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Abstract

The growth of social media platforms has drawn attention to natural language processing,

especially to the sentiment analysis field. Previous studies have covered several classification and

regression methods to quantify emotions expressed in textual documents, in particular, super-

vised models leveraging hand-labelled training datasets. Many of these studies have also relied

on neural network methods. However, to the best of my knowledge, there is still a gap when

using deep learning to infer emotions from languages that have few or no training resources.

This M.Sc. thesis compares the use of multi-layer perceptrons (MLP), recurrent neural net-

works based on long short-term memory units (LSTM), convolutional neural networks (CNN),

and different types of attention mechanisms, as well as cross-language embeddings, as an ap-

proach to combine training data in multiple languages to extend the state-of-the-art in this

field of emotion analysis. The proposed methods were evaluated with datasets used in previous

studies, anotated with ratings regarding valence, arousal and dominance, in several languages.

The obtained results support the understanding that machine learning (ML) models can predict

emotions expressed in text, even in several languages. The proposed methods perform compa-

rably, and even outperform, previous work in this field, that mostly produced models that use

only monolingual data.

Keywords

Natural Language Processing; Sentiment Analysis; Neural Networks; Emotional Ratings;

Multilingual Analysis





Resumo

O crescimento das redes sociais chama atenção sobre a área do processamento da ĺıngua

natural, em particular sobre a área de análise de sentimentos. Estudos anteriores utilizam vários

métodos de classificação para a quantificação de emoções em textos, em particular recorrendo a,

modelos supervisionados que utilizam conjuntos de dados préviamente anotados. Muitos destes

estudos também dependem de métodos como redes neurais profundas. No entanto, tanto quanto

se sabe, ainda há uma carência quando se trata da utilização de redes neurais profundas para

inferir emoções de ĺınguas que tenham poucos dados de treino dispońıveis. Esta tese avalia

comparativamente várias técnicas para a quantificação de emoções, nomeadamente perceptrões

multicamada (MLP), redes recorrentes (LSTM), redes convolucionais (CNN) e mecanismos de

atenção, bem como embeddings trans-lingúısticos com o objetivo de combinar dados de múltiplas

ĺınguas, com vista a estender o estado da arte nesta área. Os métodos propostos foram validados

com datasets usados em estudos anteriores, considerando valência, entusiasmo e dominância

em várias ĺınguas. Os resultados obtidos suportam a afirmação que modelos de aprendizagem

conseguem prever emoções expressas textualmente, mesmo em várias ĺınguas. Foram obtidos

resultados comparáveis, e até superiores, a trabalhos anteriores neste ramo, mesmo comparando

com modelos que preveem emoções para dados monolingues.

Palavras-Chave

Processamento de Linguagem Natural; Análise de Sentimento; Redes Neurais; Valor Emo-

cional; Análise Multiĺıngue
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1Introduction
Sentiment analysis has been one of the main application areas for Natural Language Pro-

cessing (NLP) leveraging neural networks, aiming at the extraction of either negative and pos-

itive evaluations, or estimating emotions. Human emotional ratings are frequently used within

cognitive science, behavioural psychology and psycholinguistic research (Perugini and Bagozzi,

2001), social media analysis (Hutto and Gilbert, 2014), among others, motivating the interest

on automated methods for quantifying opinions expressed in textual documents.

This chapter is divided in six sections. Section 1.1 briefly summarizes the related work in

this field, discussing what is not covered in this particular area and stating the research question.

Section 1.2 puts forward the research objectives that will allow answering the main question,

while Section 1.3 presents the methodology, outting the methods used to answer the question.

At the end of this section, there is an overview of the results and main contributions of this

work. The chapter ends with an overview of the structure of this dissertation.

1.1 Motivation

Previous studies have covered the polarity (positive vs negative) of subjects discussed in

textual documents (Wilson et al., 2005), as well as the quantification of emotions expressed in

text. Two main families of methods have been developed to represent human emotions (Ekman

and Friesen, 1971). One is categorical, based on six universal Basic Emotions (BE) (Ekman,

1992). The other is dimensional, advocating continuous numerical values that progress through

multiple dimensions (Wang et al., 2016). Studies have showed that the categorical method does

not consider to be opposite references on the dimension representation.

Since it takes a significant amount of human resources to annotate words and textual utter-

ances regarding sentiment and/or emotions, there is significant interest in producing automatic

methods. In previous studies, to infer the emotion of words in lexicons, researchers have used

techniques based on word co-occurrence patterns leveraging Latent Semantic Analysis (Best-

gen and Vincze, 2012), Point-wise Mutual Information statistics, and/or words in regression



modelling approaches (Mandera et al., 2015). Buechel and Hahn (2018) developed a multi-task

learning based on neural networks for predicting the emotion of words in three dimensions.

When considering complex syntactical structures, such as sentences and large pieces of text,

it is necessary to consider more complex models. Binali et al. (2010) recognised three different

approaches for emotion detection: keyword-based, learning-based and hybrid-based (a fusion

between the other two). The three methods rely on different linguistic analysis tools.

A simple approach to infer sentiment on text was developed by Ma et al. (2005). It used

keywords spotting applied to a chat system in order to generate emotionally responsive messages.

Malheiro et al. (2016) used a keyword approach to analyse song verses, considering the valence

and arousal space. However, word-level emotion prediction has some limitations.

Calvo and Mac Kim (2013) developed a model, using TF-IDF representations, to infer the

most relevant words when classifying a text. A few years later, three mechanisms (i.e. linear

regression, a Multi-Layer Perceptron (MLP) model, and a model composed of two stacked Long

Short-Term Memory (LSTM) units) were used to classify text according (Köper et al., 2017) to

four emotions: anger, fear, joy, and sadness. Zahiri and Choi (2017) conducted emotion detection

of the TV show Friends, through a Sequence-based Convolutional Neural Network (SCNN).

These previous methods were mainly applied to text written in the English language. To

the best of my knowledge, there is still a gap when using deep learning and neural networks to

quantify sentiment and emotional dimensions in text from languages with few or none training

resources. My M.Sc. research project explored alternatives for cross-lingual analysis of emotions

expressed in textual contents.

1.2 Research Objectives

To address the main research objective, it was necessary to understand how to infer emotion

ratings first from words, and after from larger textual utterances. This separation allowed me

to formulate secondary questions regarding each separate experiment.

When considering words, it was first crucial to understand how well a Machine Learning

(ML) model can infer emotion rating in a monolingual scenario. Following this question, it was

necessary to know how well a ML model, trained with English lexicons, can predict emotion

on other languages, how the correlation between the English norms and those for the other

languages can affect the results, and what model would perform better.

4



When considering large textual utterances, it would be fascinating to understand if there

is a difference between models that predict word-level emotion rating, or text-level. Through

experiments, I also tried to understand what type of model will perform better, namely a

Convolutional Neural Network (CNN)’s or an LSTM’s, and in some cases understanding if there

is benefits of including a pre-trained components.

1.3 Methodology

For the text to be provided as input to ML models, it is first necessary to convert the

text into a numeric representation that the model will understand. There are some techniques

to map words into vectors of numbers. The one used in this work is called FastText (Grave

et al., 2018). This method was chosen because of its ability to generate embedding even for

words that were never seen in the data used to learn the representations (i.e., uncommon words,

spelling mistakes). In this thesis, the framework named UMWE from Chen and Cardie (2018)

was also used to convert several language embeddings into one target embedding space through

a translation matrix. In this study, the target language was English.

For the word experiments, it was necessary to train models (i.e. k-nearest neighbour (kNN),

regression, random forest, kernel ridge regression and MLPs) with the emotion ratings in the

lexicons from Warriner et al. (2013) and from Scott et al. (2019), including words that did not

appear in the ANEW lexicon from Bradley and Lang (1999) corpus. The models were then

tested using the words that appear on ANEW.

For the experiments regarding sentences, I first trained an MLP with emotion ratings in

lexicons from six different languages. Several other models were also produced to understand

if it was necessary to access the entire syntactic structure to determine emotion ratings form a

text. Four models that do not take into consideration the syntactic structure and do not require

training were created. For instance an MLP + Average model, using the pre-trained MLP,

calculates an average of the sentiment prediction of all the words to show the sentiment of the

sentence. An Average + MLP model is similar to the previous one, but instead it calculates

a mean of the word embedding and then uses the MLP used the embeddings average to make

a prediction. The last two models are more complex. The first considers windows of sizes

between one and five words. Then, the average of all these pooling windows was calculated

before applying the MLP. The last model suffered a little change since the MLP was applied

after each pooling window, and I then calculated the average of the ratings.

5



Still on what regards experiments with sentences, eight trainable models were conceived

and validated with two-fold cross-validation (i.e. LSTM, MLP+LSTM, CNN, MLP+CNN,

CNN+MLP, Attention Concat, Attention Feacture Bassed, Attention Affine Transformation).

The last three models were based on proposals from Margatina et al. (2019), and they also use

word-level predictions in the definition of neural attention mechanisms.

1.4 Results

The results of the words experiments are promising, especially with the kernel ridge and

MLP models. They show that a ML model can predict outcomes comparably to human anno-

tators with both monolingual and multilingual data. The results also show that relatively high

correlations can be achieved for all five languages. However, the cross-lingual results are inferior

to the results obtained for the monolingual setting. It was also interesting to notice that higher

predictive accuracy is generally also obtained for languages where the correlation towards the

English norms is higher (i.e. Italian and Spanish).

In turn, the results for the sentence level experiments show that three trained models gen-

erally performed better (Attention Concat, Attention Feacture Bassed, Attention Affine Trans-

formation). However, the average word-level prediction model also showed promising results.

LSTM models tend to perform slightly better than CNN models, and the difference was more

evident in the arousal dimension. However, when the CNN and LSTM models were aligned

with the pre-trained MLP, the results decreased, showing that a combination with a pre-trained

MLP can even decrease the performance of the model, if not designed carefully.

1.5 Contributions

The obtained results support the understanding that a ML model can predict emotion

ratings, even in several languages. The main contribution of this work relies on the amount of

models validated to infer how to extract emotions from both words and large textual utterances.

There are few works on emotions quantification, in particular considering cross-lingual settings

or the dimensional way of quantifying sentiment. This thesis provides three trained models and

one word-level model, all showing promising results compared to the state-of-the-art.

Alongside this, I also created a website to showcase the results, and through which the

users can predict the sentiment of a textual utterance. In this website, it is possible to insert a

6



sentence in a given language. When the model provides a prediction, the site shows the results

aligned with the relevance of each word.

Implementations for the models that support the word-level and sentence-level representa-

tions reported on this dissertation are now publicly available in a GitHub repositories. I did one

repository that contains the word-level experiments1, one for the sentence-level experiments2,

and one that contains the code for the site3 (i.e., a site that allows the user to insert a textual

utterance and predict its emotion). Note that the repositories will only be public after the

discussion of this M.Sc.

1.6 Master Thesis Structure

This thesis is organized as follows: Chapter 2 presents the fundamental concepts (Section

2.1) and related work (Section 2.2). Chapter 3 details the thesis proposal explaining the repre-

sentation of words ans text in a multilingual space, and the models proposed to infer emotion

ratings for both words and textual utterances. Chapter 4 describes the experimental evaluation,

presenting the datasets alongside the evaluation metrics, followed by the experimental results.

In the end, Chapter 5 are states the conclusions of this work and the possible future directions.

1https://github.com/SofiaAparicio/Sentiment-Analysis-words
2https://github.com/SofiaAparicio/Sentiment-Analysis-txt-uterances
3https://github.com/SofiaAparicio/Site-Thesis
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2Fundamental Concepts

and Related Work

This chapter is divided into two section. The fundamental concepts are presented first,

followed by related work, with a detailed description of the state-of-the-art on sentiment analysis

and emotion quantification.

2.1 Fundamental Concepts

This section describes all the fundamental concepts necessary to understand the rest of the

document. First, in Section 2.1.1, we have a description of different methods to encode text to

serve as input to machine learning a mode. Section 2.1.2 presents a quick introduction to neural

networks, presenting there different variants and their application in natural language processing.

Finally, Section 2.1.3 explains the different methods that allow emotion representation.

2.1.1 Encoding Textual Information

The input given to a ML model for NLP cannot be a string directly. It is necessary to

translate the text into numeric representation. Fortunately, there are several methods for doing

this, and some of them will be described bellow.

First, consider the following sentence: The dog and cat are on the car. We could represent

this sentence by a vector with dimensionality equal to the length sentence, i.e. eight numbers.

Each word is then represented with a vector of seven 0, except the position of the sentence were

the word appears, that will be set to 1. This method is called a one-hot representation.

However, in the previous one-hot representation, it would be too expensive to represent a

high dimensionality text. For example, in a text with 1000 words, each word we would have a

vector of 999 zeros and an one, which would result in a computationally expensive and vulnerable

to overfitting representation (Bengio et al., 2003). The correlation between words would not be

captured, and specially the correlation of similar words (e.g. the words dog and cat do not have

a notion of similarity in this representation). The necessity to provide an input that captures the
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Figure 2.1: Dense word representations in a vector space.

similarity and intertwined relation between words leads us to the next approach, often referred

to as a dense representation.

Dense vectors are composed by a smaller number of parameters, with values considering the

surrounding environment of a word, and its connections with other words. The size of the vectors

ranges, depending on the detail of the embedding. An embedding with a higher dimensionality

can capture detailed connections between words. However, it is necessary to provide more

training data so that procedures used to infer if the representation can work properly.

There are two common ML models for learning word embeddings. These are the Continuous

Bag of Words (CBOW) and the Skip-Gram approaches, both illustrated in Figure 2.1.

A CBOW model predicts a central word wt, based on the continuous distribution of the

context (Mikolov et al., 2013a). It considers all the words in a distance d and combines all

these surrounding words (wt−d...wt−1, wt+1...wt+d) to predict the central word. Equation 2.1

can translate how the model works, where T represents the number of words.

1

T

T∑
t=1

log p (wt|wt−d...wt−1, wt+1...wt+d) (2.1)

The other approach, Skip-Gram, has the opposite behaviour of the CBOW. It predicts the

context based on the centre word of the sentence (Mikolov et al., 2013b). Formally, it is defined

by Equation 2.2, where d is the size of the training context.

1

T

T∑
t=1

∑
−d≤j≤d,j 6=0

log p (wt+j |wt) (2.2)

The parameter p (wt+j |wt) is the simple Skip-Gram probability, calculated by the softmax

function. In its turn, vwI represents an input, and v′w
> represents an output word, while W
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Figure 2.2: FastText

represents the number of words in the vocabulary.

p (wO|wI) =
exp

(
v′

>
wO
vwI

)
∑W

w=1 exp
(
v′>w vwI

) (2.3)

Comparing both models (Mikolov et al., 2013a), we can consider Skip-Gram to work well

with uncommon words and with less training data. Since CBOW is conditioned to the context,

it is better to predict frequent words. For example, in the sentence the girl is remarkable, if we

were predicting the word remarkable with the context the girl is, probably the system would

predict beautiful, since it is a more common word. CBOW also needs more training examples to

perform comparably to the other model. However, it is faster to train, since in Skip-Gram it is

expensive to calculate the log p (wt+j |wt) for each word.

An approach that can use both CBOW and Skip-Gram inference, although more commonly

used with Skip-Gram since it shows better results, is Word2vec. Word2vec (Mikolov et al.,

2013a) receives a text and produces a vector space in which each word is assigned to vector in

the space and similar words occupy close spatial positions. It should nonetheless be noted that,

this model does not handle Out-Of-Vocabulary (OOV) words, i.e. words that were never seen

in the training data.

A solution to the aforementioned problem appeared with FastText (Bojanowski et al., 2016;

Joulin et al., 2016). This technique proposed the construction of word embeddings by adding

morphological information to word2vec, thereby assigning distinct vectors for each part of a

word. The authors proposed the use of a n-gram based model, where each word embedding is
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the sum of all its n-grams. In their tests, the authors considered all n-grams where n was greater

than 3 and smaller than 6. An example is given in Figure 2.2 for the word hello, that can be

translated into Equation 2.4, where uw is the word vector of w and zg assumes the n-grams with

as size g.

uw =
∑
g∈Gw

zg (2.4)

2.1.2 Introduction to Neural Networks and Deep Learning

A Neural Network (NN) is a biologically inspired approach that is commonly used to address

supervised classification problems, mimicking the biological brain. The main goal is to submit

the input information to several operations, processing and structuring the data in a way that

allows comprehension in a mathematical way, simulating what our brains do through synaptic

connections between the neurons. These architectures were applied in the field of NLP to solve

problems such as translation (Klein et al., 2017), sentiment analysis (Dos Santos and Gatti,

2014), question answering (McCann et al., 2017), among others.

The most rudimentary NN is called the Perceptron, featuring a single neuron. This lin-

ear model learns by taking a set of inputs, x1, x2...xn, multiplying them by a set of weights,

w1, w2...wn, and adding a bias, b (McCulloch and Pitts, 1943), to produce an output y. The

model can be translated into Equation 2.5 which also features an activation function, g.

y =
n∑
i=0

g(wi × xi + b) (2.5)

The role of the activation function is to determine how suitable a neuron is to a given output

(i.e. determine if a neuron should be fired or not). A characteristic of activation functions

is the necessity for a quick and efficient computation, since the model needs to adjust the

parameters of the activation function several times for the model to learn, mainly because of

the backpropagation learning algorithm (short for backwards propagation of errors).

Three different types of activation functions are commonly used in distinct problems. The

most simplistic activation function, step-wise activation (Ng et al., 1997), is applied to provide

binary results, not supporting an output with multiple values. The linear activation function

provides multi-value outputs. The more complex activation functions, capable of more complex

operations and generating better results (Specht, 1990), are nonlinear. The sigmoid function,
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varying between 0 and 1, is useful to predict probabilities, although it can learn slowly if the

values are too near of 0 or 1. The Rectified Linear Unit (ReLU), one of the most used activation

functions, because of its fast computation, can be translated into Equation 2.6.

R(z) = max(0, z) (2.6)

Perceptions have limitations, in the sense that they can only learn linear separable problems,

and most data cannot be detachable linearly (Minsky and Papert, 1969). To solve more complex

problems, it was necessary to concatenate several perceptrons into structures that are called a

MLPs, or feedforward neural networks. Usually, this type of networks is composed of at least

three types of layers: an input layer, one or more hidden layers, and an output layer. On a

given MLP, the neurons are fully connected to each other to allow the flow of the information

through the network, as we can comprehend through Figure 2.3 and Equation 2.7.

f(x) = g
(
b(2) +W (2)

(
s
(
b(1) +W (1)x

)))
(2.7)

To allow the network to learn formally, the weights W and bias b related to the synaptic

connections require a constant adjustment, monitoring the loss function. The primary goal of

this function is to determine how well the algorithm is modelling the training data. If the loss

function returns an output number that is high, the model performed poorly, but on the other

hand, if the model yields a low value, the model is operating well. The goal of training a model

is to minimise the loss across different examples.

Figure 2.3: Multi-Layer Perceptron
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The most used loss functions to train NLP models are generalized margin losses, whish use

a margin separating the correct answers and incorrect ones (LeCun et al., 2006), and the log

loss (Roy and McCallum, 2001). Another approach is the negative log-likelihood loss, which uses

probabilistic modelling. Applications of this method are the categorical cross-entropy loss (Cov-

ington et al., 2016) and several ranking losses (Goldberg, 2016).

When the loss function shows a poor performance, it is necessary to readjust the values of

the weights through backpropagation. As the name suggests, backpropagation calculates the

gradient of the loss function of a given input-output, using a variation of gradient descent (Ruder,

2016), and then the weights are updated to minimize the loss. When choosing one of the gradient

descent variations, it is necessary to consider the amount of data, and the time we want to spend.

Vanilla or batch gradient descent computes the gradient of the cost function for the entire

training dataset, as it is possible to observe through Equation 2.8. In order to perform one

update of the weights all the weights, i.e. all the layers, it is necessary to calculate the gradient

for the entire dataset, which is computationally expensive.

θ = θ − η · ∇θJ(θ) (2.8)

An opposite approach corresponds to Stochastic Gradient Descent (SGD), requiring the

computation of the gradient for each training instance. In large datasets, the alterations of the

weights can be redundant. This approach can be expressed through Equation 2.9.

θ = θ − η · ∇θJ
(
θ;x(i); y(i)) (2.9)

A balance between both previous methods is mini-batch gradient descent, that computes

the gradient considering n training examples. The procedure can be translated into Equation

2.10. It is much faster than Vanilla gradient descent, since it only calculates the gradient for

a limited amount of data, and prevents redundant calculations, in larger datasets, for similar

examples of training data. This method of calculating the gradient is the most used and, usually,

the term SGD is also used to indicate the mini-batch gradient descent.
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θ = θ − η · ∇θJ
(
θ;x(i:i+n); y(i:i+n)

)
(2.10)

SGD still has one limitation. When converging, it can be faced with local minimum and

decide it reached the best solution. Momentum is used to address this situation, speeding the

process and decreasing oscillations. Among modern optimization algorithms we have the well

known, Adagrad and Adam algorithms (Kingma and Ba, 2014).

MLPs allowed the progression of NNs. Yann LeCun, inspired by a model for the human vi-

sual cortex by Hubel and Wiesel (1962), developed the Convolution-and-Polling architecture (Le-

Cun et al., 1995), also known as CNN. LeCun applied these techniques to images, and it was

years later that CNNs were first applied to NLP. The first studies were conducted by Collobert

et al. (2011) in the area of semantic-role labelling, and later studies by Kalchbrenner et al. (2014)

and Kim (2014) focused in the fields of sentiment analysis and question-type classification.

The architecture of a CNN is generally composed of two parts, namely a set of a convolution

+ pooling of layers followed by several fully connected layers. In its turn, each convolution +

pooling layer is divided into two operations, convolution and polling.

Firstly, in convolution procedures, we will have several types of filters, also called kernels.

In each kernel, a determined characteristic of an input text is being searched for. The kernel

size can vary with a number of words that we are interested in searching. A sliding window will

determine which part of the sentence will be considered as a selective field, i.e. the field that

will be analysed. When the kernel is passing through the selective field, it will calculate the dot

product, producing an activated region that stores the detected characteristics in that region,

as searched by a determined kernel. After having all the regions of the sentence activated by

several kernels, we will have an activation map, that stores all the activated regions. These

regions manifest specific features highlighted by the kernels.

Mathematically, the convolution layer can be translated by Equation 2.11. Consider a

sequence of words x = x1, ..., xn, each word with the correspondent embedding vector Ee(xi).

A convolutional layer with a width k, applying a moving window with the same size k over

the sequence, will generate several instances of windows wi = [xi, ..., xi+k−1]. Latter, a filter in

the form of a regular linear function is applied to each window of the sequence. The filter is

represented by a matrix F, composed by a set of l different filters f1, ..., fl. At the end, a bias b

is added and an activation function g is applied element-wise.
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Figure 2.4: Convolution and polling applied to the sentence the dog runs after the cat.

pi = g (wi · F + b) (2.11)

Afterwards, it is necessary to condense all the information extracted by the kernels, since

it would be computationally exhausting to save all the information previously calculated. The

polling operation is responsible for reducing the spatial dimension of the activation map. This

operation will not affect the depth dimension of the volume, because it extracts the most salient

information. There are several studied ways of performing this type of downsampling, but

the most used is max polling. In Equation 2.12 we denote that the vectors p1, ...,pi will be

combined into a single vector c[j] that represents the entire sequence. All the transformations

can be summarized in Figure 2.4, inspired on an original figure by Goldberg (2016).

c[j] = max
1<i≤m

pi[j] ∀j ∈ [1, `] (2.12)

When dealing with NLP, it is common to consider word sequences to represent a textual

utterance. MLPs can accommodate sequences through vector concatenation and vector addic-

tion (CBOW), but the order of the information is discarded (Bebis and Georgiopoulos, 1994).

When considering CNNs, they maintain some sensitivity to word order, corresponding to local

patterns. However, these models discard the order of the whole sentence (Kalchbrenner et al.,

2014).

When the order of the sentence is relevant, it is necessary to implement another strategy.

Socher et al. (2013) describe one of the early applications of what we now call Recurrent Neural

Network (RNN). These differ from the previous models by handling variable-length inputs.

The most straightforward application of this idea is called the Simple Recurrent Neural

Network (S-RNN). The main difference from techniques that apply CBOW is appending a
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Figure 2.5: Summarizing the behaviour of a RNN.

linear transformation followed by a nonlinear transformation. This provides the network with

the knowledge of previous outputs. Thus, the new output is moulded by previous information,

providing memory to the network (Elman, 1990).

Mathematically, when training an RNN, each hidden state xt at a given time t is the output

given by an input sequence xt at the time t and all the previous input states st−1 adding a bias

b. Afterwards, an activation function is applied. This can be translated into Equation 2.13.

st = g(xt · w1 + st−1 · w2 + b) (2.13)

In this structure, we have the functions R, that allows keeping track of the state through the

vector state st = R(st−1, xt), and O, defined by yt = O(st) that provides the output over which

we can calculate a loss. Each different RNN structure will require diffrent instantiations of these

functions. The Simple Recurrent Neural Network approach can be summarised in Figure 2.5.

Training the aforementioned model can be associated to problems, and a common obstacle

is the increase of the norm of the gradient, also called vanishing gradient.

Vanishing gradients is a consequence of the incapability of later steps to reach initial inputs,

due to quickly diminishing values. In each step, previous output are considered. The calculated

gradient is not only referring to the current node but also all the previous ones. When making

improvements, by backpropagation, the corrections to previous layers will be smaller each time,
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Figure 2.6: Summarizing the behaviour of a LSTM.

being impracticable to have long-term interdependencies (Pascanu et al., 2013).

Owing to the vanishing gradients problem, that results in the incapability of S-RNNs to learn

long-range temporal dependencies, it was necessary to create models that could provide long-

term memory: LSTM and Gated Recurrent Unit (GRU). These two models solve the vanishing

gradient problem by providing more controlled memory access through a gated architecture.

Gated architectures determine which part of the memory should be disregarded and which part

of the new input will be stored in the available space. Gates can be composed by sigmoid

activations, that limit the values between 0 and 1, and the hyperbolic tangent function.

Hochreiter and Schmidhuber (1997) proposed the first modification of simple RNNs to solve

the vanishing gradient problem: the LSTM. RNN architectures use a recursive function R, that

can also be called state vector, and that that function encodes a determined x1 : n sequence.

LSTMs also use a state vector but splits it in two: the part responsible for the working

memory and the memory cell, where the essential parts of the sequence are stored. As was

previously stated, this architecture differs from simple RNNs because of its gated architecture.

In the case of LSTMs, we have to consider three types of gates.

First, we have a forget gate f , responsible for determining what information should be kept.

Second, an input gate i combines the previous hidden state and the current input and selects

values that should be updated, through a sigmoid function. Cell gates ct are the next stage,

doing a pointwise addition that returns a new state cell with the new values that the network

will compute. Ultimately, the output gate o decides what should be carried to the next hidden

state. This step combines the new state and the memory cell. The LSTM architecture can be

summarized in Figure 2.6 and Equation 2.14.
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Figure 2.7: Summarizing the behaviour of a GRU.

st = R LSTM (st−1, xt) = [ct;ht]

ct = f � ct−1 + i� z

ht = o� tanh (ct)

i = σ
(
xtW

xi + ht−1W
hi
)

]

f = σ
(
xtW

xf + ht−1W
hf
)

o = σ
(
xtW

xo + ht−1W
ho
)
g = tanh

(
xtW

xz + ht−1W
hz
)

yt = OLSTM (st) = ht

(2.14)

Cho et al. (2014) proposed a new alternative to LSTMs, namely the GRU. It performs

comparably to LSTMs but requires fewer gates, and it eliminates the need for a separate memory.

It only requires two gates namely an, update gate and a reset gate. The update gate operates

similarly to the input gate on the LSTM. It selects the information that will be discarded and

what will be apprehended. The reset Gate r manages the information that should be forgotten,

as it can be observed through Equation 2.15 and Figure 2.7.

sj = RGRU (sj−1, xj) = (1− z)� sj−1 + z � s̃j

z = σ (xjW
xz + sj−1W

sz)

r = σ (xjW
xr + sj−1W

sr)

s̃j = tanh (xjW
xs + (r � sj−1)W sg)

yj = OGRU (sj) = sj

(2.15)

Despite the aforementioned improvements, RNNs and their variants still have disadvantages
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(i.e. difficulty in capturing dependencies between the words of a sentence if they are to distante

from each other (Shen et al., 2018)). For that this reason, attention mechanisms were proposed

to address parts of these problems.

Attention was introduced by Bahdanau et al. (2015) to solve translation. They proposed

the use of a layer that gives attention to each source sentence word and determines which words

are more relevant to achieve the expected output, even when the sentences are reasonably long.

In other words, the decoder receives an additional weighted input that determines which tokens

are necessary to pay more attention, in each time step.

This model was originally composed by an encoder-decoder mechanism. The encoder is

responsible for processing the input sequence, treating it through encoding mechanisms (i.e.

summarizing and shortening the sequence ) until it is transformed into a single context vector

with a fixed size. Then, this representation is passed to the decoder, where the vector is trans-

formed to the desired output. The vector passes through a feed forward NN, using a softmax

function to compute the attention weights. A context vector is then computed, and then this

vector is concatenated with the context vector of the previous time step. In the end, the output

word is delivered.

The attention mechanism got its name from the capacity of looking at a textual sequence

and generate relationships between words, even though they might be distant from each other. It

gives attention to the relevant words and ignores the words that are not very relevant. There are

several types off attention related to different categories, discussed by Chaudhari et al. (2019).

In the thesis, the main focus will be on multi-head self-attention.

Vaswani et al. (2017) showed that self-attention mechanisms are not only companions of

other well-known machine learning models, but they can also be used independently of other

mechanisms. The authors proposed the Transformer, a learning-based translation mechanism

based on multi-head self-attention. The model outperformed previous approaches, while also

having a faster training time.

2.1.3 Emotion Representation

In sentiment analysis it is crucial to assign a determined feeling towards a word or a larger

textual utterance. Two approaches originally proposed in the cognitive sciences can be used to

define how emotions can be delimited and perceived by humans (Ekman and Friesen, 1971).

One of these approaches defends the existence of six basic universal emotions: happiness,
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Figure 2.8: Self-Assessment Manikin
Figure 2.9: Valence, arousal and dominance
three-dimensional space

anger, sadness, surprise, disgust, and fear (Ekman, 1992). This is called the categorical approach.

The other approach, designated by dimensional, advocates continuous numerical values that

progress through multiple dimensions (Russell, 1980). After the original dimensional approach,

other models were suggested (Wang et al., 2016). Studies were conducted with the goal to collect

properties of words, like complexity, frequency, or neighbourhoods, among others (Kuperman

et al., 2012).

The emotion representation that was used in this thesis is inspired by an early study, con-

ducted at the University of California by Bradley and Lang (1999). The study produced a nor-

mative emotion rating of valence, arousal, and dominance for 1034 English words. It assessed

these three dimensions by the Self-Assessment Manikin (SAM) questionnaire (Lang, 1980) and

the manikin is a visual representation of three dimensions (Russell and Mehrabian, 1977). The

SAM and the meaning of the three dimensions can be represented through Figure 2.8. The three

dimensions were rated on a scale from 1 to 9, as shown in Figure 2.9. Warriner et al. (2013)

extended the ANEW study by presenting a lexicon with 13 915 English words.

The dimensional representation is considered to better model emotions than the categorical

approach. As we can observe in Figure 2.9, the six basic emotions are not even considered to

be opposite references on the dimensional representation.

2.2 Related Work

In recent years, the area of computational linguistics became interested in some of the

emotion norms collected in behavioural psychology, because of their usefulness for categorizing
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texts according to the sentiments and emotions being expressed. However, to evaluate the

emotional ratings (i.e. valence, arousal, and dominance) of textual utterances it requires an

available large quantity of rated words. Alongside the limited amount of datasets available and

by the size of these datasets of affective norms (Tang et al., 2014). This is particularly true if we

consider languages other than English, or applications that rely on the analysis of short sentences

(e.g. Twitter messages). This lead researcher to develop new studies for collecting human

emotional ratings for large sets of words, e.g. through crowdsourcing methodologies (Bradley

and Lang, 1999; Årup Nielsen, 2011; Scott et al., 2019; Warriner et al., 2013), or to examine

whether affective norms can be calculated using automatic procedures, such as machine learning.

This section has an overview of studies that I found relevant to mention considering the

goals of this thesis. It is organized as follows: Section 2.2.1 describes studies where emotion

ratings are assigned to words, and in Section 2.2.2 studies assigning emotion ratings to textual

utterances.

2.2.1 Assigning Sentiment to Words

Assembling human ratings for words is expensive and difficult to make, particularly if

we consider different languages. Given a small seed lexicon with emotional rating, a num-

ber of techniques have been proposed to automatically estimate ratings for new words. For

instance, regression-based methods to automatically calculate unrated words from previously

ranked words was developed, primarily considering the proximity (length, contextual diversity,

co-occurrences) between a word previously rated and a non-rated word (Recchia and Louwerse,

2015; Köper and Im Walde, 2016).

Bestgen and Vincze (2012) used Latent Semantic Analysis (LSA), a process to evaluate

what words are more relevant to the textual corpus to assign better the values of the valence,

arousal, and dominance of the words. In this context, LSA receives an input matrix (i, j), with

the size of the words i by the documents j. In each entry, it is determined the number of times

each word appears in each document. In order to decrease the influence of the most frequent

words, each term is weighted, and Singular Value Decomposition (SVD) is applied to factor the

matrix into three new matrices U, S and V. The product of these matrices yields the original

matrix. A new matrix, with a low-dimensional similarity to the original matrix, can be retrieved

by trimming down the original matrix to a fixed number of dimensions, before calculating the

product. Lastly, to identify the similarity between two words, it is necessary to compute the

cosine between their corresponding rows. It is necessary to note that, as long as two words
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appear in similar documents, they may show a high cosine, because of the rank reduction. LSA

can be considered to be a measure of higher-order co-occurrence since it links words that appear

in similar linguistic contexts.

Bestgen and Vincze used the previous method to compute the association of each of the

17,350 words in the Touchstone Applied Science Associates (TASA) dataset. This dataset is

constituted by ten million tokens (92,409 types) of high-school level English text. They also

estimated the valence, arousal, and dominance of each word by computing the mean value

of each dimension using their thirty closest neighbours (excluding each word itself, i.e. using

leave-one-out cross-validation and relying on a k nearest neighbour interpolation technique).

The obtained estimates achieved a Pearson’s correlation of 0.71, 0.56 and 0.60 with the ANEW

norms on valence, arousal and dominance, respectively, using a set of 953 words that were

present in both the ANEW norms and in the TASA corpus. When analyzing the results, the

authors also reported that one of the problems with the proposed method relates to the fact

that word co-occurrence models, including LSA, often model antonyms as close neighbours in a

vector space, thus sometimes calculating the wrong predictions (Bestgen and Vincze, 2012).

Other methods where also tested, like Hyperspace Analogue to Language (HAL) (Lund and

Burgess, 1996) that considers only a surrounding window of words preceding and following the

targeted word, usually no more than ten surrounding words. Moreover, a skip-gram model with

negative sampling was later introduced (Mikolov et al., 2013a). Alike LSA performance, except

is scalability since skip-gram only increases linearly. This model is also mentioned as word2vect.

Mandera et al. (2015) compared both HAL and skip-gram models with different extrapolation

techniques, although they concluded that these methods lead to different results than ratings

made by humans.

Recchia and Louwerse (2015) noted that several previous studies (Citron et al., 2014; Jas-

min and Casasanto, 2012) have shown correlations between emotional ratings and other lexical

variables (e.g., word frequency, word length, or orthographic similarity). Recchiaa and Louwerse

thus attempted to further improve results, by integrating into the prediction models additional

variables that in the literature have been shown to correlate with valence, arousal, or dominance,

as well as additional variables that can contribute to an independent variance.

First, the authors attempted to replicate the study by Bestgen and Vincze, using a more

scalable approach based on Point-wise Mutual Information (PMI). Leveraging a larger Web

corpus to estimate the word co-occurrence statistics, and using all 12,764 words in the set of

norms from Warriner et al. (2013) that did not occur in the ANEW corpus, as training data for
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predictive models. Specifically, Recchiaa and Louwerse used bigrams and trigrams appearing

in the Google Web 1T 5-gram corpus to compute co-occurrences, within a window size of two,

between each word in the Warriner dataset and all the words in the training dataset. The

co-occurrences were then used to compute word similarities based on positive PMI cosines,

according to the process specified by Bullinaria and Levy (2007) (i.e. each word is represented

by a vector of n (n corresponds to the number of words present on the vocabulary) elements,

and each element of each vector corresponds to the PMI score between the target word and

the word that is indexed by the particular element of the vector. The elements that contain

negative values are set to zero, and the cosine between the vectors is used to compute word

similarity). For the words present on the training set, the authors determined its k nearest

neighbours using the positive PMI cosine measure, and they then calculated the mean valence,

arousal, and dominance of these k words. The authors measured a Pearson’s correlation of 0.74,

0.57 and 0.62 to ANEW valence, arousal and dominance ratings, respectively. These values

were achieved by using values of 15, 40 and 60 for the k parameter, respectively (Recchia and

Louwerse, 2015).

In the second set of experiments, Recchiaa and Louwerse attempted to see whether including

additional variables in a linear regression model would improve the predictions for the affective

ratings of words (Recchia and Louwerse, 2015). Specifically, the authors considered variables

such as the log frequency of the word, its contextual diversity, the word length, and the mean

valence, arousal and dominance of the word’s nearest semantic neighbours, according to positive

PMI cosines or according to several measures of orthographic similarity. Besides the aforemen-

tioned features, the authors also considered right-side advantage scores for the words as proposed

by Jasmin and Casasanto (2012), by subtracting the number of letters in the word that appear

in the left-hand side of the keyboard, from the number of letters that appear in the right-hand

side. Three linear regression models were fit in a greedy step-wise fashion, respectively with

valence, arousal, and dominance as the dependent variables. The authors measured Pearson

correlation coefficients of 0.80, 0.62 and 0.66, respectively for the ANEW norms of valence,

arousal, and dominance. By considering additional variables, the authors have thus managed to

significantly improve the results, up to the level where the correlations closely resemble those

that are obtained from different human judges.

Recchiaa and Louwerse also reported on an initial analysis that investigated whether predic-

tions can be made for languages other than English, leveraging the Spanish and Dutch versions

of ANEW as the source norms of valence, arousal, and dominance, together with the Dutch

and Spanish versions of Wikipedia for the computation of word co-occurrences (Recchia and
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Louwerse, 2015). At 4,299 and 1,034 words each, these datasets provide only a fraction of the

English data provided by Warriner et al. (2013), significantly reducing the amount of infor-

mation available to learn predictive models, for each target language separately. Nonetheless,

through a leave-one-out cross-validation methodology, the authors report on encouraging results

for the method based on the nearest semantic neighbours (i.e., a Pearson’s correlation of 0.52,

0.36 and 0.48 in Spanish, and of 0.50, 0.47 and 0.37 in Dutch, respectively for valence, arousal,

and dominance).

Mandera et al. (2015) also researched the usage of textual dataset to build a semantic

similarity space, latter applying ML techniques to extrapolate existent ratings to unrated terms.

The authors conducted a systematic comparison of two extrapolation techniques (i.e. kNN and

random forest regression), in combination with semantic spaces built from an English subtitle

corpus including approximately 385 million words, and leveraging different vector representations

for the words. These include representations build through (i) LSA, (ii) a generative topic model

known in the literature as Latent Dirichlet Allocation (Blei et al., 2003), (iii) a representation

based on PMI similar to that from the study by Recchia and Louwerse (2015), and an approach

leveraging neural networks that is commonly referred to as word2vec’s skip-ngram model, similar

to the one that is used here. A method based on the k nearest neighbours, leveraging the skip-

ngram word embeddings, resulted in the most accurate predictions, although significantly inferior

to those from previous studies Recchia and Louwerse (2015); Bestgen and Vincze (2012) (i.e.,

correlations of 0.694, 0.478 and 0.595 in 10-fold cross-validation experiments with the ratings

from (Warriner et al., 2013), respectively in terms of valence, arousal and dominance). The

authors nonetheless argue that the random forest method has the advantage of more easily being

able to incorporate additional predictors. The authors also state that the higher correlations

obtained using the skip-ngram model, in comparison to their other approaches, can perhaps be

explained by the fact that this method is better at estimating word similarities (Baroni et al.,

2014).

Sedoc et al. (2017) developed an approach to distinguish words that are on opposite sides of

the rating scale but share similar vector representations. First, the distributional hypothesis is

leveraged, and words appearing in similar contexts have similar scores. Nonetheless, words that

appear in similar contexts but have opposite polarities or ratings will still have similar scores.

Therefore, a second step is added. To detect similar un-rated words, signed spectral clustering

(SSC) (Sedoc et al., 2016) is used. SSC combines regular spectral clustering (Ng et al., 2002)

with additional information by negative edges, thus repealing words with different scores from

the same clusters. Formally, the method can be translated to Equation 2.16, were vol (Aj)
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represents the similarity between all nodes of the graph, links− (Aj , Aj) represents negative

edges within the cluster, and cut
(
Aj , Aj

)
are normalized clusters.

k∑
j=1

cut
(
Aj , Aj

)
+ 2 links− (Aj , Aj)

vol (Aj)
(2.16)

The methods were tested in three different languages to obtain affective norms of valence

and arousal. Experiments were made with the English lexicon with 13,915 words form Warriner

et al. (2013), the Spanish lexicon with 14,031 words from Stadthagen-Gonzalez et al. (2017),

and the Dutch lexicon with 4,300 of Moors et al. (2013). The results presented by the kNN (for

English 0.684 and 0.551, for Spanish 0.657 and 0.447, for Dutch 0.557 and 0.544, respectively

for valence and arousal) and regression methods (for English 0.751 and 0.547, for Spanish 0.677

and 0.203, for Dutch 0.566 and 0.545 all for valence and arousal, respectively), with a 10-fold

cross-validation setup, correspond to good results. However, the results were outperformed by

a multi-task learning neural network (MTLNN) technique (Buechel and Hahn, 2018). They

produced an alteration to an MLP with 5 hidden layers, shared across VAD, and 3 units of

output, each representing a VAD dimension. The model was tested on 9 typologically diverse

languages using different types of embedding models.

In another study (Li et al., 2017), several affective meanings were extracted in a multidimen-

sional model. Word embeddings were infered through unsupervised learning, and the authors

later provide small sets of words to a train ridge regressor and support vector regressor models.

The authors concluded that each embedding caries not only semantic meaning of a word but also

sentiment. In their study, the Bayesian ridge regression was the model that performed better.

The tests were conducted with datasets considering several languages and dimensions, among

which they tested the ANEW (Bradley and Lang, 1999) (correlation of 0.821 for valence, 0.979

for arousal and 0.988 for dominance), Warriner et al. (2013) (with correlation of 0.934 for va-

lence, 0.991 for arousal and 0.989 for dominance) datasets in English and a Chinese dataset (Yu

et al., 2016) (with 0.582 for valence and 0.803 for arousal, considering the dataset did not feature

the dominance ratings).

Some previous studies also focused on the possibility of cross-language approaches for auto-

matically generating lexical resources (Banea, 2013; Banea et al., 2013), for instance exploring

methods for generating lexical resources for subjectivity analysis in a new language (e.g., Span-

ish or Romanian) by leveraging English tools and resources. Given a bridge between English
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Experiment Datasets Tested Models Results

Valence Arousal Dominance Metric

Bestgen and Vincze (2012) ANEW LSA 0.71 0.56 0.60 Pearson correlation

Recchia and Louwerse (2015)

Warriner
PMI 0.74 0.57 0.62

Pearson correlation
3 linear regressions 0.80 0.62 0.66

Dutch 4 299 words
co-ocurrences with other languages

0.52 0.36 0.48

Spanish 1 034 words 0.50 0.47 0.37

Mandera et al. (2015) Warriner kNN 0.694 0.478 0.595 Pearson correlation

Sedoc et al. (2017)

Warriner

kNN

0.684 0.551 -

Spanish 14 031 0.657 0.447 - Pearson correlation

Dutch 4 299 0.557 0.544 -

Li et al. (2017) ANEW

Baysan Ridge Regression

0.821 0.979 0.988

Warriner 0.934 0.991 -

CVAW (Chinese) 0.582 0.800 -

Table 2.1: Most important studies related to assigning sentiment to words.

and the selected target language, the proposed methods can be used to automatically generate

resources for the new language. In one particular experiment, Banea et al. (2013) started by

selecting a small set of seed words that were known to be subjective, from an English source

language lexicon. These seed words were then translated into the target language. Afterwards,

the authors expanded the lexicon formed by the translated seed words by solely using material

in the target language, specifically through a bootstrapping mechanism that uses LSA in order

to measure word similarity. The authors found that starting from a small number of manually

translated seeds, in a target language, can instantly grow a subjective lexicon. And it proves to

outperform a fully automatic translation of a fully developed lexicon in a source language.

All the previously stated studies are summarised in table 2.1.

2.2.2 Assigning Emotion to Textual Utterances

In emotion analysis, word-level prediction differs a lot from assigning emotion values to

larger linguistic units, such as paragraphs and sentences. Binali et al. (2010) recognised three

different approaches for emotion detection: keyword-based, learning-based, and hybrid. How-

ever, all these methods resort to different linguistic analysis tools (e.g., semantic level, sentence

segmentation, parts of speech recognition, token level).

The first approach relies heavily on text preprocessing and relies on a domain specific theory,

regarding several independent domains that hold different emotions. Thus, textual utterances

are divided into words for the extraction of sentiment. Ma et al. (2005) uses keyword spotting

applied to a chat system to generate emotionally responsive messages. Malheiro et al. (2016)

make use of a keyword approach to analyse song verses, considering the valence and arousal

space.

However, word-level problem solving cannot fully address high-level linguistic prediction
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Figure 2.10: Method proposed by Calvo and Mac Kim (2013).

because of the way these words are combined (LaBrie and Louis, 2003). One example is handling

negation or irony, which can change the meaning of the text, and ignored if considering the words

separately. The second, learning-based, considers a set of training data to shape a predictive

model. This approach falls into two different categories depending on how the input is organised

(Buechel and Hahn, 2018). One is arranged spatially, such as architectures that use convolutional

neural networks (CNN). The other uses sequential input data, typical for RNN, LSTM and GRU

models.

Firstly, considering the input arranged spatially, we have an early study conducted by Calvo

and Mac Kim (2013). In this study, the primary goals were to evaluate the two models of sen-

timent representation, namely the dimensional and the categorical models, and determine what

could be their applications and what could be the expected accuracy. For the categorical model,

the text was converted into a VSM representation with TF-IDF weights. The VSM represen-

tation can then be reduced with LSA, probabilistic LSA (PLSA) and, Non-negative Matrix

Factorization (NMF). These three translate the pseudo-documents into predefined categories.

In the dimensional model, the authors resorted to ANEW and WordNet synsets. Each word

is converted to the ANEW affective space. Afterwards, the words can be used to weight the

sentence emotional place, naively. These methods are summarized in Figure 2.10. The NMF

approach and dimensional model outperformed the other two.

A few years later, Buechel and Hahn (2016) wanted to foretell the emotion of a linguistic

unit by a fine-grained analysis, using a regression model instead of classification and using two

metrics to validate their results (Pearson correlation and root-mean-square error). The authors

mapped the two emotion representations, translating the VAD output into a BE representation.

Even though this method reduces performance, it still outperforms former systems that consider

the three dimensions.
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Figure 2.11: Sequence convolution neural networks unification by concatenation.

Since the amount of text documents rated in VA space is scarce, Preoţiuc-Pietro et al. (2016)

chose to resort to two psychologically-trained annotators. Facebook posts were rated, firstly,

considering the valence and arousal dimensions separately. Afterwards, the experts asked to

rate the two aspects together. In sum, 2895 messages were evaluated and VA parameters were

compared through age and gender of the writer, with the authors concluding that female post

writers express both more arousal and valence. Later, a two linear regression model using a

BoW representation, on 10-fold cross-validation with this data, reaches a high correlation to the

annotated results, obtaining a Pearson correlation of 0.650 and 0.850 for valence and arousal,

respectively.

With the limited research on the use of sequential input data and the need for more emo-

tionally rated data, Zahiri and Choi (2017) started a new investigation. The dialogues from

the show TV Friends were annotated considering seven emotions: sad, mad, scared, powerful,

peaceful, joyful, and neutral. Since CNNs are not ideal for processing sequences and RNNs

perform slowly, the authors induced four sequence-based convolution neural networks (SCNN).

The input for all SCNN is the same: a matrix M , with dimensionality equal to the number

of tokens in any utterance by the embedding size. Each row in M represents a token in the

utterance.

Comparing all the four models that were created, the model that performed better was the

one represented in Figure 2.11. A matrix X is created by fitting attention matrix A to the

current feature vector. The weights of A are adjusted considering past feature vectors.

Köper et al. (2017) introduced a test on a Twitter corpus from 2016 retrieved with emotion
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Figure 2.12: CNN and LSTM model proposed by Köper et al. (2017)

hashtags plus popular general hashtags. The authors selected only words with more than ten

occurrences. Then, a combination of CNN and LSTM layers, represented in Figure 2.12, was

used and trained. Later, the features were combined in a random forest classifier to estimate

the result for each of the four emotions: anger, fear, joy, and sadness. To verify their results,

the authors experimented different architectures: linear regression, MLP, two stacked LSTM.

Analysing the results, the authors concluded that CNN-LSTM architecture outperformed the

other three.

To remedy the struggle of learning emotion from a text through learning techniques,

Kratzwald et al. (2018) proposed several modifications from previous models. Both categorical

and dimensional emotion models were considered in an approach that combines a bidirectional

LSTM (BiLSTM) layers, dropout layers for regularisation, and weighted loss functions to cope

with the imbalanced distribution of labels. All of this is done by passing the documents through

an embedding layer, transforming the one-hot encoding of words in a numerical representation

according to its semantic meaning. All the experiments can be summarized through the diagram

in Figure 2.13. The performance of the BiLSTM compared to the simple LSTM was measured

in terms of the Mean Squared Error (MSE), using a dataset of Facebook post (Preoţiuc-Pietro

et al., 2016). The results showed an error of 1.007 for valence and 3.519 for arousal, with the

LSTM, and 0.990 and 3.550 for the BiLSTM. This BiLSTM outperforms more from traditional

machine learning models, up to 23.2% in F1-score.

Akhtar et al. (2019) proposed a multi-task ensemble model. The main idea is to group the

intermediate layer from three pre-trained models, a CNN, a LSTM, and a GRU, with and a

feature representation layer trained to capture the connections between all the previous layers.

This approach can perhaps reach better results by considering the hypothesis of four individual

systems. After ensembling the models, an MLP with 4 hidden layers will provide the predictions.
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Figure 2.13: Pipeline for inferring emotion based on studies conducted by Kratzwald et al.
(2018).

Following the trend of analysing emotion from social media, the authors also tested their model

in datasets composed of Facebook posts (Preoţiuc-Pietro et al., 2016) and Twitter posts (Buechel

and Hahn, 2017). The authors obtained a Pearson correlation of 0.727 for valence and 0.355

for arousal for the Facebooks dataset, and 0.635, 0.375 and 0.277 for the EmoBank dataset (for

valence, arousal and dominance respectively), with 10-fold cross-validation.

In a master thesis (Godinho, 2018) also applied a bi-directional RNN (BiRNN), followed

by a max-pooling operation, to infer sentiment. The results, with the model trained with the

Facebook posts dataset, showed good results when tested with ANET (Bradley and Lang, 2007)

(Pearson correlation of 0.706 and 0.299, MAE of 1.963 and 4.575, MSE of 4.777 and 25.008 for

valence and arousal, respectively). In the thesis, another model was also testes. An BiLSTm

followed by max polling and an attention layer provided very promising results. It was tested

with 10-fold cross-validation for EmoBank dataset (Pearson correlation of 0.553 and 0.348,

MAE of 0.268 and 0.251, MSE of 0.127 and 0.104 for valence and arousal, respectively) and the

Facebook posts (Pearson correlation of 0.725 and 0.925, MAE of 0.659 and 0.613, MSE of 0.743

and 0.650 for valence and arousal, respectively).

Buechel et al. (2018) used a 10-fold cross-validation technique to compare seven individ-

ual models (i.e. Ridge Regressor with two variations, Feed-Forward Network, GRU, LSTM,

CNN, and CNN with an LSTM), considering datasets in several languages. The experiments

were conducted for each dataset separately. Overall, GRU showed better performance, with a

Pearson’s correlation of 0.74 for the Bradley and Lang (2007)(ANET) dataset, 0.57 for Imbir

(2016b)(ANPST), 0.69 for Pinheiro et al. (2017)(MAS). These values were obtained conducting

a mean of Pearson’s correlation of the three dimensions. Considering other models, the authors

obtained similar results (i.e. for the CNN an 0.70 for ANET, 0.45 for ANPST and 0.62 for MAS;

for the LSTM model an 0.73 for ANET, 0.56 for ANPST and 0.65 for MAS).

All the previously studies are summarized in Table 2.2.

31



Experiment Datasets Tested Models Results

Valence Arousal Dominance Metric

Preoţiuc-Pietro et al. (2016) Facebook 2895 posts BoW 0.650 0.850 - Pearson correlation

Kratzwald et al. (2018) Facebook 2895 posts
LSTM 1.007 3.519 -

MSE
BiLSTM 0.990 3.550 -

Akhtar et al. (2019)
Facebook 2895 posts

Multi-task learning
0.727 0.355 -

Pearson correlation
Emobank 0.635 0.375 0.277

Godinho (2018)

ANET BiRNN + MP

0.706 0.299 - Pearson correlation

1.963 4.575 - MAE

4.777 25.008 - MSE

EmoBank BiLSTM + MP + Attention

0.553 0.348 - Pearson correlation

0.268 0.251 - MAE

0.127 0.104 - MSE

Facebook BiLSTM + MP + Attention

0.725 0.925 - Pearson correlation

0.695 0.613 - MAE

0.743 0.650 - MSE

Buechel et al. (2018)

ANET

CNN mean 0.70 Pearson correlation

LSTM mean 0.73 Pearson correlation

GRU mean 0.74 Pearson correlation

ANPST

CNN mean 0.45 Pearson correlation

LSTM mean 0.56 Pearson correlation

GRU mean 0.57 Pearson correlation

MAS

CNN mean 0.62 Pearson correlation

LSTM mean 0.65 Pearson correlation

GRU mean 0.69 Pearson correlation

Table 2.2: Most important works in Assigning sentiment to Textual Utterances

2.3 Overview

This chapter started with a description of fundamental concepts, discussing how to encode

textual information, giving a brief introduction to deep neural networks and deep learning, and

explain how to represent emotions. the chapter also provided an overview of the work done in

the field of automatic emotion extraction, for both words and textual utterances.

The next chapter describes the proposed models, using both simple heuristics and more

complex machine learning algorithms. It will also describe how the textual information is rep-

resented to allow the use of cross-lingual mechanisms.
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3Quantify Emotion in

Multiple Languages

To my knowledge, there is still a the need to better answer the question of how to infer emo-

tions from text written in languages with few training resources. In order to answer this question,

it was necessary to compare different types of neural networks (e.g., CNNs and LSTMs), to un-

derstand which of them perform better and why. It was also necessary to approach word norms

and textual utterances separately.

This chapter starts with an explanation of textual representation methods (in Section 3.1)

particularly focusing on the problem of a multilingual spaces. Then, Section 3.2 contains an

explanation of all the models produced to quantify emotions from both words (in Subsection

3.2.1) and short texts (in Subsection 3.2.2). In the conclusions of this chapter, there is a couple

of screenshots of the website that I produced to showcase

3.1 Text Representation in a Multilingual Space

It is necessary to understand that the machine learning algorithms may require textual

information as input. However, the words, from a textual utterance, can not be given directly

to a model. So, it is necessary to first encode the text in a way that is intelligible to a machine.

Word embeddings are vector representations for words, responsible for capturing

their semantic or syntactic meaning. Several approaches were suggested over the years.

Word2Vec (Mikolov et al., 2013b), also based on the skip-gram (Mikolov et al., 2011) model,

is responsible for predicting the context of a given the word. However, the Word2Vec method

does not allow the representation of words out of the vocabulary. FastText (Joulin et al., 2016),

based on the skip-gram model (Mikolov et al., 2011), proposes the use of word fragments to

express word vectors, allowing us to represent words out of the vocabulary.

In our models, we used FastText word vectors pre-trained on Common Crawl and Wikipedia,

originally proposed by Grave et al. (2018). These embeddings are available in 157 different

languages. For a more in depth explanation of the FastText representation, go to Section 2.1.1.

However, it was still necessary to represent word embeddings in a multi-language space.
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Figure 3.1: Cross-lingual alignment method from Conneau et al. (2017).

One of the state-of-the-art methods that produces bilingual FastText embeddings without any

training data was proposed by Conneau et al. (2017). To produce these bilingual embedding

space a two-step method (Faruqui and Dyer, 2014) was applied. After obtaining a monolingual

word embedding for both languages separately, is necessary to transformer them into the same

bilingual vector space by a linear transformation. This alignment is performed by selecting

anchor points, from the most frequent words, and mapping the less frequent words through a

distance metric, namely cross-domain similarity local scaling. Figure 3.1 illustrates these two

steps, where A corresponds to a representation of two embeddings of different languages. In B,

we learn a rotation matrix to adjust the embeddings of a language according to the other. In C,

the mapping is improved by a method called Procrustes, that uses the most frequent words of

the training corpus in a determined language (represented by the bigger sized dots). The MUSE

dataset contains a mapping between English to 30 languages, including Portuguese.

An improvement to MUSE was made by Chen and Cardie (2018). The Unsupervised Mul-

tilingual Word Embeddings (UMWE) method is a multilingual generalisation of the MUSE

approach. MUSE only considers the parity between two languages. For example, let us consider

we want to translate both Portuguese and Spanish to English. If we translate them individually

to English, we are neglecting the source language similarities, capturing therefore producing a

worse multilingual embedding space. To solve this incapability of the dependencies between

several languages, UMWE developed two steps: Multilingual Adversarial Training (MAT) and

Multilingual Pseudo-Supervised Refinement (MPSR).

On the first step, it is necessary to resort to discriminators which are trained to detect if

a vector corresponds to a determined language. In other words, all the source languages will

be iterated, and two will be selected alongside a batch of words from each language. Each

word will be encoded into the target space, and from the target space into the other language

space. Then the loss function is calculated, determining if the generated embedding is a real

embedding of the second language. Considering the result, the discriminators will be updated.

This algorithm also enables us to translate a determined word to the target space and back to
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itself, improving the performance of the model. The goal of doing these operations is to mix the

discriminators, one for each language, and improving the performance by observing similarities

between languages while training.

On the second step, the goal is to refine the embeddings obtained in the previous step.

This is achieved by observing the most frequent words of each language, producing a pairwise

dictionary, and improving the embeddings by pseudo supervised refinement. In other words, the

algorithm this involves comparing a vocabulary of the most used words of the source languages

with the ones on the target language (i.e., paring the words of the two languages considering

a kNN technique), where words from each language will be encoded directly into the second

language space. This way, the second step refining the mapping matrix of each language.

In my study, it was necessary to run the UMWE framework, with the target embedding

defined as English and the source languages being other five languages (i.e., Portuguese, Spanish,

German, Italian and Polish). I used the FastText embeddings extracted from the website Grave

et al. (2018). The outputs generates mapping matrices between each language and the target

language. So, whenever the models receive a text, first the text is divided into elements (i.e.,

words and punctuation). Then, each element is assigned an embedding, using the FastText

embeddings. If the language of the data is not English, the embeddings are multiplied by the

mapping matrices, responsible for aligning the original embedding into the English embedding

space. Then, the text is ready for the ML models.

3.2 Proposed Models

The models described next were develop with the Python1 programming language, alongside

several libraries such as keras2, FastText, numpy, Torch, and TensorFlow, among others. A

framework was also used, UMWE (Chen and Cardie, 2018), for converting several language

embeddings into one target embedding space through a translation matrix.

The training of the models was done using the optimizer named Adam. As we already

discussed in Section 2.1.2, Adam is a type of gradient descent optimization algorithm, combining

two well known optimizers: AdaGrad and RMSProp. This optimizer is usually used for problems

involving large amounts of training data, since it sustains the learning rates. The optimizer

reaches really good performances and is also faster, compared to other optimization algorithms.

1https://www.python.org
2https://keras.io
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The optimizer named AdaGrad was also tested but performed worst.

To allow a better comparison between models, it was necessary to standardize the use of

some hyperparameters. The number of samples for the model to analyze, the batch size, was

fixed to 64. The number of epochs, i.e. the number of times the model will go through the

training data, was fixed to 200. This number should be large to allow the model to run enough

times for the error to be minimized and prevent redundant alterations of the weights.

To facilitate the use of the datasets (i.e. some had values between 0-9, other between 0-5), I

pre-processed the values of the emotional dimensions of the datasets, so that that every emotion

is associated to values between [0,1]. On the datasets that did not contemplate the dominance

dimension, I opted to add a dominance column with the value ”-1”. Since this would severely

affect the backpropagation, it was necessary to customize the loss function used to train the

model, in order to ignore all the negative ground-truth values that where ”-1”.

The next sections describe how the models were designed to tackle the problems described

in the introduction. Section 3.2.1 describes the models that infer emotion ratings of words, and

Section 3.1 describes the models used to infer emotion ratings of textual utterances. All the

adjustable parameters that required testing (e.g., to infer the best values), will be described in

the next chapter.

3.2.1 Quantify Emotion from Words

One of the objectives of this work is to infer emotion rating from words, considering not only

English but also other languages, leveraging a cross-lingual embedding space. The aforemen-

tioned word representations were used together with four different types of forecasting models,

namely a kNN interpolation approach, random forest regression, kernel ridge regression, and a

MLP. The four approaches were implemented through the scikit-learn (Pedregosa et al., 2011)

and Keras libraries. They all apply to multi-output problems, where the same predictor vari-

ables are used to predict several outputs (i.e. in our case, valence, arousal and dominance scores

are predicted simultaneously). All the following models receive as input a 1-dimensional numpy

vector of size 300, which is the embeddings size of a word, calculated using the FastText method.

In the kNN interpolation approach, for each word in the test set, we identify the set of k most

similar words (as measured according to the Euclidean distance between the word embeddings)

in the training set, and assign the weighted mean rating of these words to the target word, as the

extrapolated rating. The kNN are weighted such that nearby instances contribute more to the
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final scores than faraway instances, namely by considering weights proportional to the inverse

of the distance from the query instance. The value for k is an optimization parameter.

Random forests are ensemble ML algorithm, based on randomized decision trees (Breiman,

2001). This method is based on building a group of decision trees. In this algorithm, every tree

is generated by a different subset of features from different drawn samples (i.e. with replacement

from the entire training set, called bootstrap samples) of the full dataset. Using different features

prevents the algorithm from overfitting the model. Each tree in the ensemble is built through the

Classification and Regression Trees (CART) algorithm (Breiman et al., 1984). This algorithm

constructs each binary decision tree in the ensemble using the feature and threshold that yield the

lowest mean-squared error at each node. Given our multi-output setting (i.e., we simultaneously

attempt to predict valence, arousal and dominance), the leaves of the trees store three output

values, and the splitting criteria compute the average MAE across all three outputs. Alongside

this, when a node is split, during the creation of the tree, the split that is chosen is the split

with the best Gini index, among the random subset of features. The bias of the forest tends

to grow lightly due to the randomness of the feature selection. Nonetheless, the variance also

tends to decrease due to averaging, it generally it is compensated by the increase of the bias

and therefore yielding overall better models.

The main parameters to adjust when using random forests correspond to the number of trees

used in the forest (i.e. if the number is higher, it will obtain better results, but it will also take

longer to compute) and the size of the random subsets of the features that should be regarded

when splitting a node of the tree (i.e. the lower the greater the raise of the bias, but also the

reduction of variance). An empirically right approach for the case of regression problems is to

set the size of the random subset of features equal to the total number of features, three in this

case. As for the number of trees, it was fixed at 200 in our experiments, since it was the best

value for this parameter. The maximum depth of the three was set to 50. To provide quicker

training, the number of parallel jobs was set to -1, meaning that all processors will be used to

train the model.

The kernel ridge regression approach combines the standard ridge regression (i.e. linear least

squares with l2-norm regularization) with the kernel trick, as used in Support Vector Machines.

This algorithm learns a linear function in the space produced by the kernel and the data, which

for a non-linear data, translates into a non-linear function in the original space. Standard ridge

coefficients minimize a penalized residual sum of squares, corresponding to:
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min
w
‖X ·w − y‖22 + α‖w‖22 (3.1)

In the previous formula, X is the matrix of explanatory variables (i.e., the word embedding

values), y is a vector with the target values, and α ≥ 0 is a regularization parameter that

controls the amount of shrinkage (i.e., the larger the value of α, the greater the amount of

shrinkage, and thus the coefficients become more robust to co-linearity). In this thesis, given

that I aim at predicting valence, arousal and dominance, I build independent ridge regression

models, i.e. one for each of the three outputs. Kernel ridge regression extends the general setup

considered above to allow for nonlinear prediction functions. For an arbitrary instance x ∈ Rn,

the outcome suggested by ridge regression (i.e., wᵀ · x) can be rewritten into the dual form of

the ridge regression solution (i.e., wᵀ ·x = yᵀ(αI+XXᵀ)−1Xx). When using the dual form, and

because we only need scalar products between instances, we can directly use a kernel function

to map instances into a higher-dimensional feature space, where regression can often be made

more effectively. A popular choice for the kernel, which we used in our experiments, is a radial

basis function of the form k(xa,xb) = exp(−γ|xa−xb|2) with γ > 0. The values for α and γ are

optimization parameters associated with the kernel ridge regression method.

Finally, the MLP mimics the synaptic connections between the neurons in our brain. This

particular model is composed of three types of layers (i.e., input, hidden and output layers). The

model learns by taking a set of inputs (x1, x2...xn). The inputs pass through a set of neurons,

each multiplying the input by weights, delivering a result through the output layer. All the

functions for the MLP are described in Section 2.1.2.

The MLP model was built through Keras, an open-source library integrated on top of

TensorFlow, to allow building deep learning models. In my specific model, we have one input

layer with the size of the embedding vector (vector of 300 doubles, in this particular case).

Then a hidden state, created by a fully connected layer, is composed of 100 neurons, plus the

bias. In this layer, the weights (referred to as the kernel initializer parameter) were initialized

randomly and the biases with zeros. I also applied the ReLu activation function. To decrease the

chance of overfitting, I considered set a weight regularizer (kernel regularizer parameter) as

the L2 norm with the value 0.0001. The L2 norm, also known as the Euclidean norm, calculates

the shortest distance between two points by summing the squared weights. On the output layer,

we have a fully connected with three neurons, one for each emotional dimension that we are

considering. This layer has a linear activation function because of the continuous output values.

This MLP was trained through 200 epochs, with a batch size of 64 and the Adam optimization
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algorithm (Kingma and Ba, 2014) optimizer.

3.2.2 Quantify Emotion from Textual Utterances

This thesis proposes thirteen models, based on approaches described in the related work

section. When the textual content is provided to the network, each word is lowercased and

converted to the embedding of the proper language (including punctuation, since these symbols

also provide usefully information for inferring emotions). If the words are not in English, each

word embedding is multiplied by the translation matrix. Then, the utterances are ready as

input.

In this section, we will start by dividing the models into two different categories: simple

models exploring averages (Section 3.2.2.1) and models exploring machine learning (Section

3.2.2.2).

3.2.2.1 Simple Models Exploring Averages

One of the models that had a good performance when infering emotion ratings for words

was a simple MLP. This MLP was adapted and trained with datasets presenting affective

norms for words from six different languages: English (Scott et al., 2019; Warriner et al., 2013;

Bradley and Lang, 1999), Spanish (Redondo et al., 2007), Portuguese (Soares et al., 2012),

Italian (Montefinese et al., 2014), German (Schmidtke et al., 2014), and Polish (Imbir, 2016a).

In all the datasets that are not English, I also had access to a column in English where the

original text was translated. In those cases, when training the model, we considered both the

word in English and on the original language.

To observe the need for syntactic information when analyzing sentiment from the written, I

created four models based on the MLP. These model do not take into consideration the syntactic

structure of the textual utterances, and are models based on simple statistical approaches.

On the first model (Figure 3.2.a), each embedding is provided to the pre-trained MLP,

giving the dimensions of each word. The dimensions are then be summed and an average is

calculated. On the second model (Figure 3.2.b), I made an average of all the embedding and

this average was then provided as input to the pre-trained MLP.

The last two models are more complex than the previous ones. On the third experiment, I

performed an average pooling of the embeddings, considering windows of sizes between one and

five words. The average of all these pooling windows was calculated, and finally provided to
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(a) MLP Average (b) Average MLP

(c) Pooling Avg MLP

(d) Pooling MLP Avg

Figure 3.2: Models for Assigning Word-level Sentiment

the MLP. The last model corresponds to a small change, since the MLP was applied after each

pooling window and I later calculated the average. Later, it was added a model similar to the

two previous ones, however, using the MLP on each word and then doing the Pooling average.

The models can be seen in Figure 3.2.

3.2.2.2 Models Exploring Machine Learning

It is first necessary to note that all the models described in this section can receive textual

utterances with a maximin of 200 words. Since the models must be trained with a determined

input vector size, if a determined input text has less than 200 word, all the remaining positions

are filled with vectors of 300 zeros. For the zeros to be ignored in the models, all of them consider

a masking layer (RemoveMask), responsible to remove all the zeros.

Yann LeCun, inspired by a model of the human visual cortex put forward by Hubel and

Wiesel (1962), developed the Convolution and Polling architecture (LeCun et al., 1995), also

known as CNN. The first studies that applied CNNs to NLP were conducted by Collobert

et al. (2011) in the area of semantic-role labelling, with subsequent studies by Kalchbrenner

et al. (2014) and Kim (2014) respectively in the field of sentiment analysis and question-type

classification. The main goal of CNN is to detect patterns across space, by firing when a

determined pattern of words is compared to a determined filter. CNNs are composed of two

layers, namely convolution and pooling.

Convolution Layer receives two inputs: a text translated into embeddings and a filter. The

vector of embeddings is multiplied by the filter generating a Feature Map. Each filter takes into
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Figure 3.3: Convolution and Polling operations applied to a sentence.

consideration a specific feature and can have differently sized, depending on what window size

you want to consider. In our experiments, we regarded as sizes of word windows between one

and five, as shown in Figure 3.3. To reduce the feature maps, we pass them through a pooling

layer, responsible for reducing the dimensionality while at the same time recalling the important

information. There are two types of pooling operations, and we can see in Figure 3.3 that the

one used in my models was average pooling, responsible for returning the average of all values.

Considering the basic CNN model, we did four minor alterations. The first model is identical

to the one shown in Figure 3.3. In the next three, we applied the MLP model. In the first, I

passed the embeddings through the MLP model and the results were input to the convolution

layer. In the second, I applied the MLP to the output of the convolution layer, afterwords

applying the average pooling. In the third, I applied the MLP model in the end, after the linear

operation.

Even though CNNs have fast performance, LSTM models are more successful when working

with natural language (Yin et al., 2017), since LSTM models tend to take into consideration the

input as sequences (i.e. text, time series).

The LSTM model used in my experiments is the same as explained in Section 2.1.2. To

enhance the representation of each word in the sentence (Schuster and Paliwal, 1997), we choose

to use a Bidirectional LSTM (BiLSTM). The idea is to have two LSTMs travelling through the

sentence at the same time, one that encodes the sentence left to right and, separately, other

41



w1

w2

w3

wT

… …

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

LS
TM

ta
nh

Bi-LSTM Layer
Self-Attention

Layer

ta
nh

ta
nh

ta
nh

co
nc

at
en

at
e

…

C

so
ftm

ax …

2a 2b 2c

2d

Figure 3.4: A model based on a BiLSTM and attention.

that travels from the end to the beginning of the sentence. In the end, we concatenate these

two representations. This is shown as the BiLSTM layer of Figure 3.4.

As Yin et al. (2017) referred in their paper, tracing the hole sentence with an LSTM can

disregard important keywords. So, aligned with the LSTM, I also used a self-attention layer, as

shown in Figure 3.4 and expressed in Equation 3.2.

hi, j = tanh
(
x>i W1 + x>j Wx + bi

)
(3.2a)

ei,j = σ (Wahi,j + ba) (3.2b)

ai = softmax (ei) (3.2c)

selfattentioni =
∑
j

ai,jxj (3.2d)

In self-attention, it is first necessary to calculate hi,j (Equation 3.2a) by summing the values

of the current position and the previous, all previously multiplied by a weight matrix. Then,

I multiply the values by the alignment weights, to get the alignment scores (Equation 3.2b).

On Equation 3.2c, I apply softmax to the attention scores, for the values to vary between 0

and 1 and determine the probability of each given the word. At the end (Equation 3.2d), ai

corresponds to the amount of attention jth should pay to the ith input, and summing all the

results.

First, I considered models with LSTM layers and a self-attention layer, as it can be visualized
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Figure 3.5: Proposed models applying Self-Attention and BiLSTM Layers.

in Figure 3.5a. I also generated an alteration to this model, where instead of receiving the

embeddings as the input, the pre-trained MLP was applied to all the embeddings. The results

of the operation were provided to the LSTM layer.

Three of the models were inspired by the work developed by Margatina et al. (2019), and

they are here given the same names they had in the original paper.

The attentional concatenation model, shown in Figure 3.5b and Equation 3.3, calculates the

BiLSTM representation of each embedding. In parallel, I applied the MLP pre-trained model

for every word of the sentence. Then, I performed the concatenation of both results and pass

that concatenation through a self-attention layer. In the end, the output is calculated through

a feed-forward layer, with three dimensions, to predict the three emotional dimensions.

x1 = tanh (Wc [BiLSTM (w1) ‖MLP (wi)] + bc)) (3.3a)

operations 3.2a - 3.2d

d = l · 3 + b (3.3b)

The second method, described in Figure 3.5c and Equation 3.4, applies the MLP pre-trained

model to the word embeddings and later uses linear plus sigmoid operations. Considering a

gating mechanism, by applying the sigmoid function, the model will have a mask-vector where
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each value varies between 0 and 1 that will later be applied to the embeddings of each word by

an element-wise multiplication, represented by �. Lastly, we have the the self-attention layer.

fg (hi,MLP (wi)) = σ (Wg MLP (wi) + bg)� h (3.4)

In the final model a feature-wise affine transformation is applied, corresponding to a nor-

malization layer preserving collinearity and ratios of distances. Primarily, the pre-trained MLP

model was applied to the word embeddings, and I enforced a scaling and shifting vector to the

results of the MLP. This model, initially inspired by Perez et al. (2018), allows one to capture

dependencies between features by a simple multiplicative operation. The results of the linear

operation γ over the MLP results are later multiplied element-wise with the results from the

BiLSTM layer over the embeddings. Finally, these values were added to β, and we apply a

self-attention layer, as shown in Equation 3.5d

fa (h1,MLP (wi)) = γ (MLP (wi))� hi + β (MLP (wi)) (3.5a)

γ(x) = Wγx+ bγ (3.5b)

β(x) = Wβx+ bβ (3.5c)

3.3 Overview

This chapter started with a description for how the textual contents were represented,

followed by a report on how the main goals of my thesis were solved. Section 3.1 presented by

models to infer sentiment from words, and Section 3.2 presented thirteen approaches to infer

sentiment from textual utterances. The next chapter will describe the results of these models

in datasets of five different languages.
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4Experimental Evaluation

This chapter explains all the processes behind the execution and validation of the models

presented in the previous chapter. The chapter starts with a description of the datasets used

in the tests considering both words (Section 4.1.1) and layer textual utterances (Section 4.1.2)

this is followed by an explanation of the metrics used to validate the results of the models, with

the results being presented in Section 4.3. In the conclusions of this chapter, there is a couple of

screenshots of the website that I produced to showcase, by allowing the user to predict emotional

ratings of a textual utterance with the the best models.

4.1 Datasets

This section is divided into two subsections. Section 4.1.1 describes the datasets used in the

set of experiments to assign sentiment to words. In turn, Section 4.1.2 describes the datasets

used to infer sentiment for layer textual utterances.

4.1.1 Word Affective Norms

The datasets used the set of experiments considering the assignment of emotion ratings to

words are as follows:

• The Affective Norms for English Words (ANEW) (Bradley and Lang, 1999), composed of

1,034 unique words. This early work considering the three dimensions of valence, arousal,

and dominance, with values between 1 and 9. Figure 4.1 suggests a homogeneous rep-

resentation of words through the dimension space of valence and arousal, however, the

dominance values are not that homogeneous.

• Warriner et al. (2013) extended the previous ANEW dataset, collecting 13,915 English

lemmas and also including the three dimensions. For a richer dataset, data such as gender

and education level of the individual providing the ratings was recorded, among others.
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Figure 4.1: Comparison of the dimensional distribution of the words of the datasets in several
languages.

• Scott et al. (2019) provided the Glasgow dataset with 5,553 English words with nine dimen-

sions identified for each, including the three dimensions valence, arousal and dominance.

This dataset features a worse spatial distribution, considering the two previous English

datasets, of the words through the dimensions, has we can see on Figure 4.1.

• Schmidtke et al. (2014) (De ANEW) created an adaptation of the ANEW dataset. A total

of 1,003 words were rated considering six dimensions (i.e. valence, arousal, dominance,

arousal rated with a different metric, imageability and potency).

• Redondo et al. (2007) (Es Redondo) translated 1,034 Spanish words from the ANEW

dataset and provided ratings based on 720 annotators, also considering into the three

dimensions. Throughout the thesis, we will call this dataset the Redondo dataset.

• Stadthagen-Gonzalez et al. (2017) (Es ANEW) expanded the amount of Spanish emotional

ratings by collecting ratings for 14,031 words. However, since the authors considered there

was a strong correlation between valence and dominance, they chose to evaluate the words

considering only valence and arousal. Throughout the thesis, the dataset will be called

Spanish ANEW.

• Montefinese et al. (2014) (It ANEW) also translated all the words of the original English

ANEW dataset, this time into Italian, and added some more words making a total of

1,121 Italian words. The annotators rated the words through the three dimensions, but

also added psycholinguistic indexes. Homogeneous representation of valence.

• Soares et al. (2012) (Pt ANEW) provided an adaptation of the ANEW dataset for Por-

tuguese. A total of 958 college students evaluated the translated words considering the

three dimensions.

• Imbir (2016a) (Pl ANEW) also translated and extended the ANEW dataset to Polish.
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Apart from the three dimensions, they also added a few parameters (i.e. importance,

origin, concreteness, imageability, age of acquisition).

Through Figure 4.1 shows comparison of the datasets through a dimensional distribution of

the words.

4.1.2 Text Affective Norms

In order to evaluate the models developed to extract emotional content from large textual

utterances, I considered five datasets in three languages.

• The Facebook dataset, provided by Preoţiuc-Pietro et al. (2016), is composed by 2,895

English social media posts annotated considering two dimensions, i.e. valence and arousal.

• Bradley and Lang (2007) inspired by the ANEW dataset, created. The Affective Norms

for English Tex (ANET) dataset, which is composed of 120 English texts, annotated

considering the dimensions of pleasure (valence), arousal and dominance.

• Buechel and Hahn (2017) provided a dataset whith 10,000 English sentences dataset,

named Emobank. The sentences were annotated by an external annotator and by the

writer of the sentences, considering the three dimensions VAD (i.e., valence, arousal and

dominance) with values between 1 and 5.

• Pinheiro et al. (2017) created a European Portuguese dataset composed of 718 sentences.

The sentences were rated considering the VAD dimensions, but also considering the six

basic categorical emotions, with rating values ranging between 1 and 9.

• Imbir (2016b) created a dataset composed of 718 Polish sentences rated with the VAD

dimensions, align with other parameters (i.e., origin, significance, and source).

Figure 4.2 it presents the dimensional distribution of the datasets, it is possible to inspect

the homogeneity of the different dimensions.

4.2 Evaluation Metrics

All the results obtained from the experiments conducted in this thesis are evaluated both

in terms of Pearson’s correlation coefficient r and in terms of the Mean Absolute Error (MAE).
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Figure 4.2: Comparison of the dimensional distribution of the datasets in several languages.

These metrics were chosen to compare this work with other studies conducted in this area (i.e.

Preoţiuc-Pietro et al. (2016) or Akhtar et al. (2019), among others) and to better validate the

produced models. These metrics can be computed as shown in the equations below, where x

and y are sets with the obtained results and the ground truth measurements, respectively, and

where |ei| is the absolute error for a testing instance i.

r(x, y) =

∑n
i=1(xi − x̄)× (yi − ȳ)√∑n

i=1(xi − x̄)2 ×
√∑n

i=1(yi − ȳ)2
(4.1)

MAE(x, y) =
1

n

n∑
i=1

|xi − yi| =
1

n

n∑
i=1

|ei| (4.2)

Another metric that is frequently used in the state-of-the-art, when assigning sentiment

ratings to textual utterances is the MSE. This metric will also be considered on the experiments

that focus on inferring sentiment from text when using ML models. This metric is computed

using the following Equation:

MSE(x, y) =
1

n

n∑
i=1

(xi − yi)2 (4.3)

4.3 Experimental Results

In this section, we will start by dividing into two different categories: assigning affective

norms to words and assigning affective norms to textual utterances.
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ANEW Norm

Valence Arousal Dominance

Pearson MAE Pearson MAE Pearson MAE

k-NN 0.830 1.029 0.606 0.820 0.682 0.585

Random Forest 0.767 1.251 0.547 0.939 0.647 0.632

Kernel Ridge 0.863 0.912 0.684 0.807 0.729 0.557

Multi Layer Perceptron 0.825 0.918 0.550 0.891 0.670 0.667

Warriner Norm

Valence Arousal Dominance

Pearson MAE Pearson MAE Pearson MAE

k-NN 0.858 0.914 0.615 0.640 0.761 0.669

Random Forest 0.793 1.146 0.573 0.720 0.727 0.737

Kernel Ridge 0.890 0.784 0.719 0.574 0.831 0.570

Multi Layer Perceptron 0.836 0.837 0.599 0.708 0.733 0.676

Glasgow Norm

Valence Arousal Dominance

Pearson MAE Pearson MAE Pearson MAE

k-NN 0.854 1.073 0.613 0.874 0.698 0.630

Random Forest 0.788 1.320 0.425 1.024 0.652 0.687

Kernel Ridge 0.892 0.922 0.592 0.894 0.751 0.579

Multi Layer Perceptron 0.838 0.905 0.515 0.951 0.665 0.702

Table 4.1: Obtained results when predicting ratings for words in the English ANEW, Warriner
and Glasgow lexicons. The associated p-values for the Pearson product-moment correlation
coefficient were always lower than 0.001.

4.3.1 Assigning Affective Norms to Words

In the first set of experiments including the usage of English words, I was considering a

general monolingual approach. For this task, I selected the words in the set of norms from

Warriner et al. (2013) and Scott et al. (2019) that did not appear in the ANEW corpus, as

training data for predictive models that can later be used to estimate valence, arousal and

dominance ratings for previously unseen words. The word embeddings were leveraged as features

within different types of regression approaches, and I evaluated the obtained results in the task of

predicting the valence, arousal and dominance ratings in ANEW. Table 4.1 presents the results

obtained in our first set of experiments, considering two metrics (i.e. Pearson’s correlation and

MAE).

The parameters associated with the k nearest neighbour, kernel ridge regression, and mul-

tilayer perceptron approaches were tuned through a simple grid-search, so as to optimize the

average scores in all three emotional dimensions. By optimizing parameters according to the

average correlation scores, I avoided over-fitting the models to individual cases. The best results

where obtained for k = 19, α = 0.1, γ = 1 and maxiter = 250.

A total of 12,764 words were used for model training, and evaluation was mostly made

through the 1,026 words present in the ANEW lexicon. Nonetheless, I also present results

when considering ratings for these same 1,026 words, as available in the Warriner and Glasgow

datasets.
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The results obtained with the four different types of prediction models are relatively similar,

although the kernel ridge regression approach outperformed the others in terms of Pearson’s

correlation and MAE. The correlation values are similar to those reported on the previous studies

by Bestgen and Vincze (2012) and by Recchia and Louwerse (2015), even slightly superior.

Comparing the best model presented in this thesis (i.e. 0.89 for valence, 0.72 for arousal, and

0.83 for dominance towards the rating Warriner, and 0.863, 0.684 and 0.729 towards ANEW),

with the best models from Recchia and Louwerse (2015)(i.e. 0.80 , 0.62, and 0.66 towards

Warriner and 0.74, 0.57, and 0.62 towards ANEW), it is possible to conclude that kernel ridge

model even surpasses existing models.

For comparison, correlations between the valence, arousal and dominance ratings given in

the original ANEW (Bradley and Lang, 1999) and the study by Warriner et al. (2013), respec-

tively correspond to 0.95, 0.76 and 0.80. Considering the same correlation between ANEW and

Glasgow, the values are 0.95 for valence, 0.66 for arousal, and 0.82 when considering dominance.

In the study by Warriner et al. (2013), the authors report that typical correlations of human

ratings across languages range from 0.85 to 0.97 for valence, 0.56 to 0.76 for arousal, and 0.77

to 0.83 for dominance. Correlations are somewhat lower between English speakers of different

genders (i.e., 0.79, 0.52 and 0.59, for valence, arousal and dominance), different ages (i.e., cor-

relations of 0.82, 0.50 and 0.59 when comparing subjects younger than 30 versus older than 30

years of age, respectively for valence, arousal and dominance), and different educational back-

grounds (0.83, 0.47 and 0.61, respectively for valence, arousal and dominance), but remain large

overall. Considering the Glasgow dataset, it is possible to observe almost the same correlations

as in the previous dataset on gender (0.79, 0.52 and 0.59 for valence, arousal and dominance),

age (0.82, 0.50 and 0.59 for the same order) and educational background (0.83 for valence, 0.461

for arousal and 0.61 for dominance). In general terms, the automatically estimated ratings ob-

tained using the proposed method are at least as correlated with human ratings as male/female,

old/young, and high/low education English speakers’ ratings are with each other, and in many

cases even more so.

k-NN Random Forests Kernel Ridge Multi Layer Perceptron

Valence Arousal Dominance Valence Arousal Dominance Valence Arousal Dominance Valence Arousal Dominance

ES 0.543 0.329 - 0.576 0.406 - 0.734 0.502 - 0.595 0.318 -

ES Redondo 0.789 0.546 0.704 0.736 0.537 0.670 0.845 0.656 0.784 0.789 0.524 0.668

PT 0.752 0.388 0.535 0.723 0.484 0.533 0.813 0.558 0.589 0.747 0.338 0.494

IT 0.762 0.466 0.621 0.710 0.504 0.590 0.831 0.600 0.700 0.759 0.428 0.594

DE 0.793 0.529 0.621 0.720 0.641 0.540 0.831 0.678 0.647 0.760 0.429 0.531

PL 0.312 0.283 0.196 0.437 0.424 0.280 0.566 0.487 0.366 0.351 0.261 0.215

Table 4.2: Pearson correlations obtained when predicting the ratings in four different adaptations
of the ANEW lexicon, namely for the Spanish, Portuguese, Italian and German languages. The
corresponding p-values were always lower than 0.001.
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In the second set of experiments, we attempted to use information from the English language

for extrapolating ratings to other languages, specifically Portuguese, Spanish, Italian, German

and Polish. I leveraged adaptations of the original ANEW dataset into these four separate lan-

guages in order to evaluate the proposed approach (Redondo et al., 2007; Stadthagen-Gonzalez

et al., 2017; Soares et al., 2012; Schmidtke et al., 2014; Montefinese et al., 2014; Imbir, 2016a). I

again used representations for the English words in the set of norms from Warriner et al. (2013)

and Scott et al. (2019), specifically for words that do not appear in the ANEW corpora for each

target language, as training data for the predictive models. The representations for the English

words are based on the same 300-dimensional skip-ngram FastText word embeddings that were

pre-trained on Wikipedia, made initially available on FastText’s website.

In order to test the models, I extracted the FastText embedding of each word for each

specific language (i.e., Portuguese, Spanish, Italian, German and Polish). However, to train

predictive models that can later be used for extrapolating ratings to other languages, it was

necessary to represent words in the target embedding space, the same used in the training data

for the models. I then used UMWE Chen and Cardie (2018), an unsupervised approach for

converting the source multilingual word embeddings. The UMWE framework is explained in

Section 2.2.

Table 4.2 presents the results obtained in our second set of experiments. The parameters

associated to the k nearest neighbour and kernel ridge regression approaches were again tuned

through a simple grid-search, so as to optimize the average correlation scores in all three emo-

tional dimensions, and across the four languages. The best averaged results obtained where

almost the same, for k = 19, α = 0.1 and γ = 0.1. The words used for model testing had to be

present in each respective adaptation of the ANEW norms.

The obtained results show that relatively high correlations can be achieved for all five lan-

guages, although they are inferior to the results obtained for the monolingual setting. For

comparison purposes, Table 4.3 shows the correlations between the norms for valence, arousal

ANEW Glasgow Warriner et al.

Valence Arousal Dominance Valence Arousal Dominance Valence Arousal Dominance

Spanish 0.92 0.75 0.72 0.94 0.56 0.73 0.92 0.69 0.83

Spanish Redondo 0.96 0.80 - 0.95 0.63 - 0.92 0.69 -

Portuguese 0.91 0.58 0.62 0.91 0.30 0.60 0.90 0.57 0.67

Italian 0.92 0.63 0.75 0.93 0.43 0.75 0.92 0.62 0.75

German 0.90 0.64 0.60 0.92 0.30 0.63 0.91 0.66 0.69

Polish 0.87 0.65 0.69 0.87 0.47 0.67 0.84 0.64 0.56

Table 4.3: Correlations between human norms for English words and human norms in the four
different adaptations of the ANEW lexicon. The corresponding p-values were always lower than
0.001.
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Figure 4.3: The absolute error between the affective norms predicted by the different models
and the expected results.

and dominance, in the original ANEW dataset and in the set provided by Warriner and Glas-

gow datasets, against the norms in the five different adaptations of the ANEW dataset. It is

interesting to notice that higher predictive accuracy is generally also obtained for the languages

where the correlation towards the English norms is higher (i.e., Italian and Spanish).

Through Table 4.3, it is possible to observe how the different languages differed from the

original ANEW dataset in terms of the correlations between human ratings. It is interesting to

infer how this correlation affected the results, e.g., by also calculating the absolute error between

the expected values and the results obtained. Figure 4.3 shows the obtained results for all five

languages when tested with the four different models. The absolute error remains relatively

stable when considering the valence dimension, and the error is higher on the arousal dimension,

especially with Italian and Spanish languages. These results show how Latin derivative languages

can transmit more enthusiasm than Germanic languages, thus confirming the statement made

by Montefinese et al. (2014). In the same line of thought, Polish shows a lower correlation in
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Table 4.3 as well as an underperformance on Table 4.2. A possible interpretation is the West

Slavic origins of this language, conceiving a different meaning and affective norms of words from

Germanic languages.

For comparison purposes, we also experimented with the training of kernel ridge regression

models (i.e., the best performing method in the previous experiments) leveraging monolingual

data (i.e., leveraging the skip-ngram embeddings trained separately for each of the four lan-

guages, together with the ANEW norms adapted to each of these languages), using a leave-

one-out cross-validation methodology for evaluating the quality of the obtained results. The

parameters k, α and γ were again kept at the same values considered for the experiments re-

ported on Table 4.2. Table 4.4 presents the results from this particular experiment, showing that

the obtained correlations are relatively similar to those obtained with the bilingual methodology.

This finding further attests to the fact that the bilingual method can be a useful alternative to

derive lexicons of emotion ratings for languages where no such norms exist, given that the result-

ing estimates will likely have a similar quality to those that would be obtained by extrapolating

from small amounts of data in the target language.

4.3.2 Assigning Affective Norms to Textual Utterances

This section describes the experiments conducted to infer emotion rating from larger textual

utterances. The section is divided into models exploring simple statistics and models exploring

machine learning.

One of the models that had a better performance when infering emotion ratings for words

was the MLP. Hence, an MLP was pre-trained with all the datasets described in Subsection

4.1.1, and the result from this models were latter combined in order to try inferring emotion

norms for larger pieces of text. Since one of the datasets (i.e., the Spanish Redondo dataset) does

not have the dominance dimension, it was necessary to add a new column for dominance, filled

Valence Arousal Dominance

Portuguese 0.731 0.520 0.507

Italian 0.821 0.625 0.681

Spanish ANEW 0.785 0.594 0.737

Spanish 0.748 0.675 -

German 0.720 0.699 0.637

Polish 0.627 0.675 0.748

Table 4.4: Obtained results, in terms of Pearson’s correlation coefficient, when using monolingual
data through a leave-one-out cross validation methodology. The corresponding p-values were
always below 0.001.
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Pt Pl Emobank ANET Fb

Pearson MAE Pearson MAE Pearson MAE Pearson MAE Pearson MAE

MLP Average

V 0.686 0.234 0.499 0.227 0.359 0.086 0.639 0.301 0.384 0.154

A 0.511 0.216 0.222 0.160 0.152 0.101 0.542 0.319 0.111 0.234

D 0.470 0.238 0.312 0.187 0.058 0.093 0.261 0.263 - -

Average

MLP

V 0.625 0.232 0.429 0.226 0.284 0.073 0.697 0.312 0.298 0.132

A 0.342 0.218 0.109 0.187 0.122 0.089 0.433 0.355 0.790 0.237

D 0.579 0.234 0.436 0.194 0.123 0.122 0.622 0.258 - -

Pooling

Average

MLP

V 0.482 0.256 0.453 0.231 0.201 0.091 0.491 0.323 0.192 0.149

A 0.187 0.231 0.166 0.160 0.110 0.122 0.420 0.316 0.79 0.250

D 0.310 0.257 0.358 0.183 0.057 0.092 0.397 0.277 - -

Pooling

MLP

Average

V 0.537 0.249 0.456 0.231 0.224 0.094 0.492 0.323 0.193 0.148

A 0.266 0.230 0.168 0.160 0.098 0.130 0.420 0.316 0.82 0.244

D 0.405 0.263 0.359 0.183 0.068 0.100 0.396 0.360 - -

MLP

Pooling

Avg

V 0.339 0.317 0.402 0.222 0.083 0.071 0.605 0.312 0.137 0.161

A 0.330 0.253 0.335 0.188 0.029 0.088 0.515 0.336 0.152 0.208

D 0.219 0.342 0.256 0.183 0.039 0.182 0.327 0.268 - -

Table 4.5: Results obtained for statistical sentiment prediction of textual utterances, in terms
of Pearson’s correlation coefficient and MAE.

with the value -1 and latter ignored through a custom loss function. Whenever the dominance

dimension takes the value -1, the function will return zero, preventing the model to learn from

those values.

4.3.2.1 Simple Models Exploring Averages

In a first experiment, the goal was to observe what were the models exploring simple statistics

that had better performance, and compare them to more complex models. All the models that

were tested in these experiments are described in Subsection 3.2.2.1.

The obtained results obtained are described on Table 4.5. Despite the simplicity of a model

corresponding to an average (i.e., the MLP model is applied to each word of the text and an

average of all the outputs is calculated to deliver a final output), this was the model that showed

a better performance among the word-level solutions in almost every dataset.

4.3.2.2 Models Exploring Machine Learning

A second set of test explored machine learning models. To validate the models, it was

necessary to conduct experiments using cross-validation.

Cross-validation is a simple method allowing us to validate a model (e.g. by calculating

its precision) using all the available data, dividing a dataset into splits, usually between 2 and

5. A number of those splits are used to train the model, and the other is used to validate it,

repeating the test with the multiple folds. Considering that my experiments use several datasets,

54



Figure 4.4: Example of cross-validation with multiple datasets.

Pt Pl Emobank ANET Fb

Pearson MAE MSE Pearson MAE MSE Pearson MAE MSE Pearson MAE MSE Pearson MAE MSE

LSTM

V 0.641 0.184 0.059 0.507 0.184 0.055 0.536 0.070 0.009 0.769 0.207 0.059 0.547 0.100 0.018

A 0.608 0.164 0.047 0.333 0.166 0.034 0.333 0.088 0.013 0.617 0.188 0.053 0.494 0.177 0.060

D 0.576 0.164 0.056 0.445 0.149 0.042 0.092 0.120 0.065 0.439 0.231 0.082 - - -

MLP + LSTM

V 0.319 0.246 0.087 0.258 0.225 0.073 0.150 0.276 0.012 0.236 0.316 0.120 0.065 0.126 0.026

A 0.232 0.241 0.071 0.108 0.146 0.034 0.016 0.297 0.013 0.254 0.282 0.097 0.126 0.235 0.081

D 0.345 0.232 0.069 0.296 0.192 0.054 0.022 0.552 0.093 0.112 0.375 0.252 - - -

CNN

V 0.632 0.228 0.062 0.415 0.211 0.072 0.434 0.070 0.021 0.672 0.261 0.092 0.495 0.102 0.020

A 0.312 0.241 0.050 0.241 0.148 0.059 0.170 .0.087 0.032 0.493 0.221 0.168 0.260 0.212 0.058

D 0.427 0.234 0.063 0.247 0.235 0.109 0.040 0.258 0.075 0.261 0.329 0.091 - - -

MLP + CNN

V 0.584 0.236 0.076 0.397 0.212 0.067 0.466 0.069 0.009 0.657 0.249 0.087 0.501 0.109 0.019

A 0.345 0.221 0.063 0.281 0.146 0.034 0.136 0.089 0.013 0.536 0.204 0.060 0.316 0.215 0.065

D 0.419 0.227 0.078 0.282 0.202 0.067 0.040 0.251 0.085 0.167 0.410 0.302 - - -

CNN + MLP

V 0.552 0.223 0.066 0.395 0.215 0.066 0.449 0.071 0.009 0.523 0.080 0.066 0.485 0.107 0.019

A 0.343 0.219 0.034 0.197 0.145 0.034 0.214 0.088 0.013 0.393 0.114 0.058 0.315 0.215 0.067

D 0.342 0.227 0.061 0.243 0.147 0.061 0.066 0.182 0.076 0.408 0.291 0.149 - - -

Attention

Concat

V 0.691 0.177 0.057 0.435 0.202 0.064 0.507 0.073 0.010 0.649 0.238 0.007 0.561 0.101 0.019

A 0.620 0.165 0.046 0.297 0.144 0.035 0.302 0.089 0.014 0.481 0.209 0.051 0.565 0.176 0.052

D 0.663 0.167 0.049 0.348 0.182 0.050 0.363 0.122 0.074 0.283 0.276 0.004 - - -

Attention

Feacture

Based

V 0.641 0.184 0.050 0.501 0.192 0.059 0.531 0.069 0.001 0.680 0.226 0.056 0.557 0.098 0.021

A 0.608 0.164 0.042 0.391 0.137 0.031 0.320 0.083 0.014 0.538 0.198 0.051 0.545 0.174 0.057

D 0.576 0.173 0.058 0.470 0.160 0.043 0.082 0.116 0.065 0.479 0.217 0.084 - - -

Attention

Affine

Transformation

V 0.569 0.206 0.072 0.434 0.206 0.065 0.501 0.074 0.010 0.728 0.225 0.070 0.523 0.108 0.057

A 0.540 0.177 0.050 0.268 0.148 0.036 0.270 0.092 0.015 0.608 0.189 0.056 0.491 0.184 0.436

D 0.473 0.218 0.075 0.338 0.180 0.051 0.075 0.143 0.067 0.481 0.266 0.119 - - -

Table 4.6: The prediction of valence, arousal and dominance with several models. The training
and testing data are textual utterances form datasets in English, Polish and Portuguese.

it was necessary to divide each dataset equally between the splits. The process of using cross-

validation with multiple datasets is shown in Figure 4.4, where each colour corresponds to a

different dataset.

For this experiment, and considering the amount of time required to train each model (i.e.

considering 200 epochs), I choose to divide the datasets between two splits. In the end, each

split had the same amount of each dataset. Table 4.6 displays the results for each model in each

dataset, considering Pearson’s correlation, MAE, and the MSE.

Through Table 4.6, it is possible to draw the following conclusions:

• Comparing the simple LSTM and CNN models, the LSTM shows a better performance in

every dataset.
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• It is possible to observe the variance between the values of the LSTM with and without

the MLP layer of weights. It was expected that a pre-trained MLP layer would help to

provide better predictions. However, by comparing the Pearson correlation on both tests,

it is possible to observe worse results when using the MLP layer.

• The dimension that was more difficult to tackle was arousal, especially in the Facebook

dataset.

• All the last three models had an overall better performance, compared to the rest of the

models. Even though in some datasets (i.e., the Portuguese dataset) the results were

similar to the simple average model (i.e., see the results in Table 4.5), it is possible to see

an improvement on bigger datasets, such as the Facebook dataset.

From the work of Kratzwald et al. (2018), with a BiLSTM model, it is possible to observe

an MSE correlation on the Facebook dataset of 0.990 and 3.550, respectively for valence and

arousal. Comparing to the results obtained with the Attention Feacture Based model for the

Facebook dataset, it is possible to conclude that my proposal was able to outperform their

results.

Considering the results obtained by Akhtar et al. (2019) (i.e., with a Pearson correlation

of 0.727 and 0.355 for the Facebook dataset, and 0.635 and 0.375 for the Emobank dataset,

respectively for valence and arousal), it is possible to observe that the Attention Concat model

performed comparably (with my approach even showing better values for the dimension arousal

than the work from Akhtar et al. (2019)). Ultimately, it is possible to conclude that the Attention

Concat model has an overall good performance, even compared to models that were trained for

one language.

The results obtained by a stat-of-the-art study conducted by Godinho (2018) the a Pearson

correlation of 0.553 and 0.348 for the Emobank dataset, and 0.725 and 0.925 for the Facebook

data (i.e., for the dimensions valence and arousal, respectively). The results were obtained using

a model composed by Bi-LSTM+Attention layers, and they are similar to my results using the

Attention Feature Based model, that obtained results of 0.531 and 0.320 for Emobank, and 0.557

and 0.545 for Facebook. Comparing the results and considering that my model performed a little

lower, although being trained with several idioms, the lower performance can be justified. It is

possible to also see an improvement in my model regarding the MAE and MSE values, where for

Emobank obtained 0.069 and 0.003 (i.e. MAE and MSE, respectively for the valence dimension),

0.083 and 0.013 (i.e. MAE and MSE, respectively for the arousal dimension): In turn, Godinho
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(2018) reported 0.268 and 0.127 (i.e. MAE and MSE, respectively, for the valence dimension),

0.251 and 0.104 (i.e. MAE and MSE, respectively, for the arousal dimension).

In conclusion, the models presented in this thesis performed better than most state-of-the-

art approaches, even considering that these models are not trained to tackle only one language.

However, it would be interesting to compare this work considering datasets in even more lan-

guages.

4.4 Overview

In this chapter, I presented the results obtained by executing and training the models

presented in the previous chapter.

First, in Section 4.1, all the datasets in several languages that were used to validate the

models. Then, in Section 4.2, I described the metrics used to validate and compare the results

(i.e., metrics such as Pearson’s correlation, MAE and MSE).

Section 4.3 describes the experiments, results and conclusions drawn when trying to assign

emotion ratings to both words and larger textual utterances. Section 4.3.1 showed that both the

kernel ridge model and MLPs show similar correlation values compared to previous studies, even

slightly superior. In Section 4.3.2 we first validate how is the performance of models that assign

sentiment to text exploring a word-level statistics. Despite the simplicity of a model averages,

the results show that this model outperformed the other tested models in almost every dataset.

In Section 4.3.2.2 I describe the results for models that require training and consider the textual

structure of the sentences. The models based on attention outperformed the rest of the models,

and even compare to other state-of-the-art studies.

Considering the models tested on this chapter, I also developed a website that showcases the

results, and through which a user can predict sentiment using the model that presented the best

results overall: Attention Concat. In this website, it is possible to insert a sentence in a given

language. When the prediction is calculated, the site shows the results aligned with the relevance

that each word had in the prediction (i.e., the weights obtained through the self-attention for

each word). The website also presents a 3D graph showing the results in the VAD dimensions

for each separate word (i.e. using the pre-trained MLP model). Figure 4.5 presents screenshots

of the site designed in the scope of this master thesis.
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(a) Home page

(b) Prediction of a sentence

Figure 4.5: Website design in a prototype for predicting sentiment associated to input sentences.
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5Conclusions and Future

Work

This research aimed to understand if it is possible for a machine learning model to quantify

emotion expressed in text, interms of valence, arousal and dominance, in multiple languages. To

better answer the main research question, this study was divided into two parts (i.e., experiments

concerning words and textual utterances).

5.1 Main Results

In a first set of experiments regarding the assignment of emotion ratings to words, I wanted

to observe how well a ML model predicts sentiment in a monolingual scenario. To answer this

question, it was necessary to train models (i.e. kNN, Random Forest, Kernel Ridge and MLP)

with lexicons from Warriner and Glasgow datasets that did not appear in the ANEW corpus and

tested with the words that appear in ANEW in the three corpora. The results showed promising

results with the Kernel Ridge and MLP models. They show that a ML model can predict

outcomes comparably to human annotators. It was also a goal to understand if ML model,

trained with only English lexicons, could predict sentiment in other languages (i.e. Spanish,

European Portuguese, Italian, German and Polish). The trained models used in the previous

experience were used, and the results show that relatively high correlations can be achieved for

all five languages. However, they are inferior to the results obtained for the monolingual setting.

It was also interesting to notice that higher predictive accuracy is generally also obtained for the

languages where the correlation towards the English norms is higher (i.e., Italian and Spanish).

Now, to understand if a ML model can quantify emotion in textual utterances of multiple

languages, it was necessary to set the following secondary questions. What method provides

better results: a word or text-level sentiment prediction for text? Are CNN’s or LSTM’s better

for sentiment prediction? Do models with pre-trained MLP perform better or worst? What are

the models that perform better in this scenario?

To answer the secondary questions, several models where created. An MLP was pre-trained

with lexicons from six different languages. To infer the need to access all the syntactic structure



to infer sentiment form a text, four models that do not take into consideration the syntactic

structure and do not require training were created. Furthermore, eight trainable models were

conceived (i.e. LSTM, MLP+LSTM, CNN, MLP+CNN, CNN+MLP, Attention Concat, Atten-

tion Feacture Bassed, Attention Affine Transformation), validated with two-fold cross-validation.

The results show that three trained models performed better (Attention Concat, Attention

Feacture Bassed, Attention Affine Transformation); however, the Average word-level prediction

model also showed promising results. LSTM’s tend to perform slightly better than CNN models.

The difference was more evident in the arousal dimension. However, when the CNN and LSTM

model were aligned with the pre-trained MLP, the results decreased, showing that a pre-trained

MLP can decrease the performance of the model.

Overall, this thesis shows promising results when inferring sentiment, even in several lan-

guages. The main contribution of this work relies, first on the significant amount of models

that were validated to infer how to extract sentiment from both words and textual utterances.

There are few works on sentiment quantification, in particular, considering the dimensional way

of quantifying sentiment. This thesis provides three trained models and one word-level model

that show promising results compared to the state-of-the-art.

5.2 Future Work

For future work, it could be interesting to extend the experiments reported in this dis-

sertation for word-level prediction of emotion ratings, considering also other languages and

other types of lexical norms (e.g., leveraging data from the Bristol norms for age of acquisition,

imageability, and familiarity), other types of forecasting models (e.g., different types of ensem-

ble approaches, combining different modelling alternatives and choosing the best combination

through cross-validation). It would also be interesting to test as the combination of skip-ngram

word embeddings with other types of features, such as the incorporation of features based on

word frequency, word length or orthographic similarity.

Besides fasttext embeddings, there are other distributional word representations that could

also have been used in these thesis tests for comparison. Recent studies suggest that, after

careful hyper-parameter tuning, there are no global advantages in any of the proposals from the

recent literature. Still, for future work, it could be also interesting to experiment with word

embeddings trained on different types of corpora (e.g., on social media data, that is perhaps

more reflective of people’s attitudes and emotions) and/or relying on different approaches, such
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as the GloVe method.

On what regards predictions for larger pieces of text, it would be interesting to apply

contextual encoders as word embeddings (i.e., Bert). It might also. be interesting to apply

different models to predict emotion ratings, such as models that use transformers.
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