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Abstract

Less than 12 years after their inception, cryptographic coins have emerged from obscurity to excite
businesses and consumers, as well as central banks and other authorities. They attract because they
promise to replace trust in long-standing institutions with trust in a new, fully decentralised system
based on blockchain and distributed ledger technology (DLTs). This technology has considerable
processing costs, bearable for high-value financial transactions, but unsuitable to support numerous
low-value transactions. New variants of the algorithms initially used to allow the implementation of
micro-payments in Machine-to-Machine (M2M) transactions associated with the Internet of Things
(IoT) have been proposed, as in the case of IOTA, a digital currency that promises to be suitable
to support payments associated with IoT, which avoids the weight associated with implementing
the blockchain while maintaining distributed validation of transactions. The aim was to assess the
suitability of the IOTA for the implementation of micro-payments in the area of IoT applied to public
transport. As a basis, we intended to take advantage of the immutability of the issued tokens, allowing
the registration of transactions in an asynchronous way, keeping the validation and accounting of
these transactions in a safe and distributed manner. In the proposed solution, the various models
for implementing IOTA in its application to public transport have been studied and deepened due to
their limitations and advantages. The results of the work have demonstrated a solution with adequate
processing capacity, but with many limitations for implementation in a real case scenario, in its current
state. No paragraph breaks.
Keywords: Blockchain, Distributed Ledger Technology, Integrated ticketing, Internet of Things,
IOTA, Micropayments

1. Introduction
Blockchain, IOTA and other forms of Distributed
Ledger Technologies (DLT) have been identified as
one of the most exciting sets of technologies since
the appearance of the Internet. The DLT is based
on a shared, encrypted database to store, protect
and validate electronic transactions without the
need for a central validation system. In this way,
it presents itself as a decentralised, open and pub-
lic” ledger system”, similar to a database, whose
validation is done, according to a certain consensus
protocol, by its users. The great leap in popularity
of the DLT took place in 2007 with the creation of
Bitcoin Blockchain. However, when looking at its
applicability to the Internet of Things (IoT), issues
such as scalability, offline accessibility, transaction
fees and quantum security were not resolved. Alter-
natively, the IOTA Foundation developed and pub-
lished the tangle, which it claimed resolved these is-
sues inherent in the Blockchain, and which wanted
to equip the IOTA with an appropriate distributed
ledger. A scalable ledger was essential to be able
to handle the huge number of txs sent by millions

of devices, including micro-txs and zerovalue txs, as
messages or sensor data, in other to reduce the high
transaction costs for numerous IoT scenarios. The
Tangle, while presenting very similar characteris-
tics to Blockchain, would allegedly be able to solve
all the above-mentioned problems. This growing
popularity of DLT has triggered a wave of innova-
tions, experiments, analysis and research, which has
sparked, among others, the financial sector, which
has been faced with the emergence of a vast num-
ber of explorations made using this technology for
payments and settlements. These experiences with
DLT demonstrate their potential for the next gen-
eration of payment systems, improving the integra-
tion and reconciliation of settlement accounts and
their ledgers, involving electronic and mobile pay-
ment programmes that enable integrated payments,
in real time, flatter structures, continuous opera-
tions and global reach. and end-to-end payment
and settlement transfers. In addition to monetary
transactions, experts have already begun to per-
ceive and study the usefulness of this technology in
changing the mobility sector. European Commis-
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sioner for Transport, Violeta Bulc. recognised that
it could help in the challenge of integrating shared
mobility services. Applications in this area allow ac-
tors to establish direct relations between themselves
according to a commonly agreed set of rules and a
high degree of trust, without having to go through
a central authority. By combining a common lan-
guage and syntax for the ”mobility internet” and
new means of accounting transactions, these appli-
cations can help redefine the way people and or-
ganisations access, pay for, use and/or manage mo-
bility services through a wide network of unrelated
and competing transport service providers and plat-
forms. Thus, the main objective of this pioneering
research work was to investigate the applicability of
IOTA in the mobility sector by conducting a series
of benchmarks on the technology and developing
a Proof of Concept to prove the feasibility of the
designed solution. To this end, it was essential to
understand how well IOTA integrates with exist-
ing different operation models, to develop a seam-
less proof-of-concept demonstrator for the practical
validation of results and to explore the resources
needed for its practical implementation. As a re-
sult of this research and experience on the use of
DLT for micropayments in a transportation ticket-
ing system, has provided information on its poten-
tial benefits, risks, limitations, and implementation
challenges, considering that, despite its limitations
and lack of maturity, this technology presents great
potential for implementation and likely long-term
applications and benefits for the development of the
micropayment system in IoT, in future versions.

2. Background and Related Work
2.1. Distributed Ledger Technologies
Distributed Ledger Technology (DLT) is defined by
Prableen Bajpai as ”... the technological infrastruc-
ture and protocol that allow simultaneous access,
validation and record updating in an immutable
manner across a network spread across multiple en-
tities or locations”. Its characteristics of decen-
tralisation, immutability, and scalability have given
it the potential to manage and register secure mi-
cropayments, constituting a possibility to overcome
problems in IOT systems. There are fundamen-
tally two main types of DLT, blockchain based on
blocks or like a directed acyclic graph (DAG) where
there are no blocks (for example, IOTA Tangle).
Blockchain is a distributed ledger for storing and
sharing data across all nodes in a network. This
ledger is considered tamper-proof, making it ex-
ceptionally suitable for cryptocurrencies, for exam-
ple, Bitcoin, which, however, has posed problems of
scalability, as it is slow and expensive to perform
transactions in the Bitcoin blockchain, due to the
single chain of blocks being linear, and the blocks
cannot be created simultaneously.

2.2. Distributed Ledger Technology in Cryptocur-
rencies

The blockchain is a distributed ledger that is
updated in groups of transactions called blocks.
Blocks are then chained sequentially via the use
of cryptographic hashes to form the blockchain,
que have seven principal characteristics: (1) Dis-
tributed databases and ledgers, (2) Irreversibility
of records, (3) Transparent identity management
with pseudonymity, (4) Robust validation and con-
sensus, (5) Peer-to-peer transmission, (6) Computa-
tional logic. Blockchain-based permissionless cryp-
tocurrencies have two groups of participants: “min-
ers” who act as bookkeepers and “users” who want
to transact in the cryptocurrency. At face value,
the idea underlying these cryptocurrencies is sim-
ple: the ledger is updated by a miner, and the up-
date is subsequently stored by all users and miners.
Underlying this setup, the key feature of these cryp-
tocurrencies is the implementation of a set of rules
(the protocol) that aim to align the incentives of all
participants to create a reliable decentralised pay-
ment technology. An oversight committee roposes
that any transaction could be authenticated, and
any transmitted piece of information maintained by
an emergent process of consensus among a globally
distributed network of peers that follow a precise,
incorruptible method to check any change in the
system. The cryptographic identity of each new
block in a blockchain must be validated before it
can be included in the latest iteration of the ledger
that is propagated to, and recognized by, all nodes.
The recording of the blockchain database at any
given time is permanent, chronologically ordered,
and available to all others on the network. This
immutability is at the heart of the “trustfulness”
of the blockchain. What makes this technology
so appealing and game changing is the absence of
third parties, such as payment processors, during
the exchanges. This means that for a transaction
to be made, it has to be validated by the community
(peer-to-peer).

3. IOTA
3.1. Overview

The Tangle runs an asynchronous protocol in a
peer-to-peer network to facilitate transaction pro-
cessing on an immutable, distributed, decentralized
ledger secured by cryptographic measures. The
Tangle is comprised of transactions, or sites, and
edges, which connect sites and form a DAG. The
network consists of nodes and each node stores its
version of the Tangle. An edge indicates that one
site directly approves another. A path symbol-
izes indirect approval. When a new transaction is
issued, it approves two other transactions, which
are previous transactions that have never been ap-
proved by 16 other transactions. The protocol vali-
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dates if two approved transactions conflict by exam-
ining the Tangle history, and if it discovers a conflict
between them, it will not approve those transac-
tions, otherwise a node will store the transaction in
its ledger and broadcast it to its neighbors. Each
transaction’s weight determines its importance in
the Tangle. The Tangle defines a transaction’s cu-
mulative weight as the sum of the weights of other
nodes that directly or indirectly approve the trans-
action, including itself. Therefore, the number of
nodes that directly or indirectly approve the node
represents the cumulative weight. The transactions
that are chosen to be approved, are done so us-
ing a random walk tip selection algorithm. Cur-
rently, the algorithm that biases the random walk
is the Markov Chain Monte Carlo (MCMC). In a
Markov chain each step does not depend on the pre-
vious one, but follows from a rule that is decided in
advance, taking into consideration the cumulative
weight of the transactions. One of the main con-
cerns of blockchain security is the malicious node
issue. Without the use of a tip selection algo-
rithm, like MCMC random walk, nodes can become
lazy and allow lazy tips, which are tip transactions
that point to older transactions, to be confirmed.
Confirming old transaction is unwanted since it in-
creases the branching factor of the graph and thus,
it increases the number of tips. Furthermore, lazy
nodes do not help the network to grow since no new
unapproved transactions get confirmed and can eas-
ily allow the occurrence of double-spending attacks
on the network, such as the parasite-chain. Despite
this, this type of attacks can still occur when using
the tip selection algorithm if an attacker can gen-
erate enough cumulative weight on his transactions
to surpass the cumulative weight of the Tangle. To
avoid this, the current IOTA system’s stability re-
lies also on a particular type of node, called the
coordinator node. The coordinator issues signed
zerovalued transactions at a certain rate, which are
called milestones, and confirms every transaction
in the path of the selected transactions to approve
to the latest milestone (at least). The above men-
tioned tip selection algorithm starts the random
walk from a milestone at a certain depth. That said,
the nodes validate transactions upon its receipt and
during the tip selection. The coordinator confirms
transactions by issuing milestones. A transaction
is only considered for confirmation if the node has
its transaction history path until a milestone and
if the node is synchronized with the network i.e.
possesses a ledger equal to the other nodes and the
latest milestone index.

3.2. Data Models
IOTA uses a balanced ternary numeral system com-
posed of trits and trytes. This system is used all
through the protocol, from seed and address gen-

eration to transaction generation, content and val-
idation. The current implementation of the Tangle
uses 81-character seeds, which can be seen as the
access-key, necessary to perform operations on the
Tangle. An address is like an account that belongs
to a seed and that has a 0 or greater balance of
tokens. Addresses are derived from the seed and
can be seen as the public half of a public/private
key pair, except both keys are generated using the
Kerl [21] hash function, which is based on SHA-3
[20]. The corresponding private keys are used to
sign transactions to prove their ownership and as
such, they should not be reused. A transaction is a
single transfer instruction that can either withdraw
IOTA tokens from an address and deposit them into
another address or have zero-value. Transactions
considered by the Tangle protocol can be in two
states: validated and unconfirmed (called tips) or
confirmed. A bundle is a group of one or multiple
related transactions, that rely on each other’s valid-
ity. It acts as a transactions container to transfer
data or tokens where transactions reference each
other through their hashes and, when sent to the
Tangle, the bundle must reference other two trans-
actions. It is always an atomic operation, i.e., either
all transactions are successful or none.

3.3. Network

In IOTA there are no access controls for partici-
pants to join the network so that anyone can run a
node to read from and write into the public ledger.
Nodes are the core of the Tangle and connected to
others (neighbors) they form the IOTA network.
They are responsible for the following key func-
tions: (1) Keeping a record of the addresses with a
balance greater than 0, (2) Validating transactions
when performing the tip selection, (3) Attaching
valid transactions to the Tangle upon its receipt and
(4) Broadcasting transactions to neighbors. The
process of validating a transaction is to make sure
that their histories in the ledger do not conflict and
that counterfeit transactions are never confirmed.
Transactions are only confirmed by the coordina-
tor. The coordinator is an application whose pur-
pose is protect the Tangle from double-spending
attacks. Therefore, nodes use the signed transac-
tions issued by the coordinator, called milestones,
to reach a consensus on which transactions are con-
firmed. When a valid milestone references an exist-
ing transaction in the Tangle, nodes mark the state
of that existing transaction and its entire history as
confirmed and the tokens are transferred.

3.4. Tip Selection

The selection of each tip transaction is done by us-
ing a random walk biased with the Markov Chain
Monte Carlo (MCMC) algorithm. A walker starts
from a milestone at a given depth and transverses a
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path, validating every transaction, until it reaches a
tip. At each transaction in the path, it uses a transi-
tion function depending of the the transaction’s cu-
mulative weight. The higher the cumulative weight,
the higher the probability of that transaction being
confirmed later.

3.5. Proof-of-work (PoW)
In the Tangle, as a spam prevention measure such
as Hashcash [16], each transaction must include a
PoW result to be valid. A proof of work (PoW)
is a piece of data that is calculated using trial and
error to meet certain requirements. This PoW can
be difficult to do, depending on the chosen difficulty
level in the network (Minimum Weight Magnitude).

3.6. Transaction workflow
The process flow to complete a transaction is de-
scribed below: (1) Generate bundle hash: Kerl
hash function with sponge constructor absorbs all
transactions objects necessary for validation and
squeezes the hash, (2) Sign Input Transactions: The
signature is generated using the bundle hash and
a private key., (3) Tip selection: MCMC is used
to randomly select two unvalidated transactions.,
(4) Proof-of-work: For each transaction included in
the bundle, the PoW is computed., (5) Broadcast
and Validation: Each transactions is broadcasted.
Transaction validation and confirmation is then re-
quired to transfer the funds.

3.7. Security Analysis
There are multiple ways to attempt a double-
spending attack in IOTA. A few of them are de-
scribed in the white paper [22]. These are the large
weight / outpace attack [22] [19], the splitting at-
tack [22] and the parasite chain attack [22] [17]. The
following does not attempt to be a comprehensive
list. There are other possible attacks, e.g., replay
attacks [18], 34% attack [14], Sybil Attack [22].

4. Solution
The main goal of this solution is to create an im-
mutable ticketing system as a proof of concept using
IOTA, and allow further benchmarks. This system
will allow users to execute different use cases on
different transport models, such as the traditional
model (e.g., metro) where there is a ticket validation
component at the entrance of the service provider
gateway and the ticket is handled to this gateway,
the taxi model where the client can travel and pay
based on distance to travel and finally the wallet
consumption model (e.g., eletrical scooter) where a
check-in and check-out are requested to start and
stop the journey respectively.

4.1. Overview
The solution is divided into three parts: Frontend
(client and service provider applications), Wallet

Manager API, and IOTA, as shown in Figure 1. A
client represents the end-user of the ticketing sys-
tem, while a service provider represents a transport
operator.

The design of the IOTA network for this sys-
tem had to take into account some assumptions
and some limitations, discussed in section 5, and is
mainly comprised with three components: the coor-
dinator, which runs Compass [3] and IRI software,
the nodes, which run IRI, and the proxies, which
run Caddy [2]. All this machines were equipped
with a Ubuntu Server 18.04 with 4GB of RAM and
a 64 bit processor. A proxy is solely dedicated to
performing proof of work and proxying the other
client’s requests to the node. Considering the func-
tioning and importance of the node, seen previ-
ously in section 2, and compared to the proxy, a
proxy would apparently be more suited for proof of
work computations and handling client’s requests
(which was later shown in section 5). As such, the
design of the network consists in a coordinator, a
node per service provider and a proxy per service
provider transport gateway/terminal, which could
be increased as further needed. These were setup
in a virtualized environment (VMware [13]). After
configuring each component, the first node on the
network was launched from a snapshot containing
the genesis transaction of the network, that is, the
starting state of the network. In the initial state
of this solution’s network, all available IOTA to-
kens are associated to a wallet manager’s address.
Therefore, it is necessary to create a seed and gen-
erate an address for the entity that manages this
solution beforehand. All the IOTA tokens in cir-
culation on the network will be distributed by this
seed. The Figure 2 demonstrates the network com-
ponent’s software and communication channels.

The wallet manager serves the client and service
provider applications through a REST API and it
was developed using the Spring Boot [10] for Java.
This component acts an intermediary between the
users and IOTA network, responsible for keeping
client seeds, service provider seeds, addresses and
prices in a SQLite [11] database, and performing
operations such as balance updates, token trans-
fers and ticket generation. Its main operations
are described in Table 1 and in Table 2. It also
uses the IOTA IRI API which is the node’s API
to interact with the network and it was developed
using Jota (Official IOTA client library for Java)
[5]. The core operations performed when sending a
transaction are prepareTransfers, validateTransfer-
Addresses, attachToTangle, storeTransactions and
broadcastTransactions, as described in Table 3

The frontend consists in a single multi-platform
application developed using the Ionic framework [4]
whose intent is to provide an interface to use the
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Figure 1: Solution’s High-Level Architecture

Figure 2: IOTA Network Detailed Architecture

Wallet Manager API (in most cases) and it has dif-
ferent functionalities for both the client and service
provider. The client application should be used by
the clients of the system (i.e., a person who wants
to buy and/or use tickets to ride a form of public
transport). Its main functionalities consist in: (1)
Balance and transaction history update, (2) Token
acquisition and (3) Different ticket generation al-
ternatives. The service provider application should
be used by the service providers of the system (i.e.,
Taxi, Metro, Bus). Its main functionalities con-
sist in: (1) Balance and transaction history up-
date, (2) Address update and (3) Price update. The
service provider endpoint was also implemented in
the service provider application in order to nim-
bly simulate a transport gateway/terminal. Service
provider’s endpoint is able to: (1) Receive tickets
and (2) Send transactions.

4.2. Models
As a trust model, we assume the client as the only
possible threat to the system. Therefore, client’s
application can act maliciously: clients can try to

Operation Action
Create User Registers user login information in database
Login Login client
Check Balance Get user’s balance, transaction history and addresses with tokens
Charge Wallet Transfers tokens to a client address
Transport Price Get requested service provider’s transport price
Taxi Price Get requested service provider’s transport price based on distance
Ticket Generates a ticket for the selected service provider transportation option
Check-in ticket Generates a check-in ticket for the selected service provider transport
Check-out ticket Generates a check-out ticket for the check-in ticket previously generated

Table 1: Client description of operations

Operation Action
Create Service Provider Registers service provider login information in database
Login Login service provider
Check Balance Get providers’s balance, transaction history and addresses with tokens
Updated Price Change service provider transport price
Update Address Generate a new receiver address for the service provider

Table 2: Service Provider description of operations

Operation Action
attachToTangle Does proof of work for the given transaction
broadcastTransactions Sends transaction trytes to a node
checkConsistency Checks the consistency of transactions
findTransactions Finds transactions that contain the given values in their fields
generateNewAddresses Checks if a set of transactions is confirmed
getAccountData Returns addresses balance, transaction history and associated tokens
getBalances Calculates the confirmed and unconfirmed balance of addresses
getInclusionStates Checks if a set of transactions is confirmed
getInputs Gets the input addresses of a seed
getTransactionsToApprove Gets two consistent tip transaction hashes to use as tips
getTransfers Finds all the bundles for all the addresses based on the seed
getTrytes Gets a transaction’s contents in trytes
prepareTransfers Prepares transfer by generating bundle, finding and signing inputs
sendTransfer Runs prepareTransfers, attachToTangle and then storeAndBroadcast
storeAndBroadcast Runs storeTransactions and broadcastTransactions
storeTransactions Stores transactions in a node’s view of the Tangle
validateTransfersAddresses Validates the supplied transactions for correct input/output and key reuse
wereAddressSpentFrom Check if a list of addresses was ever spent from

Table 3: Jota library used operations

get access to other client’s accounts, send fake tick-
ets or reuse tickets (double-spending). Following
STRIDE, Tampering and Repudiation threats are
found in a scenario where a client receives a ticket
from the wallet manager and is able to change it
before broadcasting it to the service provider end-
point. To solve them, it is necessary to guarantee
authenticity, integrity and non-repudiation of the
ticket.

4.3. Overlayer
The requirements presented in the previous section
are fulfilled using digital signatures. In order to do
so, the wallet manager needs to generate a pub-
lic / private key pair for each new registered ser-
vice provider and the public key must be known by
all service provider endpoints. After that, the user
can then request a ticket for that service provider.
The ticket is generated and the aggregation of the
ticket with the ticket time of expiration is signed.
Both the signature and the ticket are sent to the
client. The client then sends this data to the service
provider endpoint which will verify the signature
and if the ticket did not expire yet. If everything
is validated, the transactions is sent to the node
and the transaction ID contained in the ticket is
broadcasted to all other endpoints in the network.
The expiration date together with this broadcast,
provide an early attempt to stop double-spending.

4.4. Use Cases
To validate the architecture of this system, four spe-
cific use cases were designed to exemplify the main
functionalities of the project’s features:

1. Check Balance. This operation allows a client
or service provider to check its account bal-
ance and transaction history. In this use case
the client starts by requesting an update of his
account status to the wallet manager, which
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will request that data to a node in the IOTA
network. The node responds with the con-
tabilistic balance (obtained from tip transac-
tions - unconfirmed), the confirmed balance
(obtained from confirmed transactions), the
history of transactions from/to the client and
its addresses which contain balance.

2. Charge Wallet. This operation transfers bal-
ance to the client. In this use case the client
starts by requesting a debit to his account
to the wallet manager, which will generate a
transaction from his address to the client’s
address. When this process has completed,
the wallet manager will confirm the debit to
the client. The necessary steps to generate
an IOTA transaction are represented in order
to provide a better understanding on further
chapters.

3. Use Transport. This operation allows a client
to use a transportation method, transfering
value from his account to the service provider.
In this use case the client starts by requesting
the price of the chosen transport. Then, he
requests a ticket to the wallet manager which
will generate an unfinalized bundle with more
parameters, called a ticket, and send it to the
client. The client can then use this ticket by
sending it to the service provider endpoint.
The latter will validate the parameters added
by the wallet manager and allow or deny the
use of the transport. At the same time, or when
available, the proxy will compute the proof of
work and broadcast the bundle to a node in
the IOTA network, at the service provider end-
point’s request.

4. Use Transport (Wallet Consumption). This
operation allows a client to use a transporta-
tion method by doing a check-in and to stop
using by doing a check-out. In this use case
the client starts by requesting a check-in ticket
to the wallet manager which will generate an
unfinalized bundle with more parameters and
a transactional value of 0, called a check-in
ticket, and send it to the client. The client can
then use this ticket by sending it to the service
provider endpoint. The latter will validate the
parameters added by the wallet manager and
allow or deny the use of the transport. At the
same time, or when available, the proxy will
compute the proof of work and broadcast the
bundle to a node in the IOTA network, at the
service provider endpoint’s request. After some
time, the client does a check-out, requesting it
to the service provider endpoint. The endpoint
then calculates the cost of the trip and request

Figure 3: Generating and sending a transaction to
a node

Figure 4: Generating and sending a transaction to
a proxy

a check-out transaction to the wallet manager
which will generate an unfinalized bundle with
more parameters and a transactional value of
the difference between the time of check-out
and time of check-in times the service provider
rate, called a check-out ticket, and send it to
the service provider endpoint. Then the proxy
will compute the proof of work and broadcast
the bundle to a node in the IOTA network, at
the service provider endpoint’s request. In the
end, the service provider endpoint informs the
client of the paid price of the trip.

5. Results

The benchmark consists in generating and sending
multiple transactions at the same time to a node
or/and a proxy. The process of generating and
sending a single transaction is represented in Figure
3 for a node and in Figure 4 for a proxy.

IOTA nodes and proxies will be evaluated on
two different scenarios via the following metrics:
(1) Tip selection (getTips) and proof-of-work (at-
tachToTangle) computation times, (2) Transactions
completed per second (Throughput), (3) Time to
generate/complete transaction (Latency), (4) Time
to confirm transactions (Confirm Latency), (5)
CPU and Memory usage. On both scenarios there
were also some network variants such as: (1) Type
of machine (node or proxy), (2) Number of vir-
tual CPU’s/logical cores in the machine (ranging
from 1, 2 or 4), (3) Proof-of-work effort (Minimum
weight magnitude of 3, 6, 9, 11 or 13) and (4) Dif-
ferent workloads (Number of sent transactions). To
achieve this, a self-made benchmark tool was cre-
ated using Python as the coding language and Py-
ota [8] as the official Python client library for IOTA
since it was the only library that supported asyn-
chronous requests to the nodes. Python, however,
does not provide the functionality of ”true” threads
due to GIL. GIL (Python Global Interpreter Lock)
[9] is a mutex (or a lock) that allows only one thread
to hold the control of the Python interpreter. This
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means that only one thread can be in a state of
execution at any point in time. Despite this, since
most of the tasks were network I/O bound achiev-
ing concurrency with asynchronous IO was enough
for the task. It was implemented using the asyncio
library [1]. Then, after verifying that the tool was
not using all the available computing power of the
machine that ran the benchmarking tool, the multi-
processing library [6] was used in order to take full
advantage of every logical core. On the other hand,
the IOTA node was configured to be the publisher of
ZeroMQ [15] events, regarding transactions that the
IRI node has recently appended to the ledger and
transactions that had recently been confirmed, and
the tool acted as subscriber. The computational re-
sources of the hosts were logged using the top [12]
tool in Linux at a rate of one measure per second.
All this data was then compiled to a database and
analyzed using Power BI [7]. The environment in
which the benchmark was performed consists in two
physical machines connected in a LAN. One ran a
node and a proxy in a virtualized environment with
4GB of RAM dedicated to each and the number
of logical processors of the virtual machines varied
between 1, 2 and 4. This physical machine has the
following hardware specifications: an AMD Ryzen 7
3700x 8-Core 3.6Ghz with 16 logical processors and
32GB of RAM. The other machine ran the devel-
oped benchmark tool once per core variation, that
is three runs for the node and three runs for the
proxy, making a total of 6 runs. Its hardware speci-
fications are: an Intel I5-8300H 4-Core 2.3Ghz with
8 logical processors and 16GB of RAM. The next
sections will describe the gathered results obtained
from this tool in different scenarios.

5.1. Performance Tests

In Scenario I, all previously described network vari-
ants were used and the following metrics were re-
tireved:

1. Proof-of-work (attachToTangle) and Tip selec-
tion (getTransactionsToApprove) computation
times.

2. Transactions completed per second (Through-
put).

3. Time to generate/complete transaction (La-
tency).

4. Time to confirm transactions (Confirm La-
tency).

5. CPU and Memory usage.

The Scenario II consist is one node and one prox-
ies, both with 4 logical cores each, only a proof-
of-work effort (Minimum weight magnitude) of 9 is

studied and the network has an even higher work-
load (Higher number of sent transactions) when
compared to Scenario I. This time, the tool sent a
total of 1200, 1600, 1840, 2000, 2400, 3200 or 4000
transactions in total and the Throughput was lim-
ited by the number of transactions requested per
second by the tool. The objective of this scenario
was to extend the previous benchmarks presented.

5.2. Functional Tests
There were two types of operations to measure: (1)
the Wallet Manager API operations and (2) the ser-
vice provider endpoint operations. The first was
tested using JUnit and filters over HTTP(s) re-
quests that provided the execution times for each
endpoint. The tests ran 50 times to get an average
result and a more accurate representation. The er-
ror was gathered from the minimum and maximum
execution times in the test. The second was tested
automatically in the application with a simple loop
function. It also gathered the results of 50 exe-
cutions and averaged them, and the error was also
measured in the same way. Therefore, since some of
the created use cases use wallet manager API and
service provider endpoint’s operations, the results
were then summed to create an approximation of
the execution times in a real life scenario with only
one client. This results obtained seemed to fit to
the gathered results for the IOTA network on a low
number of total sent transactions.

6. Discussion
This sections justifies some of the design decisions
made for this work by analysing three scenarios. We
will consider, in the course of this section, as possi-
ble double-spending the scenario where a client is-
sues a fake ticket and is able to use a transport, even
though the ticket contained in the transaction later
becomes detected as a double-spend in the Tangle

1. Proof-of-work is computed at the transport
gateways: In this scenario, the minimum
weight magnitude can be a lower value than
the standard IOTA network because the trans-
actions can be generated by the gates instead
of a client, which are less trusted – this re-
sults in a more centralized architecture which
requires more computational resources. This
architecture is not as centralized as the dedi-
cated nodes alternative but it is not so feasible
since the transportation gates are usually low-
performance devices, resulting in a very high
delay to compute proof-of-work, thus making
this scenario unfeasible.

2. Proof-of-work is computed at the client’s
smartphone: In this scenario, the minimum
weight magnitude needs to be similar to the
standard IOTA network because the transac-
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tions are generated by the client and it is used
to prevent spamming of the network – this re-
sults in a more decentralized architecture mak-
ing it possible to save network resources. How-
ever, because smartphones do not have the
same computing power as a dedicated machine
and the minimum weight magnitude needs to
be high, this results in a high delay to com-
pute proof-of-work. The processing power of
the device would also change the experience
a lot from client to client and affect its bat-
tery. What also makes this scenario unfeasi-
ble is the possibility of double-spending. In
this scenario the client would need to have in
his possession all the necessary information to
compute and generate a transaction and due to
the time it could take to approve a transaction,
the IOTA network would only detect a double-
spend much time after the user had delivered
the transaction.

3. Dedicated nodes or proxies to compute proof-
of-work: In this scenario, the minimum weight
magnitude can be a lower value than the stan-
dard IOTA network because the transactions
can be generated by a dedicated trusted server
instead of a client – this results in a more cen-
tralized and secure architecture which requires
more computational resources but also makes it
possible to achieve better proof-of-work perfor-
mance since the hosts can be high performance
machines. It would also allow to implement a
solution for the double-spending problem, by
making sure that tickets were authentic and
not allowing repeated tickets to enter the sys-
tem. It was, as such, the most fit scenario to
implement in a public transport ticketing sys-
tem.

The previously obtained results were conducted
to evaluate the chosen scenario and to provide bet-
ter insights when designing the solution. The main
takeaways were:

1. Proof-of-work computation times highly de-
pend on the chosen minimum weight magni-
tude

2. Tip selection computation times highly depend
on number of transactions received by the host
in a period of time, stabilizing after a certain
threshold

3. Not enough computational resources on the
proof-of-work computing host will cause a
great delay in this operation

4. Node’s seem to constantly grow its memory us-
age with time as more are sent transactions at
a fixed throughput

5. A proxy is more reliable and better performing
on high demanding environments (e.g., higher
minimum weight magnitudes and/or higher
number of requests)

6. Coordinator nodes constant high computa-
tional resources (CPU and/or Network IO) us-
age will cause a great delay in transaction con-
firmation speeds or even failure/crash

Gathering all this data and studying it for the
chosen scenario, we could theoretically apply it to
a real-life scenario. Using a proxy connected to a
node, both with 4 logical processors (2 CPU’s) and
4GB of RAM, to receive the requests from trans-
port gateway/terminal at the same fixed rate as
the previously executed benchmarks on a host with
the equivalent specifications, a Throughput of 6
transactions completed per second would be accom-
plished. This means that a single proxy connected
to a node would be able to send around 500.000
transactions to the Tangle per day. If we were to
double its computational power to 8 logical cores
(4 CPU’s), we could also double its Throughput to
12 transactions completed per second and it would
be possible to send around 1 million transactions
to the Tangle. All this, while most likely not hav-
ing more than 90% CPU usage at a given point in
time. These results make the primary solution pre-
viously presented in Chapter 4 viable in terms of
performance/cost relationship.

7. Conclusions

Given the defined requirement for processing mi-
cropayments in little time without much computa-
tional effort, IOTA promised to be the most inter-
esting DLT to study. It was, at the beginning of
this project, a relatively unknown and unstudied
DLT. Despite all the advantages of using a DLT,
such as IOTA, to implement a ticketing system in
the mobility sector, there are still some limitations
in this technology that were not addressed by its
creators in the course of this work. The most impor-
tant limitations of IOTA in this context were: (1)
The high demanding computational effort required
when computing the proof-of-work, which makes it
difficult to integrate IOTA into low-performance or
batterydependent devices, (2) The coordinator as
a single point of failure, makes the confirmation of
transactions reliant on a single node. If this node
fails, the whole network is vulnerable to double-
spending attacks and (3) The lack of performance
and scalability benchmarks of its components and
operations, makes it difficult to design a network
able to handle thousands of requests. Some limita-
tions found in the IOTA had to be addressed and to
do so, some benchmarks were created and a solution
was designed to mitigate some of the limitations in
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light of the requirements present in a ticketing sys-
tem for the mobility sector. It was achieved by:
(1) Reducing the proof-of-work effort, (2) Designing
an overlayer which not only transformed IOTA into
a permissioned network, preventing a client from
travelling a number of times before its detected in
the IOTA network as a double-spend, but also in-
creased the resiliency of the coordinator and the
scalability of the network and (3) Developing a se-
ries of benchmarks on IOTA’s main components,
the node and the proxy, in order to design a well-
scaled network to support the developed solution
and future works. . With these problems addressed
and understood, it was then possible to develop a
solution as proof-of-concept of a ticketing system
for multiple transport modalities and different us-
ability schemes using IOTA. However, this design of
the solution brought some other limitations which
were not addressed in this work. In conclusion, de-
spite having addressed some of the issues and hav-
ing designed a workable proof-of-concept, we found
IOTA 1.0 to be an going evolution not yet mature
enough to be implemented in a large scale real life
scenario. For future work it is suggested: 1- To
further improve the references implemented in the
IOTA components - distribute the client that is per-
forming the requests so that more requests could be
sent per second by not being limited to the com-
putational resources of one machine; increase the
number of nodes in the IOTA network to study its
scalability; Benchmarks could be also executed on
lowperformance devices, fit for IoT, on lower proof-
of-work efforts. 2- To further improve the solution,
the wallet manager component needed to be bench-
marked and audited in order to transform it into a
secure and highly available component, since with-
out it would be impossible to use the network. An
other component could also be added to the solution
to provide better auditing capabilities. As a proof-
of-concept, we could distribute the designed compo-
nents into different networks and implemented the
service provider endpoint in a low-performance de-
vice (e.g., Raspberry Pi), which would allow a more
seamless and real-life experience. Since in January
2020 the IOTA Foundation proposed a number of
improvements to what they called Coordicide [24],
which were not published in time to be included in
this research work, and which would take the IOTA
to a place closer to the goals set out here, we ad-
vise that this project be repeated at the launch of
version 2. 0 of the IOTA, as we believe that the
conditions are created for IOTA to be the closest
technology to the DLT that was initially promised
to process micropayments in a short time, without
much computational effort on IoT devices.
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