
Variable Consistency Messaging Layer
José Henrique Sobral Santos

josehenriquesantos@tecnico.ulisboa.pt
Instituto Superior Técnico
Universidade de Lisboa

ABSTRACT
Geo-distributed systems provide high availability, low-latency, and
fault tolerance through replication to different locations. The major
downside is that replication can lead to divergences between repli-
cas, either caused by network failures or simply by a network delay.
Handling these divergences is usually left to a consistency proto-
col which is implemented by the underlying system. Nowadays,
systems tend to implement a single consistency model embedded
in their implementation. When the system requirements change
and the consistency model is no longer appropriated, developers
are left with one of two choices: either (i) the system needs to be
deeply rewritten or (ii) replaced by a different system, with a new
set of consistency guarantees.

We propose a framework that abstracts the implementation of
the consistency model, into a set of well-defined modules. This
structural abstraction aims to frame the most common consistency
protocols within these modules, as well as to ease the switching of
consistency protocol in the targeted system. We have evaluated our
framework by measuring the throughput and overhead between
the original and our modified implementation with the framework
of two different storage systems. The measurements show that this
modularity and abstraction have an associated overhead. However,
it is compensated by the flexibility and ease in changing modules
and the respective consistency model offered.

KEYWORDS
Consistency, Modularity, Replication, Framework, Distributed Sys-
tems

1 INTRODUCTION
The growth of the Internet has changed not only the way we see
the world but also the way engineers design and develop computer
systems. In the 20th century, applications were developed with all
parts integrated in the application itself, e.g., a web server appli-
cation included the web server itself, some kind of data storage
and it was all compiled and run directly on a single server [22].
When a system needed to be upgraded to provide better perfor-
mance or greater capacity, the vertical scaling strategy solved the
scaling needs by buying a better CPU or adding bigger and better
hard disks or RAM’s. This approach worked for the reality of those
times. However, nowadays, for example, Google Search receives
more than 3.5 billion search queries every day [9], making it almost
impossible to have a single server in the world able to handle this
amount of processing.

Given the growth rate of the Internet and the seeming end of
Moore’s law [19], solutions that used a vertical scaling were deemed
obsolete and unsustainable [22]. The alternative was to change the
focus from vertical scaling to horizontal scaling. The focus was

no longer on making a single machine better but adding more
machines to a pool of resources. The earliest horizontal scaling
was just running duplicates of the web server [22], but nowadays,
pursuant all the advancements of cloud technology, microservices
architecture has emerged [20].

Taking advantage of horizontal scaling, a huge application can
be split into smaller services that can still perform a meaningful
task [1]. Applying a microservice architecture to the previous web
server example, instead of having a single web server running all
the requests, the application is split up in services, such as: user
authentication, databasemodel service, and so on. The decentralized
governance of the services allows services to be anywhere across
servers and replicated as needed, instead of creating clone instances
of the entire application every time.

This new architectural model brought new challenges, such as
coordination and consistency between nodes spread all over the
world, dynamic group membership and availability of the entire
system. To guarantee availability, a system should be replicated
across different machines [11], keeping the system accessible and
operational even in cases of catastrophes. Thus, this raises a problem
of consistency between replicas. When a system is being replicated,
due to the network connections, the order in which each replica
receives the messages may be different or even never receive one
of the messages. Therefore, the replicas could be in different states,
diverging between them.

When someone is building a new system, there are a lot of deci-
sions to be made about the system design, especially about system
guarantees. Choosing a consistency model, which is a set of rules
for visibility and apparent order of updates to the system’s objects
[8], is a problem itself. If, on the one hand, making the right decision
about what model should be used can be really difficult [2], on the
other, the business requirements that supported that decision may
change and the consistency model chosen becomes no longer ap-
propriate. Let’s imagine a company whose core replicated storage
system was initially built with eventual consistency guarantees.
The company grows and businesses evolve, changing the initial
requirements, which the system had been initially built with, mak-
ing eventual consistency guarantees no longer appropriate for the
business requirements. Given that systems tend to be built with an
integrated consistency model, programmed within its core, making
changes is much harder. Therefore, developers are left with two so-
lutions: either a new system is developed or a deep restructuring is
made to the current system code in order to fulfil the new business
requirements.

Our proposal to solve this problem is a framework that abstracts
the implementation of a system’s consistency underlying model,
making consistency model adaptations an easier task. To achieve
this, we propose extracting the consistency implementation to a
modular layer under the system, which is modelled so as to allow a



José Henrique Sobral Santos

shift of consistency model when needed. We believe that this pro-
posal can also be useful for researchers, as it allows experimenting
with variations in the consistency model in a simple way.

2 CONTRIBUTIONS
In this document, we study the details of existing consistency pro-
tocols and seek common components between them. By splitting
the functionality into different modules, we can create a framework
architecture that is capable of being used to implement most of the
existing consistency protocols.

This framework splits up the consistency implementation from
the system itself, which allows reducing the effort necessary to add
consistency to a system by abstracting the development process
with the implementation of the well-defined modules as well as
allowing the system’s consistency to be changed at build time.

To the best of our knowledge, there is no similar solution to our
proposal.

Briefly, this document makes the following contributions:

• A modular abstraction of the consistency model capable of
being framed in most existing consistency protocol imple-
mentations;

• A framework that:
– is capable of being used to implement the most common
consistency protocols;

– allows the developer to change the consistency of the
system in build time.

3 RELATEDWORK
Despite offering different levels of consistency due to varied opera-
tional goals, the systems we analyzed showed that there are several
points in common between them.

First, all the analyzed systems timestamp messages even if in
different ways. Looking at Dynamo [6], they use vector clocks to
capture the data versioning treating every new operation, as a new
and immutable version. RedBlue [13] uses standard logical clocks
to timestamp both types of messages. COPS [15] and Bolt-On [2],
capture the version among with dependencies of each object and
Spanner [5] timestamps the objects with real-time using TrueTime
API [5].

Systems that timestamp messages at a single node, such as
PNUTS [18] which defines a master per record, do not need to
deal with inconsistencies given that the same object is only times-
tamped on a master node. Nevertheless, COPS [15] and Dynamo
[6] follow a decentralized design that may need to solve inconsis-
tencies, in which the first applies by default the last-write-wins
rule, while Dynamo solves inconsistencies by reconciliation.

Second, objects should be replicated. All systems have to be
aware of the nodes that form a system and to where they have to
replicate to. On Spanner [5], the applications can choose where to
replicate. Gemini [13] replicates to all nodes. Dynamo [6] replicates
to N-1 nodes on a ring format, where N is a configurable value. As
we can see, all systems, in one way or another, replicate to a set of
nodes. Even if it is not well specified where to replicate, such as in
the PNUTS [18] or Bolt-on [2] systems, they delegate this task to

an external system. Thus, it is quite obvious that this task needs to
be performed when a system is starting a replication process.

There are other points that we identified as being part of stronger
consistency systems, but which are not part of weaker consistency
systems. For example, an eventually consistent system does not
provide replication guarantees, while a strongly consistent system
does.

Another point, which is part of some of the above systems is
that they might need to form a quorum or define a semantic (e.g. at
least one) to consider messages as replicated. As an example, Red
operations of RedBlue [13] that provide strong consistency have to
wait for all nodes to apply the messages before continuing.

The last point that we identified as common to all systems, ex-
cept for eventual consistency systems, are delivery conditions. We
consider delivery conditions as a set of rules that should be ensured
to be true in the system before the operation be performed. Looking
at COPS [15] and Bolt-on [2], they provide a causal consistency
that exposes dependencies to the objects. These dependencies need
to be visible at a node before applying an update to an object. On
Spanner [5] and PNUTS [18], it is necessary to check and wait until
the message that preceded a new one already exists in the system.

Briefly, there are some points that we identify as being common
to consistency protocols implementation which are: it needs to
know how and where to replicate to, when to consider a message
delivered at a node, how the quorum is formed, how to timestamp
a message and what to do in case of conflicting messages.

4 ARCHITECTURE
In the previous section, we identified and discussed the common
components among several consistency protocols. In this section,
first of all, we present our proposal that abstracts the implemen-
tation of a system’s consistency, the underlying component archi-
tecture, which will allow us to make variations to the consistency
system with the minimum necessary effort. In a second step, we
are going to demonstrate the flow of a message in the system and
its interaction with the modules, in order to guarantee the desired
consistency.

We propose a framework, which exposes two different APIs: an
external API that is exposed to the replicated system to commu-
nicate with the framework, and an internal API which is used to
communicate between replicas using our framework. This frame-
work accomplishes the following requirements:

• Modularity - the solution is divided into modules to allow
possible future extensions to the framework, and to allow
an easy swap of a module for another one of different con-
sistency.

• Ease of use for developers;
• Generality - the solution has to be the more general possi-
ble in order to be used to implement as many consistency
systems as possible.

From the analysis in section 3, we decided to split our framework
into seven modules that will be individually described in detail
below: Group Membership (4.1), Ordering (4.2), Replication (4.3),
Delivery Condition (4.4), Quorum (4.5), Communication (4.6), and
Framework API (4.7).



Variable Consistency Messaging Layer

4.1 Group Membership
This module is responsible for managing all the information about
which nodes participate in the system. The members need to specify
the roles that they perform within the system.

We define two membership types: Timestamper and Forwarder.
A Timestamper acts in a system as a member that is capable of
marking new messages with a timestamp. A Forwarder role acts
as a slave, which means that if this type of member receives a
new message, he has to forward the message to a member with a
Timestamper role. In a fully decentralized system, all members could
behave as timestampers [6]. For systems that use leader election,
there is also the possibility of implementing a leader election on
top of this module or even to coordinate the operation involving
multiples nodes [5].

This module exposes four methods:

• getMySelf() - returns information about the own node caller
of the method. Information such as the own role, which can
be either timestamper or forwarder, or the data centre ID or
the partition ID to which the node belongs is some of the
data that this method returns.

• getReplicationTargets() - returns a list of members to where
a member must replicate a message to. The return of this
method is member dependent because one member could
replicate to all others or just to some (gossip schema).

• getTimeStamper() - returns a timestamper member of the
system.

• findPartition(key) - returns the partition ID that a given key
belongs to.

4.2 Ordering
This module has three different roles: first, it is responsible for
holding the timestamping mechanism, which could be a logical
clock, such as Lamport clock or a vector clock, or even a physical
clock. The second role is timestamping messages, assigning an
order to the messages that arrived at the framework, provided
by the timeStamping(content) method. Lastly, the third role is to
compare messages and to define an order for messages with the
same timestamp, provided by compareMessages(message1, message2).
It is this module that provides conflict handling.

Every message that is processed by one member needs to be
marked with metadata, in order to be distinguished from messages
forwarded by other members of the system. This metadata is a
key-value map that contains all the additional information of the
message. However, there are some entries that are more common,
such as version resultant of timeStamping(content) method execu-
tion, message origin source or even progress status of the message
in our framework, like the number of replication successes. Op-
tionally, some consistency protocols, such as RedBlue [13], add
information about the type of the message (Red or Blue) to the
metadata.

Causal consistency systems, for example, require that a depen-
dencies list be generated. This feature is also provided by timeS-
tamping(content) method at the time of execution, and saved into
message metadata.

In addition to the previous methods, this module also provides:

• updateClock() - method responsible for incrementing the
actual clock.

• updateClock(newClock) - take the newClock value, and re-
places the actual clock value or uses it to update the existing
one.

4.3 Replication
This module is the core of replication of our framework, and is
responsible for coordinating message replication. It provides two
methods:

• replicate(content, metadata)
• apply(content, metadata)

In order to be possible to replicate a message, in the replicate(content,
metadata) method there are interactions with the Group Member-
ship (4.1) and Quorum (4.5) modules. These interactions allow a
member to know where to replicate, getReplicationTargets() (4.1),
and when a message can be marked as replicated, waitQuorum()
(4.5).

The apply(content, metadata) method is called when it is neces-
sary to apply the message to the system member that received it.
This method is supported by the Delivery Condition (4.4) module.

There are two considerations that we have taken into account.
Some replication types using gossip mechanisms require that after
receiving and applying a replication message, that message should
be replicated to other members. This scenario has been considered
and calling the replicate(content, metadata) method inside the ap-
ply(content, metadata) method it is possible. Lastly, we do not force
an order onto the message pipeline. For example, a system could
first apply the message, then answer to the client and only after
this start the replication process. However, it is also possible that
the framework has to wait for the apply and replication process,
before it answers to the client. Briefly, applying a message to the
system can be done when a message has already been replicated,
or when it has not yet been replicated (and it may, or may not be
in the future). This is a dependent system choice.

4.4 Delivery Condition
This module has defined the conditions that need to be satisfied
to apply a message to the system and consequently consider the
message as delivered. It may need to use the Ordering (4.2) module
to compare messages and decide if the message may be applied or
not. For example, when a system is trying to apply a message B
that is causally related to message A, it is necessary to check if the
message B can be applied. In cases where all conditions, initially
defined, are not satisfied, the system must wait until the defined
conditions are all satisfied before applying and returning. This is
provided by the tryToApply(content, metadata) method.

Depending on what system we are working with, it can have
very different delivery conditions. It is possible that the consistency
system only cares about temporal occurrences, in which case it
only checks if the message that is trying to apply occurred after the
existent one. However, causally consistent systems demand a way
to deal with dependencies. Local dependencies to the system should
be treated and managed into this module. Nevertheless, when not
all dependencies are satisfied, the system can choose to request it to



José Henrique Sobral Santos

other members. To accommodate this requirement, it also provides
two additional methods:

• addToRemoteWaitingDep(dependencyRequest) - this method
adds a remote request of dependency to a queue to be an-
swered when satisfied by a local system.

• removeRemoteWaitingDep(message) - This method removes
a dependency request from the waiting dependencies queue,
that was been answered by another member. It should be
called when a response to a dependency request arrives at
the framework.

4.5 Quorum
In order to consider a message as replicated, some consistency mod-
els demand a quorum. In this module, it is possible to implement
quorum algorithms and/or define the semantic required (e.g. at
least one read or write, or even number of zones required). Only
one method is provided: waitQuorum() that is responsible for guar-
anteeing that the other members have already returned a delivery
status message and a quorum has been formed.

4.6 Communication
We decide to split the communication module into two parts: in-
ternal and external communication. By internal, we mean that
communications take place within the member, such as a call to
write or read on a local database, whereas by external, we mean
that communications occur from the member to the outside. For
example, replicating to other members or answering to a client.

It is the programmer’s responsability to implement this module
and it is system dependent, so all the following methods need to be
implemented by the programmer. The reason behind this module
creation resides in the necessity to convert data type between the
system below and the framework itself, and between the framework
and the real communication protocol chosen by the system and/or
programmer.

4.6.1 Internal communication API.

• get(node, content, metadata, callback)
• put(node, content, metadata, callback)
• delete(node, content, metadata, callback)

These three methods above should implement a call to a database.
• getActualVersion(content, metaData, callback)

Returns the current version for a given key defined in 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 . Note
that although this method is located as internal, some consistency
protocols may request other members in order to obtain the most
current version.

4.6.2 External communication API.

• sendGetResponse(node, content, metadata, callback)
• sendPutResponse(node, content, metadata, callback)
• sendDeleteResponse(node, content, metadata, callback)

These three methods above should implement the behavior in case
of responding to a request of each type above. For example, answer
to a Node get request.

• replicate(node, content, metadata, callback)
This method is responsible to send a replication message to other
𝑛𝑜𝑑𝑒 of the system.

• sendDependenciesCheck(node, content, metadata, callback)
• sendDependenciesResponse(content, metadata, callback)

The two methods are specific to systems with dependencies mech-
anism, as causally consistent systems. These systems need to send
requests to dependencies missing and answer for the requests from
the other members of the system. These methods define how this
occurs.

4.7 Framework API
Our framework exposes two APIs, a public API for applications and
a private API for the communication between nodes. We start by
describing the two methods that compose the public API:

• newMessage(content)
• newMessage(content, metaData)

These methods are used when a new message is arriving at the ma-
chine. Some consistencymodels as [13] require providing additional
information about the message. For this, we decide to provide the
possibility of optionally submitting messages with some metadata.

The next methods below belong to the private API, which we
decide to expose two methods:

• replicateMessage(content, metadata)
When amember wants to replicate a message that is alreadymarked
with metadata. This means that the message was already processed
by another member.

• getReplicaState()
This method allows one member to get the actual status from other
members. It could be used by some systems to synchronize the
members, typically in systems where servers need to exchange
state information [7].

4.8 Inter-module interactions
To better understand how this solution works, we are going to
describe next the flow of a message within the system detailing how
the various modules interact each other. Given that our solution
is modular, which allows the developers to change the course of
a message and each consistency system has different choices, the
following descriptions represent a possible execution. Note that
we do not describe the interactions of the other modules with the
communication module for simplification.

We separate the description in two different events: a new mes-
sage (1) and a replicated message (2) in the system.

(1) New Message Figure 1 shows the interaction between mod-
ules when a new message arrives at the system. A new message
arrives at the system via a call to the newMessage(content), a method
exposed by the API (4.7). To decide what to do with the message,
first, the respective replica which received the message invokes the
getRole()method on Group Membership module (4.1) to check what
is its own role on the system. Then, it checks the result of the last
invoked method and decides what to do.

In case the receiving node is a forwarder, it should forward it to
anothermemberwith a Timestamper role. This is achieved by invok-
ing the method getTimestamper() on the GroupMembership module
and forwarding the message invoking the newMessage(content) on
the replica that the getTimestamper() method returns.



Variable Consistency Messaging Layer

Figure 1: New message flow

If the node is itself a Timestamper, it proceeds to order the mes-
sage in the system. The order of a message is provided by the
method timeStamping(content) of the Ordering module (4.2). For
example, if it is a causal consistency system, the method will check
and return the dependencies of the message inside the metadata
field. Subsequently, the message is marked with a timestamp, and it
is ready to be replicated. So, the message is passed to the Replication
module (4.3) by the replicate(content,metadata) method to initiate
the process of replicating a message.

The Replication module has to know where to replicate. Thus, it
invokes the getReplicationTargets() method on Group Membership
module that returns a list of members to where it must replicate and
then, it calls replicateMessage(content, metadata) on each member of
the list. Some consistency models require the system to wait for the
replication response before considering the message delivered. The
waitQuorum() method of the Quorum module (4.5) only returns
when the replication conditions are satisfied. Finally, the message
that was replicated needs to be applied to the local replica by the
apply(content, metadata) method of Replication module. It may
also needs to use the tryToApply method of the Delivery Condition
module (4.4), which is not detailed in figure 4.8, but in figure 4.8.

There are two scenarios for applying a message to the system:
(1) we wait for the replies from all the targeted replicas before
applying the message to the system. This is the case from the afore-
mentioned strongly consistency scenario; but we can also, (2) apply
the message right away and asynchronously replicate to targeted
replicas, which it is the typical case of eventual consistency systems.

(2) Replicated Message A replicated message process is initi-
ated by the Replicate module (4.3), which invokes the API repli-
cateMessage(content, metadata) method on the respective replicas
to which a node wants to replicate a message. Figure 2 shows the
interaction between modules when a replicated message is received
by one replica.

Given that the system distinguishes between messages being
replicated and new messages in the system, a replicated message
does not need to be timestamped again. Thus, it invokes the ap-
ply(content, metadata) method in the Replication module to initiate

the process of applying a message to the system. In order for this to
happen, the tryToApply() method of the Delivery Condition module
(4.4) is invoked, which will ensure that all conditions are gathered
for the message to be applied. In some cases, the node receiving a
replication call may need to invoke the compareMessages(message,
message) method in the Ordering module (4.2) in order to solve
conflict cases.

Some consistency protocols that make use of a gossip propaga-
tion schema, after the message is applied, must replicate to other
replicas. In this case, the replicate(content, metadata) method of the
Replication module is invoked, which initiates a replication process
described in the previous point, without the apply message part
which already had been performed.

Figure 2: Replication Message Flow

5 IMPLEMENTATION
5.1 Methodology
To implement our architecture, we explored two possible approaches:
(i) building a system from scratch with our framework built-in, and
choosing a consistency model that this system will provide. (ii)
modifying an already existing system by programming our frame-
work to have the same consistency model that the system already
implements.

Both approaches have advantages and disadvantages. Looking
at (i), building a system from scratch will give us the flexibility
to decide all components of the system. But, this will take time
to build and debug until all performance, and consistency model
requirements chosen are satisfied. In contrast on the (ii) approach,
we start with an existing tested system where we have all the
parameters defined, making us limited to the options that it offers.

Looking at it in a more particular way, and given the nature of
our proposal, we decide to follow the (ii) approach. The first reason
behind this decision is that by modifying an existing system to
implement our framework, it leaves us the opportunity to see and
learn how our proposal fits a real system, and not only build a new
system around it that would necessarily fit the framework. The
other reason is that with this approach, we are able to compare the
real impact of our framework by comparing the original implemen-
tation of an existing system against our modified version, which
implements our framework. These two reasons are not possible to
achieve following the (i) approach.

5.2 Programming Language Choice
We decide to use Java as the main programming language for the
implementation of our framework. As Java is one of the most used
languages in the world [3], there is a lot of systems and tools avail-
able that we could use. Nevertheless, as it is an object-oriented



José Henrique Sobral Santos

language, it seems to be a good choice for a better code organiza-
tion and simple understanding of the produced code. Lastly, regard-
ing memory management, we could have chosen a more efficient
memory management language like C. However, this adds a lot of
concerns that do not will add any significant aspect to our work.

5.3 Choice of replicated storage systems
Given the reasons discussed in the previous sections, we decided to
choose two different systems with the following criteria: the code
should be written in Java, not offer the same level of consistency,
be open source and be available in some online repository.

In the next two subsections (5.3.1 and 5.3.2), we will describe each
of the chosen systems and the configurations/variations considered.

5.3.1 DKVF. Distributed Key-Value Framework [17], is a frame-
work that allows programmers to quickly create and evaluate dis-
tributed key-value stores. DKVF based systems offer the client and
the server-side that extends the client and server-side DKVF, respec-
tively. The code is written in Java, and it relies on Google Protocol
Buffers [10] for marshalling/unmarshalling data for storage and
transmission. Although DKVF can use any storage engine, it already
comes with a driver for Berkeley-DB which can be configured to
handle the data replication. We do not use this functionality, leaving
the replication to our framework.

A DKVF client exposes two basic operations: put and get, to keep
the interface simple. Yet, it is possible to extend the framework to
use other methods.

From source code available on GitHub [16], where there are
some systems implementations using DKVF available, we decide to
use the COPS [15] implementation. Given that it offers a causal +
consistency that needs to deal with dependencies, it will increase the
complexity of some framework modules and give us better feedback
of the framework fit into this system. In this COPS implementation,
the client is only responsible for sending the messages to the server
along with a list of dependencies for a given key, and the server
will ensure all the consistency and replication process.

5.3.2 Project Voldemort. Voldemort [21] is a distributed key-value
storage system, used in critical services at LinkedIn [14] based
on Amazon Dynamo [6] architecture. In order to keep the high
performance and availability, Voldemort only supports four queries
to the data access: put, get, getAll and delete operations. Although
Voldemort has different consistency guarantees out-of-the-box in
the source code, we decided to choose the implementation with
eventual consistency. This solution could lead to inconsistencies,
but to mitigate this problem, Voldemort tolerates the possibility
of inconsistencies, and resolve them at read time. The approach is
called read-repair, it consists of writing all inconsistent versions
and at read-time detecting and solving the problems. To versionate
the objects, vector clocks are used, which is a list of server:version
pairs.

Contrary to the previous system, and although the available
documentation says that it is possible to choose between who does
the messages replication (being the client or the server), the Java
implementation does not provide this option. It is confirmed by an
issue closed [23] on GitHub. So, Voldemort offers a “smart” client

that is aware of all the cluster, is responsible for replication and
guarantees the system consistency.

5.3.3 Discussion. We choose these two systems because they have
different approaches to the system design and because they offer
different consistency guarantees. Whereas the COPS implementa-
tion using DVKF offers a causal+ consistency that needs to han-
dle dependencies, Voldemort offers an eventual consistency with
read-repair. Looking at our framework, it will produce, at least,
significant different Delivery Condition modules, since the COPS
implementation needs to ensure that all dependencies are satisfied
in the system before considering a message delivered. Conversely,
the Voldemort adaptation will produce a way more simple module.

When we first think about our architecture (4), we focus only
on the possibility of server-side implementation. This scenario is
what we found out on COPS implementation, where the entire
consistency protocol is implemented on the server-side. However,
Voldemort takes a different approach where the client is given an
important role in the consistency guarantee. We concluded that
implementing our framework on the server-side or the client-side
will not produce any changes to it. Additionally, it is possible to
implement it on both sides, if that makes sense to the system, where
both sides have roles on consistency guarantees. However, it can
lead to some of the modules being empty, but this possibility is
allowed even in a single side implementation, e.g., a system that
does not use quorum may have an empty quorum module.

5.4 Code Structure

Figure 3: Framework
code structure

Starting by the code structural di-
vision, we decided to divide it
into 6 parts (Fig. 3): 𝑚𝑎𝑖𝑛 𝑐𝑜𝑑𝑒 ,
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛, 𝑡𝑦𝑝𝑒𝑠 , 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑛𝑔
and 𝑢𝑡𝑖𝑙𝑠 .

The 𝑚𝑎𝑖𝑛𝑐𝑜𝑑𝑒 is where all mod-
ules code is placed along with the
corresponding interfaces. There are
also two important classes: Frame-
work and Configurations.

Framework is the class that should
be instantiated to use our framework.
It is in that class that the incoming
messages to the framework are pro-
cessed and where the message flow is
coordinated. The configurations class
interacts with almost all classes of
the system, and it has important vari-
ables like minimal number of writes
to consider a replication message de-
livered. In order to support asynchro-
nous calls, we also provide a Callback
interface that classes need to imple-
ment.

Moving on to the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 package,
it encompasses all the notions of a
cluster on our framework: a cluster,
a zone and a node. A cluster consists

of a number of zones and a number of nodes. A zone has its zone



Variable Consistency Messaging Layer

number along with a list of proximity zones, and a node has all
information about a member of the system, such as id, IP and zone
number that the node belongs or partitions that the node has.

The 𝑡𝑦𝑝𝑒𝑠 package has great importance. This package defines
all basic types of our framework. A message has a type, which can
be a put, get, dependency request, etc., and content and metadata.
The remaining three types defined are relevant to deal with depen-
dencies at the system. A dependency is a key-version pair, whereas
a dependency request is used to store a request for a dependency
from other nodes of the system. However, if a message has depen-
dencies that are not satisfied, PendingMessage is used to help store
messages that need to wait until all dependencies are satisfied.

The 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑛𝑔 package includes the version interface that classes
that will be used to versionate objects must implement. Vector clock
or Lamport clock are examples of clocks that could be placed in
this package.

In the 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 package all exceptions used within the frame-
work are defined.

The last package, 𝑢𝑡𝑖𝑙𝑠 , has classes that help the programmers,
e.g., serialization functions or time functions.

5.5 Main Class
As stated in the previous section (5.4), Framework is the main class
of our solution. First, this class is responsible to instantiate all
modules that will be used. Second, it is the entering point to the
messages into our framework. Lastly, it is in this class that the main
flow of a message is defined.

Listing 1 shows an implementation of a new put incoming mes-
sage into the framework from COPS using DKVF (5.3.1).

public void newMessage(Message <K, V> incomingMessage) {
long startTime = time.getNanoseconds ();
Content <K,V> content = incomingMessage.getContent ();
MetaData metadata = incomingMessage.getMetaData ();
switch (incomingMessage.getType ()){

case PUT:{
if(isTimestamper ()){

orderMessage(content , metadata , startTime);
replicate.apply(content , metadata);
communicationRemote.sendPutResponse(content ,

metadata , null);
replicate.replicate(content , metadata);

}else{
groupMembership.getTimestamper ();
...

}
break;

}
...

}
}

Listing 1: New put message on framework

This code block is in accordance with Figure 1 that is detailed
in Section 4.8. However, this system answers to the client before
replicate. It could have implemented other sequences, e.g., replicate
before apply, and subsequently answer to the client. Our solution
makes changing this sequence as simple as changing the order of
the code lines.

5.5.1 Switching modules and versioning. The Framework class in-
stantiates the modules that will be used on the execution of our
framework. The modules that will be instantiated are defined in

the Configurations class. Each of these modules can be exchanged
for the same type of module with different implementations. For
example, if we have two systems implemented differently with our
framework, one with causal consistency and another with even-
tual consistency, we can switch the Delivery Condition module of
the causal system to the same module of the eventual system. In
this case, a delivery condition module from a causal system should
check and try to satisfy dependencies on the system. However, the
change to a delivery condition from an eventual system removes
all the dependencies checking from that stage of the process.

It is clear to us that it can happen that some modules can’t be
switched, as theymay lead to impossible combinations. For example,
a quorum module that waits for some zones when the system has
only one zone.

In the same way as the modules can be switched, the versioning
mode can also be. A system that uses a simple integer to data
versioning, it is possible to change other type, e.g., a vector clock.
For this, a new versioning class implementation must implement
the version interface of our framework.

5.6 Implementation experience
The choice of adapting existing systems led us to a more interative
development process. Starting by the time needed to obtain suffi-
cient knowledge of the system that we are modifying and ending
with dealing some system design features that made it difficult to
include the framework in the system.

The complexity and size of the code were one of the main ad-
versities we faced when we were modifying the Voldemort system
(5.3.2). In order to be prepared to modify the system, it was neces-
sary to obtain a deep internal knowledge of all system mechanisms
related to consistency. Out of the box, Voldemort offers a lot of cus-
tomization options and code optimizations so, sometimes the code
wasn’t easy to understand. In addition, sometimes the available
documentation is not up to date with all new features or design
choices. Therefore, we anticipated this type of difficulties.

Unlike the Voldemort system, DKVF (5.3.1) was designed to be
used by the academic community. As a result, the system code
produced using DKVF is clean and simple. So, although while im-
plementing COPS using DKVF we had the process of learning about
the system, it was much smoother than with Voldemort.

Moving on from the framework implementation into the systems,
this process of adapting existing systems led us to have to rethink
the architecture initially proposed and redo it in some parts to make
it more modular. It happened not only because the system we were
modifying had scenarios that we hadn’t thought of before, but also
because some better alternatives were emerging due to the iterative
process of framework implementation.

We were able to implement the framework in the systems de-
scribed above, maintaining the consistency guarantees that the
system originally had. However, changing these consistency guar-
antees is as simple as changing the modules that are being instanti-
ated at startup, defined in the Configurations class.

To test this possibility of exchanging modules and consequently
changing the consistency model, we tested and successfully man-
aged to change the versioning from vector clock to Lamport clock
in Project Voldemort, and from Lamport clock to vector clock in



José Henrique Sobral Santos

Figure 4: Experimental cluster representation

COPS with DKVF. We also exchanged the causal consistency of the
COPS with DKVF system for eventual consistency, simply by chang-
ing the Delivery Conditions module for one with no dependencies
awareness from an eventually consistent system.

6 EVALUATION
6.1 Methodology
To evaluate our proposal, we will compare the existing system
implementation of both systems chosen against our equivalent im-
plementation of the systems using our framework (5.3). To support
this, we are going to use two metrics: latency and throughput, in
order to measure the overhead between these two implementations.

To compare the latency and throughput we will execute the
same operations in both system implementations, and measure the
overhead of adding a new layer to the system.

6.2 DKVF
6.2.1 Experimental Setup. DKVF (5.3.1) includes a YCSB driver
[4]. YCSB means Yahoo! Cloud Serving Benchmark which is a
framework used as a tool for evaluating the performance of key-
value stores. We used this already implemented feature of DKVF,
making variations to the number of operations and percentages of
reads and writes, to give us the throughput and latency. In order to
evaluate this system, we built a cluster as shown in Figure 4 where
we have three servers with three partitions each, running a data
store. The following representation X_Y identifies the machines, in
which Xmeans replica number and Y partition number. Two of three
replicas of the cluster are connected to a hub that is connected to
three clients each. Each partition is connected to other replicas with
the same partition. The remaining replica actuates in the system as
another replication point, not being connected to any client. We
are assuming full replication between replicas.

Each node in the cluster represented on figure 4 runs in an
independent machine. For this, we used the INESC-ID [12] cluster.
For the servers, we used a 1 vCPUs, 2.13 GHz, Intel Xeon E5506, 2
GiB memory RAM. For the clients, following the approach of the
DKVF paper [17], we give more power to the clients to better utilize
servers. We run clients on machines with 2 vCPU, 2.13 GHz, Intel
Xeon E5506, 2 GiB memory RAM.

6.2.2 Experimental Results. In the implementation of COPS with
DKVF, we perform the measurements varying the number of opera-
tions and the ratio of reads and writes operations on the YCSB prop-
erties. For this purpose, we chose 8 threads per client to increase
the amount of load applied against the system. A recordcount (YCSB
property) of 1000, which means that it will create 1000 records on
load phase of the YCSB execution, and we vary the read:write oper-
ations ratio between 50:50 and 95:05, which correspond to a update
heavy workload and a read-mostly workload. However, since we
are just measuring the impact of our framework on both systems,
we just want to have the same conditions on the original version
and version with the framework to compare.

We started by doing a measurement for 50:50 operations ratio.
The results are represented in Tables 1 and 2.

Operations
Count

Throughput
(ops/sec)

Write
Latency (ms)

Read
Latency (ms)

50000 1336,5 6943,4 4526,0
100000 1552,7 5913,7 4095,0
200000 1775,9 5241,4 3648,0
300000 1927,0 4792,5 3403,1
400000 1987,3 4602,5 3368,0

Table 1: COPS with DKVF original implementation - 50:50
operations ratio

Operations
Count

Throughput
(ops/sec)

Write
Latency (ms)

Read
Latency (ms)

50000 1133,4 8009,8 5590,6
100000 1261,0 7154,1 5207,1
200000 1499,9 6134,5 4350,0
300000 1490,5 6186,5 4414,3
400000 1449,9 6349,5 4450,0

Table 2: Modified COPS with DKVF - 50:50 operations ratio

By default, the execution of YCSB gives us a result per client. In
this case, we used 6 clients, each 3 against a different replica of the
system. To help better understand our results, we present in these
both tables an average of all the clients results.

Table 3 shows the impact of our framework on the system. The
overhead number is between 15% and 23%.

Operations
Count

Throughput
Overhead

Write Latency
Overhead

Read Latency
Overhead

50000 15,2% 13,3% 19,0%
100000 18,8% 17,3% 21,4%
200000 18,4% 17,5% 18,0%
300000 22,7% 22,5% 22,9%
400000 23,1% 22,1% 21,4%

Table 3: COPS with DKVF original vs modified overhead -
50:50 operations ratio

We did the same experiment with all the same conditions except
the operations ratio that we fixed on 95:05. The results shown in
Tables 4, 5 and the consolidated overhead on Table 6 are close to
the previous experiment.

We made more variations to the parameters and reran the ex-
periments. We found out that the overhead was always close to the
numbers of the two previous experiments presented. So we believe



Variable Consistency Messaging Layer

that this is approximately the real overhead value of our solution.
There are reasons behind these numbers that we will discuss in
section 6.4.

Operations
Count

Throughput
(ops/sec)

Write
Latency (ms)

Read
Latency (ms)

50000 1850,5 12812,8 3610,3
100000 1977,5 12767,5 3443,9
200000 2210,9 10561,1 3185,4
300000 2291,4 10580,2 3059,3
400000 2374,7 9392,1 3027,3

Table 4: COPS with DKVF original implementation - 95:05
operations ratio

Operations
Count

Throughput
(ops/sec)

Write
Latency (ms)

Read
Latency (ms)

50000 1487,4 13944,9 4576,4
100000 1795,9 12229,7 4075,6
200000 1866,0 10104,6 3897,6
300000 1959,9 12223,7 3588,3
400000 1948,7 10058,0 3752,8

Table 5: Modified COPS with DKVF - 95:05 operations ratio

Operations
Count

Throughput
Overhead

Write Latency
Overhead

Read Latency
Overhead

50000 19,6% 8,1% 21,1%
100000 9,2% -4,4% 15,5%
200000 15,6% -4,5% 18,3%
300000 14,5% 13,5% 14,7%
400000 17,9% 6,6% 19,3%

Table 6: COPS with DKVF original vs modified overhead -
95:05 operations ratio

6.3 Project Voldemort
6.3.1 Experimental Setup. This system’s source code also includes
a benchmark tool like DKVF. However, it doesn’t allow us to test
the modifications that we did because it is a pure storage engine
test. So this is useful to test and compare new storage engines with
the system but not useful for our context.

To measure the impact of our framework on this system, we
executed different sequences of operations and measured the time
between the begin and the end.

For this experiment, we built an experimental enviroment with
two pairs of three nodes located in different networks and two
clients that send queries to the clusters. All of them run on inde-
pendent machines with the following configurations: 4 vCPUs, 2.13
GHz, Intel Xeon E5506, 4 GiB memory RAM using machines at
INESC-ID [12] cluster.

6.3.2 Experimental Results. In the Voldemort system, we did a
similar work to the evaluation of DKVF. Altough we didn’t use
YCSB to evaluate this system, we create workloads that simulate
the same scenarios.

Using the same workloads in both versions and varying the
number of operations for two different read:write operations ratio,
we measured the overhead of our framework into the system.

Tables 7 and 8 shows the throughput and the overhead calculated
by the difference between throughput of the original implementa-
tion and the modified version with our framework.

Operations
Count

Throughput
Framework
(ops / sec)

Throughput
Original
(ops / sec)

Overhead
(%)

50000 3421,4 3809,2 10,2%
100000 4548,6 5005,5 9,1%
200000 4846,9 5251,4 7,7%
300000 4911,0 5349,0 8,2%
400000 4818,2 5190,2 7,2%

Table 7: Project Voldemort - 50:50 operations ratio

Operations
Count

Throughput
Framework
(ops / sec)

Throughput
Original
(ops / sec)

Overhead
(%)

50000 5644,6 6309,2 10,5%
100000 6852,1 7457,1 8,1%
200000 7691,7 8161,6 5,8%
300000 7685,0 8471,2 9,3%
400000 7745,3 8716,9 11,2%

Table 8: Project Voldemort - 95:05 operations ratio

6.4 Discussion
The results of both systems show that our solution adds an overhead
to the system. There are reasons for the values obtained that we
will describe with an individual analysis of the values obtained
from each system.

Starting with COPS implemented with DKVF, the overhead for
the 50:50 operations ratio (Table 3) varies between 15% and 23%.
While for the 95:05 the overhead values (Table 6) are approximately
the same values if we exclude write latency from this comparision.

Looking at the 50:50 operations ratio tables (1 and 2) and doing
a comparison against the 95:05 operations ratio tables (4 and 5),
an increase of almost double the write latency of 50:50 results
is noticeable when compared with 95:05. COPS offers a causal+
consistency that deals with dependencies between operations. The
95:05 write latency is almost double the one of the 50:50 operations
ratio because with such increase of reads, before the writes, it
creates a bigger dependencies list that needs to be satisfied before
the write operation can be considered complete. However, in the
95:05 operations ratio (Table 6), we have two cases of write latency
where the system with our framework has better performance
(negative percentages). However, given that for the 50:50 operations
ratio (table 3) the values are more consistent and due to the low
quantity of write operations (only 5%), these are not values to which
we have given relevance.

Let’s now focus on analyzing the reasons behind a general
throughput drop in the system for both operations ratio. As previ-
ously stated, there is a throughput overhead in the modified version,
with our framework, when compared with the original implemen-
tation system. We decided to investigate the real impact of the
type conversion between our framework and the system’s, given
that, in order to be possible to have modularity, we defined some
types that messages that arrive at the system must be converted



José Henrique Sobral Santos

and then reconverted again to the original format when leaving
the framework. For this, we executed the same operation with a
list of previously created dependencies and we measured the time
spent on type conversion and the total time of execution. The total
time measured for this operation was 3.8 ms on the original imple-
mentation, and 4.9 ms on our implementation with our framework.
However, from these 4.9 ms, we measured a type conversions time
of 0.8ms. These results led us to conclude that most of the overhead
of our framework is due to type conversion.

On Project Voldemort system, we were only able to measure the
throughput due to the tool that we chose for these measurements.
However, it gave us an estimate of the impact of our framework.
Table 7 for 50:50 operations ratio and Table 8 for 95:05 operations
ratio gave us similiar results to those obtained from the DKVF
system. Also in this system most of the overhead is caused by type
conversions.

7 CONCLUSION
Distributed replicated systems tend to be built with a consistency
model implemented coupled with their implementation, making
switching between consistency models difficult. Thus, usually when
a consistency model of a system has to be changed, either the
system code needs to be deeply rewritten or replaced by a different
consistency system.

Our analysis to existent systems, found that there are compo-
nents of different consistency models that even although they can
define a different semantics or use different mechanisms to provide
consistency to the system, they serve the same purpose with a
similar base approach.

We proposed a modular abstraction to the consistency model
and a respective framework which makes use of that abstraction
to extract the consistency implementation to a layer that can be
implemented in a modular isolated manner. We found that this
abstraction fits into all of the analyzed consistency protocol imple-
mentations and our architecture allows the developers to change
the consistency model of a system at build time.

To evaluate our proposal, we implemented two different systems
into our framework: COPS using DKVF, and Project Voldemort.
We measured the throughput and associated overhead between
original implementation and modificated implementation with our
framework. Although the measured values show an impact of our
framework for an increase of the system flexibility, our analysis
revealed that a large part of this impact is due to the conversion of
data type in our framework. These are values that could be further
optimized.

8 FUTUREWORK
We have focused on identifying modular replaceable components
in replicated systems. Our experience suggests that this approach
may be extended to the transaction support and management of
distributed transactional systems. Eventually both modular frame-
works could be integrated in the same model.

In a next version of the framework presented, the data types con-
version should be revisitated in order to improve the performance
and consequently reduce the overhead.

Finally, it would be interesting if in a future work it was possible
to exchange some framework modules at runtime instead of just at
build time.

REFERENCES
[1] Kristijan Arsov. 2017. What Are Microservices, Actually? https://dzone.com/

articles/what-are-microservices-actually
[2] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-on

causal consistency. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 761–772. https://doi.org/10.1145/2463676.2465279

[3] Pierre Carbonnelle. 2020. PYPL PopularitY of Programming Language index.
http://pypl.github.io/PYPL.html

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC ’10. 143–154. https:
//doi.org/10.1145/1807128.1807152

[5] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J J Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. (2012). https://doi.org/10.1145/2491245

[6] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value store.
ACM SIGOPS Operating Systems Review (2007). https://doi.org/10.1145/1323293.
1294281

[7] Jiaqing Du, Amitabha Roy, Willy Zwaenepoel, and Calin Iorgulescu. 2014. Gen-
tleRain : Cheap and Scalable Causal Consistency with Physical Clocks. SOCC
’14 Proceedings of the ACM Symposium on Cloud Computing (2014). https:
//doi.org/10.1145/2670979.2670983

[8] Just Enough, Distributed Systems, To Be, and Todd Lipcon. 2009. Design Patterns
for Distributed Non-Relational Databases. Cloudera (2009). https://doi.org/10.
1126/science.1095048

[9] Google. 2012. Zeitgeist 2012 – Google. https://archive.google.com/zeitgeist/2012/
[10] Google. 2020. Protocol Buffers | Google Developers. https://developers.google.

com/protocol-buffers/
[11] Rachid Guerraoui, Matej Pavlovic, and Dragos Adrian Seredinschi. 2016. Incre-

mental consistency guarantees for replicated objects. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016.
169–184. arXiv:1609.02434

[12] INESC-ID. 2020. INESC-ID. https://www.inesc-id.pt/
[13] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and

Rodrigo Rodrigues. 2012. Making geo-replicated systems fast as possible, consis-
tent when necessary. In Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2012. 265–278.

[14] LinkedIn. [n.d.]. LinkedIn. https://www.linkedin.com/
[15] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.

2011. Don’t Settle for Eventual : Scalable Causal Consistency for Wide-Area
Storage with COPS. Sosp (2011), 1–16.

[16] Mohammad Roohitavaf. 2016. roohitavaf/DKVF. https://github.com/roohitavaf/
DKVF

[17] Mohammad Roohitavaf and Sandeep Kulkarni. 2018. DKVF: A framework for
rapid prototyping and evaluating distributed key-value stores. In ASE 2018 -
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 912–915. https://doi.org/10.1145/3238147.3240476 arXiv:1801.05064

[18] Adam Silberstein, Adam Silberstein, Brian F. Cooper, Brian F. Cooper, Utkarsh
Srivastava, Utkarsh Srivastava, Erik Vee, Erik Vee, Ramana Yerneni, Ramana
Yerneni, Raghu Ramakrishnan, and Raghu Ramakrishnan. 2008. PNUTS: Yahoo!’s
Hosted Data Serving PLatform. SIGMOD (2008). https://doi.org/10.1145/1376616.
1376693

[19] Tom Simonite. 2016. Moore’s law is dead. Now what? https://www.
technologyreview.com/s/601441/moores-law-is-dead-now-what/

[20] Mario Villamizar, Oscar Garces, Harold Castro, Mauricio Verano, Lorena Sala-
manca, Rubby Casallas, and Santiago Gil. 2015. Evaluating the monolithic
and the microservice architecture pattern to deploy web applications in the
cloud. In 2015 10th Colombian Computing Conference, 10CCC 2015. 583–590.
https://doi.org/10.1109/ColumbianCC.2015.7333476

[21] Voldemort. 2020. Developer Info - Voldemort. https://www.project-voldemort.
com/voldemort/

[22] Will Wang. 2018. How Microservices Saved the Internet. https://hackernoon.
com/how-microservices-saved-the-internet-30cd4b9c6230

[23] Xu Yingzhong. 2013. Enable server side routing strategy in Java client · Issue #112
· voldemort/voldemort. https://github.com/voldemort/voldemort/issues/112

https://dzone.com/articles/what-are-microservices-actually
https://dzone.com/articles/what-are-microservices-actually
https://doi.org/10.1145/2463676.2465279
http://pypl.github.io/PYPL.html
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2491245
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/2670979.2670983
https://doi.org/10.1145/2670979.2670983
https://doi.org/10.1126/science.1095048
https://doi.org/10.1126/science.1095048
https://archive.google.com/zeitgeist/2012/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://arxiv.org/abs/1609.02434
https://www.inesc-id.pt/
https://www.linkedin.com/
https://github.com/roohitavaf/DKVF
https://github.com/roohitavaf/DKVF
https://doi.org/10.1145/3238147.3240476
https://arxiv.org/abs/1801.05064
https://doi.org/10.1145/1376616.1376693
https://doi.org/10.1145/1376616.1376693
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://www.project-voldemort.com/voldemort/
https://www.project-voldemort.com/voldemort/
https://hackernoon.com/how-microservices-saved-the-internet-30cd4b9c6230
https://hackernoon.com/how-microservices-saved-the-internet-30cd4b9c6230
https://github.com/voldemort/voldemort/issues/112

	Abstract
	1 Introduction
	2 Contributions
	3 Related Work
	4 Architecture
	4.1 Group Membership
	4.2 Ordering
	4.3 Replication
	4.4 Delivery Condition
	4.5 Quorum
	4.6 Communication
	4.7 Framework API
	4.8 Inter-module interactions

	5 Implementation
	5.1 Methodology
	5.2 Programming Language Choice
	5.3 Choice of replicated storage systems
	5.4 Code Structure
	5.5 Main Class
	5.6 Implementation experience

	6 Evaluation
	6.1 Methodology
	6.2 DKVF
	6.3 Project Voldemort
	6.4 Discussion

	7 Conclusion
	8 Future Work
	References

