Model. It is also responsible for running the tasks included in the scheduler.js

file.

• api.js: this file contains the methods that are responsible for fetching and posting data on the

MedClick API

• scheduler.js: this file contains tasks to be performed repeatedly over time, it includes daily tasks

such as sending reminders to the patients and hourly tasks to calculate the probability of no-show

for each appointment.

• noShow.js: this file contains the main methods of the prediction problem and is used to call the

methods in the python connector.

• pythonConnector.js: this file is one of the most important files in the prediction model since it is

responsible for connecting the model built in python with the rest of the NodeJs files. It also calls the

methods from the api.js file to be able to get the healthcare data and pass it to the python algorithm.

It is also responsible for receiving the models and information from the python classifier and push it

into the MedClick API.

• predModel.py: this is the python script where the model is built and the appointments predicted

based on the data received. It contains every machine learning technique used to obtain the models

and calculate the no-show probability.

• feature configuration.py: this is the configuration file that must be tweaked by the user for the al-

gorithm to work with the given dataset.

Besides the above-mentioned files and the typical NodeJS configuration files, there is a statistics.py

which was the file used to obtain the results and graphs shown in chapter 7. Other less relevant files

contain helper methods.

To implement the prediction model it was required to make changes to all of the files in figure 5.11.

The files that suffered most alterations were api.js and pythonConnector.js, other files like predModel.py

and feature configuration.py were created almost from scratch. In the api.js file new functions and

methods had to be created so it was possible to retrieve the required data from the MedClick API and
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Figure 5.11: Structure of project files.

to filter it by healthcare. It was also required to create functions to post the model name, features and

probabilities in the MedClick API. The pythonConnector.js file is where the most important functions

used by the prediction model were built, to run the build the model and make the predictions.
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In this chapter, the characteristics and features of each dataset used are analysed. Three datasets

from three different healthcare providers were used to test the prediction algorithms and machine learn-

ing techniques. The first one from a dental clinic (MD Clı́nica), the second one was obtained online from

Kaggle and comprises data from a Brazilian dataset and the last one is from Hospital da Luz which is

the largest dataset of the three. Here the main differences in the features of each one of the datasets

can be seen, it is also shown the transformations that were made to the features in order to test the

datasets with the prediction models.

6.1 MD Clı́nica Dataset

This dataset was provided by a Portuguese clinic, MD Clı́nica, this clinic had already provided data

that was used in the thesis by Daniel Sousa and the thesis by Inês Ferreira to test the algorithms they

implemented. The dataset provided is more recent and provides more features than those used before,

which allows us to extract more information than before and further test the implemented algorithms and

new prediction techniques.

6.1.1 Characteristics

The initial dataset had 152 393 records each corresponding to an appointment from a dental clinic in

Lisbon and comprises data from 1 January 2019 to 31 October 2019. It has a feature comprised of

several states that describe various stages of the appointment, being the relevant ones: the appoint-

ments that were completed, the ones were the patient did not show up and the ones were the patient

rescheduled. After removing the states that were not relevant and some important values that were

missing of important features, 90 419 records remain in the dataset. Of this records 58 872 were shows

and 31 547 no-shows giving a distribution in percentage of 65% shows and 35% no-shows. The pa-

tient’s dataset was separated from the original dataset and had to be merged to obtain some features

like gender, postal code and birth date. The combined features of the original dataset merged with the

patient’s dataset can be seen in the following table 6.1, along with a brief description.

Not all of the features represented in this table 6.1 were used since many of them had too many

missing values or were not useful to calculate the prediction probability values. The original dataset has

18 features but after removing these feature only 11 features remain.

One issue with this dataset is the use of the variable the patient rescheduled as a no-show. The

reason is if a patient rescheduled one month before the appointment it probably should not be considered

a no-show. This variable is used as a no-show because this clinic always calls patients before their

appointment to check if they are coming to the appointment or not if they cannot the clinic tries to
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Feature Description
Patient id Patient’s identifier.
Postal code Patient’s postal code.
County Patient’s county.
Date Appointment’s date.
Medic Id Medic’s identifier.
Appointment hour Hour of the appointment.
Appointment duration Duration of the appointment.
Scheduled date Appointment’s scheduled date.
Last alteration date Date last status change.
Hour of arrival Hour the patient arrived.
Hour get in Hour the patient got in.

Appointment status Appointment’s status (accomplished, rescheduled,
cancelled, patient missed, etc.).

Birthdate Patient’s birthdate.
Marital status Patient’s marital status.
Gender Patient’s gender.
Profession Patient’s profession.
Convention Patient’s insurance identifier.
Name convention Patient’s insurance name.

Table 6.1: Features in the MD Clı́nica’s original dataset.

reschedule them. This means that the majority of these rescheduled appointments would be no-shows,

but not all of them and since we cannot figure out which, to maintain all the data all of them were used.

To add more information to this dataset another one was obtained, which contains the weather in-

formation. This dataset was obtained from the national information system of water resources [30] from

the Lisbon region and contains four features, which can be seen in the next table 6.2.

Feature Description
Average humidity Average humidity value for that day
Average temperature Average temperature value for that day
Precipitation Average precipitation value for that day
Wind speed Average wind speed value for that day

Table 6.2: Features in the weather dataset.

6.1.2 Transformed Data

To be able to use the above features in the prediction algorithms and to give more information for the

prediction algorithms to learn from, the data needs to be transformed. Before using the python algorithm

to transform the data, it was necessary to transform the Appointment status into the binary feature of

No-show, where appointments completed are shows and appointments cancelled and rescheduled are

no-shows. Afterwards and using the feature configuration file in figure 5.3, some features were added

out of the existing ones and some were changed to provide the algorithms with more information, the

58



final set of features with the added features and the updated ones can be seen in table 6.3.

Feature Description
Distance Obtained from postal code.

XX Medic A new feature binary feature was added for each one
of the medics in the Medic feature.

XX Month A new feature binary feature was added for each one
of the months.

XX Weekday A new feature binary feature was added for each one
of the weekdays.

XX Age

The age was divided into 10 different age groups with
a binary feature for each one of them. The age groups
are ((0-4), (5-12), (13-20), (21-29), (30-39), (40-49),
(50-59), (60-69), (70-84), (>85)).

XX Insurance A new feature binary feature was added for each one
of the insurances in the Insurance feature.

Part of the day A binary feature for each of the parts of the day (early
morning, morning, lunch, afternoon, night).

Gender Binary feature (1 if male, 0 if female).

WaitingTime Time between the day the appointment was scheduled
and the appointment itself in days.

PreviousApp Number of previous appointments.
PreviousNoShow Number of previous no-shows.

Ratio Number of previous no-shows divided by the
number of previous appointments.

Scheduled during
last app

Whether the patient scheduled his appointment in the
same day of his last appointment.

Scheduled same
day

Whether the appointment was scheduled in the same
day of the appointment.

Last appointment
noshow Whether the patient last appointment was a no-show.

Days since last
app Days since the patient had his last appointment

Table 6.3: Features used to test the prediction algorithms in the MD Clı́nica dataset.

Some features like age, insurance, weekday, month and medic were divided into binary features us-

ing one-hot encoding, this was done because many of this features are categorical and to be used in the

prediction algorithms must be altered to numeric. In the case of the age feature it was transformed into

age groups because age can be considered to be a categorical feature and after testing both strategies,

this one provided better information to the prediction algorithm and thus better results. For the feature

distance, it had to be calculated from the postal code, this was done using python library pgeocode.

Since it took a lot of time to calculate the distance using pgeocode, all the unique postal codes were

put on a list and then the distance was calculated. Afterwards, a dictionary with the distance and postal

code was used, this saved a lot of computation time in further tests.

The total number of features in the dataset is 114, this is a significant increase from the original

number of features and provides much more information. Some of these features are removed during
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the feature selection phase, this is done to remove some of the noise and leave the algorithms with only

the features that have more predictive power. Beyond these transformations, all the numeric features

had to be normalized to be on the same scale with MinMax scaler.

6.2 Brazil Dataset

This dataset was obtained online from Kaggle, it has data from clinics in Brazil. It had already been

previously tested in the thesis by Inês Ferreira [2]. Since new machine learning techniques are being

used and new features were added it makes sense to have this dataset as an extra validation tool. It

also provides distinct features which can be analyzed to find out how strong they are. This dataset is

not from Portugal, which is not ideal since MedClick will operate only in Portugal, but it also allows us to

analyze whether these results are similar in other parts of the world.

6.2.1 Characteristics

The dataset has 110528 records where 22319 are no-shows, which means the dataset has a distribution

of approximately 80% shows and 20% no-shows. This dataset comprises data from 29 April 2016 to 8

June 2016. There are 12 features in the original dataset, which are shown in table 6.4.

Feature Description
Date Appointment’s date.
Scheduled date Appointment’s scheduled date.
Age Patient’s age.

Scholarship
Whether the patient has a scholarship, which
is a type of aid given by the Brazil government
to poor families.

Hipertension Whether the patient suffers from hipertension.
Diabetes Whether the patient suffers from diabetes.
Alcoholism Whether the patient is alcoholic.
Handcap Whether the patient has any disability.
SMS Received Whether the patient received a SMS.
Gender Binary feature (1 if male, 0 if female).
Neighborhood Neighborhood of the patient.
NoShow Number of previous appointments.

Table 6.4: Features in the original dataset from Brazil.

All the features in this table 6.4 were used, even though some were adapted into new ones. The

reason we were able to use all the features in this dataset is that it did not have almost any missing

values. The only problems found were some negative values in age and some scheduling dates earlier

than appointment dates. Since it, only a affected a very few numbers of rows they were removed.
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6.2.2 Transformed Data

To extract value from the above features they must be transformed. To do this the feature configuration

file in figure 5.2 was used to automatically transform the features into the ones required. Some features

were left out of the configuration file because the features are already binary and do not need any

pre-processing. These features were Scholarship, Hypertension, Diabetes, Alcoholism, Handicap and

SMS Received. The features with categorical values were handled using one-hot encoding and the rest

of the features were obtained using calculations with the rest of the features. The final set of features

used in this dataset, along with a short description, can be seen in table 6.5.

Feature Description

XX Month A new binary feature was added for each one
of the months.

XX Weekday A new binary feature was added for each one
of the weekdays.

XX Neighborhood A new binary feature was added for each one
of the neighborhoods.

XX Age

The age was divided into 10 different age groups with
a binary feature for each one of them. The age groups
are ((0-4), (5-12), (13-20), (21-29), (30-39), (40-49),
(50-59), (60-69), (70-84), (>85)).

Scholarship
Whether the patient has a scholarship, which is a
type of aid given by the Brazil government to poor
families.

Hipertension Whether the patient suffers from hipertension.
Diabetes Whether the patient suffers from diabetes.
Alcoholism Whether the patient is alcoholic.
Handcap Whether the patient has any disability.
SMS Received Whether the patient received a SMS.
Gender Binary feature (1 if male, 0 if female).

WaitingTime Time between the day the appointment was scheduled
and the appointment itself in days.

PreviousApp Number of previous appointments.
PreviousNoShow Number of previous no-shows.

Ratio Number of previous no-shows divided by the
number of previous appointments.

Scheduled during
last app

Whether the patient scheduled his appointment in the
same day of his last appointment.

Scheduled same
day

Whether the appointment was scheduled in the same
day of the appointment.

Last appointment
noshow Whether the patient last appointment was a no-show.

Days since last
app Days since the patient had his last appointment.

Table 6.5: Features obtained after pre-processing the Brazil dataset.

After the pre-processing phase, the dataset had 116 features more 104 than the original dataset.

The increase in the number of features can be justified by the creation of a new binary feature for each
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one of the categorical values. These features will still pass through a feature selection phase where

the number of features used is greatly decreased. All the numerical features in this dataset were also

normalized using MinMax Scaler.
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6.3 Hospital da Luz Dataset

This dataset was obtained from Hospital da Luz and contains the most records of the three datasets

used with 494 627 records.

6.3.1 Characteristics

The original dataset has 494 627 records and comprises data from 2 January 2017 to 31 December

2017. This dataset had some missing values but not enough to discard any of the features. Other small

issue found, was that some of the scheduling dates happened after the appointment date, since this is

not possible and it was a very small amount of rows they were removed. The distribution of no-show for

this dataset is approximately 90% shows and 10% no-shows. The original dataset has 15 features with

some unique features not found in the above datasets like speciality, scheduled way and first or follow

through. The features of the original dataset can be seen in the following table 6.6, along with a brief

description. All the data was fully anonymised prior to the work.

Feature Description
ID Patient’s identifier.
Age Patient’s age.
Postal code Patient’s postal code.
Gender Patient’s gender.
County Patient’s county.
District Patient’s district.
Insurance Patient’s insurance identifier.
Speciality code Speciality of the appointment’s identifier.
Speciality
description Speciality of the appointment’s description.

First or follow
through

Whether it is the first appointment or a follow
through.

Medic Id Physician ID.
Scheduled date Appointment’s scheduled date.
Date & Hour Appointment’s date and hour.
Scheduled way Whether the appointment was scheduled in person.
No Show Whether this appointment was a no-show.

Table 6.6: Features of the original dataset belonging to Hospital da Luz.

All the features of this dataset were used except for speciality description and county. Speciality

description provides the same information as the speciality code so there is no need to use it. County

has a lot of categorical values, which would translate to a lot of binary features since the distance can

be obtained from the postal code and there is also district there is no need to have this extra layer.
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6.3.2 Transformed Data

To transform the dataset the feature configuration file in figure 5.4 was used. We can see that first or

follow through and scheduling way are not in the configuration file, this happens because these features

have values of yes or no which can be easily transformed into binary. Since these two features are

unique to this dataset there was no need to put them into the configuration file. The final set of features

used in the prediction algorithms can be seen in the following table 6.7, along with a short description.

Feature Description
Distance Obtained from postal code.

XX Medic A new binary feature was added for each one
of the medics in the Medic feature.

XX Month A new binary feature was added for each one
of the months.

XX Weekday A new binary feature was added for each one
of the weekdays.

XX Age

The age was divided into 10 different age groups with
a binary feature for each one of them. The age groups
are ((0-4), (5-12), (13-20), (21-29), (30-39), (40-49),
(50-59), (60-69), (70-84), (>85)).

XX Insurance A new binary feature was added for each one
of the insurances in the Insurance feature.

XX District A new binary feature was added for each one of the
districts in the District feature.

XX Speciality A new binary feature was added for each one of the
specialities in the Speciality feature.

Part of the day A binary feature for each of the parts of the day (early
morning, morning, lunch, afternoon, night).

Gender Binary feature (1 if male, 0 if female).

WaitingTime Time between the day the appointment was scheduled
and the appointment itself in days.

PreviousApp Number of previous appointments.
PreviousNoShow Number of previous no-shows.

Ratio Number of previous no-shows divided by the
number of previous appointments.

Scheduled during
last app

Whether the patient scheduled his appointment in the
same day of his last appointment.

Scheduled same
day

Whether the appointment was scheduled in the same
day of the appointment.

Last appointment
noshow Whether the patient last appointment was a no-show.

Days since last
app Days since the patient had his last appointment.

First or follow
through

Whether it is the first appointment or a follow
through.

Scheduling way Whether the appointment was scheduled in person.

Table 6.7: Features obtained after pre-processing the dataset from Hospital da luz.

After the pre-processing, the dataset was transformed into 819 amount of features which is a large
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number. This happened because there are a lot of categorical variables that were transformed with

one-hot encoding into new features. Since many of these features are almost constant with a very few

positive values they are removed in the feature selection phase. For the distance variable, the same

process of creating a dictionary with the unique postal codes and respective distance was used, which

saved a lot of computation time. The features chosen to be used for the prediction algorithms can be

seen in the following chapter, where we can see that only a small amount of features end up being used.
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In this chapter, the results obtained in each of the different datasets are analysed. The prediction

algorithms and machine learning techniques were tested in datasets from three different healthcare

providers. The datasets used and the features used in each of them are discussed in the previous

chapter. With this analysis, it is possible to see which machine learning techniques and what conducts

are most efficient at predicting no-shows. It is also discussed in the respective conclusions if the results

obtained were good enough to help attenuate the negative effects of no-shows.

7.1 Feature Selection Analysis

In this section, the most important features and the feature selection techniques used in each one of

the datasets are analyzed. Feature selection is done by first using a variance threshold to remove

features that have a variance inferior to 0.01. This is done because features with a very low variance

are basically constant and will not improve the performance of the model. After this, a 10 fold cross-

validation is used and the feature selection algorithm is tested in each one of the folds, returning for

each one of the folds the selected features. Only the features that are selected in eight or more folds are

chosen as the features to be used. By doing this, with 10 fold cross-validation, we make sure that the

features chosen are not overfitting to the data. The feature selection algorithms tested are Recursive

Feature Elimination, Boruta and LASSO. To be able to compare the results a prediction algorithm is

run alongside the features chosen in each one of the folds. The prediction algorithm used is Gradient

Boosting, since the goal is to compare which feature selection technique provides the best results only

one prediction algorithm is required. The normalization is also done independently in each fold, using

MinMax scaler to prevent overfitting.

This comparison was done in each one of the datasets to understand whether there is one feature

selection technique that performs better in all the datasets.

7.1.1 MD Clı́nica Dataset

This subsection is about how the feature selection algorithms performed in the MD Clı́nica dataset. First

variance threshold was used removing 35 features, leaving the dataset with 79 features. Afterwards,

each one the feature selection algorithms was used. With Recursive Feature Elimination only 39 features

remained, which can be seen in figure 7.1. The Boruta algorithm removed the most features, leaving

the dataset with 10 features, figure 7.2. Lasso does not remove any feature, which means 79 features

remain since this number is too large it could not be represented in a figure.

The results obtained by each one of the feature selection techniques for the MD Clı́nica dataset can

be seen in the following table 7.1 and figure 7.3.
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Figure 7.1: Plot with features chosen by RFE in each one of the folds.

Figure 7.2: Plot with features chosen by Boruta in each one of the folds.

Algorithm Accuracy Recall Specificity Precision ROC(AUC) F1-score PR(AUC)
RFE 0.687 0.24 0.919 0.604 0.579 0.343 0.547
Boruta 0.688 0.236 0.922 0.609 0.579 0.34 0.545
Lasso 0.691 0.261 0.914 0.61 0.587 0.365 0.553

Table 7.1: Comparison of the results achieved by the feature selection algorithms on the dataset from Hospital da
Luz.

Looking at the results, it is not possible to see a significant difference between the different feature

selection techniques. Even though each one of the algorithms chose a different number of features,

the prediction algorithm, in this case, Gradient Boosting, is able to properly weight each one of the

features during computation, making it work well with many features or just the important ones. This
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Figure 7.3: Chart that compares the feature selection techniques in the dataset from MD Clı́nica.

means that the noise in the other features does not affect the predictions and many of those features

are unnecessary. The feature selection algorithm that performs slightly better is LASSO, which uses

the most features. But since this difference is so small the other algorithms, mainly Boruta, has to

be considered since it achieves equivalent results with a very small number of features. Using fewer

features in very large datasets will be important since it will save lots of computation time, which can

increase exponentially with a high number of features.

7.1.2 Brazil Dataset

For the Brazil dataset, 120 features were removed using variance threshold out of 188 total. The Recur-

sive Feature Elimination selected 31 features, figure 7.4, while Boruta selected 12 features, figure 7.5.

LASSO removes 3 features leaving the dataset with 65 features. Boruta chose the least features, while

LASSO the most.

The results obtained by each one of the feature selection techniques for the Brazil dataset can be

seen in the following table 7.2 and figure 7.6.

Algorithm Accuracy Recall Specificity Precision ROC(AUC) F1-score PR(AUC)
RFE 0.806 0.07 0.992 0.7 0.531 0.127 0.421
Boruta 0.806 0.069 0.993 0.704 0.531 0.125 0.415
Lasso 0.806 0.074 0.991 0.688 0.533 0.134 0.428

Table 7.2: Comparison of the results achieved by the feature selection algorithms on the Brazil dataset.

It can be seen in the table and chart that all the feature selection algorithms achieved very similar

results, so in this example, there is no difference between the feature selection algorithms, beyond the

fact that fewer features lead to much faster computation times.
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Figure 7.4: Plot with features chosen by RFE in each one of the folds.

Figure 7.5: Plot with features chosen by Boruta in each one of the folds.

7.1.3 Hospital da Luz Dataset

After being pre-processed this dataset had 819 features, most of them being binary features from the

categorical features in the original dataset. After using variance threshold to remove features with a

variation smaller than 0.01, only 83 features remain. Afterwards, the feature selection algorithms were

applied. With LASSO 80 features were chosen out of the 83. As for Recursive Feature Elimination 39

features were selected, which can be seen in figure 7.8. Boruta chose the least features with 21 being

chosen, which can be seen in figure 7.7.

It was also tried using all the features directly on the feature selection algorithm without variance

threshold, the problem with this approach was that for Recursive Feature Elimination and Boruta there
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Figure 7.6: Chart that compares the feature selection techniques in the Brazil dataset.

were memory problems in the machine. It worked for LASSO which used on average 600 features, but

the results achieved by Gradient Boosting algorithm were very similar and slightly worst than the ones

obtained here. Since the results were not different, using variance threshold was concluded to be the

best approach, as it makes the whole process less computationally expensive.

Figure 7.7: Features chosen by boruta for Hospital da Luz dataset for all the 10 folds.

The results obtained by each one of the feature selection techniques for the dataset from Hospital da

Luz can be seen in the following table 7.3 and figure 7.9.

As we can see in the tables the results are almost equal. The high accuracy stands out but the

dataset is imbalanced and the recall is very low, which means it is not finding the many no-shows. Like

the above datasets, there does not seem to be any advantage of using feature selection algorithms, be-

yond the fact that for very large datasets, like this one, using fewer features allows for faster computation
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Figure 7.8: Features chosen by recursive feature selection for Hospital da Luz dataset for all the 10 folds.

Figure 7.9: Chart that compares the feature selection techniques in the dataset from Hospital da Luz.

Algorithm Accuracy Recall Specificity Precision ROC(AUC) F1-score PR(AUC)
RFE 0.918 0.099 0.995 0.656 0.547 0.173 0.296
Boruta 0.918 0.102 0.995 0.654 0.549 0.177 0.301
Lasso 0.919 0.099 0.995 0.669 0.547 0.173 0.307

Table 7.3: Comparison of the results achieved by the feature selection algorithms on the dataset from Hospital da
Luz.

times and less computational resources are required.

7.1.4 Results Comparison

After analysing how each feature selection algorithm performed in all the datasets, we can conclude that

all feature selection algorithms perform almost the same. Since some of these algorithms use lots of
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features while some use a much smaller number, it can be inferred that the prediction algorithm used

to obtain these results, Gradient Boosting, is automatically giving lots of weight to certain features and

disregarding the rest. This means that there are a lot of irrelevant features that do not need to be used

by the prediction algorithms, which will help reduce noise and improve computation times. The feature

selection algorithm that uses the least features, while simultaneously obtaining equivalent results is

Boruta. This algorithm should be used for the prediction model since it allows us to know which features

are relevant and reduces computation time, which will be important as data increases and is used by

MedClick.

7.1.5 Feature Importance Comparison

Figure 7.10: Feature importance graph for the dataset from Hospital da Luz.

In the following figures 7.10,7.11 and 7.12 we can see the most relevant features for each one of the

datasets. We can see that most of the chosen features are similar between the different datasets, which

means some constant features are better in predicting no-shows. The most relevant feature is waiting

time, it seems the time from when the appointment was scheduled to the time of the appointment is

crucial to find no-shows. One reason for this is appointments with a long waiting time are easily forgotten,

which is one of the most reported reasons for no-shows. Another reason is it is hard to predict how your

life will be set up in a long time from now leading to the patients having to reschedule or no-show.

Another feature which is also correlated to waiting time is scheduled the same day. This happens when

the waiting time is zero and means that the appointment was scheduled for the very day. Patients with

appointments scheduled like this will most likely show to the appointment since they committed for that

time means that they need it urgently, or at least, they are sure they can make it on time. Since there
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Figure 7.11: Feature importance graph for the dataset from MD Clı́nica.

Figure 7.12: Feature importance graph for the dataset from Brazil.

are many appointments like this in all datasets it helps increase the importance of waiting time.

Another very important feature is the distance, which has even slightly more importance than waiting

time in the dataset from Hospital da Luz. This feature is the distance between the postal code of

residence and hospital postal code. Reasons of distance being important can be obvious, if a patient

lives really close it is not hard for him to show up to the appointment, while a patient that lives far away,

any delay at work or small unpredictable event can lead to a no-show. The opposite can also be true a

patient who lives very far away might have scheduled there because it is important for him so he might

be more committed to showing up and have already prepared his scheduled to go. The combination

with other features can help the algorithm answer this question. It was not possible to obtain this feature
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for Brazil dataset, because the available features did not allow this to be calculated.

Other relevant features that follow these two but with a large difference, with no specific order, are the

days since the last appointment, number of previous appointments, number of previous no-shows, ratio

and whether the last appointment was a no-show. These features have different values of importance

depending on the dataset but they are chosen in all the datasets, which means these features are also

very important to accurately predict a no-show.

Other unique features of some datasets that got a considerable value of importance are appointment

duration (Duracao Con), which is specific to the appointments from MD Clı́nica and whether a message

was received (SMS Received), which is specific to the appointments from Brazil. These features can

lead to better results in the predictions and, as such, an attempt should be made to make this available

on other obtained datasets and, more importantly, on the data from the MedClick API.

7.2 Sampling Techniques Analysis

Sampling techniques are important to balance the datasets when the dataset is imbalanced. It brings

some advantages, like increasing recall and subsequently the number of no-shows found. In this section,

we can see how every sampling technique performed for each dataset. The sampling techniques used

are SMOTE, a combination of SMOTE and Random Under Sampler, SMOTE with Tomek Links and

SMOTE with Edited Nearest Neighbors.

The sampling techniques were tested using the features chosen by the feature selection algorithm

Boruta, this algorithm was chosen since it used only the relevant features and provided better compu-

tation times. These sampling techniques were also tested with a 10 fold cross-validation and Gradient

Boosting was chosen as the prediction algorithm to compare which sampling technique yields the best

results. It was tested on all three datasets and the results obtained can be seen in the next subsections.

7.2.1 MD Clı́nica Dataset

For MD Clı́nica the average results obtained for all the 10 folds can be seen in the following figure 7.13

and table 7.4).

Algorithm Accuracy Recall Specificity Precision ROC(AUC) F1-score PR(AUC)
NoSampling 0.688 0.236 0.922 0.609 0.579 0.34 0.545
SMOTE 0.675 0.424 0.806 0.53 0.615 0.471 0.544
SMOTE&RUS 0.644 0.627 0.653 0.484 0.64 0.546 0.551
SMOTETomek 0.665 0.496 0.753 0.51 0.625 0.503 0.544
SMOTEENN 0.602 0.715 0.544 0.448 0.63 0.551 0.561

Table 7.4: Comparison of the results achieved by the sampling techniques on the dataset from MD Clı́nica.
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Figure 7.13: Chart that compares the sampling techniques in the dataset from MD Clı́nica.

We can see there is the loss of accuracy, specificity and precision from using these sampling tech-

niques but there is a significant gain in the recall. Which also leads to improvements in the ROC AUC

score and f1-score. The difference between the different sampling techniques is basically on how steep

this loss and gain is. The sampling technique with the largest gain and lost is SMOTE with Edited Near-

est Neighbour. This technique achieves a recall of 0.715, which is much larger than the original value

of 0.236. This comes with a consequence of lowest value for accuracy, specificity and precision, but

still, lead to a better f1-score. The sampling technique with the lowest difference is SMOTE, which only

achieves a recall score of 0.424 but maintains high accuracy. SMOTE with RUS also achieves good

results with the best value for ROC AUC. The best sampling technique could be the one with a higher

f1-score, in this case, SMOTE with Edited Nearest Neighbours, but this will depend from case to case.

7.2.2 Brazil Dataset

We can be seen in the following figure 7.14 and table 7.5 the results obtained for the Brazil dataset.

Algorithm Accuracy Recall Specificity Precision ROC(AUC) F1-score PR(AUC)
NoSampling 0.806 0.069 0.993 0.704 0.531 0.125 0.415
SMOTE 0.721 0.508 0.774 0.363 0.641 0.423 0.401
SMOTE&RUS 0.698 0.592 0.725 0.353 0.659 0.442 0.409
SMOTETomek 0.708 0.551 0.747 0.356 0.649 0.432 0.398
SMOTEENN 0.677 0.663 0.68 0.344 0.672 0.453 0.415

Table 7.5: Comparison of the results achieved by the sampling techniques on the dataset from Brazil.

In these results we can see there is a trade-off between precision and recall as in the previous

dataset. The accuracy and specificity also decrease with the increase in recall. The sampling tech-

nique that achieves the higher recall is SMOTE with Edited Nearest Neighbors. It achieves 0.663 a
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Figure 7.14: Chart with the results achieved by the sampling techniques on the dataset from Brazil.

large increase from the original 0.069. This technique has the lowest precision as a consequence but

still manages to have better ROC AUC and f1-score. The other sampling techniques achieved not so

different results but have slightly higher values for accuracy and precision with a lower recall.

7.2.3 Hospital da Luz Dataset

In Hospital da Luz dataset the results obtained using the sampling techniques are shown in the following

figure 7.15 and table 7.6).

Figure 7.15: Chart that compares the sampling techniques in the dataset from Hospital da Luz.

In these results, SMOTE with Edited Nearest Neighbours is again the one with the highest increase

in recall with 0.557, but it comes at the cost of a very low precision, which leads to an f1-score lower than

other sampling techniques. The sampling technique with the highest f1-score, even though this score is

very similar to the others is SMOTE combined with RUS. The recall achieved is 0.311, from the original
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Algorithm Accuracy Recall Specificity Precision ROC(AUC) F1-score PR(AUC)
No Sampling 0.918 0.102 0.995 0.654 0.549 0.177 0.301
SMOTE 0.877 0.311 0.93 0.296 0.621 0.303 0.283
SMOTE&RUS 0.869 0.337 0.919 0.279 0.628 0.305 0.286
SMOTETomek 0.774 0.5 0.8 0.19 0.65 0.275 0.281
SMOTEENN 0.748 0.557 0.766 0.182 0.661 0.274 0.283

Table 7.6: Comparison of the results achieved by the sampling techniques on the dataset from Hospital da Luz.

0.102, but precision suffers a large drop from 0.654 to 0.279.

7.2.4 Conclusion

The results obtained using the sampling techniques are still not ideal. Increasing recall and decreasing

precision means more no-shows are found but at the cost of making more mistakes. How worth this

manoeuvre is depends on how much the f1-score improves at the same time. It also depends on the

problem at hand if it is required more precision or to find as many positive classes as possible. For

the no-show problem, it will depend a lot on how each hospital and clinic operates. For some to have

a strategy where they would find as many no-shows as possible and then using a patient confirmation

strategy on those patients only could save the clinic many resources, for example in the MD Clı́nica they

would not need to call every patient. Other clinics or hospitals might be very strict and like to maintain

patient waiting times to a minimum so they might only want to replace patients that they are 100% sure

they will miss. Because of this, no sampling technique can be made final and for some not using a

sampling technique can be more beneficial. For the MedClick case, a sampling technique is used in the

prediction model, since it is beneficial at this stage so the initial tests can find more no-shows. When

combined with the no-show module the sampling technique will also be beneficial, since the no-show

module will use a confirmation strategy that can eliminate a lot of the false positives.

7.3 Prediction Algorithms Comparison

This section compares four prediction algorithms to find out, which ones can provide more reliable pre-

dictions. The four algorithms used are Artificial Neural Network, Gradient Boosting, Logistic Regression

and Random Forest.

To compare the prediction algorithms, Boruta was chosen as the feature selection algorithm and

SMOTE with Edited Nearest Neighbours was chosen as the sampling technique. Boruta was chosen

because it uses the least amount of features and has a faster computation time. It is also a good practise

using the same techniques used before throughout this analysis to make things easier to compare.

SMOTE with Edited Nearest Neighbours was chosen because it achieved the most f1-score in most of
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the tested datasets and has the highest recall in all them.

This algorithm was executed in a 10 fold cross-validation and the average scores for each one of the

prediction algorithms were obtained. This was tested on three datasets to find out if there is a prediction

algorithm that performs well on all the datasets.

7.3.1 MD Clı́nica Dataset

Algorithm Accuracy Recall Specificity Precision ROC(AUC) F1-score PR(AUC)
ANN 0.557 0.729 0.468 0.416 0.599 0.529 0.546
GB 0.602 0.715 0.544 0.448 0.63 0.551 0.561
LR 0.516 0.853 0.341 0.401 0.597 0.546 0.541
RF 0.607 0.709 0.554 0.452 0.632 0.552 0.56

Table 7.7: Comparison of the results achieved by the prediction algorithms on the dataset from MD Clinica.

The table 7.7 describes the average scores obtained by the prediction algorithms. Logistic Regres-

sion achieves the best recall but with an accuracy of only 51.6%, which is almost the same as guessing.

Gradient Boosting and Random Forest achieve very similar results to each other, with the best results

for all the metrics, except recall. The result obtained for f1-score is good but the accuracy achieved is

still not enough as it should be at least 70% to be useful in a real-world scenario.

In the following figures, we can see boxplots that show how the prediction algorithms performed

in each iteration for a specific metric. The most noticeable thing is how random forest and gradient

boosting outperform the other algorithms on all metrics except for recall. Another thing we can see

is that the results of the Artificial Neural Network are all spread out, while the results from the other

prediction algorithms are in a very close range of values. This means the Artificial Neural Network is not

a very trustworthy prediction algorithm, since it can have a very different range of results.

Figure 7.16: Boxplot that compares the accuracy of the prediction algorithms.
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Figure 7.17: Boxplot that compares the recall of the prediction algorithms.

Figure 7.18: Boxplot that compares the specificity of the prediction algorithms.

Figure 7.19: Boxplot that compares the precision of the prediction algorithms.
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Figure 7.20: Boxplot that compares the ROC AUC of the prediction algorithms.

Figure 7.21: Boxplot that compares the f1-score of the prediction algorithms.

Figure 7.22: Boxplot that compares the precision-recall AUC of the prediction algorithms.
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7.3.2 Brazil Dataset

Algorithm Accuracy Recall Specificity Precision ROC(AUC) F1-score PR(AUC)
ANN 0.64 0.69 0.627 0.319 0.659 0.436 0.403
GB 0.677 0.663 0.68 0.344 0.672 0.453 0.415
LR 0.584 0.836 0.521 0.306 0.678 0.448 0.423
RF 0.716 0.521 0.766 0.36 0.643 0.426 0.409

Table 7.8: Comparison of the results achieved by the prediction algorithms on the dataset from Brazil.

In this table 7.8 we can see how the prediction algorithms performed on the Brazil dataset. The two

algorithms with the higher f1-score are Logistic Regression and Gradient Boosting. Logistic Regression

also achieves a very high recall of 0.836 without losing too much precision but the accuracy obtained of

approximately 60% is not enough. For Gradient Boosting the recall is not as high but manages a much

better accuracy. The algorithm that offers the most conservative approach is Random Forest, with the

highest accuracy and precision.

In the next figures, there are the boxplots from the results obtained over the 10 fold cross-validation

iterations. We can see each prediction algorithm chosen behaves a little different, some provide a more

balanced approach with intermediate results in the metrics, while others have really good scores in one

metric but always with a trade-off in other metrics. In this case, the results of Artificial Neural Network

are not as spread out as observed in the previously analysed dataset.

Figure 7.23: Boxplot that compares the accuracy of the prediction algorithms.
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Figure 7.24: Boxplot that compares the recall of the prediction algorithms.

Figure 7.25: Boxplot that compares the specificity of the prediction algorithms.

Figure 7.26: Boxplot that compares the precision of the prediction algorithms.
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Figure 7.27: Boxplot that compares the ROC AUC of the prediction algorithms.

Figure 7.28: Boxplot that compares the f1-score of the prediction algorithms.

Figure 7.29: Boxplot that compares the precision-recall AUC of the prediction algorithms.
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7.3.3 Hospital da Luz Dataset

Algorithm Accuracy Recall Specificity Precision ROC(AUC) F1-score PR(AUC)
ANN 0.639 0.684 0.635 0.15 0.659 0.246 0.272
GB 0.748 0.557 0.766 0.182 0.661 0.274 0.283
LR 0.614 0.7 0.61 0.143 0.653 0.237 0.22
RF 0.803 0.406 0.84 0.192 0.623 0.261 0.234

Table 7.9: Comparison of the results achieved by the prediction algorithms on the dataset from Hospital da Luz.

In the above table 7.9, we can see the results obtained in Hospital da Luz dataset. One thing

that can be noticeable right away is that the scores for precision and f1-score are much lower than in

previous examples. This happens because the original dataset was very imbalanced and after applying

a sampling technique it sacrificed precision for more recall. No prediction algorithm performed really

well, and even though Artificial Neural Network and Random Forest achieved a really good accuracy,

the recall and precision need to be higher and more balanced to be beneficial in a real-world scenario.

In the boxplots shown in the following figures, we can compare the prediction algorithms in each

iteration. It is possible to see that no prediction algorithm outperforms the others on all the metrics, there

is always one metric each algorithm performs better on. Gradient Boosting is the algorithm the more

balanced algorithm with respectable results in all metrics and with the highest f1-score.

Figure 7.30: Boxplot that compares the accuracy of the prediction algorithms.
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Figure 7.31: Boxplot that compares the recall of the prediction algorithms.

Figure 7.32: Boxplot that compares the specificity of the prediction algorithms.

Figure 7.33: Boxplot that compares the precision of the prediction algorithms.
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Figure 7.34: Boxplot that compares the ROC AUC of the prediction algorithms.

Figure 7.35: Boxplot that compares the f1-score of the prediction algorithms.

Figure 7.36: Boxplot that compares the precision-recall AUC of the prediction algorithms.
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7.3.4 Real-life scenario simulation

This is an attempt to mimic a real-life scenario and find out how many no-shows and misclassifications

happen. This simulation was done using the last week of each dataset for testing and the rest for training.

A threshold of 70% was also used, what this means is that only no-shows with a probability of 70% or

more are considered no-shows. This threshold was used because in many hospitals and clinics only no-

shows with a high probability will be considered to avoid overbooking. To make this tests the sampling

technique used was SMOTE with Edited Nearest Neighbours and the feature selection was Boruta.

In the next table 7.10, we can see the comparison between the confusion matrices for all datasets

and prediction algorithms. The amount of appointments for that week varies for each dataset, Brazil is

the one with more appointments compressed into that week with a much higher number than the others.

In all of the datasets, it is possible to see that on average 50% of no-shows are found by the prediction

algorithms. The prediction algorithm that finds more no-shows in all datasets is Artificial Neural Network

but it also has the highest number of false positives. On the other hand, we have Random Forest with

the least number of false positives but fewer no-shows found, which translates to a more conservative

and precise approach.

In MD Clı́nica dataset we can see that on average for every no-show found there is a false posi-

tive. The prediction algorithm with the best results here is Gradient Boosting since it finds almost as

many no-shows as Artificial Neural Network but at a much smaller cost of false positives. The Random

Forest algorithm could also be used for a more conservative approach, as it has the least amount of

misclassifications, making it the most precise of the four.

In Brazil dataset, for every no-show found there is slightly more than the double of false positives.

The prediction algorithms with the best results here are Logistic Regression and Gradient Boosting with

similar results and more balance approaches than the other two algorithms.

In the dataset from Hospital da Luz, there is almost the triple of false positives compared to no-shows

found. Here it is clear that the more the original dataset is imbalanced the more false positives are to

be expected. The best prediction algorithm here is Gradient Boosting since it is even more precise than

Random Forest and finds more no-shows. Also, the number of no-shows found is not that distant from

Artificial Neural Network but with less false positives.

In the next figures 7.37 and 7.38, we can see the plot of the ROC curve and Precision-Recall curve

in all the datasets. This was also obtained using only the last week for training.

In the ROC curve, we can see that is not a big difference between the results obtained by each

prediction algorithm. The ones that stand out more are Gradient Boosting and Artificial Neural Network

in the dataset from MD Clinica and the dataset from Hospital da Luz. These curves need to be much

closer to the upper left edge for the results to be considered good.

In the Precision-Recall curves, we can see that no prediction algorithm really achieves very good

90



Algorithm MDClinica Brazil Hospital da Luz

ANN [873 385]
[292 373]

[12808 5109]
[ 1785 2285]

[4335 704]
[ 250 222]

GB [931 327]
[300 365]

[13651 4266]
[ 2089 1981]

[4617 422]
[ 289 183]

LR [903 355]
[359 309]

[13469 4469]
[ 1982 2088]

[4342 697]
[ 268 204]

RF [993 265]
[356 306]

[13866 4051]
[ 2315 1755]

[4611 428]
[ 329 143]

Table 7.10: Comparison of confusion matrices for all datasets and prediction algorithms.

Figure 7.37: Graphs that compares the ROC curves in all datasets.

Figure 7.38: Graphs that compares the Precision-Recall curves in all datasets.

results. The curves in this case should be as close to the upper-right edge as possible. One prediction

algorithm stands out on the dataset from MD Clnica and the dataset from Hospital da Luz, which is

Gradient Boosting. It was able to have better results in both of these cases.

The Brazil dataset is the one with the worst results for all the prediction algorithms on both of the

plots.
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7.3.5 Conclusion

No prediction algorithm was found to be better in all the scenarios, the most consistent one is Gradient

Boosting, but it will also depend on what is required. If a more conservative approach with more precision

is required than Random Forest or Gradient Boosting are the best options. If the goal is to find as many

no-shows as possible with the cost of many misclassifications then Logistic Regression or Artificial

Neural Network are the best options.

No prediction algorithm can be discarded with the tests made, as larger datasets or different features

can change the type of results, this is especially the case for Artificial Neural Network which needs

many data to learn efficiently. More tests will be required to choose a prediction algorithm, but at the last

stages of the prediction model for MedClick, it will be important to have just one prediction algorithm.

This would reduce the computation time and resources spent. If a prediction algorithm is found to be

constantly outperforming the others then it should be chosen.
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8.1 Contributions

This thesis was done in the healthcare area focusing on the no-show problem. It seeks to find and im-

plement a solution capable of reducing no-shows and subsequently increase efficiency in the healthcare

providers. The work was done in the MedClick context, which is a company with the same goals.

The major contributions in new solutions and tests are done for the no-show problem were the fol-

lowing ones:

• Creation of a prediction model to optimize and automate testing: A prediction model was cre-

ated to make the training of new models and obtaining of predictions from datasets easier and more

efficient. Since all the datasets come with different characteristics and features, it would be required

to change the code every time. This way the pre-processing phase and training phase were opti-

mized, requiring a configuration file only to train the model and to make predictions. The prediction

model was also integrated into the MedClick no-show module.

• Prediction model integrated with MedClick API: The prediction model was integrated to work

with the data in the MedClick API. Functions had to be created for retrieving the data and saving the

models and no-show probabilities in the MedClick API.

• Added and tested new features: In the previous work done for the MedClick application, only

a very small number of features had been tested. With this work, many new features were added

and tested in an attempt to figure out which features are more relevant and improve prediction results.

• Machine learning algorithms tested on three different datasets: Many machine learning tech-

niques and different algorithms were used, in an attempt to get better predictions for no-shows.

These techniques were tested in three different datasets with different characteristics, which helps to

validate the techniques used and find out which prediction algorithms work better.

8.2 Conclusions

The no-show problem affects clinics and hospitals all over the world and reducing this problem can bring

many social and economic benefits. As mentioned in the previous section, the work done is this thesis

tries to attenuate this problem by implementing a solution in the MedClick platform that can predict and

prevent no-shows from happening. There were already two theses made in the MedClick context on the

same subject. This thesis adopted previously used ideas and further developed the prediction model
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adding new machine learning techniques and more features to the datasets. It is hard to compare these

results to the previous ones since different techniques were used and the way the other theses were

evaluated were not ideal.

The main conclusions that can be made are on the results obtained while testing the prediction

algorithms on three different datasets. These datasets had different sizes and provided different features.

The first thing we can conclude is that the size of the dataset did not have a large impact on results.

What impacted more was the type of features available and how much imbalanced the data was. An

imbalanced dataset here is one where there are many more shows than no-shows. In these cases, we

can conclude that the more the dataset is imbalanced the more false positives will happen. Having the

right type of features is also very important to obtain good results. The features that were considered

more important to identify no-shows are waiting time and distance. Other features that were chosen by

every feature selection algorithm and also have a good level of importance are the days since the last

appointment, number of previous appointments, number of previous no-shows, ratio and whether the

last appointment was a no-show. Some datasets also had some unique features considered important

these were appointment duration and whether an SMS had been received. These features should be

added to the other datasets whenever possible.

Using a feature selection algorithm was concluded to be good for computation time but did not lead to

better results. Using many features or very few did not affect predictions too much, this might be because

the prediction algorithm used to evaluate, in this case, Gradient Boosting, can weight the features well

and discard the least important. This means that the feature selection algorithm that can find only the

relevant features will be more useful. The algorithm that did this was Boruta, which constantly chose the

least number of features.

Since all these datasets were imbalanced, sampling techniques were used to counter this problem.

These techniques balance the data by generating new data until the number of shows matches the

number of no-shows. Using a sampling technique allowed the prediction algorithms to find a much

larger number of no-shows but at the cost of being less precise. There is always a trade-off between

recall and precision, the higher recall there is the more no-shows are found, but also the number of false

positives increases and consequently the precision decreases. Whether more precision is required or

more recall will depend upon the clinic or hospital strategy. Some hospitals and clinics will want to keep

waiting time to a minimum and favour precision, while others with less volume of patients might prefer

higher recall. Having a confirmation strategy will also be very important to reduce many of these false

positives.

In the case of the prediction algorithms four were tested, Artificial Neural Network, Gradient Boosting,

Logistic Regression and Random Forest. All the prediction algorithms achieved different results some

favouring more precision, like Gradient Boosting and Random Forest and the other two more recall. No
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prediction algorithm can be considered better at this stage, more tests will be required, but the prediction

algorithm that achieved better results consistently was Gradient Boosting.

The results obtained are far from ideal and more features will be required to make these predictions

better. Many no-shows can already be found but at a cost of some mistakes. We conclude that these

predictions can help but are not still strong enough as a standalone strategy and should be combined

with other scheduling strategies like patient confirmation.

.

8.3 Limitations and Future Work

The major limitation found in this thesis is related to the number of features and quantity of data available.

With more data from different places and new features, more questions could be answered about how

the location of the healthcare providers and the size of the clinics and hospitals affect the quality of

predictions. Also, some prediction algorithms like Artificial Neural Network, benefit from large amounts

of data. Another question that cannot be answered at this time is how a confirmation strategy can be

combined with the prediction model to get better predictions. It will also be important to test the data in

the MedClick API once it is populated and in a more advanced stage.

In the future, many more datasets should be tested to validate the prediction model. There should

also be an attempt to find more features than the ones currently used, as this is the only way to improve

the results obtained by the prediction algorithms. This will be especially important at a later stage

when data from the API is more composed with a large number of clinics and hospitals. At this stage,

patients would have registered in the MedClick platform and much more information can be retrieved

to be used as a feature. Also having access to numerous clinics and hospitals can help create more

powerful features, like the total number of no-shows, when was the patient last appointment, if the

patient has another appointment scheduled for other healthcare providers, his health condition, what

type of treatments is he undergoing and many others. With larger datasets composed of these features,

much stronger predictions could be made.

Another important thing is to test the prediction model on real-time, to find out if the no-show prob-

abilities obtained are realistic or there are many mistakes. Beyond this, a confirmation strategy should

also be tested, to check if patients still miss the appointment after confirming it, and whether they show

when they do not answer the confirmation. Afterwards, this can be combined with the probabilities to

help remove false positives and validate the predictions.

In the end, there is still much work to be done until an efficient strategy to reduce no-shows, combined

with the current machine learning developments, can be applied in the real world. The results obtained

are still promising and it will be very important for the future of the healthcare industry to be able to, at
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least, attenuate this no-show problem.
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