
Online anomaly detection in univariate data streams
Carlos Manuel M. Branco

Lisboa, Portugal
carlos.m.branco@tecnico.ulisboa.pt

ABSTRACT
Anomaly detection is a crucial field nowadays, ranging from
fault detection in machinery, surveillance, fraud detection, to
many others. However, it is not always easy to tackle the
volume and speed of arriving data, and issue anomaly scores
on it in an instantaneous manner, as usual in datastreams. The
present work centers on the problem of detecting anomalies
over continuous and endless univariate time series - datas-
treams. In particular, we propose to use the Matrix Profile
method for identifying discords, and managing them both
probabilistic and similarity wise, over both the original and
differentiated datastream. Additionally, we used the fourier
analysis to identify the main frequencies within the time series,
in order define the window size parameter. Finally, we vali-
date our method using experimental results over well known
dataset in anomaly detection.

Author Keywords
Anomaly detections; Timeseries; Datastreams; All Pair
Similarity; Discord Management; Matrix Profile.

INTRODUCTION
Finding interesting behaviours and events is hardwired into our
brains due to millennia of evolution. But what characterises
this difference, and distinctness in events? Is it something
coarse, or more subtle to a point where one might almost not
distinguish it from what is normal?

Anomaly detection has garnered considerable attention in the
last couple of years [2]. In the case of datastreams, several
problems are frequent, such as the volume of data generated,
possible endlessness of data, timely detection of change and
anomaly, lack of standards for classifying said streams, and the
ever changing nature of data, a phenomena known as concept
drift, are recurrent.

In order to address the problem at hand, detailed objectives
for the task should be set out to guarantee the quality of the
model. Numerous works have emerged in this area of study
over the past years, each of which tackling its unique problems.
Putting things briefly, the main problem is on how to maintain
knowledge of the past in order to infer whether the present is
normal or abnormal, while keeping as few data as possible,
answering in minimal time.

In this work, we propose an unsupervised algorithm capable
of learning the normal behaviour of a datastream, calculating
an anomaly score for each time instant, with minimal and
constant overhead. This learning mechanism works on top
of Eammon Keogh’s Matrix Profile [7], using its resulting
distances to identify anomalies.

The main contribution of this work is the adoption of Eammon
Keogh Matrix Profiles algorithm to work over a univariate
datastream, for the detection of anomalies in a given domain.
This is done via two main approaches for the management of
discords reported by the computed matrix profiles, namely one
probabilistic, and one distance based. In addition, we propose
to apply the methodology not only over the original domain,
but also on the differentiated sequences.

Finally, a method for automating the choice of an appropriate
window size via the Fourier analysis is also introduced and
validated.

The rest of the paper is organized as follows: In section 2 we
review related work and introduce the necessary background
definitions. In section 3 we introduce our algorithm and its
statistical. sequence, and automatic variants. Section 4 sees a
detailed evaluation, and comparison of our algorithms stating
whether they are, or not fit for the detection task. Finally, we
offer conclusions and directions for future work respectively.

BACKGROUND
Anomalies can be widely defined as patterns in data that do
not conform to expected behaviour. These can fit into one of
the following three types [2]: Point Anomalies, if an individual
data instance can be considered anomalous with respect to the
remaining data; Contextual Anomalies, if a data instance is
anomalous in a specific context, or Collective Anomalies if
a collection of data points is anomalous with respect to the
entire data set.

A data stream is a potentially unbounded, and ordered se-
quence of instances that arrive over time. A simplification is
to assume that the data at hand was generated from sources
that do not experience byzantine faults, i.e. sensors will al-
ways emit "correct" measurements, and do not fall under states
where inaccurate data is generated for the mining process.

Due to the evolving nature of generated data and patterns
present in it, we must differentiate between anomaly and nov-
elty. Novelty detection corresponds to identifying an incoming
pattern as being hitherto unknown. This phenomena arises if
we consider that data is expected to evolve over time, by being
generated from dynamically changing environments where
non-stationarity is typical [4].

If we blindly applied traditional anomaly detection methods
to non-stationary time series, resulting conclusions would be
deemed meaningless as values only have a meaning within
specific context frames, and no meaning in others. Further-
more, we may want to integrate these new concepts in our
models in order to better approximate real life usage condi-



tions. Concepts can change regarding prior assumptions or
posterior concepts. This can be either by changing apriori
distributions, or evolving posterior concepts [4] (something
that was once unusual has become normal).

Literature Review
Machine learning algorithms can learn in two different modes
namely offline or online. Offline learning algorithms receive
the complete sequence beforehand, whereas Online learning
algorithms are continuously presented with the data produced,
up to the current moment, one point at a time [5].

Because of this clear distinction, and given the nature of
streaming data along with the necessity to issue instant deci-
sions, online training modes are mandatory.

Furthermore, we can group algorithms based on their ability
to handle received data, and whether or not it is labelled. Un-
supervised, Semi-Supervised and Supervised tasks are the go
to when we have no labels, one class labelling or full labelling
of data, respectively. The labelling process itself (required
for some tasks) can be extremely costly with labels becoming
available only after long periods in some cases [2]. Hence, un-
supervised learning is usually the most appropriate approach
in the context of anomaly detection in data streams.

Orthogonally, anomaly detection techniques can be grouped
based on the major approach they follow.

Model based algorithms use classification methods to train a
model, or rather a classifier, to distinguish between normal
and anomalous instances, in a given feature space. One way to
tackle the problem is via neural networks [6]. The basic idea
for this set of algorithms is that during a first phase a neural
network is trained on the normal training data to learn what
the normal behaviour is, and then, provided a given input, the
network will output if said instance is normal or abnormal.
Another way to approach anomaly detection is via a Bayesian
approach where the likelihood of observing the test instance
given a class prior is estimated from the data set and can be
used to detect an anomaly.

Parametric techniques assume that normal data is generated
by a parametric distribution with an associated probability
density function. Usually, the anomaly score of a test instance
is the inverse of the probability density function. Alternatively,
statistical hypothesis tests can be used to see if a given test
accepts or rejects a value as an anomaly. A couple examples
of said methods are the ESD (extreme studentized deviate
test) also known as Grubbs test which is used for concept drift
detection, or the mean confidence interval. Gaussian based
models can be used to estimate maximum likelihood scores
and other parameters. Regression models can also be used,
however, the presence of outliers and anomalies in the training
data can influence the regression model learned.

Rule based anomaly detection techniques learn rules that cap-
ture the normal behaviour of a system, while unseen/abnormal
behaviours are classified as anomalies. Association rule min-
ing has been used for both network intrusion detection, and
credit card fraud detection. Frequent itemsets are generated in
the intermediate steps of association rule mining. A proposed

approach is that for categorical data sets the anomaly score
of a test instance is inversely proportional to the number of
frequent itemsets in which it occurs.

Distance based approaches rely on distance metrics (like Eu-
clidean, Jaccard, Mahalanobis and others) to infer the outcome
of an observation. The assumption here is that similar, thus
close, observations will have the same outcome. Furthermore,
we can use the notion of density as it is inherently distance
related. Nearest neighbour techniques [1] take into account the
assumption that normal data instances occur in dense neigh-
bourhoods, while anomalies occur far from their closest neigh-
bours, or in neighbourhoods of their own. Support Vector
Machines are another class of learning techniques, used to
learn the separating boundary between normal and abnormal
instances. Kernels, such as radial basis functions, can be used
to learn complex spaces. Several domains make use of SVMs
such as novelty detection in power generation, anomaly detec-
tion in temporal series, anomaly detection in audio, and others
[2].

Density based anomaly detection techniques estimate the den-
sity of the neighbourhood of each data instance. Instances that
lie in a neighbourhood with low density are declared to be
anomalous. For a given data instance the distance to its kth

nearest neighbour is equivalent to the radius of a hypersphere,
centred at the given data instance. Density based techniques
tend to perform poorly if the data has regions of varying densi-
ties. Inherently, density measures require the use of a distance
metric.

Clustering-based anomaly detection techniques can follow
one of three assumptions [2]: Normal data instances belong
to a cluster in the data while anomalies do not belong in any
cluster; Normal data instances lie close to their closest cluster
centroid while anomalies are far away from said centroid, or
that anomalies form clusters by themselves different from the
normal ones. These methods are similar to Nearest Neighbor
based techniques as both require distance computation be-
tween pairs of instances. The key difference between the two
techniques is that clustering based techniques evaluate each
instance with respect to the cluster it belongs to, while Nearest
Neighbor techniques analyze each instance with respects to its
local neighbourhood.

Contrary to parametric techniques non-parametric statistical
models are used , such that the model structure is not defined
a priori, but is instead determined from the data. Techniques
under this class make fewer assumptions regarding the data
such as smoothness of density, when compared to parametric
techniques. Here we can find histogram based techniques,
kernel based function techniques, hidden markov models and
expectation maximization.

All Pair Similarity
Another way to look at the problem is via symbolic represen-
tations, and their relative distances (which implicitly model
the discovery of patterns in sequences with the distance as a
measure of similarity/dissimilarity).

One way to approach this problem is via the all pairs similarity
joins for time series [7] which makes extensive use of distance



based methods.

The basic task is that, given a collection of data objects, we
want to retrieve the nearest neighbour for each object, where
an object can be a sequence of events, belonging to a larger
subsequence, present in the time-series.

The output of the method is a series of distance profiles con-
taining the distance between each sequence and all other pos-
sible contiguous sequences of a given size, with the highest
values corresponding to the largest discords between the se-
lected pattern at a given point in the time-series, and all others.
The lower distances for points correspond to a high similar-
ity between said sequence pair. Therefore, it is easy to infer
that when looking for anomalies, we are actually looking
for distance profiles with high distances, thus indicating the
uniqueness (and disagreement) of the sequence with respect
to the entire time series.

Evaluation
Despite a series of well known formulas for evaluating models
being approached, none seems to tackle the problem of evalu-
ating data streams, as most of the methods are after the fact
and do not take into account the continuous nature of time.
However, Numenta has proposed a benchmark in order to
aggregate a series of these formulas under a constrained envi-
ronment, in order to provide a platform for model comparison.
The Numenta benchmark [6] seems to be the only one so far
to aggregate these metrics and provide a benchmarking plat-
form for online time series anomaly detection, thus we will be
using it in order to compare our achieved solution with other
proposals. This provides a uniform evaluation environment
in parameters such as timely detection, and outcome profile
which takes into account the weight of false positive vs false
negatives.

This is the most advanced benchmark for algorithm compar-
ison (in the streaming anomaly detection domain) as it com-
prises not only annotated datasets but also incentives early
detection, penalizes late/out of time detections while provid-
ing profiles for weighting false positives and false negatives
(for cases where false negatives are much more costly than a
closer inspection triggered by a false positive). It uses weight-
ing profiles that work by giving different weights to false
positives, and false negatives, and takes into account timely
detections via an inverse sigmoid scoring function.

In addition, there is a high unbalance in the label outcome
(predominantly no anomaly), something that is also taken
into account by the Numenta scoring tool. Multiple evaluation
metrics for models are approached in the literature [3]. Among
these measures we have Accuracy, Error Rate, Sensitivity or
Recall, Precision, Specificity, and F-Measure. Nonetheless,
some pitfalls should be avoided when choosing the evaluation
steps, and methods as these may not reflect the true quality of
the proposed model, additionally biasing the learning process,
and model selection. While some metrics take into account
class imbalance others do not, where some are pessimistic by
reflecting errors made during a warmup phase, others apply
fading factors to circumvent this problem.

ANOMALY DETECTION VIA DISCORD MANAGEMENT
In this work, we propose to address the problem of anomaly
detection over data streams, through the use of matrix profiles
and all pair similarity search, introduced by Eammon Keogh
[7]. In this manner, we aim for using the matrix profiles for
computing and storing the distances between the arriving data
and the stored, while making use of a distance-based similarity
measure to identify anomalies. As previously noted, we face
several challenges, inherent to the streaming nature of our
problem:

• Guarantee the time and space needed by our method is kept
almost constant;

• Find a set of parameters as close as possible to the optimal
solution of the problem;

What we propose to do is to make use of, and adapt the Eam-
mon Keogh matrix profile and the all pair similarity search
(APSS), in order to work with data streams and detect anoma-
lies in an online manner.

One way to approach the first problem is by maintaining a
compact enough representation of the last seen instances, as
it will guarantee the constant requirement. Furthermore, by
setting a maximum size for the number of discords/motifs to
keep, we can further ensure the previous statement.

The main disadvantage of matrix profiles is being a visual
method. Consequently, there is no automatic strategy for the
identification of the the best parameters, namely the window
size, number of top discords, size of exclusion zone, and others.
Therefore, we will try to address this issue by testing different
dataset sizes (kept as memory of a near past) to infer whether
or not they impact the final results achieved.

Nonetheless, other problems have to be addressed such as the
size of the window to represent the discovered patterns, the
length of each considered temporal context (for how long is
data considered current data, and after how much time we
refresh the motifs/discord storage, for example).

Algorithm cycle overview
Prior to feeding any data, the algorithm must be initialized
with a set of parameters, namely the dataset size to keep
(S), window size to scan the dataset (W), number of dis-
cords to extract (top_K_discords), number of discords to keep
(n_discords_keep), time to live of the discords (TTL), the
threshold for the similarity function to trigger an insertion
(discords_sim_threshold), decay rate of kept anomalous sub-
sequences (decay), a number of points after which the issuing
of scores begins (start_evaluation), and an exclusion zone of
the retrieved anomalous subsequences (ex_zone). Only then
our loop is ready to work.

After initialization, for each single data point received, P, the
learned model is kept via an handle function that receives each
data tuple. Said tuples are comprised of a timestamp and its
respective value. Multiple calls on the handle function cause
the data points to build up an ordered set, which is the basis
of our profiling analysis. The size S of this set can be seen as
an event horizon, as exceeding this size will cause the loss of
information due to being dropped from the dataset.



On top of this dataset, we will use the matrix profiles with
a sliding window of size W, with which we scan the pre-
viously kept entities, and extract the corresponding matrix
profiles. Consequently, this window corresponds to the granu-
larity at which we are comparing patterns, more specifically
their length. Upon extraction of the matrix profile from the
dataset, we can compute the top_K_discords. On the it-
eration previous to the beginning of the evaluation we will
also set (if specified) the minimum distance. The minimum
distance corresponds to the first discord’s distance profile.

Then, and with the extracted top k discords, we start keeping
an anomaly frame of size n_discords_keep, which will ac-
commodate the found anomalies, thus working as an anomaly
database.

The anomaly score issued by the proposed method is tightly
connected to this frame since the anomaly score will be 1,
thus indicating anomaly whenever a new anomalous pattern is
inserted, or replaced in case the database is full. The insertion
of these patterns is controlled by a threshold cut on the result-
ing value returned by a similarity function of two sequences,
where the first sequence is a retrieved anomaly sequence from
the top_k discords method, and the other is a sequence already
within the anomaly database. The first discording sequence is
inserted trivially.

As mentioned previously, this process will run indefinitely and
can be summarized as shown ahead in figure 3.1.

Figure 1. Adapted Matrix profile overview algorithm

Dataset maintenance
The function that maintains the dataset bound to S elements,
updateDataset(data point), works by gatekeeping a data win-
dow of size S. Until this window is full points are trivially
added. Upon being full the oldest point is deleted, followed
by appending the new one at the beginning said window. The
indexes are then reset in order to reflect the change in time,
with all points moving down one position in the index of the
window. Therefore, we can state that this dataset is in fact a
buffer similar to a first in last out (FILO) queue based on it’s
behaviour.

Further ahead we will be analysing the impact of the size of
this dataset on the results obtained by the method.

Matrix Profile Computation
The Matrix Profile is calculated as usual. By providing a
dataset of size S, and sliding a window of size W, we retrieve
the corresponding data profiles. The profiles correspond to the
distance of the subsequence under analysis to all other subse-
quences. Then, with these profiles we will extract the highest
profile distances, corresponding to anomalous sequence be-
ginnings. With these partial results we can later reconstruct

the sequences and check their degree of abnormality. How-
ever, this process will only happen for discords with a distance
greater than the minimum, which is the case of our examples
further ahead.

Our assumption is that if the dataset analysis for the last seen
instances produces a very different anomaly list than the ones
kept, then the seen point must be anomalous due to its impact
on the analysis.

Furthermore, and due to the trivial match limiting zone intro-
duced in Eammon’s Matrix Profile implementation [7], we can
only start evaluating once the dataset is, at least, twice as large
as the window.

Working under these assumptions, we will see how we can set
a triggering anomaly mechanism around the similarities of the
retrieved discording sequences.

Discord Management
After computing the matrix profile for the data arriving, we
can compute the top_K_discords by selecting the K largest
distance profile values. If a point is contained in a subse-
quence that cannot have length W, namely sequences starting
in indexes higher than the dataset size minus the window size
(S-W), it is said to be non valid and consequently not retrieved.

First, we start by iterating the distance profile searching for
the highest valued index. Then, we extract that entry into the
top_K_discords list, setting all consecutive values before
and after it to INF, from the reported position forward and
backward, up to a quarter of the window length W, correspond-
ing to the exclusion zone. After doing this process k times we
end up with k different anomalous points. If not enough points
can be found (due to the length of the matrix profile being too
short for a given k number) we simply report a sentinel value
that is later filtered.

After retrieving these indexes, they are filtered for uniqueness,
eliminating points that occur when the method is unable to pro-
vide K different, non contained, distinct discording sequence
starting points.

Another criteria used to filter out points is their distance profile.
A minimum distance, corresponding to the maximum distance
for the highest distance profile in the first evaluation iteration,
is further used to filter out results. If any given subsequence
start position’s distance profile is greater than the first one
found, the resulting subsequence is then deemed as valid for
comparison, and discarded.

Distance Based Discord Management
With the previously found points we can reconstruct the valid
sequences by going to the respective indexes in the dataset
kept, retrieving their values and appending the W succeeding
values.

The aforementioned sequence is then directly inserted in the
discord database if the latter is empty. Otherwise, the sequence
is compared for similarity with previously existing sequences
present in the discord database, in order to assert whether
the anomalous sequence is inserted or not, as resumed in the
algorithm in figure 2.



Figure 2. Discord Maintenance overview algorithm

Upon insertion, we register not only the found sequence but
also the time of occurrence, a counter of occurrences starting
at 1, and a time to live (TTL) . The TTL of the anomaly
works as a forgetting mechanism. In each iteration of the
proposed algorithm all discords TTL’s are decreased by a
decay factor. If the TTL of any discording sequence recorded
ever reaches zero the anomaly is removed from the anomaly
database. In contrast, if the discord list ever reaches a size of
n_discords_keep, the one with the lowest ttl is discarded and
the new discord is inserted.

As a consequence at least 1 anomalous sequence will always be
kept, with the first insertion not counting towards the anomaly
score as it is trivially inserted. Moreover, this mechanism
ensures that multiple consecutive sequences are only reported
once, as they will have multiple high similarity scores among
themselves.

For this task the cosine similarity was chosen as a similarity
metric. This similarity function choice was motivated by the
bounded nature [0,1] of the method, that results in a simple and
intuitive threshold selection parameter representing percentage
of similarity. Other measures, mainly unbound ones, might
suffer from the problem of interpretation of the result. The
euclidean distance was also considered as a similarity metric.
However, it was not chosen as it is a distance metric rather
than a similarity one, which would result in a more difficult
interpretation and calibration of the resulting value, namely
the similarity threshold as a distance. The cosine similarity is
generally used as a metric for measuring distance when the
magnitude of the vectors does not matter.

Nonetheless, it is important to stress that many other dis-
tance/similarity measures could have been chosen such as
the Kullback-Leibler, Chebyshev distance or even dynamic
time warping (DTW). If the nature of the input were to be
symbolic, different measures such as the Jaro or Jaccard simi-
larities would be more appropriate.

After finding their similarity (via the cosine similarity), if it is
higher than a given threshold, discord_sim_threshold, it will
cause a refresh on the anomaly database.

If the result of the comparison between a sequence and all
the discords in the discord database never exceeds a similarity
threshold then the sequence is considered to be a new anomaly
and inserted, corresponding to a no refresh and triggering a
maximum anomaly score.

Upon insertion, the return value of the anomaly score for
that time step is set to one and later returned, with multiple

insertions having the same impact in the score as a single
insertion.

Otherwise, if any sequence comparison is equal or higher
than the anomaly_threshold it will cause the anomaly being
compared to, in the discord database, to refresh it’s TTL. In
such case, the anomaly score will remain the same as it was
before that given iteration. The anomaly score is then returned
after all sequence comparisons are made.

After completion of the discord database maintenance task an
anomaly result for the current data point will have been found.

The result of putting all the aforementioned steps together
is a 3 parameter model with the parameters S, W, and
anomaly_threshold. This model is expected to be able to
discriminate, for each data point, if it is normal or abnormal.

Probabilistic based Discord Management
Another way to tackle the aforementioned problem is by using
the raw distance value. The most straightforward test we can
run on the raw distance profile is a mean confidence interval.
The objective here is to check whether a value is within a given
confidence interval. For this method, once we filter out all
the resulting discording distances, we can start accumulating
them. Once we have a universe of distances greater than 3
samples, we can start performing a mean confidence interval
test. Then, we iterate through the discording distances and
compute the mean, lower bound, and upper bound for all the
distances seen so far.

Similarly to what was previously approached, we will also
need a scoring function, responsible for issuing anomaly
scores for each time step. One way to approach this is via the
mean confidence interval over the reported discording distance
profiles.

If a distance value is within the mean confidence interval, at
a given percentage, then the resulting anomaly score is zero.
Consequently, the anomaly score for that timepoint is the
greatest value of the calculation of the distance profile minus
the mean, for all the reported discords in that timestep that are
not within the confidence interval.

The resulting score is normalized by the max seen distance
within the kept distance vector. Finally, all distance points that
were filtered are simply added to the seen distance vector, and
the anomaly score returned.

EXPERIMENTAL RESULTS
The goal of the experimental procedure is to achieve the best
possible classifier with minimal overhead in variable adjust-
ment.

Note that the method made available by the matrix profile
foundation will end in error due to the subsequence length
being too large if, at the moment of analysis, the dataset is
lower than two times the window size.

A total of three parameters, namely dataset size (S), ma-
trix profile window size (W), discord similarity threshold
(disc_sim_threshold) are fully tested.



In addition, the parameter that controls the start of evaluation
is permanently set to be the dataset_size length minus one.
The decay rate parameter will be fixed to one, with the time to
live of the discord (in cycles) equal to the dataset size (TTL =
dataset_size). In addition, the exclusion zone of the discord
calculation is fixed to a quarter of the window size.

The choice for the window sizes is between 1 hour (namely
two datapoints) and 48 hours (96 data points), that are tested
for increasing dataset sizes between four times and nine times
the window size.

We then select the best classifier, and the similarity threshold
is varied in order to detect whether a more lax or restrictive
approach is better.

Another set of experiments will be done over the differenti-
ated version of the dataset (where each point corresponds to
the difference between itself and the previous observation).
This set of experiments will hereon be called as the sloped
or differentiated version of the dataset, as it corresponds to
the momentums of the original domain trivially represented as
slopes.

The used dataset is the NYC taxi domain, containing passenger
usage numbers of taxis, reported in an hourly basis. This
dataset is contained, along others, in the Numenta Benchmark.

Results are shown for each dataset size variation by win-
dow size. Window sizes are represented in the X axis, nab
score (blue), sensitivity (black), specificity (red), and precision
(green) in the Y axis. Each vertical line is a simulation with
its respective results.

Statistical approach over the taxi dataset
The workflow for this classifier is as previously introduced in
section 3.4.2. Results for a T student confidence interval of
99% over the filtered distance profiles, using the original taxi
dataset, are show in figure 3.

The first thing that stands out in the analysis of the results
for this experiment is the extremely oscillating specificity.
Without a mechanism to control the maintenance of sequences
it is clear that, by solely using the distance profile of the
discords, we cannot establish a proper baseline behaviour.
The NAB score, on the other hand, shows that despite the
low precision, the learned models managed to detect some
anomalous data-points.

However, taking into account that the precision values are
also associated with the very low specificity values, we have
indication that the detections were merely coincidental (as
a collateral result of the low specificity). In addition, the
detection labels are binary, but the detection score is not, this
creates a problem for basic metrics.

Given the aforementioned aspects, we should always look
at the NAB score for indication of performance, and only
then analyse the remaining metrics. Traditional metrics will
fail given that the anomaly score is equal to the normalized
distance to the mean of previously seen distance values, and
this [0-1] value cannot be translated as precision. specificity
or sensitivity straight forward. The Numenta benchmark takes

care of this via an optimizer, that reflects the score for the best
threshold found (given all detection values).

In addition, the size of the dataset does not seem to influence
the learning process. If we take a closer look figures 3(a), 3(b)
3(c), and we compare them against 3(d),3(e),3(f), the average
score went down as the dataset size went up, in most cases
underachieving the results of the first three.

Accordingly, the best classifier identified corresponds to figure
3(a), when the window size is equal to 8.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Results for multiple runs with varying dataset sizes of the
probabilistic method at a confidence interval of 0.99;

Distance Based Discord Management over the original
dataset
The following subsections concern with the non probabilistic
version of distance based method. The algorithm tested in the
following subsections is as introduced in section 3.4.1. For
the first set of experiments the unmodified taxi domain will
be used, whereas for the second part of the experiment the
differentiated dataset is used.

For the distance based discord management algorithm over
the original dataset something recurring in all simulations is
that the specificity parameter remains relatively high (over
95%). Despite the window size variation, no major changes
can be found within each run. On the other hand, the sensitiv-
ity parameter remained relatively low (<10%), despite being
higher than all experiments so far. This is due to the fact that
when we define the temporal period for which an anomaly
detection interval is valid, we inherently define a zone where
the true label is extended through time not being a single point
anymore, with this being true for all experiments.

In other words, only the earliest valid detection would be
enough to get a high score however, all points around the
anomaly would also have be to equally classified in order



to achieve a high sensitivity. Consequently, the analysis of
this parameter by itself might not be sufficient to explain the
quality of the achieved model.

Nonetheless, it provides valuable insight on the behaviour of
the model when used with other indicators. All sub-figures
in figure 4 show this behaviour clearly, where once the sen-
sitivity increases, the NAB score decreases and vice versa.
This trade-off is due to the increase in wrong classification,
thus it suffers from the same problem as the specificity in the
previous section. In order to achieve both high sensitivity and
specificity, we would need to make continuous correct, and
exact predictions for score for the whole interval around the
anomaly, which would be quite difficult.

On the other hand, we can also see that high precision models
tend to have high NAB scores such as, the beginning, and the
end of the window size range (low and high respectively) in
figures 4(d),4(e), and 4(f).

Furthermore, we can see that an increase in the dataset size
resulted in an increase in the average NAB score for the run.
It is however important to stress that some runs may not have
a precision score at all (represented by the lack of connection
between the two neighbouring points). In these cases no point
tested as anomalous, and the run stands out by the lack of a
connected line for this parameter. e.g figure 4(f), window size
= 28.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Results for multiple runs with varying window size, and fixed
similarity threshold of 0.99;

If we take a close look, we will find that figure 4(f) contains
the best run found, due to the high precision rate associated
with high NAB score. Thus, we will set the dataset size to 9
times, and will vary the discord similarity threshold parameter
as show in figure 5

Likewise, we also see the same lack of precision, always asso-
ciated with a NAB score, and sensitivity. As a consequence,

the specificity parameter for these points is almost 100%, as
intended and expected.

If we further test the impact of the similarity threshold, rep-
resented in figure 5, we can see that for thresholds between
0.95 up to 0.98 at a dataset size of 9x, some of the models
with lower window sizes managed to achieve perfect precision
scores, implying that all the detections made were correct. Yet,
the NAB score for these models was relatively low. This is
due to the fact that for lower thresholds we are too lax, only
allowing big changes in the sequences to be detect. As a result,
some abnormal sequences manage to fly under the radar, going
by undetected.

With this in mind, we expected the more restricted models
to achieve better results. However, a slight relaxation in the
similarity of the sequences proved to increase the precision
vastly and in some cases, and also the nab score in others.

These experiments were run for for all similarity thresholds,
window, and dataset size combinations, despite not being
shown for the sake of simplicity while having similar repeated
behaviour.

We conclude that, when compared to the simple statistical
method, we have achieved a much better detection with less
false positives, less false negatives and more true positives.
Furthermore, the best found setup corresponds to the window
size of 96 in figure 5(b). The NAB was score was respectively
69.99.

(a) (b)

(c) (d)

(e)

Figure 5. Results for window size variation by discord similarity thresh-
old, for a fixed dataset size of 9x the window size.

Distance Based Discord Management over the slopped
dataset
Similarly to the experiments in the previous section we will
repeat the same evaluation process except now, we will be us-
ing the differentiated dataset. The results for this new dataset,



corresponding to the sloped taxi time series, can be found in
figure 6.

If we take a closer look, we can see that, as expected, the
normal behaviour is broadly captured. In all experiments
6(a) through 6(f), the specificity remained relatively high,
indicating the majority of points were indeed true negatives.
On the other hand, and contrary to the previous results on
figure 5, we see a lower specificity rate. Despite this, the
NAB score and precision turned out to be relatively high in
comparison.

We can also see that throughout all figures, when the window
size is lower than 48 points, the sensitivity is higher than
any other previous experiment. This tells us that any time an
anomalous point is identified, most surrounding points were
also found to be anomalous. However, this came at the cost of
an unstable baseline behaviour that, once again, when we reach
the 48 mark, stopped happening. In addition, the instability in
the specificity associated with defining the baseline behaviour
stops after said period.

It is curious to find that the method over the differentiated
series spikes (similarly to the previous subsection) in all mea-
sures around the 48 point mark, corresponding to the 24 hour
period in the dataset.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Results for window size variation by dataset size, for a given
similarity threshold, corresponding to the sloped (differentiated) version
of the taxi domain.

Finally, the variation of the threshold parameter (similar to the
previous subsection) did not produce any noticeable change
in the algorithm results over the differentiated dataset. Thus,
we can say that the differentiated series is far more resilient to
variations in the similarity parameter than the original dataset.
The choice for this new set of experiments was done as in the
previous subsection, by identifying the best classifier in the
first set, and setting the window size constant while varying

the discord similarity threshold. For the sake of simplicity, the
results for this new set of experiments will not be plotted.

In sum, the best classifier found for this set of experiments
corresponds to figure 6(c) where window size = 52, dataset
size = window size x 6, and discord similarity = 0.99. The
final NAB score for this classifier was of 49.11.

Automatic window selection via Fourier Transform
Finally, the automation mechanism will be tested in order to
assert whether or not the classifier does produce viable results.

The parameters were kept as in the previous experiments cor-
responding to the sequence comparison. The parameter varia-
tions remains the same almost the same. namely the dataset
size and similarity threshold. For the the window size parame-
ter, the dominant period found by the Fourier Transform over
the accumulated dataset is used, prior to starting the evalua-
tion;. The dataset will range from as little as 1 week to to an
entire month, with a 3 day step increment.

The first thing we notice from this set for experiments, repre-
sented in figure 7, is that the specificity parameter remained
almost at 100%, as well as the sensitivity near 0%. This seems
to be a behaviour congruent with the ones previously shown
for the distance based algorithm in figures 4 and 5, thus re-
assuring the learning of the normal behaviour. Next, we can
see that for all runs the precision score was lower for lower
dataset sizes and higher for higher dataset sizes. Furthemore,
with the increase in the dataset size, not only did the precision
increase but so did the NAB score. Thus we can state that the
larger the dataset provided was, the better the results we got
(specially true for experiments 7(a),7(b), and 7(c)).

However, something quite remarkable for this set of experi-
ments is that the discord similarity threshold parameter tested
had minimal impact in results, as we can see through experi-
ments 7(a) to 7(e). Its increase did however impact the results
for dataset sizes between 480 and 912 points, slightly lower-
ing the results of the NAB for tighter similarity values in this
interval. This implies that the higher the similarity threshold,
the later the detection took place, thus the lower NAB score
with median precision.

In sum, for this batch of experiences the best classifier corre-
sponds to a dataset size of 1200 points, for a discord similarity
of 0.96 (located in figure 7(e)) that got a total score of 60.71
with 9 true positive classifications, and 3 false positive.

Best model configuration results
In figure 8, we can see the classification score,point by point,
when using the Numenta Hierarchical Temporal Memory al-
gorithm. Despite a couple of errors throughout the complete
execution, this classifier is capable of identifying correctly 4
out of 5 anomalies with only 1 true error (around the 17th
of September), thus making it a very strong candidate for a
baseline comparison with a final NAB score of 74.38.

Once again, and given the optimizer that finds the best thresh-
old cut for the classification step (in case the label is contin-
uous and not binary) we may be lead to think that the score
would not be humanly readable. However, we see see a clear



(a) (b)

(c) (d)

(e)

Figure 7. Results for the automatic window selection procedure over the
original taxi domain. X axis represents the dataset size in days. Multiple
quality metrics shown for the final results of each run.

Figure 8. Results for the Numenta classifier.

separation between "normal" score values (below the 15k mark
when scaled) and real anomalies (seen as global spikes) with
the bare eye.

The best model for the probabilistic version over the taxi
domain managed to achieved a score of 65.66 for a window
size of 8 and dataset size of 4 times window size. Exact results
for the entire classification process can be found below in
figure 9

Figure 9. Results for the statistical classifier over the original dataset.

For the Distance Based Anomaly Detection model, using the
sequence comparison approach introduced in section 3.4 over
the original taxi domain, the results for the best classifier can
be found in figure 10. It is the best achieved model due to the
high NAB score of 69.99 combined with a very high precision.
The setup used to achieved the results corresponds to a win-
dow size of 96, for a similarity threshold of 0.96 at a dataset
size of 9 times the window. The binary label also removes
the problems associated with score value interpretation and
optimization.

With this classifier we have managed to detect 4 out of five
anomalies, with minimal mistakes, and when these happened
they were located around a real anomaly.

Figure 10. Results for the best sequence comparison based classifier
over the original taxi dataset, with anomaly value visualisation. Pa-
rameters used are window size = 96, dataset size = 9 x window size for
a disc_sim_threshold of 0.96.

The distance based classifier over slopped the taxi dataset
managed once again to achieve great results. Detecting 3
out of 5 anomalies, one of which that had previously gone
undetected (corresponding to the anomaly in November). It
finished with a final NAB score of 49.11 detecting 3 out of nine
anomalies with 1 major error, between January and February.

The used parameters were window size = 52, dataset size =
window size x 6, and discord similarity = 0.99. The result
of the classification can be found in figure 11, and similarly
to the distance based sequence discord management method



over the original dataset, it managed to achieve very promising
results with 23 true positives, and only 4 false positives. If
we gather the results of the classifier under appreciation, for
both the sloped, and non sloped domains of the taxi dataset,
it manages to detect all annotated anomalies, with minimal
parameter adjustment, thus a combination of both would make
a great ensemble for this specific data stream represented.

Figure 11. Results for the best classifier found (proposed solution) over
the sloped dataset. Anomaly value visualisation.

To sum up this section, the best classifier achieved during this
work was our distance based discord management over the
original dataset. Not only it achieved an approximate NAB
score to the Numenta classifier, but also managed to get a very
low false positive rate. However, we consider it to have a
much more intuitive score interpretation, thus the choice. It
finished with a NAB score of 69.99, issuing 17 true positive
labels and only 2 false positive. Last but not least, the distance
based sequence comparison algorithm managed to detect the
November anomaly only on the differentiated dataset.

CONCLUDING REMARKS
Anomaly detection is a prominent area of analysis for finding
anomalous and/or unexpected behaviour in data. One particu-
lar area of interested for anomaly detection are datastreams,
possible infinite flows of information, where it is often ex-
pected to score one information point in time before the next
one arrives. Given that that datastreams may be endless, and
inherent problem with the volume of data for analysis, space
and time arise. One way to do this is to adapt the Matrix
Profiles introduced by Eammon Keogh to evaluated univariate
timeseries and detect anomalous data points.

Said was shown in this work where two methods are intro-
duced for the detection purpose. Furthermore, a scoring func-
tion is designed, as well as a mechanism for the automation of
the choice of one of the most important parameters, namely
the window size. We have further concluded that it is possible
to apply this algorithm to other series of presentations (in our
case the differentiated series) with equally good results.

In addition, we have found a way not only to detect anoma-
lies, but also deal with concept drift, as the proposed method
inherently detect deviating concepts due the the similarity func-
tion used, and the maintenance discord algorithm thoroughly
demonstrated.

We have demonstrated that, using the matrix profiles, it is
possible to detect anomalies in univariate time series, at par
with state of the art anomaly detection algorithms, achieving
almost perfect scores. Our best classifier managed to detect 4

out of 5 anomalies from the taxi domain, with a precision of
87%, 17 true positives, 2 false positives and a final NAB score
of 69.99%. Consequently, we can state that all the goals set
for this work were fully met, namely detection anomalies, in
an online manner, over datastreams.

The proposed approach, on Eammon Keogh Matrix Profiles,
turned out to be competitive with state of the art algorithms for
anomaly detection in univariate datastreams, and parallel com-
putation over the slopped dataset would provide a formidable
ensemble detector with minimal overhead added.

ACKNOWLEDGMENTS
This work was supported by national funds by Fundacão para
a Ciência e Tecnologia (FCT) through project GameCourse
(PTDC/CCI-CIF/28939/2017).

REFERENCES
[1] Evgeny Burnaev and Vladislav Ishimtsev. 2016.

Conformalized density- and distance-based anomaly
detection in time-series data. (2016).

[2] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
2009. Anomaly Detection: A Survey. ACM Comput.
Surv. 41, 3, Article 15 (July 2009), 58 pages. DOI:
http://dx.doi.org/10.1145/1541880.1541882

[3] João Gama, Raquel Sebastião, and Pedro Pereira
Rodrigues. 2009. Issues in Evaluation of Stream
Learning Algorithms. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’09). ACM, New
York, NY, USA, 329–338. DOI:
http://dx.doi.org/10.1145/1557019.1557060

[4] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola
Pechenizkiy, and Abdelhamid Bouchachia. 2014. A
Survey on Concept Drift Adaptation. ACM Comput.
Surv. 46, 4, Article 44 (March 2014), 37 pages. DOI:
http://dx.doi.org/10.1145/2523813

[5] Richard M. Karp. 1992. On-Line Algorithms Versus
Off-Line Algorithms: How Much is It Worth to Know
the Future?. In Proceedings of the IFIP 12th World
Computer Congress on Algorithms, Software,
Architecture - Information Processing ’92, Volume 1 -
Volume I. North-Holland Publishing Co., Amsterdam,
The Netherlands, The Netherlands, 416–429.
http://dl.acm.org/citation.cfm?id=645569.659725

[6] A. Lavin and S. Ahmad. 2015. Evaluating Real-Time
Anomaly Detection Algorithms – The Numenta
Anomaly Benchmark. In 2015 IEEE 14th International
Conference on Machine Learning and Applications
(ICMLA). 38–44. DOI:
http://dx.doi.org/10.1109/ICMLA.2015.141

[7] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova,
Nurjahan Begum, Yifei Ding, Anh Dau, Diego Silva,
Abdullah Mueen, and Eamonn Keogh. 2016. Matrix
Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View That Includes Motifs, Discords and
Shapelets. 1317–1322. DOI:
http://dx.doi.org/10.1109/ICDM.2016.0179

http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1145/1557019.1557060
http://dx.doi.org/10.1145/2523813
http://dl.acm.org/citation.cfm?id=645569.659725
http://dx.doi.org/10.1109/ICMLA.2015.141
http://dx.doi.org/10.1109/ICDM.2016.0179

	Introduction
	Background
	Literature Review
	All Pair Similarity
	Evaluation

	Anomaly Detection via discord Management
	Algorithm cycle overview
	Dataset maintenance
	Matrix Profile Computation
	Discord Management
	Distance Based Discord Management
	Probabilistic based Discord Management


	Experimental Results
	Statistical approach over the taxi dataset
	Distance Based Discord Management over the original dataset
	Distance Based Discord Management over the slopped dataset
	Automatic window selection via Fourier Transform
	Best model configuration results

	Concluding Remarks
	Acknowledgments
	References 

