
Variable Consistency Messaging Layer

José Henrique Sobral Santos

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. João Coelho Garcia

Examination Committee
Chairperson: Prof. Francisco João Duarte Cordeiro Correia dos Santos

Supervisor: Prof. João Coelho Garcia
Member of the Committee: Prof. João Pedro Faria Mendonça Barreto

September 2020

Acknowledgements

I would like to express my gratitude to everyone who contributed in any way to complete
this work.

I would first like to thank my supervisor João Garcia for all the effort, patience, time
and discussions that helped me to rethink and improve this work, but also I have to thank
all the positive pressure he put on me to complete it.

I would like to give a special thanks to João Loff who, without any obligation to do
so, helped me in everything he could from the first moment. His knowledge and constant
feedback undoubtedly contributed to a better and more complete work.

Last but not least, I would also like to thank my family and friends who somehow
helped me throughout this thesis.

I couldn’t finish without showing my gratitude to my mother, who always gave me
everything I needed and made it possible for me to study where and what I wanted.

iii

Abstract

Geo-distributed systems provide high availability, low-latency, and fault tolerance through
replication to different locations. The major downside is that replication can lead to
divergences between replicas, either caused by network failures or simply by a network delay.
Handling these divergences is usually left to a consistency protocol which is implemented
by the underlying system. Nowadays, systems tend to implement a single consistency
model embedded in their implementation. When the system requirements change and the
consistency model is no longer appropriated, developers are left with one of two choices:
either (i) the system needs to be deeply rewritten or (ii) replaced by a different system,
with a new set of consistency guarantees.

We propose a framework that abstracts the implementation of the consistency model,
into a set of well-defined modules. This structural abstraction aims to frame the most
common consistency protocols within these modules, as well as to ease the switching of
consistency protocol in the targeted system. We have evaluated our framework by measuring
the throughput and overhead between the original and our modified implementation with the
framework of two different storage systems. The measurements show that this modularity
and abstraction have an associated overhead. However, it is compensated by the flexibility
and ease in changing modules and the respective consistency model offered.

Keywords: Consistency, Modularity, Replication, Framework, Distributed Systems

v

Resumo

Os sistemas geo-distribuídos providenciam alta disponibilidade, baixa latência e tolerância
a falhas através da replicação em diferentes localizações. A principal desvantagem é que
a replicação pode levar a estados de divergência entre as réplicas, causados por falhas de
comunicação ou simplesmente devido a atrasos na rede. O tratamento dessas divergências
é geralmente deixado a um protocolo de consistência que é implementado pelo sistema.
Hoje em dia, os sistemas tendem a implementar um único modelo de consistência que se
encontra embutido na sua implentação. Quando os requisitos do sistema mudam e o modelo
de consistência precisa de ser ajustado, os programadores ficam com uma de duas opções:
ou (i) o código do sistema é profundamente reescrito ou (ii) o sistema é substituído por
um diferente que oferece um novo conjunto de garantias de consistência.

Neste documento, propomos uma framework que abstrai a implementação do modelo
de consistência para um conjunto de módulos bem definidos. Esta abstração estrutural visa
enquadrar os protocolos de consistência mais comuns dentro desses módulos, bem como
facilitar a troca de protocolo de consistência no sistema. Avaliámos a nossa framework

medindo a taxa de transferência e o custo adicional entre a implementação original e a
modificada com a framework de dois sistemas de armazenamento diferentes. As medições
mostram que essa modularidade e abstração têm uma penalidade de desempenho associ-
ada. No entanto, esta é compensada pela flexibilidade e facilidade de troca de módulos e
respectivo modelo de consistência oferecida.

Palavras-chave: Consistência, Modularidade, Replicação, Framework, Sistemas Distri-
buídos

vii

Contents

List of Figures xiii

List of Tables xv

Listings xvii

Acronyms xix

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Outline . 3

2 Related Work 5
2.1 Replication . 5

2.1.1 Active Replication . 6
2.1.2 Passive Replication . 6
2.1.3 Lazy Replication . 6
2.1.4 Full Replication . 6
2.1.5 Partial Replication . 7

2.2 CAP Theorem . 7
2.3 ALPS . 8
2.4 Consistency . 8

2.4.1 Linearizability . 10
2.4.2 Sequential Consistency . 11
2.4.3 Per-Record Sequential Consistency 11
2.4.4 Causal Consistency . 11
2.4.5 Session Guarantees . 12
2.4.6 Eventual Consistency . 13

2.5 Existing Implementations . 13
2.5.1 Dynamo: Amazon’s Highly Available Key-value Store 13
2.5.2 PNUTS: Yahoo!’s Hosted Data Serving Platform 14
2.5.3 Don’t Settle for Eventual: Scalable Causal Consistency for Wide-

Area Storage with COPS . 15

ix

CONTENTS

2.5.4 Spanner: Google’s Globally-Distributed Database 16
2.5.5 Bolt-On Causal Consistency . 17
2.5.6 Making Geo-Replicated Systems Fast as Possible, Consistent when

Necessary . 18
2.6 Discussion of Existing Implementations . 19

3 Architecture 21
3.1 Group Membership . 22
3.2 Ordering . 22
3.3 Replication . 23
3.4 Delivery Condition . 23
3.5 Quorum . 24
3.6 Communication . 24

3.6.1 Internal communication API . 25
3.6.2 External communication API . 25

3.7 Framework API . 25
3.8 Inter-module interactions . 26

4 Implementation 29
4.1 Methodology . 29
4.2 Programming Language Choice . 29
4.3 Choice of replicated storage systems . 30

4.3.1 DKVF . 30
4.3.2 Project Voldemort . 30
4.3.3 Discussion . 31

4.4 Code Structure . 31
4.5 Main Class . 32

4.5.1 Switching modules and versioning 33
4.6 Implementation experience . 34

5 Evaluation 35
5.1 Methodology . 35
5.2 DKVF . 35

5.2.1 Experimental Setup . 35
5.2.2 Experimental Results . 36

5.3 Project Voldemort . 37
5.3.1 Experimental Setup . 37
5.3.2 Experimental Results . 38

5.4 Discussion . 39

6 Conclusion 41
6.1 Future Work . 41

x

CONTENTS

Bibliography 43

xi

List of Figures

2.1 Example of an inconsistent system . 9
2.2 Consistency models tree, adapted from [35] 10
2.3 COPS architecture (from [25]) . 15
2.4 Spanner Architecture (from [45]) . 16
2.5 Spannerserver Software stack (from [45]) . 17
2.6 Bolt-on architecture: a causally consistent shim layer mediates access to an

underlying eventually consistent data store [48] 18
2.7 Causal Cuts [48] . 18

3.1 New message flow . 26
3.2 Replication Message Flow . 28

4.1 Framework code structure . 32

5.1 Experimental cluster representation . 36

xiii

List of Tables

5.1 COPS with DKVF original implementation - 50:50 operations ratio 36
5.2 Modified COPS with DKVF - 50:50 operations ratio 36
5.3 COPS with DKVF original vs modified overhead - 50:50 operations ratio . . . 37
5.4 COPS with DKVF original implementation - 95:05 operations ratio 37
5.5 Modified COPS with DKVF - 95:05 operations ratio 37
5.6 COPS with DKVF original vs modified overhead - 95:05 operations ratio . . . 37
5.7 Project Voldemort - 50:50 operations ratio . 38
5.8 Project Voldemort - 95:05 operations ratio . 38

xv

Listings

4.1 New put message on framework . 33

xvii

Acronyms

ALP availability, low-latency, partition-tolerance
ALPS availability, low-latency, partition-tolerance, scalability
ATM automated teller machine

CAP consistency, availability, partition-tolerance
COPS clusters of order-preserving servers
CPU central process unit

DKVF distributed key-value framework

IP internet protocol

RAM random access memory

YCSB yahoo! cloud serving benchmark

xix

C
h

a
p

t
e

r

1
Introduction

The growth of the Internet has changed not only the way we see the world but also the way
engineers design and develop computer systems. In the 20th century, applications were
developed with all parts integrated in the application itself, e.g., a web server application
included the web server itself, some kind of data storage and it was all compiled and run
directly on a single server [1]. When a system needed to be upgraded to provide better
performance or greater capacity, the vertical scaling strategy solved the scaling needs by
buying a better CPU or adding bigger and better hard disks or RAM’s. This approach
worked for the reality of those times. However, nowadays, for example, Google Search
receives more than 3.5 billion search queries every day [2], making it almost impossible to
have a single server in the world able to handle this amount of processing.

Given the growth rate of the Internet and the seeming end of Moore’s law [3], solutions
that used a vertical scaling were deemed obsolete and unsustainable [1]. The alternative
was to change the focus from vertical scaling to horizontal scaling. The focus was no longer
on making a single machine better but adding more machines to a pool of resources. The
earliest horizontal scaling was just running duplicates of the web server [1], but nowadays,
pursuant all the advancements of cloud technology, microservices architecture has emerged
[4].

Taking advantage of horizontal scaling, a huge application can be split into smaller
services that can still perform a meaningful task [5]. Applying a microservice architecture
to the previous web server example, instead of having a single web server running all the
requests, the application is split up in services, such as: user authentication, database
model service, and so on. The decentralized governance of the services allows services to
be anywhere across servers and replicated as needed, instead of creating clone instances of
the entire application every time.

1

CHAPTER 1. INTRODUCTION

This new architectural model brought new challenges, such as coordination and consis-
tency between nodes spread all over the world, dynamic group membership and availability
of the entire system. To guarantee availability, a system should be replicated across different
machines [6], keeping the system accessible and operational even in cases of catastrophes.
Thus, this raises a problem of consistency between replicas. When a system is being repli-
cated, due to the network connections, the order in which each replica receives the messages
may be different or even never receive one of the messages. Therefore, the replicas could
be in different states, diverging between them.

When someone is building a new system, there are a lot of decisions to be made about
the system design, especially about system guarantees. Choosing a consistency model,
which is a set of rules for visibility and apparent order of updates to the system’s objects
[7], is a problem itself. If, on the one hand, making the right decision about what model
should be used can be really difficult [8], on the other, the business requirements that
supported that decision may change and the consistency model chosen becomes no longer
appropriate. Let’s imagine a company whose core replicated storage system was initially
built with eventual consistency guarantees. The company grows and businesses evolve,
changing the initial requirements, which the system had been initially built with, making
eventual consistency guarantees no longer appropriate for the business requirements. Given
that systems tend to be built with an integrated consistency model, programmed within
its core, making changes is much harder. Therefore, developers are left with two solutions:
either a new system is developed or a deep restructuring is made to the current system
code in order to fulfil the new business requirements.

Our proposal to solve this problem is a framework that abstracts the implementation
of a system’s consistency underlying model, making consistency model adaptations an
easier task. To achieve this, we propose extracting the consistency implementation to a
modular layer under the system, which is modelled so as to allow a shift of consistency
model when needed. We believe that this proposal can also be useful for researchers, as it
allows experimenting with variations in the consistency model in a simple way.

1.1 Contributions

In this document, we study the details of existing consistency protocols and seek common
components between them. By splitting the functionality into different modules, we can
create a framework architecture that is capable of being used to implement most of the
existing consistency protocols.

This framework splits up the consistency implementation from the system itself, which
allows reducing the effort necessary to add consistency to a system by abstracting the
development process with the implementation of the well-defined modules as well as allowing
the system’s consistency to be changed at build time.

To the best of our knowledge, there is no similar solution to our proposal.

2

1.2. THESIS OUTLINE

Briefly, this document makes the following contributions:

• A modular abstraction of the consistency model capable of being framed in most
existing consistency protocol implementations;

• A framework that:

– is capable of being used to implement the most common consistency protocols;

– allows the developer to change the consistency of the system in build time.

1.2 Thesis Outline

In the following pages, we present the theoretical context which will help better understand
the following chapters, and we describe the state-of-the-art by analyzing and detailing the
consistency protocol of some representative existing systems in Chapter 2. In Chapter 3,
we present an overview of our framework design and the details of the respective modules.
We show the experience and details of the framework implementation in Chapter 4. In
Chapter 5, we describe the evaluation of our framework and an analysis of the results. Last
but not least, we present our conclusions and propose future work directions in Chapter 6.

3

C
h

a
p

t
e

r

2
Related Work

In this chapter, we start by introducing a context of our thesis detailing replication tech-
niques (2.1), next we describe a fundamental theorem (2.2), following by well-known
properties (2.3), and consistency models (2.4) that are relevant to the understanding of our
document. We ended up this chapter with a dissection of some the existing systems (2.5)
to find out how each system achieves the consistency guarantees. In this analysis, we are
interested in identifying the similarities between systems, especially in how they guarantee
consistency in the system.

For this document, we only consider non-transactional operations, leaving transactional
models out of the scope.

The change from vertical scaling to horizontal scaling due to the growth of the Inter-
net and the complexity of service architectures created new challenges that needed to be
faced. Keeping the system available while machines or network failures occur, or even a
single machine being overloaded, unable to deal with a stream of incoming requests to this
machine was one of these challenges. Horizontal scaling adds machines to a system that
can be distributed worldwide, bringing more resource for more processing power, but also
to add more reliability to the system. However, for this, all machines must have the same
data as the others had.

2.1 Replication

All distributed system should be prepared to scale with the growth of the workload for
which the system is exposed. However, to provide a system that is reliable, correct and with
fault-tolerance guarantees, replication is mandatory. A good example of a replication need
is a catastrophe scenario, such as a fire or an earthquake, that results in full destruction of

5

CHAPTER 2. RELATED WORK

an entire data centre. Every piece of data should be saved on other data centres in order
to be recovered. In some cases, replication adds the benefit of reducing the data access
latency when the data are replicated to data centres near the client [9–11].

Replication could be performed in different ways: active replication (2.1.1) or passive
replication (2.1.2).

2.1.1 Active Replication

A concept introduced by Lamport, under the name of State Machine Replication [12–14], in
which each request is processed by all replicas with the same order in all of them. In order
to guarantee that every replica receives the same sequence of operations, it’s necessary to
use an atomic broadcast protocol [15]. The atomic broadcast protocol guarantees that all
the servers receive a message likewise they receive the messages in the same order. One
drawback of this design is the high resources usage, such as CPU and network, that is
required for each request.

2.1.2 Passive Replication

Contrary to the previous point, in passive replication, each request is processed by a
single machine (primary) and then replicated to other machines. This approach is typically
referred to as Primary-Backup [14, 16, 17]. This approach follows the master/slave model in
which the primary machine with the master role is responsible to coordinate the replication
to the slave machines. One request is replied to the client when a master machine has
completed the replication to the slave machines. This design allows to read operations to
be performed on any machine integrating the system.

2.1.3 Lazy Replication

Close to Passive replication, the differences between both approaches, allows the system to
provide better performance sacrificing the consistency among replicas. In Lazy replication
[18, 19], instead of waiting for replication to be completed before replying to the client,
it is applied locally at a master machine and immediately replied to the client. Then the
master machine initiates, in the background, a replication process by gossip protocol [20].

Replication is also concerned with data placement, that is, deciding where a data object is
replicated to. There are two majors approaches:

2.1.4 Full Replication

This model allows the system to provide a higher availability since in full replication all
data is replicated to all nodes. It means that all nodes on a system have a complete copy
of the entire database [21].

6

2.2. CAP THEOREM

2.1.5 Partial Replication

In contrast with the previous technique, partial replication [22] allows the system to have
different data subsets replicated to different nodes, which are usually geo-distributed. The
number of nodes with a copy of the data subset can vary with the importance of the data
itself.

Ideally distributed systems should have strong consistency, high availability and partition-
tolerance. However, the CAP theorem claims that it isn’t possible to achieve at the same
time.

2.2 CAP Theorem

Introduced in 2000 by Eric Brewer [23], and later proved by Seth Gilbert and Nancy Lynch
[24] in 2002, the CAP theorem has become a reference in the distributed systems area.
CAP is an acronym where we have:

• C for Consistency - if a client makes a write to a node, a following read will return
this value or a more updated one. That is, the system ensures that the client never
sees old data.

• A for Availability - every request receives a response without exposing errors to the
client. This means that no operation can block indefinitely or return an unavailable
state [25]. This property doesn’t guarantee that the node, that is processing the
request, remains in the most updated state.

• P for Partition-tolerance - a partition is a communication break within a dis-
tributed system. Partition-tolerance means that a system must continue to operate,
regardless of if messages are dropped or delayed between nodes in a system.

This theorem states that from these three properties, only two can be achieved at the same
time in a distributed system. Given that, there are three possibilities to the systems:

1. Consistency and Availability (CA) - systems that implement this approach agree
that when a partition occurs, the system may be unavailable until the failure is solved.
Usually relational databases systems use this approach, e.g., SQL Server [26], MySQL
[27] or PostgreSQL [28].

2. Consistency and Partition-tolerance (CP) - this approach diverges from the
above, in that, if some member of a system fails, a request may be rejected by the
system. Usually, this happens because the system could reach a consensus. There
are consensus protocols that aim to mitigate this problem, e.g., Paxos [29]. However,
we will not describe these protocols in this document.

7

CHAPTER 2. RELATED WORK

3. Availability and Partition-tolerance (AP) - systems with this approach neglect
consistency, in order to achieve high availability and partition-tolerance. The decision
behind using this approach is based on system performance, even agreeing that some
inconsistencies may be exposed. Cassandra [30] or Voldemort [31] are some examples
of systems based on these two properties.

2.3 ALPS

Many modern systems choose to provide availability and partition-tolerance (2.2) at the
cost of consistency. Previously, ALP properties have been claimed to offer an “always-
on” user experience system [32]. Adding scalability into account, it takes us to the ALPS
properties, which are referred to as the desired properties for a geo-replicated service [25].

ALPS is an acronym for Availability, Low-latency, Partition-tolerance and Scalability.
Since Availability and Partition-tolerance are already defined above (2.2), we will only
describe the remaining ones.

• Low-Latency - all operations are completed quickly. According with Dynamo [32],
a worst acceptable performance scenario is of 10s or 100s of milliseconds [25].

• Scalability - adding resources to a system increases its capacity in a behaviour
approaching proportionality.

2.4 Consistency

Replication allows systems to no longer be fully centralized on a single machine and, in some
cases, it also allows any replica to process the clients’ requests, increasing the availability
and throughput of a system. However, the advantages of replication have a price: the lack
of consistency between replicas.

A consistency model determines rules for visibility and apparent order of updates to the
system’s objects [7]. Stronger consistency prevents exposing unexpected behaviour visible
to users and reduces programming complexity [33] but at the same time, it has a huge
impact on the overall performance. Acquiring locks, waiting for replication, or network
delays are some of the problems that the system has to deal with that result in degrading
system performance. This all culminates in a negative impact on the user’s experience
with the system.

Many production systems tend to choose weaker forms of consistency [11, 25, 32], in
order to provide low-latency and high throughput. Shifting to the opposite side of the
spectrum of consistency, the benefits described above disappear [33]. These weaker forms
of consistency have two primary drawbacks: (i) The systems allow executions that expose
anomalies to the user [11, 32, 33]. Example: someone in a distributed file sharing revokes
the permissions of other user and upload new data, the person who had the permissions

8

2.4. CONSISTENCY

revoked might be capable of to watch this new upload [11]; (ii) weakest models exposes
problems that programmers must be aware and handle the complex cases, for example, the
programmer must deal with a case where an album with references to photos that do not
exist yet [33].

Figure 2.1: Example of an inconsistent system

Looking at the example of a distributed banking system, the consistency between
replicas becomes critical. Say that a given user X has a bank account shared with user
Y with a balance of 100 euros. X carries out a cash withdrawal operation 80 euros on an
ATM. In another part of the world, Y withdraws 100 euros from the shared account. If the
system is not consistently replicated, users X and Y are able to perform both operations
and get more money than they had in their shared account (Fig. 2.1).

Dealing with replication operations requires providing certain guarantees for these same
operations [33] in order to accomplish the system requirements. According to CAP theorem
(2.2), if we have strong consistency, we are losing desired properties to our system. On the
other side, if we have a weak consistency, it can cause the system to expose inconsistencies
that do not fit the system requirements. To find a balance between the properties that
can meet the systems requirements, several consistency models with different levels of
consistency guarantees have emerged.

Before we describe the different consistency models, let’s first split consistency into two
ways of looking at it:

• Server-side consistency - how updates are propagated in the system and what
guarantees systems can give about updates [34]. The replication technique used or
which quorum is necessary to form to propagate and give a certain guarantee are
some of the focuses here.

• Client-side consistency - how and when the clients observe updates made to a
data object [34]. The strongest consistency ensures that two clients connected to
different servers of the system, see the same latest update of a given object. However,
using session guarantees (2.4.5), this cannot be ensured.

9

CHAPTER 2. RELATED WORK

Figure 2.2: Consistency models tree, adapted from [35]

Looking at figure 2.2, it shows a tree that displays the consistency models in a top-down
approach, which means that at the top of the tree is placed the strongest consistency model
and at the bottom the weakest. Next, we will describe the consistency models following
the top-down tree approach.

On the root of the tree, there is a Strict Serializable [36] model. It is out of our analysis
for two reasons: it is a transactional model and, as we are not considering transactions,
linearizability is just strict serializability for single object operations [37].

2.4.1 Linearizability

Linearizability is the strongest consistency level for non-transactional systems described
by [33, 36], also known as atomic consistency, guarantees a total order with the real-time
ordering of operations. This model guarantees that once a write operation is complete, a
later read operation will return the value of that write or the latest value wrote. However,
there is a detail: it supports concurrent operations. Given two concurrent operations in
which A is a write operation and B is a read operation, there is no guarantee on what value
B operation returns. B may return the value before A or the resulting value of A because

10

2.4. CONSISTENCY

what this level guarantee is if an operation is complete, the following operation returns the
latest value.

2.4.2 Sequential Consistency

This model guarantee total order to the system without real-time constraints. The result
of any execution will be the same if all operation were executed in some sequential order in
replicas and these operations respect the order specified by its program [38]. This model
does not guarantee consistency between replicas. In other words, it is possible that different
replicas be ahead or behind other replicas, but when a replica returns a state of an object,
it is not possible for the same replica to give back a previous state that it already returned.

2.4.3 Per-Record Sequential Consistency

A weaker model following sequential consistency, also known as per-record timeline con-
sistency. Instead of providing sequential consistency for the entire system, this model
guarantees a per-object sequential consistency. The updates to an object have a single
ordering processed by a single replica, according to a timeline, with that replica being
responsible for propagating it to the other replicas. This means that all replicas of a given
record apply all updates to the record in the same order [11]. That guarantees that a
replica only moves forward on object versions and consequently a read operation is always
consistent with the order.

2.4.4 Causal Consistency

This consistency model ensures that, if an operation B requires operation A to be correct,
the system only applies operation B after applying operation A. Nevertheless, if an opera-
tion is not causally related to a previous operation then, these operations are concurrent
and not ordered by causal consistency, then A can be immediately applied [8, 25].

This guarantees that if an operation is dependent on a subsequent operation, the system
cannot return the result of the second operation without the first being available [8, 12].

The causal dependency is captured using the notion of potential causality, the happens-
before (→ relation) formally defined by Lamport [12] as:

1. Given two operations A and B that execute on the same process, if A was executed
before B, there is a causal order between A and B, then A→B.

2. Given two operations, where A is a write, B is a read operation and both operations
can be executed at different processes, if B returns the value written by A, then
A→B.

3. The relations are transitive. Given three operations A, B and C, if A→B and B→C,
then A→C.

11

CHAPTER 2. RELATED WORK

2.4.4.1 Causal+ Consistency

Initially introduced by Bayou [39] and PRACTI [40] and more recently revisited by COPS
[25], Causal+ is essentially a Causal consistency with a convergent conflict handling. In
Causal consistency, when two concurrent operations (non-causally related) are writes to
the same object, they might be in conflict. Causal+ adds to the causal consistency a new
guarantee: replicas never permanently diverge and conflicting updates to the same key are
dealt with identically at all sites [25]. These properties are achieved by adding convergent
conflict handling, using a handler function that makes all replicas deal with conflicting
operations in a deterministic way. This results in clients only seeing progressively new
versions of the objects.

2.4.5 Session Guarantees

A session, according to Terry’s paper [41], is an abstraction of a sequence of read and write
operations performed during the execution of an application. In a distributed system, for
a given client, this same sequence of operations can be split and sent to different replicas,
hence the result of this operations may not be consistent. The following consistency models
aim to add additional guarantees to a given session. Contrary to the models already
described, the session guarantees are guarantees only for clients.

2.4.5.1 Writes Follow Reads Consistency

Sometimes called session causality [42], in this model it is ensured that, if a write operation
W follows a read operation R, then the write operation occurs on the value returned by R
or on a more recent one [43].

2.4.5.2 Read-Your-Writes Consistency

This model ensures that, if a client performs a write, then the result of this operation
must be always available to subsequent read operations. This model is only available to
operations from the same client. If a client A performs a write, there is no guarantee that
another client B performing a read operation receives the result of the last write from client
A.

2.4.5.3 Monotonic Reads Consistency

This model ensures that, if a client performs two reads A and B, where B is done after A,
the return of read B cannot be prior to the result already returned by read A. This model
is also only available to operations from the same client. This ensures that given three
operations: W is a write operation, R1 is a read operation and R2 is a read operation after
R1, executed by the same client, if R1 returned the value of W then R2 needs to return
also W [42].

12

2.5. EXISTING IMPLEMENTATIONS

2.4.5.4 Monotonic Writes Consistency

A replica should apply all writes by the order they were made. This means that a write,
only can be applied if all the previous writes were already applied. This model is only
available to operations from the same process and not from different processes ensuring
that if a process make two writes, B after A, then all processes will see A before B.

2.4.6 Eventual Consistency

Eventual consistency is the weakest model represented on the tree of figure 2.1. In contrast
with the previous point, when an update arrives at a replica, it overwrites the object
without checking any dependencies. The guarantee that eventual consistency specifies is: If
a replicated object stops being updated, eventually all replicas would have the most recent
version of the object [8, 34]. Therefore, this consistency level does not guarantee that a
read done after a write operation returns the most recent value.

Besides the models discussed, hybrid models have become common. Given that, sometimes
some operations require a stronger consistency and others require performance, hybrid
models use more than one model described above to form a new mixed model. An example
of a hybrid model is RedBlue Consistency [9], where they use eventual consistency for one
type of operations and linearizability for another type of operations.

2.5 Existing Implementations

In order to find out common components between consistency protocols that will allow us to
build a generic consistency framework, in this section, we will analyze the implementation
of several existing systems focusing on how the system is composed to guarantee the level
of consistency they promise.

For this analysis, we chose different systems that lie on disparate regions of the consis-
tency spectrum.

2.5.1 Dynamo: Amazon’s Highly Available Key-value Store

A particular problem for the Amazon company was the need for an “always-on” system
that could keep working even though an entire data centre is destroyed [32]. To accomplish
this, the authors present Dynamo, a high availability key-value storage system that sacri-
fices consistency in order to achieve availability and partition-tolerance (2.2). Dynamo is
decentralized, scalable, symmetric (all nodes have the same responsibilities) and supports
heterogeneity (which means that Dynamo distributes the work amongst different nodes
with different capabilities). Dynamo provides eventual consistency with partitioned and
replicated data using consistent hashing [44]. Data consistency is achieved with object
versioning. Consistency between replicas is maintained by a quorum technique and a

13

CHAPTER 2. RELATED WORK

decentralized replica synchronization protocol. For failure detection and membership a
gossip-based protocol is used.

To allow the system to be scaled and load-balanced with potential arrangement changes,
they dynamically partition data over the nodes and make use of consistent hashing [44] to
select a node from the “ring” arrangement that receives each data item.

Looking at replication, Dynamo replicates data to N nodes (with N being a configurable
value). The node that receives the data item is responsible for replicating the data to N-1
neighbour nodes in the ring asynchronously.

As a result, put operations can return before they are applied at all replicas and therefore
get operations may return an outdated version of the objects if the return is from slow
nodes. In order to solve inconsistencies, Dynamo uses vector clocks to capture the data
versioning while treating every modification of the data as a new and immutable version. In
case of conflicting versions of an object, versions can be reconciliated. Dynamo exposes two
operations: put(key, context, object) and get(key), where the context parameters encode
the metadata about the object and the version of the object. When a client wants to update
an object, it specifies the version of the object that he wants to upgrade. When a client
wants to get an object, all different versions are returned to him and it is his responsibility
to deal with.

2.5.2 PNUTS: Yahoo!’s Hosted Data Serving Platform

PNUTS is a massively parallel and geographically distributed system for Yahoo’s web
applications, presented to accomplish Yahoo’s requirements which are Availability, Low-
Latency, Partition-tolerance, and Scalability properties (2.3). The requirements are the
same as Dynamo’s. However, for PNUTS, Dynamo’s consistency is considered too relaxed.
Take a look at the following example: if, in a distributed file sharing, user X revokes user
Y permissions and uploads new data, the person that had the permissions revoked (Y)
shouldn’t see this new upload. However, this is possible under Dynamo’s consistency model.
The authors agree that it is often acceptable to read stale data, but, on some occasions,
stronger guarantees are required. PNUTS has per-record sequential consistency but does
not provide consistency between different records. So, in PNUTS, this variation is called a
per-record timeline consistency.

PNUTS relies on Yahoo! Message Broker (YMB), a publish/subscribe system, to take
care of all asynchronous replication and provide failure recovery to the masters. It performs
a full replication to each node of the system. Another difference compared to Dynamo is
that PNUTS provides a middle approach between decentralized and centralized. It means
instead of having one global master or one full decentralized system, PNUTS designates a
master per record that is responsible to serialize that record. This master is also responsible
for executing all updates on a given record.

14

2.5. EXISTING IMPLEMENTATIONS

Figure 2.3: COPS architecture (from [25])

2.5.3 Don’t Settle for Eventual: Scalable Causal Consistency for Wide-
Area Storage with COPS

The eventual consistency that Dynamo [32] or Cassandra [30] expose is too weak to guar-
antee that all replicas are consistent. Hence, the authors of COPS proposed a causal
consistency model with convergent conflict handling called causal+ that achieves the ALPS
properties (2.3). The convergent conflict handling solves a problem of causal consistency
for concurrent events. Applying last-write-wins [30] rule ensures that all conflict problems
are handled consistently at all replicas. However, other conflict handling rules can be
implemented, for example, first-write-wins.

It is not the first appearance of causal+. Systems as Bayou [39] or PRACTI [40] achieved
causal+ using log-based replay from a centralized point. However, these systems were not
scalable since they required that all data (or at least data that might be accessed together) fit
in a single machine. For that purpose, the authors introduce COPS: a key-value distributed
storage system (Figure 2.3), in which data can be spread across many machines and multi-
ples data centres. Every key has the following format: < version, value, dependencies >.
The reason for including dependencies in the API is to guarantee causal order for each
key’s version when a message is applied. COPS is designed to work across spread data
centres where each has a local COPS cluster. This cluster uses consistent hashing [44] to
partition the keys across cluster nodes, assigning different nodes to different keys. On the
client-side, COPS provides a client application that uses the COPS client library (with put
and get operations) to make calls directly into the COPS data store. The get operation
is non-blocking, and it is performed locally by the nearest data centre since all data are
replicated. When a client calls the put operation, the primary node of a cluster assigns
a version number to each update using a Lamport timestamp [12] and returns it to the
client. Then, the primary node replicates the update asynchronously to the other data
centres. The message is applied to the replicated data centre when the dependencies are
satisfied. It means that operation dependencies required are already applied to the system.
The operation result returns to the client after being executed in the local cluster, and the
following operations between cluster occur asynchronously in the background.

15

CHAPTER 2. RELATED WORK

Figure 2.4: Spanner Architecture (from [45])

2.5.4 Spanner: Google’s Globally-Distributed Database

Spanner [45] is a scalable distributed database introduced by Google that provides externally
consistent (similar to Linearizability [46]) reads and writes, and replicated sharded data
across data centres spread all over the world providing globally-consistent reads across the
database at a timestamp.

To guarantee these properties, Spanner makes use of the TrueTime API. This API not
only provides a global clock but also directly exposes clock uncertainty with the particular
concern that it is able to give a real time uncertainty between 1ms and 7ms. Spanner was
built around TrueTime timestamps. If the bounds of uncertainty are high, Spanner slows
down the execution to wait out that uncertainty.

A Spanner deployment is called a universe. Inside the universe, there is a set of zones,
which are locations (could be data centres) where data can be replicated. Each zone has one
zonemaster and between one hundred and several thousand spanservers (Figure 2.4) where
the zonemaster assigns data to spanservers and the spanserver is responsible for provide
data to the clients. Each spanserver is responsible for between 100 and 1000 instances of
a tablet. A tablet is a bag of mappings between a (key, timestamp) pair and a value.

Let’s now focus on analyzing the consistency model. The applications can choose to
which zone they want to replicate. To enable replication, each spanserver implements a
single Paxos [29] state machine on top of each tablet (Figure 2.5) that is used to implement
a consistent replicated bag of mappings. Each Paxos state machine stores metadata and a
log in its corresponding tablet. At every replica, which is a leader of a zone, each spanserver
implements a lock table, and a transaction manager to support concurrency control and
distributed transactions.

Given that, in this thesis, we are only considering non-transactional models, for our
analysis, we are going to consider a transaction over a single object. Spanner implements
the following transactions: Read-Write Transactions and Read-Only Transactions.

Read-Write Transactions makes use of a two-phase commit protocol [47]. First, the
client makes a read request to each leader of the group that acquires the locks and read
the latest data. Then, the coordinator’s leader acquires write locks and receives all the
timestamps from the other leaders, chooses a timestamp s that is greater than all of them,

16

2.5. EXISTING IMPLEMENTATIONS

Figure 2.5: Spannerserver Software stack (from [45])

sends s to all other leaders and releases the locks. To guarantee the external consistency,
the coordinator’s leader ensures that clients cannot see any data committed with timestamp
smaller than timestamp s.

Read-Only Transactions are performed in two ways: if the read is at a single group,
then it assigns a read timestamp equal to the latest committed write in the group. If
the read is along with multiple groups, a timestamp from TrueTime is assigned and the
operation has to wait until this timestamp is exceeded.

2.5.5 Bolt-On Causal Consistency

There are many well-tested projects which the developers have spent a lot of time refining
their solutions. Taking advantage of that fact, the authors implemented a layer to guarantee
causal consistency (bolt-on architecture, fig. 2.6) to the underlying eventually consitent
data store (Cassandra [30]). One of the reasons for this design choice is to leave the
responsibilities of liveness, replication handling, durability and convergence for many well-
tested projects, and leave to the implemented layer the responsibility of providing causal
safety guarantees.

There is a problem of trying to implement causal consistency on top of an eventually
consistent data store. While eventual consistency usually overwrites previous values with
more recent writes without checking for dependencies between operations, causal consistency
needs to define the dependencies of each operation which is only achieved by storing each
version of an object. It will allow building the previous dependencies for each new operation
in a system.

The solution presented is the notion of causal cuts, that defines the dependencies of
each write with a cut in the operations history (Figure 2.7). A causal cut object is defined
according to the following the rules: (i) to be in the cut; (ii) to happen-before a write to
the same object that is already in the cut; (iii) to be concurrent with a write to the same
object that is already in the cut.

When a client calls a write operation, the layer updates the local store and sends it to
the data store with the dependencies list that must be ensured before exposing the write

17

CHAPTER 2. RELATED WORK

Figure 2.6: Bolt-on architecture: a causally
consistent shim layer mediates access to an
underlying eventually consistent data store
[48]

Figure 2.7: Causal Cuts [48]

to the clients. The clients can only read from the local store. So, if a read is already in its
local store, the value can be immediately returned. If the value is not up-to-date, it can
be updated asynchronously.

2.5.6 Making Geo-Replicated Systems Fast as Possible, Consistent when
Necessary

In this paper, a new consistency model called RedBlue is proposed as well as a system,
called Gemini, that implements that model [9]. The main concept of RedBlue is: no matter
what the operations are, all replicas must converge on the same final state and, at the
same time, ensure that application invariants are never violated. For this, the operations
are classified into two types: red and blue. Red operations use a strong consistency, being
serialized and immediately applied to all replicas. Blue operations are operations which
can be executed after or before any other operation because they don’t potentiality violate
any invariants. Blue operations execute on the local replica with eventual consistency.

Ideally, applying RedBlue consistency to an application, all operations should be blue
to obtain the best performance. However, when operations are not commutative, this could
lead to invariant violations or state divergences [49]. To bypass this, the authors decompose
each operation in two phases. The first one consists in using a generator operation that
simulates the changes that operation would cause, producing what they define as shadow
operation, locally. On a second phase, the shadow operation is executed on every replica.
These are the only operations that use the classification blue or red.

Gemini trusts each local site to replicate the operations to all remote sites. On that
system, the generator operation assigns to the shadow operation an independent timestamp
for each operation colour. These timestamps are standard logical clocks [12]. To ensure
that different sites do not choose the same red sequence number, the coordinator holds a
unique token that is used to approve red operations. On blue operation, the same sequence
number might be assigned to multiple operations, if they are executed at different sites.

18

2.6. DISCUSSION OF EXISTING IMPLEMENTATIONS

2.6 Discussion of Existing Implementations

Despite offering different levels of consistency due to varied operational goals, the analysis
of the systems above shows that there are several points in common between them.

First, all the analyzed systems timestamp messages even if in different ways. Looking
at Dynamo [32], they use vector clocks to capture the data versioning treating every new
operation, as a new and immutable version. RedBlue [9] uses standard logical clocks to
timestamp both types of messages. COPS [25] and Bolt-On [8], capture the version among
with dependencies of each object and Spanner [45] timestamps the objects with real-time
using TrueTime API.

Systems that timestamp messages at a single node, such as PNUTS [11] which defines
a master per record, do not need to deal with inconsistencies given that the same object is
only timestamped on a master node. Nevertheless, COPS [25] and Dynamo [32] follow a
decentralized design that may need to solve inconsistencies, in which the first applies by
default the last-write-wins rule, while Dynamo solves inconsistencies by reconciliation.

Second, objects should be replicated. All systems have to be aware of the nodes that
form a system and to where they have to replicate to. On Spanner [45], the applications
can choose where to replicate. Gemini [9] replicates to all nodes. Dynamo [32] replicates
to N-1 nodes on a ring format, where N is a configurable value. As we can see, all systems,
in one way or another, replicate to a set of nodes. Even if it is not well specified where
to replicate, such as in the PNUTS [11] or Bolt-on [8] systems, they delegate this task to
an external system. Thus, it is quite obvious that this task needs to be performed when a
system is starting a replication process.

There are other points that we identified as being part of stronger consistency systems,
but which are not part of weaker consistency systems. For example, an eventually consistent
system does not provide replication guarantees, while a strongly consistent system does.

Another point, which is part of some of the above systems is that they might need to
form a quorum or define a semantic (e.g. at least one) to consider messages as replicated.
As an example, Red operations of RedBlue [9] that provide strong consistency have to wait
for all nodes to apply the messages before continuing.

The last point that we identified as common to all systems, except for eventual consis-
tency systems, are delivery conditions. We consider delivery conditions as a set of rules that
should be ensured to be true in the system before the operation be performed. Looking at
COPS [25] and Bolt-on [8], they provide a causal consistency that exposes dependencies
to the objects. These dependencies need to be visible at a node before applying an update
to an object. On Spanner [45] and PNUTS [11], it is necessary to check and wait until the
message that preceded a new one already exists in the system.

Briefly, there are some points that we identify as being common to consistency protocols
implementation which are: it needs to know how and where to replicate to, when to consider
a message delivered at a node, how the quorum is formed, how to timestamp a message
and what to do in case of conflicting messages.

19

C
h

a
p

t
e

r

3
Architecture

In the previous chapter, we identified and discussed the common components among several
consistency protocols. In this chapter, first of all, we present our proposal that abstracts the
implementation of a system’s consistency, the underlying component architecture, which
will allow us to make variations to the consistency system with the minimum necessary
effort. In a second step, we are going to demonstrate the flow of a message in the system
and its interaction with the modules, in order to guarantee the desired consistency.

We propose a framework, which exposes two different APIs: an external API that is
exposed to the replicated system to communicate with the framework, and an internal
API which is used to communicate between replicas using our framework. This framework
accomplishes the following requirements:

• Modularity - the solution is divided into modules to allow possible future extensions
to the framework, and to allow an easy swap of a module for another one of different
consistency.

• Ease of use for developers;

• Generality - the solution has to be the more general possible in order to be used to
implement as many consistency systems as possible.

From the analysis in section 2.6, we decided to split our framework into seven modules
that will be individually described in detail below: Group Membership (3.1), Ordering
(3.2), Replication (3.3), Delivery Condition (3.4), Quorum (3.5), Communication (3.6), and
Framework API (3.7).

21

CHAPTER 3. ARCHITECTURE

3.1 Group Membership

This module is responsible for managing all the information about which nodes participate
in the system. The members need to specify the roles that they perform within the system.

We define two membership types: Timestamper and Forwarder. A Timestamper acts
in a system as a member that is capable of marking new messages with a timestamp. A
Forwarder role acts as a slave, which means that if this type of member receives a new
message, he has to forward the message to a member with a Timestamper role. In a fully
decentralized system, all members could behave as timestampers [32]. For systems that
use leader election, there is also the possibility of implementing a leader election on top of
this module or even to coordinate the operation involving multiples nodes [45].

This module exposes four methods:

• getMySelf() - returns information about the own node caller of the method. Informa-
tion such as the own role, which can be either timestamper or forwarder, or the data
centre ID or the partition ID to which the node belongs is some of the data that this
method returns.

• getReplicationTargets() - returns a list of members to where a member must replicate
a message to. The return of this method is member dependent because one member
could replicate to all others or just to some (gossip schema).

• getTimeStamper() - returns a timestamper member of the system.

• findPartition(key) - returns the partition ID that a given key belongs to.

3.2 Ordering

This module has three different roles: first, it is responsible for holding the timestamping
mechanism, which could be a logical clock, such as Lamport clock or a vector clock, or
even a physical clock. The second role is timestamping messages, assigning an order to the
messages that arrived at the framework, provided by the timeStamping(content) method.
Lastly, the third role is to compare messages and to define an order for messages with the
same timestamp, provided by compareMessages(message1, message2). It is this module
that provides conflict handling.

Every message that is processed by one member needs to be marked with metadata,
in order to be distinguished from messages forwarded by other members of the system.
This metadata is a key-value map that contains all the additional information of the
message. However, there are some entries that are more common, such as version resultant
of timeStamping(content) method execution, message origin source or even progress status
of the message in our framework, like the number of replication successes. Optionally, some
consistency protocols, such as RedBlue [9], add information about the type of the message
(Red or Blue) to the metadata.

22

3.3. REPLICATION

Causal consistency systems, for example, require that a dependencies list be generated.
This feature is also provided by timeStamping(content) method at the time of execution,
and saved into message metadata.

In addition to the previous methods, this module also provides:

• updateClock() - method responsible for incrementing the actual clock.

• updateClock(newClock) - take the newClock value, and replaces the actual clock value
or uses it to update the existing one.

3.3 Replication

This module is the core of replication of our framework, and is responsible for coordinating
message replication. It provides two methods:

• replicate(content, metadata)

• apply(content, metadata)

In order to be possible to replicate a message, in the replicate(content, metadata) method
there are interactions with the Group Membership (3.1) and Quorum (3.5) modules. These
interactions allow a member to know where to replicate, getReplicationTargets() (3.1), and
when a message can be marked as replicated, waitQuorum() (3.5).

The apply(content, metadata) method is called when it is necessary to apply the message
to the system member that received it. This method is supported by the Delivery Condition
(3.4) module.

There are two considerations that we have taken into account. Some replication types
using gossip mechanisms require that after receiving and applying a replication message,
that message should be replicated to other members. This scenario has been considered
and calling the replicate(content, metadata) method inside the apply(content, metadata)
method it is possible. Lastly, we do not force an order onto the message pipeline. For
example, a system could first apply the message, then answer to the client and only after
this start the replication process. However, it is also possible that the framework has to
wait for the apply and replication process, before it answers to the client. Briefly, applying
a message to the system can be done when a message has already been replicated, or when
it has not yet been replicated (and it may, or may not be in the future). This is a dependent
system choice.

3.4 Delivery Condition

This module has defined the conditions that need to be satisfied to apply a message to the
system and consequently consider the message as delivered. It may need to use the Ordering
(3.2) module to compare messages and decide if the message may be applied or not. For

23

CHAPTER 3. ARCHITECTURE

example, when a system is trying to apply a message B that is causally related to message
A, it is necessary to check if the message B can be applied. In cases where all conditions,
initially defined, are not satisfied, the system must wait until the defined conditions are
all satisfied before applying and returning. This is provided by the tryToApply(content,
metadata) method.

Depending on what system we are working with, it can have very different delivery
conditions. It is possible that the consistency system only cares about temporal occurrences,
in which case it only checks if the message that is trying to apply occurred after the existent
one. However, causally consistent systems demand a way to deal with dependencies. Local
dependencies to the system should be treated and managed into this module. Nevertheless,
when not all dependencies are satisfied, the system can choose to request it to other
members. To accommodate this requirement, it also provides two additional methods:

• addToRemoteWaitingDep(dependencyRequest) - this method adds a remote request
of dependency to a queue to be answered when satisfied by a local system.

• removeRemoteWaitingDep(message) - This method removes a dependency request
from the waiting dependencies queue, that was been answered by another member. It
should be called when a response to a dependency request arrives at the framework.

3.5 Quorum

In order to consider a message as replicated, some consistency models demand a quorum.
In this module, it is possible to implement quorum algorithms and/or define the semantic
required (e.g. at least one read or write, or even number of zones required). Only one
method is provided: waitQuorum() that is responsible for guaranteeing that the other
members have already returned a delivery status message and a quorum has been formed.

3.6 Communication

We decide to split the communication module into two parts: internal and external com-
munication. By internal, we mean that communications take place within the member,
such as a call to write or read on a local database, whereas by external, we mean that
communications occur from the member to the outside. For example, replicating to other
members or answering to a client.

It is the programmer’s responsability to implement this module and it is system depen-
dent, so all the following methods need to be implemented by the programmer. The reason
behind this module creation resides in the necessity to convert data type between the system
below and the framework itself, and between the framework and the real communication
protocol chosen by the system and/or programmer.

24

3.7. FRAMEWORK API

3.6.1 Internal communication API

• get(node, content, metadata, callback)

• put(node, content, metadata, callback)

• delete(node, content, metadata, callback)

These three methods above should implement a call to a database.

• getActualVersion(content, metadata, callback)

Returns the current version for a given key defined in Content. Note that although this
method is located as internal, some consistency protocols may request other members in
order to obtain the most current version.

3.6.2 External communication API

• sendGetResponse(node, content, metadata, callback)

• sendPutResponse(node, content, metadata, callback)

• sendDeleteResponse(node, content, metadata, callback)

These three methods above should implement the behavior in case of responding to a
request of each type above. For example, answer to a Node get request.

• replicate(node, content, metadata, callback)

This method is responsible to send a replication message to other Node of the system.

• sendDependenciesCheck(node, content, metadata, callback)

• sendDependenciesResponse(content, metadata, callback)

The two methods above are specific to systems with dependencies mechanism, as causally
consistent systems. These systems need to send requests to dependencies missing and
answer for the requests from the other members of the system. These methods define how
this occurs.

3.7 Framework API

Our framework exposes two APIs, a public API for applications and a private API for the
communication between nodes. We start by describing the two methods that compose the
public API:

• newMessage(content)

• newMessage(content, metadata)

25

CHAPTER 3. ARCHITECTURE

These methods are used when a new message is arriving at the machine. Some consistency
models as [9] require providing additional information about the message. For this, we
decide to provide the possibility of optionally submitting messages with some metadata.

The next methods below belong to the private API, which we decide to expose two
methods:

• replicateMessage(content, metadata)

When a member wants to replicate a message that is already marked with metadata. This
means that the message was already processed by another member.

• getReplicaState()

This method allows one member to get the actual status from other members. It could be
used by some systems to synchronize the members, typically in systems where servers need
to exchange state information [50].

Figure 3.1: New message flow

3.8 Inter-module interactions

To better understand how this solution works, we are going to describe next the flow of a
message within the system detailing how the various modules interact each other. Given
that our solution is modular, which allows the developers to change the course of a message

26

3.8. INTER-MODULE INTERACTIONS

and each consistency system has different choices, the following descriptions represent a
possible execution. Note that we do not describe the interactions of the other modules
with the communication module for simplification.

We separate the description in two different events: a new message (1) and a replicated
message (2) in the system.

1. New Message Figure 3.1 shows the interaction between modules when a new mes-
sage arrives at the system. A new message arrives at the system via a call to the
newMessage(content), a method exposed by the API (3.7). To decide what to do
with the message, first, the respective replica which received the message invokes the
getRole() method on Group Membership module (3.1) to check what is its own role
on the system. Then, it checks the result of the last invoked method and decides
what to do.

In case the receiving node is a forwarder, it should forward it to another member
with a Timestamper role. This is achieved by invoking the method getTimestam-
per() on the Group Membership module and forwarding the message invoking the
newMessage(content) on the replica that the getTimestamper() method returns.

If the node is itself a Timestamper, it proceeds to order the message in the system. The
order of a message is provided by the method timeStamping(content) of the Ordering
module (3.2). For example, if it is a causal consistency system, the method will check
and return the dependencies of the message inside the metadata field. Subsequently,
the message is marked with a timestamp, and it is ready to be replicated. So, the
message is passed to the Replication module (3.3) by the replicate(content,metadata)
method to initiate the process of replicating a message.

The Replication module has to know where to replicate. Thus, it invokes the getRepli-
cationTargets() method on Group Membership module that returns a list of members
to where it must replicate and then, it calls replicateMessage(content, metadata) on
each member of the list. Some consistency models require the system to wait for the
replication response before considering the message delivered. The waitQuorum()
method of the Quorum module (3.5) only returns when the replication conditions are
satisfied. Finally, the message that was replicated needs to be applied to the local
replica by the apply(content, metadata) method of Replication module. It may also
needs to use the tryToApply method of the Delivery Condition module (3.4), which
is not detailed in figure 1, but in figure 2.

There are two scenarios for applying a message to the system: (1) we wait for the
replies from all the targeted replicas before applying the message to the system. This
is the case from the aforementioned strongly consistency scenario; but we can also,
(2) apply the message right away and asynchronously replicate to targeted replicas,
which it is the typical case of eventual consistency systems.

27

CHAPTER 3. ARCHITECTURE

Figure 3.2: Replication Message Flow

2. Replicated Message A replicated message process is initiated by the Replicate
module (3.3), which invokes the API replicateMessage(content, metadata) method
on the respective replicas to which a node wants to replicate a message. Figure 3.2
shows the interaction between modules when a replicated message is received by one
replica.

Given that the system distinguishes between messages being replicated and new
messages in the system, a replicated message does not need to be timestamped
again. Thus, it invokes the apply(content, metadata) method in the Replication
module to initiate the process of applying a message to the system. In order for
this to happen, the tryToApply() method of the Delivery Condition module (3.4)
is invoked, which will ensure that all conditions are gathered for the message to be
applied. In some cases, the node receiving a replication call may need to invoke the
compareMessages(message, message) method in the Ordering module (3.2) in order
to solve conflict cases.

Some consistency protocols that make use of a gossip propagation schema, after the
message is applied, must replicate to other replicas. In this case, the replicate(content,
metadata) method of the Replication module is invoked, which initiates a replication
process described in the previous point, without the apply message part which already
had been performed.

28

C
h

a
p

t
e

r

4
Implementation

4.1 Methodology

To implement our architecture, we explored two possible approaches: (i) building a system
from scratch with our framework built-in, and choosing a consistency model that this system
will provide. (ii) modifying an already existing system by programming our framework to
have the same consistency model that the system already implements.

Both approaches have advantages and disadvantages. Looking at (i), building a system
from scratch will give us the flexibility to decide all components of the system. But, this will
take time to build and debug until all performance, and consistency model requirements
chosen are satisfied. In contrast on the (ii) approach, we start with an existing tested
system where we have all the parameters defined, making us limited to the options that it
offers.

Looking at it in a more particular way, and given the nature of our proposal, we decide
to follow the (ii) approach. The first reason behind this decision is that by modifying an
existing system to implement our framework, it leaves us the opportunity to see and learn
how our proposal fits a real system, and not only build a new system around it that would
necessarily fit the framework. The other reason is that with this approach, we are able to
compare the real impact of our framework by comparing the original implementation of
an existing system against our modified version, which implements our framework. These
two reasons are not possible to achieve following the (i) approach.

4.2 Programming Language Choice

We decide to use Java as the main programming language for the implementation of
our framework. As Java is one of the most used languages in the world [51], there is

29

CHAPTER 4. IMPLEMENTATION

a lot of systems and tools available that we could use. Nevertheless, as it is an object-
oriented language, it seems to be a good choice for a better code organization and simple
understanding of the produced code. Lastly, regarding memory management, we could
have chosen a more efficient memory management language like C. However, this adds a
lot of concerns that do not will add any significant aspect to our work.

4.3 Choice of replicated storage systems

Given the reasons discussed in the previous sections, we decided to choose two different
systems with the following criteria: the code should be written in Java, not offer the same
level of consistency, be open source and be available in some online repository.

In the next two subsections (4.3.1 and 4.3.2), we will describe each of the chosen systems
and the configurations/variations considered.

4.3.1 DKVF

Distributed Key-Value Framework [52], is a framework that allows programmers to quickly
create and evaluate distributed key-value stores. DKVF based systems offer the client and
the server-side that extends the client and server-side DKVF, respectively. The code is
written in Java, and it relies on Google Protocol Buffers [53] for marshalling/unmarshalling
data for storage and transmission. Although DKVF can use any storage engine, it already
comes with a driver for Berkeley-DB which can be configured to handle the data replication.
We do not use this functionality, leaving the replication to our framework.

A DKVF client exposes two basic operations: put and get, to keep the interface simple.
Yet, it is possible to extend the framework to use other methods.

From source code available on GitHub [54], where there are some systems implementa-
tions using DKVF available, we decide to use the COPS [25] implementation. Given that
it offers a causal + consistency that needs to deal with dependencies, it will increase the
complexity of some framework modules and give us better feedback of the framework fit
into this system. In this COPS implementation, the client is only responsible for sending
the messages to the server along with a list of dependencies for a given key, and the server
will ensure all the consistency and replication process.

4.3.2 Project Voldemort

Voldemort [31] is a distributed key-value storage system, used in critical services at LinkedIn
[55] based on Amazon Dynamo [32] architecture. In order to keep the high performance and
availability, Voldemort only supports four queries to the data access: put, get, getAll and
delete operations. Although Voldemort has different consistency guarantees out-of-the-box
in the source code, we decided to choose the implementation with eventual consistency. This
solution could lead to inconsistencies, but to mitigate this problem, Voldemort tolerates
the possibility of inconsistencies, and resolve them at read time. The approach is called

30

4.4. CODE STRUCTURE

read-repair, it consists of writing all inconsistent versions and at read-time detecting and
solving the problems. To versionate the objects, vector clocks are used, which is a list of
server:version pairs.

Contrary to the previous system, and although the available documentation says that
it is possible to choose between who does the messages replication (being the client or the
server), the Java implementation does not provide this option. It is confirmed by an issue
closed [56] on GitHub. So, Voldemort offers a “smart” client that is aware of all the cluster,
is responsible for replication and guarantees the system consistency.

4.3.3 Discussion

We choose these two systems because they have different approaches to the system design
and because they offer different consistency guarantees. Whereas the COPS implementation
using DVKF offers a causal+ consistency that needs to handle dependencies, Voldemort
offers an eventual consistency with read-repair. Looking at our framework, it will produce,
at least, significant different Delivery Condition modules, since the COPS implementation
needs to ensure that all dependencies are satisfied in the system before considering a
message delivered. Conversely, the Voldemort adaptation will produce a way more simple
module.

When we first think about our architecture (3), we focus only on the possibility of server-
side implementation. This scenario is what we found out on COPS implementation, where
the entire consistency protocol is implemented on the server-side. However, Voldemort
takes a different approach where the client is given an important role in the consistency
guarantee. We concluded that implementing our framework on the server-side or the client-
side will not produce any changes to it. Additionally, it is possible to implement it on
both sides, if that makes sense to the system, where both sides have roles on consistency
guarantees. However, it can lead to some of the modules being empty, but this possibility
is allowed even in a single side implementation, e.g., a system that does not use quorum
may have an empty quorum module.

4.4 Code Structure

Starting by the code structural division, we decided to divide it into 6 parts (Fig. 4.1):
main code, cluster, exception, types, versioning and utils.

The maincode is where all modules code is placed along with the corresponding inter-
faces. There are also two important classes: Framework and Configurations.

Framework is the class that should be instantiated to use our framework. It is in that
class that the incoming messages to the framework are processed and where the message
flow is coordinated. The configurations class interacts with almost all classes of the system,
and it has important variables like minimal number of writes to consider a replication

31

CHAPTER 4. IMPLEMENTATION

message delivered. In order to support asynchronous calls, we also provide a Callback
interface that classes need to implement.

Figure 4.1: Framework code struc-
ture

Moving on to the cluster package, it encompasses
all the notions of a cluster on our framework: a clus-
ter, a zone and a node. A cluster consists of a number
of zones and a number of nodes. A zone has its zone
number along with a list of proximity zones, and a
node has all information about a member of the sys-
tem, such as id, IP address and zone number that the
node belongs or partitions that the node has.

The types package has great importance. This
package defines all basic types of our framework. A
message has a type, which can be a put, get, depen-
dency request, etc., and content and metadata. The
remaining three types defined are relevant to deal
with dependencies at the system. A dependency is
a key-version pair, whereas a dependency request is
used to store a request for a dependency from other
nodes of the system. However, if a message has de-
pendencies that are not satisfied, PendingMessage is
used to help store messages that need to wait until
all dependencies are satisfied.

The versioning package includes the version in-
terface that classes that will be used to versionate
objects must implement. Vector clock or Lamport
clock are examples of clocks that could be placed in
this package.

In the exception package all exceptions used
within the framework are defined.

The last package, utils, has classes that help
the programmers, e.g., serialization functions or time
functions.

4.5 Main Class

As stated in the previous section (4.4), Framework is the main class of our solution. First,
this class is responsible to instantiate all modules that will be used. Second, it is the
entering point to the messages into our framework. Lastly, it is in this class that the main
flow of a message is defined.

32

4.5. MAIN CLASS

Listing 4.1 shows an implementation of a new put incoming message into the framework
from COPS using DKVF (4.3.1).

public void newMessage(Message<K, V> incomingMessage) {
long startTime = time.getNanoseconds();
Content<K,V> content = incomingMessage.getContent();
MetaData metadata = incomingMessage.getMetaData();
switch (incomingMessage.getType()){

case PUT:{
if(isTimestamper()){

orderMessage(content, metadata, startTime);
replicate.apply(content, metadata);
communicationRemote.sendPutResponse(content, metadata, null);
replicate.replicate(content, metadata);

}else{
int timestamper = groupMembership.getTimestamper();
...

}
break;

}
...

}
}

Listing 4.1: New put message on framework

This code block is in accordance with Figure 3.1 that is detailed in Section 3.8. However,
this system answers to the client before replicate. It could have implemented other sequences,
e.g., replicate before apply, and subsequently answer to the client. Our solution makes
changing this sequence as simple as changing the order of the code lines.

4.5.1 Switching modules and versioning

The Framework class instantiates the modules that will be used on the execution of our
framework. The modules that will be instantiated are defined in the Configurations class.
Each of these modules can be exchanged for the same type of module with different im-
plementations. For example, if we have two systems implemented differently with our
framework, one with causal consistency and another with eventual consistency, we can
switch the Delivery Condition module of the causal system to the same module of the
eventual system. In this case, a delivery condition module from a causal system should
check and try to satisfy dependencies on the system. However, the change to a delivery
condition from an eventual system removes all the dependencies checking from that stage
of the process.

It is clear to us that it can happen that some modules can’t be switched, as they may
lead to impossible combinations. For example, a quorum module that waits for some zones
when the system has only one zone.

33

CHAPTER 4. IMPLEMENTATION

In the same way as the modules can be switched, the versioning mode can also be. A
system that uses a simple integer to data versioning, it is possible to change other type,
e.g., a vector clock. For this, a new versioning class implementation must implement the
version interface of our framework.

4.6 Implementation experience

The choice of adapting existing systems led us to a more interative development process.
Starting by the time needed to obtain sufficient knowledge of the system that we are
modifying and ending with dealing some system design features that made it difficult to
include the framework in the system.

The complexity and size of the code were one of the main adversities we faced when
we were modifying the Voldemort system (4.3.2). In order to be prepared to modify the
system, it was necessary to obtain a deep internal knowledge of all system mechanisms
related to consistency. Out of the box, Voldemort offers a lot of customization options
and code optimizations so, sometimes the code wasn’t easy to understand. In addition,
sometimes the available documentation is not up to date with all new features or design
choices. Therefore, we anticipated this type of difficulties.

Unlike the Voldemort system, DKVF (4.3.1) was designed to be used by the academic
community. As a result, the system code produced using DKVF is clean and simple. So,
although while implementing COPS using DKVF we had the process of learning about the
system, it was much smoother than with Voldemort.

Moving on from the framework implementation into the systems, this process of adapt-
ing existing systems led us to have to rethink the architecture initially proposed and redo it
in some parts to make it more modular. It happened not only because the system we were
modifying had scenarios that we hadn’t thought of before, but also because some better
alternatives were emerging due to the iterative process of framework implementation.

We were able to implement the framework in the systems described above, maintain-
ing the consistency guarantees that the system originally had. However, changing these
consistency guarantees is as simple as changing the modules that are being instantiated at
startup, defined in the Configurations class.

To test this possibility of exchanging modules and consequently changing the consistency
model, we tested and successfully managed to change the versioning from vector clock to
Lamport clock in Project Voldemort, and from Lamport clock to vector clock in COPS
with DKVF. We also exchanged the causal consistency of the COPS with DKVF system
for eventual consistency, simply by changing the Delivery Conditions module for one with
no dependencies awareness from an eventually consistent system.

34

C
h

a
p

t
e

r

5
Evaluation

5.1 Methodology

To evaluate our proposal, we will compare the existing system implementation of both
systems chosen against our equivalent implementation of the systems using our framework
(4.3). To support this, we are going to use two metrics: latency and throughput, in order
to measure the overhead between these two implementations.

To compare the latency and throughput we will execute the same operations in both
system implementations, and measure the overhead of adding a new layer to the system.

5.2 DKVF

5.2.1 Experimental Setup

DKVF (4.3.1) includes a YCSB driver [57]. YCSB means Yahoo! Cloud Serving Benchmark
which is a framework used as a tool for evaluating the performance of key-value stores.
We used this already implemented feature of DKVF, making variations to the number of
operations and percentages of reads and writes, to give us the throughput and latency. In
order to evaluate this system, we built a cluster as shown in Figure 5.1 where we have three
servers with three partitions each, running a data store. The following representation X_Y
identifies the machines, in which X means replica number and Y partition number. Two
of three replicas of the cluster are connected to a hub that is connected to three clients
each. Each partition is connected to other replicas with the same partition. The remaining
replica actuates in the system as another replication point, not being connected to any
client. We are assuming full replication between replicas.

Each node in the cluster represented on figure 5.1 runs in an independent machine.
For this, we used the INESC-ID [58] cluster. For the servers, we used a 1 vCPUs, 2.13

35

CHAPTER 5. EVALUATION

Figure 5.1: Experimental cluster representation

GHz, Intel Xeon E5506, 2 GiB memory RAM. For the clients, following the approach of
the DKVF paper [52], we give more power to the clients to better utilize servers. We run
clients on machines with 2 vCPU, 2.13 GHz, Intel Xeon E5506, 2 GiB memory RAM.

5.2.2 Experimental Results

In the implementation of COPS with DKVF, we perform the measurements varying the
number of operations and the ratio of reads and writes operations on the YCSB properties.
For this purpose, we chose 8 threads per client to increase the amount of load applied against
the system. A recordcount (YCSB property) of 1000, which means that it will create 1000
records on load phase of the YCSB execution, and we vary the read:write operations ratio
between 50:50 and 95:05, which correspond to a update heavy workload and a read-mostly
workload. However, since we are just measuring the impact of our framework on both
systems, we just want to have the same conditions on the original version and version with
the framework to compare.

We started by doing a measurement for 50:50 operations ratio. The results are repre-
sented in Tables 5.1 and 5.2.

Operations
Count

Throughput
(ops/sec)

Write
Latency (ms)

Read
Latency (ms)

50000 1336,5 6943,4 4526,0
100000 1552,7 5913,7 4095,0
200000 1775,9 5241,4 3648,0
300000 1927,0 4792,5 3403,1
400000 1987,3 4602,5 3368,0

Table 5.1: COPS with DKVF original im-
plementation - 50:50 operations ratio

Operations
Count

Throughput
(ops/sec)

Write
Latency (ms)

Read
Latency (ms)

50000 1133,4 8009,8 5590,6
100000 1261,0 7154,1 5207,1
200000 1499,9 6134,5 4350,0
300000 1490,5 6186,5 4414,3
400000 1449,9 6349,5 4450,0

Table 5.2: Modified COPS with DKVF -
50:50 operations ratio

By default, the execution of YCSB gives us a result per client. In this case, we used
6 clients, each 3 against a different replica of the system. To help better understand our
results, we present in these both tables an average of all the clients results.

36

5.3. PROJECT VOLDEMORT

Table 5.3 shows the impact of our framework on the system. The overhead number is
between 15% and 23%.

Operations
Count

Throughput
Overhead

Write Latency
Overhead

Read Latency
Overhead

50000 15,2% 13,3% 19,0%
100000 18,8% 17,3% 21,4%
200000 18,4% 17,5% 18,0%
300000 22,7% 22,5% 22,9%
400000 23,1% 22,1% 21,4%

Table 5.3: COPS with DKVF original vs modified overhead - 50:50 operations ratio

We did the same experiment with all the same conditions except the operations ratio
that we fixed on 95:05. The results shown in Tables 5.4, 5.5 and the consolidated overhead
on Table 5.6 are close to the previous experiment.

We made more variations to the parameters and reran the experiments. We found
out that the overhead was always close to the numbers of the two previous experiments
presented. So we believe that this is approximately the real overhead value of our solution.
There are reasons behind these numbers that we will discuss in section 5.4.

Operations
Count

Throughput
(ops/sec)

Write
Latency (ms)

Read
Latency (ms)

50000 1850,5 12812,8 3610,3
100000 1977,5 12767,5 3443,9
200000 2210,9 10561,1 3185,4
300000 2291,4 10580,2 3059,3
400000 2374,7 9392,1 3027,3

Table 5.4: COPS with DKVF original im-
plementation - 95:05 operations ratio

Operations
Count

Throughput
(ops/sec)

Write
Latency (ms)

Read
Latency (ms)

50000 1487,4 13944,9 4576,4
100000 1795,9 12229,7 4075,6
200000 1866,0 10104,6 3897,6
300000 1959,9 12223,7 3588,3
400000 1948,7 10058,0 3752,8

Table 5.5: Modified COPS with DKVF -
95:05 operations ratio

Operations
Count

Throughput
Overhead

Write Latency
Overhead

Read Latency
Overhead

50000 19,6% 8,1% 21,1%
100000 9,2% -4,4% 15,5%
200000 15,6% -4,5% 18,3%
300000 14,5% 13,5% 14,7%
400000 17,9% 6,6% 19,3%

Table 5.6: COPS with DKVF original vs modified overhead - 95:05 operations ratio

5.3 Project Voldemort

5.3.1 Experimental Setup

This system’s source code also includes a benchmark tool like DKVF. However, it doesn’t
allow us to test the modifications that we did because it is a pure storage engine test. So

37

CHAPTER 5. EVALUATION

this is useful to test and compare new storage engines with the system but not useful for
our context.

To measure the impact of our framework on this system, we executed different sequences
of operations and measured the time between the begin and the end.

For this experiment, we built an experimental enviroment with two pairs of three nodes
located in different networks and two clients that send queries to the clusters. All of them
run on independent machines with the following configurations: 4 vCPUs, 2.13 GHz, Intel
Xeon E5506, 4 GiB memory RAM using machines at INESC-ID [58] cluster.

5.3.2 Experimental Results

In the Voldemort system, we did a similar work to the evaluation of DKVF. Altough we
didn’t use YCSB to evaluate this system, we create workloads that simulate the same
scenarios.

Using the same workloads in both versions and varying the number of operations for
two different read:write operations ratio, we measured the overhead of our framework into
the system.

Tables 5.7 and 5.8 shows the throughput and the overhead calculated by the difference
between throughput of the original implementation and the modified version with our
framework.

Operations
Count

Throughput
Framework
(ops / sec)

Throughput
Original

(ops / sec)

Overhead
(%)

50000 3421,4 3809,2 10,2%
100000 4548,6 5005,5 9,1%
200000 4846,9 5251,4 7,7%
300000 4911,0 5349,0 8,2%
400000 4818,2 5190,2 7,2%

Table 5.7: Project Voldemort - 50:50 operations ratio

Operations
Count

Throughput
Framework
(ops / sec)

Throughput
Original

(ops / sec)

Overhead
(%)

50000 5644,6 6309,2 10,5%
100000 6852,1 7457,1 8,1%
200000 7691,7 8161,6 5,8%
300000 7685,0 8471,2 9,3%
400000 7745,3 8716,9 11,2%

Table 5.8: Project Voldemort - 95:05 operations ratio

38

5.4. DISCUSSION

5.4 Discussion

The results of both systems show that our solution adds an overhead to the system. There
are reasons for the values obtained that we will describe with an individual analysis of the
values obtained from each system.

Starting with COPS implemented with DKVF, the overhead for the 50:50 operations ra-
tio (Table 5.3) varies between 15% and 23%. While for the 95:05 the overhead values (Table
5.6) are approximately the same values if we exclude write latency from this comparision.

Looking at the 50:50 operations ratio tables (5.1 and 5.2) and doing a comparison
against the 95:05 operations ratio tables (5.4 and 5.5), an increase of almost double the
write latency of 50:50 results is noticeable when compared with 95:05. COPS offers a causal+
consistency that deals with dependencies between operations. The 95:05 write latency is
almost double the one of the 50:50 operations ratio because with such increase of reads,
before the writes, it creates a bigger dependencies list that needs to be satisfied before the
write operation can be considered complete. However, in the 95:05 operations ratio (Table
5.6), we have two cases of write latency where the system with our framework has better
performance (negative percentages). However, given that for the 50:50 operations ratio
(table 5.3) the values are more consistent and due to the low quantity of write operations
(only 5%), these are not values to which we have given relevance.

Let’s now focus on analyzing the reasons behind a general throughput drop in the
system for both operations ratio. As previously stated, there is a throughput overhead in
the modified version, with our framework, when compared with the original implementation
system. We decided to investigate the real impact of the type conversion between our
framework and the system’s, given that, in order to be possible to have modularity, we
defined some types that messages that arrive at the system must be converted and then
reconverted again to the original format when leaving the framework. For this, we executed
the same operation with a list of previously created dependencies and we measured the time
spent on type conversion and the total time of execution. The total time measured for this
operation was 3.8 ms on the original implementation, and 4.9 ms on our implementation
with our framework. However, from these 4.9 ms, we measured a type conversions time of
0.8ms. These results led us to conclude that most of the overhead of our framework is due
to type conversion.

On Project Voldemort system, we were only able to measure the throughput due to the
tool that we chose for these measurements. However, it gave us an estimate of the impact
of our framework. Table 5.7 for 50:50 operations ratio and Table 5.8 for 95:05 operations
ratio gave us similiar results to those obtained from the DKVF system. Also in this system
most of the overhead is caused by type conversions.

39

C
h

a
p

t
e

r

6
Conclusion

Distributed replicated systems tend to be built with a consistency model implemented
coupled with their implementation, making switching between consistency models difficult.
Thus, usually when a consistency model of a system has to be changed, either the system
code needs to be deeply rewritten or replaced by a different consistency system.

Our analysis to existent systems, found that there are components of different con-
sistency models that even although they can define a different semantics or use different
mechanisms to provide consistency to the system, they serve the same purpose with a
similar base approach.

We proposed a modular abstraction to the consistency model and a respective framework
which makes use of that abstraction to extract the consistency implementation to a layer
that can be implemented in a modular isolated manner. We found that this abstraction fits
into all of the analyzed consistency protocol implementations and our architecture allows
the developers to change the consistency model of a system at build time.

To evaluate our proposal, we implemented two different systems into our framework:
COPS using DKVF, and Project Voldemort. We measured the throughput and associated
overhead between original implementation and modificated implementation with our frame-
work. Although the measured values show an impact of our framework for an increase of
the system flexibility, our analysis revealed that a large part of this impact is due to the
conversion of data type in our framework. These are values that could be further optimized.

6.1 Future Work

We have focused on identifying modular replaceable components in replicated systems. Our
experience suggests that this approach may be extended to the transaction support and
management of distributed transactional systems. Eventually both modular frameworks

41

CHAPTER 6. CONCLUSION

could be integrated in the same model.
In a next version of the framework presented, the data types conversion should be

revisitated in order to improve the performance and consequently reduce the overhead.
Finally, it would be interesting if in a future work it was possible to exchange some

framework modules at runtime instead of just at build time.

42

Bibliography

[1] Will Wang. How Microservices Saved the Internet. 2018. url: https : / /

hackernoon.com/how-microservices-saved-the-internet-30cd4b9c6230 (vis-
ited on 01/21/2019).

[2] Google. Zeitgeist 2012 – Google. 2012. url: https://archive.google.com/

zeitgeist/2012/ (visited on 05/17/2019).

[3] T. Simonite. Moore’s law is dead. Now what? 2016. url: https : / / www .

technologyreview.com/s/601441/moores- law- is- dead- now- what/ (visited
on 01/21/2019).

[4] M. Villamizar, O. Garces, H. Castro, M. Verano, L. Salamanca, R. Casallas, and S. Gil.
“Evaluating the monolithic and the microservice architecture pattern to deploy web
applications in the cloud.” In: 2015 10th Colombian Computing Conference, 10CCC
2015. 2015, pp. 583–590. isbn: 9781467394642. doi: 10.1109/ColumbianCC.2015.
7333476.

[5] K. Arsov. What Are Microservices, Actually? 2017. url: https://dzone.com/

articles/what-are-microservices-actually (visited on 01/21/2019).

[6] R. Guerraoui, M. Pavlovic, and D. A. Seredinschi. “Incremental consistency guar-
antees for replicated objects.” In: Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016. 2016, pp. 169–184. isbn:
9781931971331. arXiv: 1609.02434.

[7] J. Enough, D. Systems, T. Be, and T. Lipcon. “Design Patterns for Distributed
Non-Relational Databases.” In: Cloudera (2009). issn: 10959203. doi: 10.1126/
science.1095048.

[8] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. “Bolt-on causal consistency.”
In: Proceedings of the ACM SIGMOD International Conference on Management of
Data. 2013, pp. 761–772. isbn: 9781450320375. doi: 10.1145/2463676.2465279.

[9] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues. “Making
geo-replicated systems fast as possible, consistent when necessary.” In: Proceedings
of the 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012. 2012, pp. 265–278. isbn: 9781931971966.

43

https://hackernoon.com/how-microservices-saved-the-internet-30cd4b9c6230
https://hackernoon.com/how-microservices-saved-the-internet-30cd4b9c6230
https://archive.google.com/zeitgeist/2012/
https://archive.google.com/zeitgeist/2012/
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://dzone.com/articles/what-are-microservices-actually
https://dzone.com/articles/what-are-microservices-actually
https://arxiv.org/abs/1609.02434
https://doi.org/10.1126/science.1095048
https://doi.org/10.1126/science.1095048
https://doi.org/10.1145/2463676.2465279

BIBLIOGRAPHY

[10] K. Ranganathan, A. Iamnitchi, and I. Foster. “Improving data availability through
dynamic model-driven replication in large peer-to-peer communities.” In: 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGrid
2002. 2002. isbn: 0769515827. doi: 10.1109/CCGRID.2002.1017164.

[11] A. Silberstein, A. Silberstein, B. F. Cooper, B. F. Cooper, U. Srivastava, U. Srivastava,
E. Vee, E. Vee, R. Yerneni, R. Yerneni, R. Ramakrishnan, and R. Ramakrishnan.
“PNUTS: Yahoo!’s Hosted Data Serving PLatform.” In: SIGMOD (2008). issn:
21508097. doi: 10.1145/1376616.1376693.

[12] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System.”
In: Communications of the ACM 21.7 (1978), pp. 558–565. issn: 15577317. doi:
10.1145/359545.359563.

[13] F. B. Schneider. “Replication Management using the State Machine Approach.” In:
ACM Computing Surveys 22.4 (1990), pp. 299–319.

[14] X. Defago, A. Schiper, and N. Sergent. “Semi-passive replication.” In: Proceedings
of the IEEE Symposium on Reliable Distributed Systems. 1998, pp. 43–50. doi:
10.1109/reldis.1998.740473.

[15] L. Rodriguez and M. Raynal. “Atomic broadcast in asynchronous crash-recovery
distributed systems.” In: Proceedings - International Conference on Distributed Com-
puting Systems. 2000, pp. 288–295. doi: 10.1109/icdcs.2000.840941.

[16] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. “The primary-backup
approach.” In: Distributed systems (2nd Ed.) (1993).

[17] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. “Primary-Backup Pro-
tocols: Lower Bounds and Optimal Implementations.” In: 1993, pp. 321–343. doi:
10.1007/978-3-7091-4009-3_14.

[18] R. Ladin, B. Liskov, and L. Shrira. “Lazy replication. Exploiting the semantics of
distributed services.” In: Proceedings of the Annual ACM Symposium on Principles
of Distributed Computing. 1990, pp. 43–57. doi: 10.1145/93385.93399.

[19] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. “Providing High Availability Using
Lazy Replication.” In: ACM Transactions on Computer Systems (TOCS) 10.4 (1992),
pp. 360–391. issn: 15577333. doi: 10.1145/138873.138877.

[20] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D.
Swinehart, and D. Terry. “Epidemic algorithms for replicated database maintenance.”
In: ACM SIGOPS Operating Systems Review 22.1 (1988), pp. 8–32. issn: 0163-5980.
doi: 10.1145/43921.43922.

[21] A. Sousa, F. Pedone, R. Oliveira, and F. Moura. “Partial replication in the Database
State Machine.” In: Proceedings - IEEE International Symposium on Network Com-
puting and Applications, NCA 2001. 2001, pp. 298–309. isbn: 0769514324. doi:
10.1109/NCA.2001.962546.

44

https://doi.org/10.1109/CCGRID.2002.1017164
https://doi.org/10.1145/1376616.1376693
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/reldis.1998.740473
https://doi.org/10.1109/icdcs.2000.840941
https://doi.org/10.1007/978-3-7091-4009-3_14
https://doi.org/10.1145/93385.93399
https://doi.org/10.1145/138873.138877
https://doi.org/10.1145/43921.43922
https://doi.org/10.1109/NCA.2001.962546

BIBLIOGRAPHY

[22] M. Shapiro, K. Bhargavan, Y. Chong, and Y. Hamadi. “A formalism for consis-
tency and partial replication.” In: Microsoft Research (2004). url: https://www.

microsoft.com/en- us/research/wp- content/uploads/2016/02/tr- 2004-

58.pdf.

[23] E. a. Brewer and U. C. Berkeley. “Towards Robust Distributed System.” In: Networks
(2000). doi: 10.1145/343477.343502.

[24] S. Gilbert and N. Lynch. “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services.” In: ACM Sigact News 33 (2002), pp. 51–
59.

[25] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. “Don’t Settle for
Eventual : Scalable Causal Consistency for Wide-Area Storage with COPS.” In: Sosp
(2011), pp. 1–16.

[26] Microsoft Data Platform | Microsoft. url: https://www.microsoft.com/en-

gb/sql-server/ (visited on 08/22/2020).

[27] MySQL. url: https://www.mysql.com/ (visited on 08/22/2020).

[28] PostgreSQL: The world’s most advanced open source database. url: https://www.
postgresql.org/ (visited on 08/22/2020).

[29] L. Lamport. “The Part-Time Parliament.” In: ACM Transactions on Computer
Systems 16.2 (1998), pp. 133–169. issn: 07342071. doi: 10.1145/279227.279229.

[30] A. Lakshman and P. Malik. “Cassandra - A decentralized structured storage system.”
In: Operating Systems Review (ACM) 44.2 (2010), pp. 35–40. issn: 01635980. doi:
10.1145/1773912.1773922.

[31] Voldemort. Developer Info - Voldemort. 2020. url: https://www.project-

voldemort.com/voldemort/ (visited on 08/25/2020).

[32] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s Highly Avail-
able Key-value store.” In: ACM SIGOPS Operating Systems Review (2007). issn:
01635980. doi: 10.1145/1323293.1294281.

[33] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus, S. Kumar,
and W. Lloyd. “Existential consistency: Measuring and understanding consistency at
Facebook.” In: ACM Symposium on Operating Systems Principles 15 (2015), pp. 295–
310. doi: 10.1145/2815400.2815426. url: http://sigops.org/sosp/sosp15/

current/2015-Monterey/printable/240-lu.pdf.

[34] W. Vogels. “Eventually consistent.” In: Communications of the ACM (2009). issn:
00010782. doi: 10.1145/2576794.

[35] Consistency Models. url: https : / / jepsen . io / consistency (visited on
05/19/2019).

45

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2004-58.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2004-58.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2004-58.pdf
https://doi.org/10.1145/343477.343502
https://www.microsoft.com/en-gb/sql-server/
https://www.microsoft.com/en-gb/sql-server/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/1773912.1773922
https://www.project-voldemort.com/voldemort/
https://www.project-voldemort.com/voldemort/
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/2815400.2815426
http://sigops.org/sosp/sosp15/current/2015-Monterey/printable/240-lu.pdf
http://sigops.org/sosp/sosp15/current/2015-Monterey/printable/240-lu.pdf
https://doi.org/10.1145/2576794
https://jepsen.io/consistency

BIBLIOGRAPHY

[36] M. P. Herlihy and J. M. Wing. “Linearizability: A Correctness Condition for Con-
current Objects.” In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 12.3 (1990), pp. 463–492. issn: 15584593. doi: 10.1145/78969.78972.

[37] I. Zhang. Operation Ordering in Systems. url: https : / / irenezhang . net /

research/consistency.html (visited on 05/19/2019).

[38] L. Lamport. “How to Make a Multiprocessor Computer That Correctly Executes Mul-
tiprocess Programs.” In: IEEE Transactions on Computers C-28.9 (1979), pp. 690–
691. issn: 00189340. doi: 10.1109/TC.1979.1675439.

[39] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. “Managing update conflicts in Bayou, a weakly connected replicated storage
system.” In: ACM SIGOPS Operating Systems Review 29.5 (1995), pp. 172–182.
issn: 0163-5980. doi: 10.1145/224057.224070.

[40] M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and J. Zheng.
“PRACTI Replication for Large-Scale Systems.” In: Technical Report: UT Austin
(2006). url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.
1985{\&}rank=1.

[41] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer, and B. B.
Welch. “Session guarantees for weakly consistent replicated data.” In: Parallel and
Distributed Information Systems - Proceedings of the International Conference. 1994,
pp. 140–149. doi: 10.1109/pdis.1994.331722.

[42] P. Viotti and M. Vukolić. “Consistency in non-transactional distributed storage
systems.” In: ACM Computing Surveys 49.1 (2016). issn: 15577341. doi: 10.

1145/2926965. arXiv: 1512.00168. url: http://arxiv.org/abs/1512.00168.

[43] F. Freitas, J. Leitão, N. Preguiça, and R. Rodrigues. “Fine-grained consistency
upgrades for online services.” In: Proceedings of the IEEE Symposium on Reliable
Distributed Systems. Vol. 2017-Septe. 2017, pp. 1–10. isbn: 9781538616796. doi:
10.1109/SRDS.2017.9.

[44] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. “Consis-
tent hashing and random trees: distributed caching protocols for relieving hot spots
on the World Wide Web.” In: Proc. of ACM Symposium on Theory of Computing
(STOC) (1997). issn: 0012821X. doi: doi:10.1145/258533.258660.

[45] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A.
Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M.
Szymaniak, C. Taylor, R. Wang, and D. Woodford. “Spanner: Google’s Globally
Distributed Database.” In: ACM Trans. Comput. Syst. (2012). issn: 07342071.
doi: 10.1145/2491245.

46

https://doi.org/10.1145/78969.78972
https://irenezhang.net/research/consistency.html
https://irenezhang.net/research/consistency.html
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/224057.224070
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.1985{\&}rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.1985{\&}rank=1
https://doi.org/10.1109/pdis.1994.331722
https://doi.org/10.1145/2926965
https://doi.org/10.1145/2926965
https://arxiv.org/abs/1512.00168
http://arxiv.org/abs/1512.00168
https://doi.org/10.1109/SRDS.2017.9
https://doi.org/doi: 10.1145/258533.258660
https://doi.org/10.1145/2491245

BIBLIOGRAPHY

[46] E. Brewer. “Spanner, TrueTime & The CAP Theorem.” In: Google White Papers
(2017).

[47] B. W. Lampson, B. W. Lampson, D. Lomet, and D. Lomet. “A New Presumed
Commit Optimization for Two Phase Commit.” In: 19th VLDB Conference. Vol. 927.
1993, pp. 1–9. isbn: 1-55860-152-X.

[48] A. Colyer. Bolt-on Causal Consistency - the morning paper. url: https://blog.

acolyer.org/2015/09/01/bolt-on-causal-consistency/.

[49] V. Balegas, C. Li, M. Najafzadeh, D. Porto, A. Clement, S. Duarte, C. Ferreira,
J. Gehrke, J. Leitão, N. Preguiça, R. Rodrigues, M. Shapiro, and V. Vafeiadis. Geo-
Replication: Fast If Possible, Consistent if Necessary. Tech. rep. 2016, pp. 81–92.

[50] J. Du, A. Roy, W. Zwaenepoel, and C. Iorgulescu. “GentleRain : Cheap and Scalable
Causal Consistency with Physical Clocks.” In: SOCC ’14 Proceedings of the ACM
Symposium on Cloud Computing (2014). doi: 10.1145/2670979.2670983.

[51] P. Carbonnelle. PYPL PopularitY of Programming Language index. 2020. url:
http://pypl.github.io/PYPL.html (visited on 08/28/2020).

[52] M. Roohitavaf and S. Kulkarni. “DKVF: A framework for rapid prototyping and
evaluating distributed key-value stores.” In: ASE 2018 - Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering. 2018,
pp. 912–915. isbn: 9781450359375. doi: 10.1145/3238147.3240476. arXiv:
1801.05064.

[53] Google. Protocol Buffers | Google Developers. 2020. url: https://developers.

google.com/protocol-buffers/ (visited on 08/25/2020).

[54] M. Roohitavaf. roohitavaf/DKVF. 2016. url: https://github.com/roohitavaf/
DKVF (visited on 08/28/2020).

[55] LinkedIn. LinkedIn. url: https://www.linkedin.com/ (visited on 08/28/2020).

[56] X. Yingzhong. Enable server side routing strategy in Java client · Issue #112 ·
voldemort/voldemort. 2013. url: https://github.com/voldemort/voldemort/

issues/112 (visited on 08/28/2020).

[57] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. “Benchmarking
cloud serving systems with YCSB.” In: Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10. 2010, pp. 143–154. isbn: 9781450300346. doi:
10.1145/1807128.1807152.

[58] INESC-ID. INESC-ID. 2020. url: https://www.inesc- id.pt/ (visited on
09/04/2020).

47

https://blog.acolyer.org/2015/09/01/bolt-on-causal-consistency/
https://blog.acolyer.org/2015/09/01/bolt-on-causal-consistency/
https://doi.org/10.1145/2670979.2670983
http://pypl.github.io/PYPL.html
https://doi.org/10.1145/3238147.3240476
https://arxiv.org/abs/1801.05064
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/roohitavaf/DKVF
https://github.com/roohitavaf/DKVF
https://www.linkedin.com/
https://github.com/voldemort/voldemort/issues/112
https://github.com/voldemort/voldemort/issues/112
https://doi.org/10.1145/1807128.1807152
https://www.inesc-id.pt/

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Contributions
	Thesis Outline

	Related Work
	Replication
	Active Replication
	Passive Replication
	Lazy Replication
	Full Replication
	Partial Replication

	CAP Theorem
	ALPS
	Consistency
	Linearizability
	Sequential Consistency
	Per-Record Sequential Consistency
	Causal Consistency
	Session Guarantees
	Eventual Consistency

	Existing Implementations
	Dynamo: Amazon's Highly Available Key-value Store
	PNUTS: Yahoo!'s Hosted Data Serving Platform
	Don't Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS
	Spanner: Google's Globally-Distributed Database
	Bolt-On Causal Consistency
	Making Geo-Replicated Systems Fast as Possible, Consistent when Necessary

	Discussion of Existing Implementations

	Architecture
	Group Membership
	Ordering
	Replication
	Delivery Condition
	Quorum
	Communication
	Internal communication API
	External communication API

	Framework API
	Inter-module interactions

	Implementation
	Methodology
	Programming Language Choice
	Choice of replicated storage systems
	DKVF
	Project Voldemort
	Discussion

	Code Structure
	Main Class
	Switching modules and versioning

	Implementation experience

	Evaluation
	Methodology
	DKVF
	Experimental Setup
	Experimental Results

	Project Voldemort
	Experimental Setup
	Experimental Results

	Discussion

	Conclusion
	Future Work

	Bibliography

