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Abstract

Offshore structures, even though they have originally been developped for oil exploitation platforms,
are used nowadays on a wide variety of areas, such as eolic energy platforms, aquaculture and artificial
islands. The actions they are submitted to, besides self-weight and additional loads, wind, accident action
and earthquake, are related with the actions that the sea water causes on the structures.

This dissertation proposes to study the different types of force that an harmonic wave has on a structure,
whether fixed or floating, and how the relevance of this type of force is related with the ratio between the
structure’s characteristic dimensions and the wave lenght. Furthermore, the structure’s response to the
action of the wave, is also analysed. In offshore structures vertical motions can be critical. This way, the
dissertation studies the vertical translation motion and rotation movement perpendicular to the flow axis
direction as a response to the different types of force caused by the action of an harmonic wave.
KEYWORDS: offshore structures, Froude-Krylov force, diffraction force, radiation force, Morison equa-
tion.

1 Introduction

Offshore structures were initially developed at the beg-
gining of the XX century for the oil industry. Cur-
rently, this technology has many other uses such as
renewable energies, aquaculture exploitation and even
floating islands. The offshore structures are submitted
to different actions such as self-weight, waves, wind,
currents, accident (such as ships impact or explosions)
and, depending on the location, they can also be sub-
mitted to an eartquake.

The offshore structures can be classified as fixed or
floating structures, depending on the way the balance
is guaranteed when they are submitted to different ac-
tions.

Fixed platforms are founded directly on the sea bed
and the balance is guaranteed by transmiting applied
forces directly to its foundations. This way, their be-
haviour is similar to inland structures, but they are
submitted to a different action: the sea waves. Jackets,
jack-ups and gravity platforms are examples of fixed
structures.

Floating structures are fixed to the sea bed by ca-
bles and have less restrictions to rigid body movements
than fixed structures. Semi-submersibles are examples

of this kind of structures that can move in all the de-
grees of freedom. The number of degrees of freedom
can be reduced by restraining, for example, the verti-
cal movements of the structure by pre-tensioned cables.
One example of this kind of structure is a TLP (Ten-
sion Leg Platform) where the horizontal translation
and rotation movements are allowed but the vertical
movements of translation and rotation are restrained.
Floating structures have a dynamic behaviour when
they are submitted to waves action. The equation of
dynamic balance is used in order to get the transfer
function that caracterizes the structure.

2 Definition of waves
The elevation of the free surface is defined by

z = ζ(x, y, t), (2.1)

where ζ is the wave amplitude. The referential is cho-
sen so that z = 0 coincides with the free surface. The
depth h is the distance between the free surface, z = 0,
and the sea bed, z = −h. The wave height, H, is the
difference between the wave crest and the wave trough.
The wave amplitude, ζ, is half of the wave height, i.e.,
ζ = H/2 (Figure 2.1). Waves are harmonics with wave
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length λ and period T . Assuming that the wave doesn’t
change in the transversal direction y, the flow can be
considered bidimensional and the elevation z depends
only of x.

Figure 2.1: Wave definition (adapted from [11]).

The wave propagates over the positive x axis, as
shown in Figure 2.1.

The action that the sea waves exert over a structure
depends on the ratio between the section’s character-
istic dimensions and the wave length. In a small vol-
ume structure or slender structure, it’s assumed that
the sectionťs characteristic dimensions are small when
comparing with the wave lenght λ. For example, for a
circular element, if the diameter D is such that λ > 5D,
there is a very small alteration of the incident waves
when they pass through the structure [12]. In this case,
the incident waves behave as undisturbed waves, which
means they don’t deform when they pass through the
structure. The term large volume structures is used
for offshore structures with dimensions D on the same
order of magnitude as typical wave lenghts λ of ocean
waves (2 s (4 s) to 8 s(10 s)). In this case, usually
D > λ/6 [6].

In linear theory (or Airy theory), it is considered
that the wave amplitude ζ is very small in comparison
with the wave lenght, depth and section’s caracteristic
dimensions. It means that the wave-induced motions
and load amplitudes are linearly proportional to ζ [12].

The sea water is assumed to be incompressible
and inviscid, and the fluid motion is irrotational.
The velocity vector of a water particle u⃗(x, y, z, t) =
(ux, uy, uz) at time t at the point x= (x, y, z) in a carte-
sian coordinate system fixed in space can be defined as
a velocity potencial Φ,

u⃗ =
−→∇ϕ = ∂Φ

∂x
e⃗x + ∂Φ

∂y
e⃗y + ∂Φ

∂z
e⃗z

where e⃗x, e⃗y e e⃗z are unit vectors along the x, y and z

axis, respectively. The fluid is incompressible if there
is no volume variation through time, i.e.,

−→∇ · u⃗ = 0
(continuity equation). The analysis of the flow of an
incompressible fluid can be deducted from conservation

mass law that leads to the continuity equation. A flow
is irrotational when

−→∇ × u⃗ = 0. From these two condi-
tions it follows that the velocity potential has to satisfy
the Laplace equation

−→∇2Φ = 0 ⇔ ∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2 = 0. (2.2)

The complete mathematical problem of finding a veloc-
ity potential of irrotational, incompressible fluid mo-
tion consists of the solution of the Laplace equation
with relevant boundary conditions on the fluid [12].

The pressure p follows from Bernoulli’s equation

ρ
∂Φ
∂t

+ ρ

2
|u⃗|2 + p + ρgz = C, (2.3)

where C = C(t) is an arbitrary function of time. Gen-
erally this constant can be taken as the atmospheric
pressure p0 on the fluid’s free surface [5]. Neglecting
the convective velocity term, the Bernoulli equation is
obtained in linearized form. It follows therefore that
the local and time-dependant pressure is determined
as the sum of dynamic and hydrostatic pressure, i.e.

p − p0 = −ρ
∂Φ
∂t

− ρgz, (2.4a)

with the dynamic pressure

pD = −ρ
∂Φ
∂t

. (2.4b)

The kinematic boundary condition expresses imperme-
ability ( ∂Φ

∂n = 0). The boundary condition of dynamic
balance is simply that the water pressure is equal to the
constant atmospheric p0 on the free surface. These two
boundary conditions are non-linear, however they can
be simplified by linearizing the free surface conditions
in order to obtain

∂2Φ
∂t2 + g

∂Φ
∂z

= 0 at z = 0. (2.5)

When the velocity potential Φ is oscillating harmoni-
cally in time with circular frequency ω, equation (2.5)
can be written as

− ω2Φ + g
∂Φ
∂z

= 0 em z = 0. (2.6)

By assuming an horizontal sea bed and a free-surface
of infinite horizontal extent, linear wave theory can be
derived for propagating waves. The free-surface con-
dition (2.6) is used together with the Laplace equa-
tion (2.2) and with the sea bed boundary condition

∂Φ
∂z

= 0 on z = −h, (2.7)

in order to obtain the solutions to the potential Φ. The
general solution is given by

Φ(x, z, t) = ζ0g

ω

cosh(k(z + h))
cosh(kh)

cos(ωt − kx), (2.8)
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where k is the wave number given by

k = ω2

g
. (2.9)

The horizontal water particle velocity function is given
by

u = ∂Φ
∂x

(2.10)

and the horizontal water particle accelaration function
is given by

u̇ = ∂u⃗

∂t
. (2.11)

In deep water (h/λ > 0.5 [11]), is valid the simplifica-
tion

cosh(k(z + h))
cosh(kh)

= ek(z+h)

ekh
= ekz (2.12)

and the velocity potential for deep water is defined by

Φ(x, z, t) = ζ0g

ω
ekz cos(ωt − kx). (2.13)

The total pressure is the sum of the hidrostatic pres-
sure with the dynamic pressure,

p = −ρgz + ρgζ0e−kz sin(ωt − kx). (2.14)

3 Fixed structures
Fixed structures are usefull when itťs important to
limit the motions’ amplitude caused by the sea waves
action. This is the case of production and oil extrac-
tion technologies as well as eolic offshore structures.
Usually fixed structures are used in finite water depths
and also if they are to be permanent. The incident
forces on the structure are directly transmitted to the
foundations. Normally these are slender structures.

The effects of waves action on offshore structures
are obtained by overlapping different hydrodynamic
forces that act individually on different elements of the
structure. To calculate hydrodynamic forces, it is nec-
essary to integrate the pressure field over the wetted
surface of the structure. The main forces that act in
an offshore structure are:

i) Froude-Krylov force: pressure effects due to undis-
turbed incident waves;

ii) hydrodynamic ’added’ mass and potential damp-
ing force: pressure effects due to relative accel-
eration and velocity between water particles and
structural components in an ideal fluid;

iii) diffraction force: pressure effects due to distur-
bance of incident waves on the structure;

iv) viscous drag force: pressure effect due to rela-
tive velocity between water particles and struc-
tural components.

Figure 3.1 shows that forces on slender structures
(D < 5λ) correspond to zones I, III, V and VI (πD/λ <

0.6). In these areas diffraction force is neglectible, and
the inertia forces and drag forces are much more rele-
vant, depending on the ratio between H e D, where H

is the wave height and D a characteristic dimension of
the structure.

Figure 3.1: Different wave force regimes, where D is a
characteristic dimension of the section, H is the wave
height and λ is the wave length [6].

The Froude-Krylov forces are due to the pressure
field of the undisturbed incident wave. If n⃗ is the
normal vector on the body surface pointing outwards
into the fluid, then, by considering all components,
the Froude-Krylov force is obtained by integrating the
pressure field of the undisturbed incident wave over the
wetted surface S and is given by

F⃗ = −
∫

S

pn⃗dS = −
∫

V

−→∇pdV. (3.1)

As in linear wave theory, the convective term of the ac-
celeration is neglected. Furthermore, for slender struc-
tures, the local acceleration, changing only slightly in
the region of the structure, is replaced by the water
particle acceleration at the component x. With these
assumptions, the Froude-Krylov force is obtained as a
product of displaced water mass and local water parti-
cle acceleration,

F⃗ = ρV
∂u⃗

∂t
. (3.2)

A trivial physical interpretation may be derived from
this result: the pressure force on a small fluid element
of arbitrary shape and mass ρV in a wave field leads to
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a motion of this element with the particle acceleration
∂u⃗/∂t [5].

In the general case, the dynamic pressure in (3.2)
is replaced by the unsteady Bernoulli equation (2.3).
Thus the generalized Froude-Krylov force is expressed
in terms of the velocity potential Φ of the incident
wave, i.e.,

F⃗ =
∫

S

pn⃗dS = ρ

∫
S

∂Φ
∂t

n⃗dS. (3.3)

For fully submerged slender components, this expres-
sion is transformed into (3.2). Note, that for all compo-
nents of fixed or floating structures which penetrate the
water surface, the pressure integration has to be per-
formed over the wetted surface S according to (3.3) [5].

The hydrodynamic mass force acting on a body is
obtained by integration of the pressure field arising
from relative acceleration between structural compo-
nent and fluid over the wetted surface. The hydro-
dynamic mass is the sum of the structure mass with a
virtual water mass called added mass. The added mass
that moves with a certain acceleration depends on the
shape of the structure and the motion direction [5].

Diffraction force is due to the waves action over
the structure when the incident waves are disturbed
by the presence of the structure. In slender structures,
this force is irrelevant because the waves don’t deform
when they pass through the structure. This force is
the product of the added mass by the water particle
acceleration.

Viscous force is due to relative velocity between wa-
ter particles and the structure.

Typically fixed structures are slender structures. In
this section, it is assumed that structure dimensions
are small in comparison with wave length λ and, in
this case, the incident waves behave as undisturbed
which means that they don’t deform when they pass
through the structure. In the same way, diffraction
phenomenon is not relevant. To calculate horizontal
forces on slender structures, Morison proposed an em-
piric equation validated by experimental results. Mori-
son’s theory says that the horizontal force on a strip
of a vertical cylinder is the sum of an inertia force and
a drag force. The inertia force includes the Froude-
Krylov force and the hydrodynamic force. Drag force
corresponds to viscosity forces associated with pressure
due to relative velocity between the water particles and
the structure. The hydrodynamic horizontal force in a
slender cylinder, according to Morison theory, can be

written as

F⃗ = (f⃗m+f⃗d)dz = ρπ
D2

4
Cm

˙⃗udz+ρ

2
CdD|u⃗|u⃗dz. (3.4)

Positive force direction is in the wave propagation di-
rection, ρ is the water density, Cm = 1 + Ca is the
hydrodynamic mass coefficient (Ca is the added mass
coefficient), Cd is the drag coefficient, u⃗ is the water
particle velocity and ˙⃗u is its acceleration. Coefficients
Cd and Cm are empirically determined and it is as-
sumed that for a slender cylinder Cm = 2 (half of the
contribution comes from Froude-Krylov force and the
other half from diffraction force) and Cd = 1.

To illustrate Morison’s theory, a vertical cylinder
fixed at the sea bed was modeled at Usfos [11] and the
results obtained in the program were compared with
analytic calculations. The analysis also aimed at veri-
fying the influence of the diameter of the cylinder and
the wave length, and the forces that act over it. In
the analytic calculus for the horizontal force it was as-
sumed Cd = 1 and Cm = 2 in the Morison equation.
The cylinder was 12 m height and was fixed at the sea
bed at 10 m depth and was submitted to an harmonic
wave with wave length λ = 12 m and height H = 1.5 m.
The chosen diameters were D = 0.1 m (λ/D = 120),
D = 1.5 m (λ/D = 8) and D = 5 m (λ/D = 2.4). The
two first diameters were slender structures and Mori-
son’s theory was applicable (λ > 5D); the last one was
considered a large volume structure and would per-
turb the flow when it passed through the structure.
Analysing Figures 3.2 and 3.3 it can be observed that
drag forces are more relevant in this case since it is the
structure with the biggest ratio λ/D in this study. For
bigger diameters, but still within the slender structure
range where Morison’s theory is valid, and for a cylin-
der with D = 1.5 m, the forces that most contribute to
the horizontal force are inertia forces (Figure 3.3). In
this last case, inertia forces almost coincide with the
total force, being the drag force almost null.

Figure 3.2: Horizontal force at the cylinder D = 0.1 m.
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Figure 3.3: Horizontal force at the cylinder D = 1.5 m.

For a cylinder with a diameter of D = 5 m, Mori-
son’s theory is no longer valid, since the structure
behaves as a large volume structure and the diffrac-
tion forces assume particular relevance. Usfos consid-
ers horizontal forces acting in a large volume structure
using a correction of Morison’s theory - MacCamy &
Fuchs theory. The results are shown in Figure ??. In
Figure 3.4 are the results of Morison theory, which are
not valid in this case, and in Figure 3.5 are the results
for a large volume structure (with MacCamy &Fuchs
function activated in Usfos). It can be concluded that
horizontal force in a large volume structure is smaller
than the same force when calculated by Morison’s the-
ory. By using Morison’s theory for large volume struc-
tures, the horizontal force is overstimated, which can
lead to conservative results.

Figure 3.4: Força total calculada através da teoria de
Morison.

Figure 3.5: Comparação da força total calculada
através da teoria de Morison com a solução de Mac-
Camy & Fuchs.

4 Floating structures
Floating structures are the most used offshore struc-
tures solutions in deep water. They are also eco-
nomically more appealing for temporary structures be-
cause they’re cheaper than fixed structures [13]. Semi-
submersibles are a typical example of floating struc-
tures.

This study aims to study the actions that the sea
water has in a floating rigid body, and to identify the
forces and rigid body movements that result from that
action. To do that, balance dynamic equations are es-
tablished in order to define the structure’s motion in
its different degrees of freedom. To characterize the
motion transfer functions are used in the frequency do-
main. These functions are used to determine the an-
swer of a structure to a signal. In this case, the waves
are the signal to a system whose characteristics are lin-
ear, and the answer of the system is the motion of the
floating structure.

To study the motions of a rigid body in the water
it is important to define them first. The rigid body
translation moves along x, y and z axis are defined
as surge, sway and heave, respectively. The angular
moves around x, y and z axis are defines as roll, pitch
and yaw (Figure 4.1).

Figure 4.1: Definition of rigid body motion modes [12].

Floating structures can move along the six degrees
of freedom and they are usually anchored with wires or
chains [5]. Because such systems have low stiffness, the
natural frequency is low and the structure can move in
all six degrees of freedom. If the number of degrees
of freedom is reduced, for example by restraining the
structure with pre-tensioned cables in the vertical di-
rection, vertical moves (heave, pitch and roll) will be
restrained. This is the case of a TLP - Tension Leg
Platform -, and the main difference between a TLP and
a semi-submersible is precisely this vertical restraint.
In floating structures, rigid body moves, especially in
the vertical direction, can be critical.
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In this study, the motions that will be analysed will
be the translation vertical motion heave and rotation
around y axis pitch, since these are the modes that
represent motions in the vertical direction. Roll, also
vertical, is neglectible, because the flow is considered
do be bidimensional at xy plane.

The action that the sea waves exert over a floating
structure can be defined by the overlap of two kind of
forces:

i) the forces and moments on the body when the
structure is restrained from oscillating due to inci-
dent harmonic waves. This hydrodynamic loads
are the excitation forces and are composed by
Froude-Krylov forces and moments and diffraction
forces and moments. These are the forces that act
on the structure as if it was fixed;

ii) the forces and moments on the body when the
structure is forced to oscillate with the wave ex-
citation in any rigid body motion mode. In this
case, there are no incident waves, but waves gener-
ated by the body. This hydrodynamic loads corre-
spond to radiation forces - inertia forces associated
to added mass and potential damping - and by the
elastic restoring forces.

Hydrostatic force depends on the body position in re-
lation to z = 0 (free surface) so, by definition, is not
affected by the waves that are no more than free sur-
face disturbances [10]. It should also be referred the
Archimedes’ principle that establishes that a body to-
tally or partialy immersed in a fluid is equal to the
weight of the fluid that the body displaces. Due to lin-
earity, the forces obtained in i) and ii) can be added to
achieve the total hydrodynamic forces (Figure 4.2).

Figure 4.2: Superposition of wave excitation, added
mass, damping and restoring loads [12].

Excitation force due to the wave action over a struc-
ture has two components: Froude-Krylov force and
diffraction force, which are determined assuming that
the body is restrained from oscillating. Excitation force

Fi is the sum of these two forces,

Fi = −
∫ ∫

S

(pnidS + Ai1a1 + Ai2a2 + Ai3a3) , (4.1)

where p is the undisturbed pressure (2.4b) and n⃗ =
(n1, n2, n3) is the unit vector normal to the body sur-
face defined to be positive into the fluid. The inte-
gration is over the average wetted surface of the body;
a1, a2 and a3 are acceleration components along the
x, y and z axis of the undisturbed wave field and are
to be evaluated at the geometrical mass centre of the
body; Aij are the terms of the added mass in the three
directions and on the six modes.

The first term in equation 4.1 is the Froude-Krylov
force. The other terms, physically, represent the fact
that the undisturbed pressure is alterated due to the
presence of the body - diffraction force.

Radiation forces are the result of waves generated
by body motions; they are associated with a pressure
field and represent the water resistence to the body mo-
tions. They are materialized by terms of added mass
and damping. There are no incident waves, but the
forced motions generates waves. This results in pres-
sures on the structure surface that, when integrated,
originate resulting forces and moments on the body.
These are the radiation forces.

By defining the force components in the x, y and
z direction by F1, F2 and F3 and the moment com-
ponents along the same axis as F4, F5 and F6, the
hydrodinamic added mass and damping loads due to
harmonic motion mode ηj can be written as

Fk = −Akj
d2ηj

dt2 − Bkj
dηj

dt
(4.2)

where Akj and Bkj are defined as added mass and
damping coefficients, respectively. There is a total of
36 added mass coefficients and 36 damping coefficients.
However, there are ways to simplify the problem. For
example, half of the coefficients are zero if the structure
has zero speed and the submerged part has one vertical
symmetry plane. Akj and Bkj are functions of body
form, frequency of oscillation and the forward speed.
Other factors like finite water depth will also influence
the coefficients. If the structure has zero forward speed
and there is no current it can be shown that Akj = Ajk

and Bkj = Bjk.
As an example of a vertical motion, a buoy in an

harmonic wave field will be considered in order to de-
rive the equations of motion. For the other degrees of
freedom, the deduction is similar if the referencial is
properly chosen (so that the motions are decoupled).
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Considering the vertical motion of a a buoy sub-
mited to the action of a resulting vertical force in an
harmonic wave field, the Froude-Krylov force follows
from the pressure field of the undisturbed incident wave

F = −
∫ ∫

S

(pni) dS = ρ

∫ ∫
S

(
∂ϕ

∂t
ni

)
dS. (4.3)

Under the effect of this force, the vertical motion of the
buoy is given by

η3 = η0e−i(ωt−φ), (4.4)

where ω is the frequency and φ is the phase of the mo-
tion in relation to the wave action. Or, in the same
way

η3 = X sin(ωt) + Y cos(ωt). (4.5)

The term in cosine has to be considered because, in
general, the answer in a system with damping is not in
phase with the loads [15]. The vertical velocity in the
buoy is

η̇3 = Xω cos(ωt) − Y ω sin(ωt) (4.6)

with vertical acceleration

η̈3 = −Xω2 sin(ωt) − Y ω2 cos(ωt). (4.7)

As a consequence of this motion, the reaction forces
are:

• hydrostatic restoring force

FR = −C33η3 = −ρgA0η3,

• inertia force
FT = −ρV η̈3,

as well as the hydrodynamic pressure forces
which depend on relative acceleration and veloc-
ity, i.e.

• the hydrodynamic inertia force

F3m = −A33(η̈3 − u̇),

• the linearized drag force

F3dl = −B33(η̇3 − u),

where u and u̇ are the verticle water particle velocity
and acceleration respectively. The restoring coefficient
C33 follows from the specific weight ρg multiplied by
the waterplane area A0 (area in the water plane that in-
tersects the structure); A33 is the added mass and B33

is the damping coefficient; ρV is the mass of the fluid

that the body displaces. The equilibrium of forces,
with the Froude-Krylov force according to (3.3) results
in

ρ

∫ ∫
S

∂ϕ

∂t
n3dS − C33η3 − ρV η̈3

−A33(η̈3 − u̇) − B33(η̇3 − u) = 0.

By separating the variables, the linear equation of ver-
tical motion is obtained:

(ρV + A33)η̈3 + B33η̇3 + C33η3

= ρ

∫ ∫
S

∂ϕ

∂t
n3dS + A33u̇ + B33u

= F3a sin(ωt). (4.8)

The first member of the equation characterizes a lin-
ear oscillatory system, while the second member is the
harmonic wave excitation, that correspods to Morison
equation linearized. Normalizing the motion equation
with the total mass (ρV + A33) and adding the simpli-
fications

ωn =

√
C33

ρV + A33
e ξ = B33

2(ρV + A33)ωn

where ωn is the natural frequency of the structure for
the vertical translation motion, ω is the wave frequêncy
and ξ is the damping coefficient, the equation (4.8) can
be written

η̈3 + 2ξωnη̇3 + ω2
nη3 = F3a

ρV + A33
sin(ωt). (4.9)

Replacing η3 and its derivates by the expres-
sions (4.5), (4.6) and (4.7) in the equation (4.9) and
isolating the terms in sine and cosine, and consider-
ing that β is the ratio between the wave frequency and
natural frequency of the structure, i.e.,

β = w

wn
,

it leads to an equation system
−Xω̄2 − Y ω̄2 (2ξω) + Xω2 = F3a

ρV + A33

−Y ω̄2 + Xω̄ (2ξω) + Y ω2 = 0
,

where the first equation represents the terms in sine
and the second equation the terms in cosine. These
two relations have to be satisfied individually because
the sine and cosine terms vanish at different times [15].
Dividing both equations by ω2 and regrouping terms,
the equations can be written

X = F3a

C33

1 − β2

(1 − β2)2 + (2ξβ)2

Y = F3a

C33

−2ξβ

(1 − β2)2 + (2ξβ)2

.
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Replacing expressions X and Y at the expression (4.5),
it’s achieved

ρ =
√

X2 + Y 2 = F3a

C33

((
1 − β2)2 + (2ξβ)2

)− 1
2

η3 = F3a

C33

1√
(1 − β2)2 + (2ξβ)2

sin(ωt − φ),

where ρ is the motion amplitude. The phase φ is given
by

φ = tan−1
(

2ξβ

1 − β2

)
.

The transfer function in heave is

H3(ω) = η3(ω)
ζ(ω)

= F3a

C33ζa

[(
1 − β2)2 + (2ξβ)2

]− 1
2

= F3a

C33ζa
D(β, ξ). (4.10)

where the dynamic magnification factor D is equal to

D(β, ξ) = 1√
(1 − β2)2 + (2ξβ)2

. (4.11)

parameter (see Fig. 2.6). If the buoy is a floating cylin-
der with vertical axis, submerged to depth hc, then the
Froude-Krylov force in deep water, given by (3.1) and
the pressure force of the incident wave on the water-
plane area A0 given by (2.4b), results in

F3a = pz=−hc
× A0 = A0ρgζae−khc .

Neglecting the small forces arising from hydrodynamic
mass and drag, considering C33 = ρgA0 and k = ω2/g,
transfer function can be written as

|H3(ω)| = ηa

ζa
= e−khc ·D(β, ξ) =

∣∣∣∣∣ e− ω2
g hc

1 − ρ∀
C33

ω2

∣∣∣∣∣ , (4.12)

i.e. the magnitude of the heave transfer function de-
pends on the draft of the buoy, hc, or on the decay of
wave effects with non-dimensional depth khc = ω2

g hc.
In long waves, i.e. for low frequencies, both factors
(the exponential depth parameter and the magnifica-
tion factor) approach unity, and the buoy follows the
wave.

The generalized equation of motion for the six de-
grees of freedom can be written as

6∑
k=1

[(Mjk + Ajk(ω))η̈k + Bjk(ω)η̇k + Cjkηk] = Fje−iωt,

(4.13)
where Mkj , j = 1, ..., 6 are the components of the gen-
eralized mass matrix of the structure and Fj are the

complex amplitudes of the exciting forces and moment-
components given by the real part of Fje−iωt [12]. Akj

and Bkj vary according with the wave frequency ω. Us-
ing the dynamic balance equation (4.13), the motions
on the other five degrees of freedom can be deducted
in the same way as it was done for the vertical mo-
tion heave if a proper referential is chosen where the
gravity centre coincides with the vertical axis of the
referential. This way, the motions will be decoupled
and can be studied individually.

To illustrate the behaviour of floating structure,
the vertical motions (heave and pitch) of a semi-
submersible submitted to an incident wave in the x

direction will be studied. Tranfer functions will be
obtained in each mode and excitation forces and mo-
ments, F3 and F5 will also be analyzed in order to
obtain these transfer functions. The referential origin
is in the gravity centre of the structure.

The semi-submersible in analysis is a structure that
consists of two pontoons and four columns, and it is as-
sumed that there is no damping. The pontoons are
responsible for the flutuability of the structure and
the columns guarantee the hydrostatic stiffness of the
structure. The structure is symmetric and operates in
deep water (Figure 4.3)

Figure 4.3: Semi-submersible with two pontoons and
four columns (adapted from [12]).

The undamped equation of vertical motion can be
written as

(ρV + A33)η̈3 + C33η3 = F3(t). (4.14)

The pontoons and the columns contribute to vertical
excitation force. Considering only the contribution of
the pontoons,

F p
3 (t) = −ρgζa sin(ωt)ekzm cos

(
kB

2

)
k

(
Vp + A33

ρ

)
,

where B is the distance between the pontoons axis and
Vp is the pontoons volume (Figure 4.3). This force is
the sum of the Froude-Krylov force with the diffraction
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force. The Froude-Krylov force was calculated consid-
ering that all the pontoons are submersed, so the ex-
pression (3.1) could be used. In terms of the columns,
the contribution to the vertical excitation force is given
by the product of the pressure at the centre of the sec-
tion with the area of each column (A0/4), so that the
pressures on the columns on the left side of the gravity
center G given by p1 and the pressure on the columns
on the right side of G are given by p2 (Figure 4.3), i.e.,

p1 = ρgζaekzt sin(ωt + kx1) and

p2 = ρgζaekzt sin(ωt + kx2)

where x1 is the distance from the left column axis to
the vertical referential axis, x2 is the distance from the
right column to the vertical referential axis and zt is
the vertical distance from the free surface to the top of
the pontoons.

The contribution from the columns to the vertical
excitation force is given by

F c
3 (t) = ρgζa sin(ωt)ekzm cos

(
kB

2

)
A0ek(zt−zm),

where A0 is the waterplane area and zm is the vertical
coordinate of the geometric centre of the pontoon. It
is assumed that the free surface elevation at the center
of the structure is ζ = ζa sin(ωt) and that k(zt − zm)
is small (λ is big in relation with the structure dimen-
sions). F3 can now be written as the sum of the two
contributions, F3(t) = F p

3 (t) + F c
3 (t).

By analogy with an oscillatory linear system,(
− (ρV + A33) ω2 + ρgA0

)
η3 = F3(t) and

η3 = η3a sin(ωt),

i.e.,

η3a

ζa
= ekzm cos

(
kB

2

) 1 −
ω2zm

g

1 −
(

ω
ωn

)2

 ,

where the natural frequency on the vertical translation
mode is

wn =
√

ρgA0

M + A33
, (4.15)

where M is the submerged mass of the semi-
submersible.

The transfer function for vertical motion is given
by

H3(ω) = η3a

ζa
= ekzm cos kB

2

1 − kzm

1 −
(

ω
ωn

)2

 .

(4.16)

This example can be illustrated with values. Con-
sidering an harmonic wave of T = 10 s that prop-
agates along the negative x-axis; the dimensions are
L = 100 m, B = 50 m, pontoons have a section of
15 × 7 m2, the columns diameter is 10 m, the draught
is 22 m, x1 = −37.5 m, x2 = 37.5 m; zt = −15 m and
zm = −18.5 m. Assuming that A33 = 2LA

(2D)
33 [12],

where L is the length of a pontoon and A
(2D)
33 is the

vertical bidimensional added mass for the vertical mo-
tion of a pontoon. It is also assumed that A

(2D)
33 =

2.3ρAp [12], where Ap is the area of a pontoon section.
It follows that

M+A33 = ρ(2LAp+|zt|A0)+2×2.3ρApL = 7.59×107 kg.

The restoring coefficient

C33 = ρgA0 = 3.16 × 106 kg s2. (4.17)

The vertical excitation force is given by the sum of the
two contributions and replacing with values,

F3 = F p
3 + F c

3 = −5.9 × 106 sin(ωt) (N).

Regarding the undamped equation of motion, knowing
the values of M +A33 and C33 and replacing these val-
ues on the equation (4.14), the vertical motion η3 is
given by

η3 = 0.2 sin(ωt).

Expression (4.16) is used to write the transfer function
in heave, since the vertical excitation force and vertical
motion are known. Tranfer function H3 is represented
in Figure 4.4. The natural frequency of the structure
is given by

wn =
√

ρgA0

M + A33
. (4.18)

The stiffness is given by the columns. The natural
frequency of the semi-submersible is ωn = 2.0 rad/s.
By analysing Figure 4.4, it can be observed that the
graphic has a vertical asymptote for ω = 2.0 rad/s as
expected, since there is no damping.

Figure 4.4: Transfer function for the vertical motion
(heave) of the semi-submersible.
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The pitch equation of the semi-submersible is given
by

(I5 + A55)∂2η5

∂t2 + C55η5 = F5(t). (4.19)

The pitch inertia moment I5 is assumed to be numeri-
cal equivalent to A55 coefficient, to which the pontoons
and the columns contribute [12] and the expression was
derived in the dissertation [19] The resul is

A55 = 4.1 × 1010 kg m2.

To calculate C55 the moment in the center of the pon-
toon is considered,

Mp = ρg × 1
2

× B

2
× B

2
× θ × L × 2

3
× B

2
× 2.

Replaced by proper values (ρ, g, B and L), it is ob-
tained C55 = 2.8 × 109 kg m2s−2. In the expression of
the wave exciting pitch moment F5 [19] the two terms
from contributions from the horizontal forces on the
columns can be neglected. In this way, after replac-
ing by poper values, the wave exciting pitch moment
is given by

F5 = 2.3 × 108 cos(ωt) (Nm).

From equation (4.19) it can be derived the pitch motion

η5 = −0.008 cos(ωt) (rad).

With the motion and forces equations (η5 and F5) it is
simple to determine the transfer function for the rota-
tion around y axis (pitch) since it’s the ratio between
the motion amplitude η5a and the wave amplitude ζa,

H5(ω) = η5a

ζa
= F5

ζa sin(ωt) (−ω2(I5 + A55) + C55)
.

The transfer function H5 is represented in Figure 4.5
once the values of the example are replaced. A can-
cellation period can be observed when the excitation
force on the columns cancels the excitation force from
the pontoons.

Figure 4.5: Transfer function for the rotation motion
around y axis (pitch) of the semi-submersible.

5 Numeric model of a barge
The numeric results of a floating body submitted to
an harmonic wave is presented in this chapter. The
body is a barge with geometry: L = 2 m (x), B = 4 m
(y) and D = 2 m (z). The structure was modelled
on Nemoh [16]. This program calculates the hydrody-
namic coefficientes Akj(ω) and Bkj(ω) that depend on
the wave frequency.

The program gives hydrodynamic coefficients ac-
cordingly with the frequency, and it also provides the
resulting forces, at the referential’s origin, of Froude-
Krylov force and diffraction force. Radiation pressures
are given for each panel of the mesh and the resulting
radiation force must be calculated. In the dissertation
the vertical motion (heave) was discussed as well as
the rotation around the y axis (pitch) [19]. In Fig-
ure 5.1 the hydrodynamic coefficients for the vertical
motion are presented as an example. The analysis of
the results of forces and motions are presented in the
dissertation [19].

(a) A33(ω). (b) B33(ω)

Figure 5.1: Hydrodynamic coefficients for the vertical
motion determined in Nemoh.

6 Conclusions
The work was important to understand how the sea
waves act on an offshore structure, and the structure’s
response to such forces, bearing in mind that the struc-
ture’s size and the wave lenght must both be taken into
account at the same time. This knowledge is funda-
mental to support the design of an offshore structure.
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