
Paravirtualization of a Real Time Operating System:
Development of the AIR hypervisor with RTEMS for ARM

Carolina Serra
carolina.serra@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

October 2020

Abstract

With the increasing interest in transposing the concept of integrated modular avionics from
aeronautics to the space industry, GMV developed AIR, a hypervisor that allows a single computer to
run multiple applications and operating systems, maintaining strict temporal and spatial segregation
through virtualization. Having originally been developed for the SPARC architecture, recent proposals
for the use of ARM in space missions have led to the beginning of the migration of AIR to this
architecture. It has been previously developed the support of AIR for the Arty Z7 board based on
Zynq-7000 SoC by Xilinx, capable of running applications with a barebones operating system, designed
to test the basic functionalities of the hypervisor. This dissertation continues the migration of AIR
to ARM through the virtualization of RTEMS, the real time operating system presently adopted by
ESA and NASA and elected for their future missions. The virtualization of this operating system for
AIR allows the hypervisor to be used for every application developed for RTEMS, introducing Time
and Space Partitioning to current and future space missions. It was successfully accomplished an
improved version of AIR for ARM capable of supporting RTEMS, enabling the execution of tests of
higher complexity than previously possible. 21 validation tests were executed, as well as comparative
studies at functional and temporal levels between the original and the virtualized RTEMS, and between
AIR for ARM and AIR for SPARC, which demonstrated the correct operation of the hypervisor
functionalities.
Keywords: IMA, AIR, RTEMS, ARM, virtualization

1. Introduction

The Integrated Modular Avionics (IMA) architec-
ture was introduced in 1995 to reduce the weight,
volume and cost of avionic systems by centraliz-
ing the computing capacity into a single processing
unit, while providing fault containment and sys-
tem portability [1]. The success of IMA in aero-
nautics caught the attention of the space commu-
nity, and under the efforts to transpose this concept
into space avionics, GMV developed AIR, a Real
Time Operating System (RTOS) that allows sev-
eral safety-critical applications to run on the same
processor while maintaining strict temporal and
memory segregation through Time and Space Par-
titioning (TSP). AIR was originally developed for
SPARC, the architecture adopted by the European
Space Agency (ESA) for a large majority of space
missions, but with recent proposals for the design
of radiation hardened ARM based systems, such as
NASA’s High Performance Spaceflight Computing
(HPSC) Processor Chiplet program solicitation and
DAHLIA’s project to develop an ARM-based Sys-
tem on a Chip (SoC) expected to achieve perfor-
mances 20 to 40 times higher than the existing SoC

for space, it is expected that ARM will gain rele-
vance in the space industry in the following years,
and this prediction prompted GMV to migrate AIR
to the ARM architecture.

Prior to this dissertation, AIR for ARM had only
been tested with a virtualized barebones OS, cre-
ated specifically to test the basic functionalities of
the hypervisor and with limited capabilities. Pro-
viding a virtualized RTOS, such as RTEMS, will
not only allow features of higher complexity to be
implemented, but also enable further testing to be
performed on AIR for ARM, raising the opportu-
nity to fix any issues that might have gone unde-
tected so far.

RTEMS stands for Real Time Executive for Mul-
tiprocessor Systems [2]. It is an open source RTOS
that supports multiple processor architectures, pro-
vides many relevant features and has been subjected
to extensive testing that led to a reliable and robust
operating system, and the most prevalent RTOS in
space for decades.

The virtualization of RTEMS will elevate the po-
tential of AIR for ARM as it allows it to support all
of the space applications that have been developed

1



for RTEMS, making it suitable for integration in a
variety of high profile space missions.

2. Background

In the avionics system’s federated architecture, each
function was designated to one computer. This
modular design offers isolation between avionic
functions, avoiding fault propagation and easing re-
covery procedures at the cost of a higher weight,
volume and cost. The concept of Integrated Modu-
lar Avionics was introduced as an alternative solu-
tion, applying virtualization to avionics systems.

2.1. Virtualization

Virtualization refers to the separation of a service
request from the underlying hardware that delivers
that service. Through virtualization, multiple Vir-
tual Machines (VMs) can operate in a single com-
puter, managed by the Virtual Machine Monitor
(VMM). Each virtual machine is an efficient and
isolated duplicate of a real machine, capable of run-
ning its own OS [3]. This architecture made it possi-
ble to overcome the limitations of conventional pro-
cessors, characterized by two modes of operation:
Supervisor, a privileged mode with access to all in-
structions, and User, a non-privileged mode with
access to a subset of the instructions. Although
successful in plenty computer systems, conventional
processors are limited to only running one OS at
a time, and software that requires direct access to
privileged instructions is unable to be transposed
into this architecture.

With the introduction of virtualization, the
VMM (or hypervisor) runs at a higher privilege level
than the OS, which would usually run at supervi-
sor mode. The VM should be equivalent to the
real machine it emulates, meaning the behavior of
an application running on top of the VMM should
be identical to the behavior of that same applica-
tion running with no VMM. The only exceptions
to this condition are the timings of execution and
the system resources availability. The virtualiza-
tion method that will be used in this dissertation is
paravirtualization, in which the guest OS is mod-
ified by replacing the privileged instructions with
hypervisor calls (HVCs) that communicate directly
with the hypervisor [4]. The HVCs interrupt the
VM with a jump to the hypervisor, which performs
the service requested on their behalf, allowing in-
formation to be passed to and from the hypervisor.

2.2. Integrated Modular Avionics

The concept of IMA consists on centralizing the
computing capacity into a single processing unit,
using virtualization to separate the software func-
tions from each other as well as from the hardware
[5]. The AEEC has published a series of specifica-
tions in an effort to standardize the access to shared

resources in this architecture, among which is the
ARINC 653 – Avionics Application Software Stan-
dard Interface, which describes the required and
recommended properties of an IMA OS [6] through
the definition of the application executive (APEX),
an added software layer that separates the applica-
tion from the operating system.

IMA systems are typically characterized by a high
fault tolerance, allowing a defective module to be
replaced without harming the rest of the system;
technology transparency due to the standardization
efforts, which in turn supports application portabil-
ity; scalability, enabling its application to systems
of various sizes and supporting future growth; and
system reconfigurability. These characteristics are
also highly desired in space avionics, and in 2010
the IMA for Space (IMA-SP) program was started.
Under this initiative, GMV developed the AIR hy-
pervisor.

Partitioning

One of the main purposes of the hypervisor in an
IMA system is to support multiple avionic applica-
tions, independent from each other. To ensure this
separation of the applications, the ARINC 653 spec-
ification describes the concept of Time and Space
Partitioning (TSP). Each partition is a program
in a single application environment, which encom-
passes their individual data, context, configuration
attributes and other partition specific information.
The hypervisor allocates a fixed time slot for each
partition (time partitioning) as well as a prede-
termined area of memory (space partitioning),
and the partition is prohibited to access resources
that are not assigned to it. The communication be-
tween partitions is established through ARINC 653
services.

Fault Detection and Response

ARINC 653 defines the Health Monitor (HM) to
monitor and report faults in hardware, application
and OS, providing isolation and adequate recovery.
The HM uses configuration tables to decide the ad-
equate response to a certain fault. Faults can occur
at process, partition or module level, and the HM
response should be performed within the level it oc-
curred so as to not violate partitioning.

3. Technologies
3.1. RTEMS

Real Time Operating Systems are characterized by
the concept of predictability, meaning the de-
gree to which the times of execution are guaranteed
within minimal variations [7]. The predictability of
RTOS is crucial for safety-critical, real time space
applications, in which a failure or delay may have
catastrophic consequences. Some of these applica-
tions include the software that monitors and con-
trols the spacecraft’s health, position and response

2



to harsh environment conditions.
RTEMS has been the chosen RTOS for several

space missions, such as the NASA Solar Dynamic
Observatory, and the Electra UHF antenna of the
Mars Reconnaissance Orbiter. It is an open source
RTOS that supports multiple processor architec-
tures, including all the processors currently used
by ESA and NASA, and provides many relevant
features such as multitasking capabilities, inter-
task communication and synchronization protocols,
priority-based preemptive scheduling and interrupt
management.

Internal Architecture
RTEMS is organized as a set of layered compo-

nents that provide services to an application. These
services are accessible to the application through
resource managers, which are executive interfaces
formed by grouping directives into logical sets. The
RTEMS core provides functions that are used by
multiple of these components, such as scheduling,
dispatching and object management.

Tasks
As defined by RTEMS, a task is the smallest

thread of execution which can compete on its own
for system resources. RTEMS supports both peri-
odic and sporadic tasks. Each task has a priority
level, ranging from 1 to 255, which is used by the
scheduler to determine which ready task will be ex-
ecuted.

Scheduling
The scheduler is the component responsible to

allocate the processor time to the various compet-
ing tasks. The allocation of the processor for each
task is done by the dispatcher, which retrieves the
control of the processor from the current task and
passes it to the next by performing a context switch.
The context switch consists on saving the context
of the current task and restoring the context of the
task that has been allocated to the processor. The
context includes all of the necessary information to
ensure that the task is capable of returning to ex-
ecution without suffering any change by the inter-
ruption. The most common scheduling algorithm is
Priority Scheduling, which allocates the processor
to the ready task with the highest priority.

System Configuration and Build
RTEMS provides tools to assist the build process

by automatically generating all the necessary make-
files. RTEMS is configured for each application
through a set of macros to automate the generation
of the data structures used at the system initializa-
tion. These macros encompass information such as
the length of each clock tick, the application ini-
tialization tasks, the task scheduling algorithm and
the device drivers needed by the application. The
configure program generates a variety of files based

on these macros, including the necessary Makefiles,
to build and install RTEMS with the correct con-
figurations.

3.2. AIR
AIR stands for ARINC 653 Interface for RTEMS,
and as the name implies, it was developed as an
adaptation of RTEMS to implement the ARINC
653 standard. It is a real time TSP hypervisor,
allowing multiple VMs to run on a single processor
while mantaining temporal and spacial isolation be-
tween applications.

Architecture
AIR consists of four development independent

modules, depicted in Figure 1:

• The Partition Management Kernel
(PMK) holds the main functionalities of the
hypervisor. It implements the temporal and
spacial segregation, the scheduling initializa-
tion, the interrupt handling and the context
switch between partitions.

• Each partition has its own Partition Operat-
ing System (POS), a paravirtualized RTOS
capable of features such as scheduling tasks and
managing virtual interrupts.

• The LIBS module consists of a set of li-
braries that implement functions to assist
the connection between the modules, such as
the IMASPEX library, which implements the
APEX interface in conformity with the ARINC
653 standard.

• The AIR toolchain (TOOLS) is a parallel
module coded in python to aid the build pro-
cess.

PMK

Hardware

BSP

			LIBS

POS
		POS

LIBS

Partition	1 Partition	N...

ArchCore

LIBIOP

LIBAIR IMASPEX

LIBPRINFT

LIBTEST

RTEMS	5

RTEMS	4.8i

BARE

Configurator

Partition
Assembler

Tools

Figure 1: AIR architecture.

Health Monitor

3



As defined by the ARINC 653 standard, a fault in
the execution should be handled by a Health Moni-
tor (HM). Figure 2 depicts the HM procedure. The
HM handler starts by searching the error id and the
operational state in the system HM table to check
whether the fault occurred at the module or parti-
tion level. It then searches for the error ID in the
table corresponding to that error level to obtain the
action that should be performed. These tables are
defined by the user in the application configuration
XML file.

Exception

!
System
State	HM
table

Module
HM	Table

Restart
Module

Partition
HM	Table

Shutdown

Restart

Ignore

Shutdown
Module

Module
HM

callback

COLD
START
mode

Shutdown IDLE
mode

Partition
HM

callback

WARM
START
mode

Warm
Restart

Cold
Restart

Ignore

Figure 2: AIR HM flow chart.

3.3. ARM
ARM is a family of Reduced Instruction Set Com-
puting (RISC) processor architectures that started
gaining traction in the 90’s and is currently leading
the SoC industry, holding a share of 96% of the mo-
bile market [8]. This dissertation is targeted at the
Cortex-A9 MPCore processor equipped in the Arty
Z7 board provided by GMV, which implements the
ARMv7-A architecture.

Program Status Register
The Program Status Register is a 32-bit proces-

sor register that holds information on the processor
status and control, such as the processor mode, the
instruction set flags, the interrupt flags and condi-
tion flags.

The current state of the processor is stored in the
Current Processor State Register (CPSR), and each
mode (except for User and System modes) has its
own Saved Processor State Register (SPSR) which
holds the previous CPSR from before changing to

the current mode, so that the previous context can
be restored.

Operating Modes
The ARMv7 basic model operates in two privi-

lege levels: PL0, the lowest privilege level, in which
an exception is raised if there is an attempt to
access privileged resources, and PL1, in which an
operating system is expected to run. There are
seven basic operating modes, each with its own
stack pointer (SP) and link register (LR):
USER is the mode most applications are expected
to run at, and is the only mode executing at PL0;
SUPERVISOR is the standard entry mode
of operation, and can also be entered through
Supervisor Calls (SVCs);
SYSTEM mode is used to access the USER
registers without sacrificing the access to privileged
resources;
ABORT mode is entered through Data Abort and
Prefetch Abort exceptions, raised when the CPU
attempts to access data or fetch an instruction
from illegal memory locations, respectively;
UNDEFINED mode is entered through unde-
fined exceptions, raised when an instruction is not
recognized by the processor;
IRQ is the Interrupt Request Mode;
FIQ is the Fast Interrupt Request Mode.

Exception Handling
Exceptions, also referred to as traps, are anoma-

lous or exceptional events that interrupt the normal
execution and require special processing. When an
exception is raised, the execution jumps to a prede-
fined table of handlers.

While in other architectures the exceptions are
handled through a single trap table (such as
SPARC, with a 256 entries trap table), ARM han-
dles the exceptions through multiple redirection lev-
els: a first main trap table contains the 7 main ex-
ceptions that can be raised, presented in Table 1,
and redirects the execution to a low level handler,
coded in assembly. Within the 7 main exceptions,
there are several possible interrupt sources, such as
timers, device drivers and different faults. The low
level handler calls a C subroutine, or a high level
handler, to identify the interrupt source and per-
form the adequate actions.

The information needed to manage the inter-
rupts is mapped in the General Interrupt Controller
(GIC) registers [9]. In a virtualized environment,
the virtualized OS running in a non privileged level
should not access the real GIC blocks, so the nec-
essary registers must be copied into the VM.

4. Implementation
Prior to this dissertation, the migration of AIR
to ARM had already accomplished some of the

4



Exception Mode

Reset Supervisor

Undefined Instruction Undefined

Supervisor Call Supervisor

Prefetch Abort Abort

Data Abort Abort

Interrupt Request (IRQ) IRQ

Fast Interrupt Request (FIQ) FIQ

Table 1: ARM exceptions.

PMK functionalities, such as the memory transla-
tion between virtual and real memory, the hyper-
visor scheduler, partition switching, AIR exception
handling, and the implementation of several system
calls. However, due to the simplicity of a barebones
OS, some important functionalities were not imple-
mented or lacked testing. For instance, AIR did
not have a mechanism to run the guest OS’s vir-
tualized exception handlers, and consequently the
guest OS’s scheduler and multitasking were not sup-
ported. Thus, in order to run RTEMS on AIR for
ARM, it is necessary to both virtualize RTEMS and
apply modifications to the PMK, and this will be
achieved through a sequential and iterative work-
flow.

4.1. System Configuration

The first step to run RTEMS on AIR for ARM is to
add it as a supported POS in the AIR toolchain, so
that the AIR configure script can generate the nec-
essary files to compile the system and run the ap-
plication while incorporating the RTEMS configu-
ration and build process. Since RTEMS is already a
supported POS for SPARC, at this point the imple-
mentation consists only on migrating the RTEMS
configuration and makefile template from SPARC
and applying it to ARM by changing the name of
the target BSP.

Before building the system it is also necessary
to provide the partition linkcmds file, which is a
script that specifies the memory regions in which
the code and data of the application will be writ-
ten to. The memory assigned to a partition was
contained between the addresses 0x10000000 and
0x10200000, providing each partition 2MB. The
memory regions attributed to the partitions corre-
spond to virtual memory, which will be translated
into physical memory by the MMU.

4.2. System Initialization

The initialization of the AIR hypervisor is respon-
sible for starting the BSP and initializing the hy-
pervisor features such as the scheduler, spacial seg-
regation, HM and, if available, multicore. Once the
PMK is ready to run the applications, the execution

enters the entry point of the partition assigned to
the first minor time frame by the scheduler. If the
OS assigned to that partition is RTEMS, then this
entry point corresponds to the start of the RTEMS
initialization.

Low Level Initialization
The RTEMS initialization is performed at two

levels, low and high. At the lower level, it con-
sists on the start code present in the start file.
This file is typically written in assembly and is
specific for each architecture, performing the mini-
mum actions possible that enable the processor to
run C code correctly. As in a virtualized environ-
ment the board is already initialized when enter-
ing a partition, most of the low level initialization
required to run RTEMS directly on the HW is re-
dundant and unnecessary when running on top of
AIR. Therefore, most of the low level initialization
can be removed, greatly simplifying the code. Only
two functions were kept: the routine to clean the
.bss, to ensure that the statically allocated variables
are initialized with the value 0; and a call to the
boot card() function to complete the initialization
at a high level. In the original RTEMS, all this
function does is prepare to pass the control to the
Initialization Manager and call the initialization di-
rective rtems initialize executive(), responsible for
passing the control of the processor from the OS to
the user application. In a virtualized environment,
RTEMS still needs to set the virtual trap table.

Virtual Trap Table
When running RTEMS on top of AIR, the excep-

tions should be handled by the hypervisor. When
an exception is raised, it will be caught by the AIR
trap table and handled by the AIR handler. If AIR
is not informed of a virtual trap table address, then
after handling the exception, it will resume the par-
tition from the same point where the exception was
raised. The RTEMS handlers will not be executed,
which means that the POS will not be aware that
an exception occurred. This affects several func-
tionalities. In the case of timer interrupts, not per-
forming the RTEMS clock handler means that its
scheduler will not be activated at regular intervals,
and the task management will be severely limited.
It is therefore imperative to set a virtual trap table
using the AIR SYSCALL SET TBR, to follow the
procedure presented in Figure 3.

The original RTEMS for ARM defines a main
trap table at at the start.S file, so it is merely nec-
essary to use the AIR system call to set this table
as the virtual trap table.

5



APP

AIR t

POS

!

Exception

AIR	Handler

RTEMS	Handler

RETT

svc

AIR	syscall
return

Figure 3: AIR exception handling procedure with a
set virtual trap table.

Initialization Manager
The rtems initialize executive() directive is re-

sponsible for preparing the system to pass con-
trol to the user application, and will initialize the
RTEMS features that are configured for that partic-
ular program through a system initialization linker
set. Most of these features do not require virtualiza-
tion. The two services that do require modifications
are the routine to start the BSP, which initializes
the interrupts, and the routine to initialize all the
device drivers.

The interrupts are initialized in
bsp interrupt facility initialize(), a function
that is specific for each BSP. In ARM, this function
accesses the GIC registers to enable and set the
priority of the interrupts. The GIC should not be
accessed in user mode, and since the interrupts
should be managed by the hypervisor, these
accesses can be removed.

At this point, RTEMS also replaces the default
IRQ exception handler by an alternative low level
handler. These default handlers are simple rou-
tines coded in assembly that assume that the ex-
ception was an error and therefore terminate the
program. However, it might be desired that the ex-
ception handler calls a high level handler, adequate
for the particular interrupt that occurred. For in-
stance, the IRQ handler should distinguish a timer
interrupt and redirect the execution to the clock
handler. In those cases, RTEMS provides alterna-
tive low level exception handlers, prepared to store
the context, redirect to a high level handler and
finally restore the context to return to the normal
execution. The function that installs the alternative
handlers was virtualized by removing the privileged
accesses.

As for the initialization of device drivers, the only
driver that should be configured is the clock. All the
remaining I/O drivers should be managed by AIR
through the IOP, and the header file containing the
RTEMS configuration macros that was generated
by the AIR configurator does not include any other
device.

The clock initialization consists on, first, in-

stalling the Clock isr() routine as the exception
handler for the Global Timer (GT) interrupt. Then,
the GT registers are accessed in order to initialize
the RTEMS timecounter. With AIR, instead of ac-
cessing the real processor registers, an AIR system
call is used to get the time elapsed since the begin-
ning of the partition and set the AIR timecounter
with the appropriate data.

4.3. User Application

The application’s init.c is generated by the config-
urator through init.c.mako template. This file is
part of the user application, designed to run in an
unprivileged mode, so it does not require virtual-
ization. However, since it was intended for SPARC,
some modifications need to be applied so that it can
run on ARM as well.

The Init() function, before redirecting the exe-
cution to the entry point defined in the configura-
tion, installs a HM handler so that the application
programmer can change the HM Callback as de-
sired. When AIR only supported the SPARC ar-
chitecture, the HM handler was installed through
a function that is not defined for ARM. This func-
tion was replaced by a new routine that, according
to the target architecture that was configured, per-
forms the right functions to install the HM handler.
In ARM, this requires installing low level handlers
for the data abort, exception abort and undefined
instruction exceptions, followed by installing the de-
sired HM Callback as a high level handler.

4.4. Exception Handling

When an exception is raised, the execution jumps
to the trap table in AIR, which branches to the AIR
Exception Handler. This handler starts by storing
the processor context, or the Interrupt Stack Frame
(ISF), in the IRQ stack. Then, AIR performs the
adequate actions to handle the exception.

After the AIR handler, if the virtual trap table
is not initialized, AIR does not recognize a virtual
interrupt. The context will be restored from the
stack, moving the IRQ SP back to the top of the
ISF so that, when the next exception occurs, its
context will replace the one that has already been
restored. The execution returns to the application.

If AIR recognizes a virtual exception, then before
branching to the virtual trap table address to per-
form the RTEMS exception handlers, as shown in
Figure 3, the processor registers take the values that
are stored in the IRQ, but the SP remains at the
bottom of the context. This way, if another excep-
tion occurs inside the virtual handler (for instance,
one of the several SVCs that are raised inside the
virtualized RTEMS IRQ handler), it will be stored
below the previous exception, not corrupting the
context that has yet to be recovered.

6



RTEMS Exception Handlers
After the AIR exception handler sends the ex-

ecution to the virtual trap table, the RTEMS ex-
ception handler will be performed. Currently, this
applies to IRQs, aborts and undefined instructions,
and the handlers for these exceptions required vir-
tualization. The virtualization of the handler func-
tions is similar, and mostly consists on preventing
the processor to access the PSR registers, either by
replacing these accesses with supervisor calls or, if
these accesses are unnecessary when running on top
of AIR, by removing them entirely. The virtualiza-
tion of the IRQ handler presents more challenges,
as it uses both the SVC stack and the IRQ stack
to store data. When running on AIR, the whole
function will run on user mode, therefore requiring
adjusting the stack pointer to ensure that the data
is not corrupted.

After storing the context in the low level han-
dler, the high level handler is called, being either the
HM handler for the aborts and undefined exceptions
or, for IRQs, the handler that was installed for the
interrupt that occurred. The original RTEMS ac-
cesses the GIC registers to get the interrupt ID from
the Interrupt Acknowledge Register (IAR), and the
AIR SYSCALL ACKNOWLEDGE INT was im-
plemented in AIR for ARM to replace this access
to the GIC and get the interrupt ID from the vir-
tual IAR instead. Currently, the only IRQ that is
being passed from AIR to the RTEMS handler is
the Global Timer (ID=27), taking the execution to
the clock handler. After completing this handler,
RTEMS then verifies if a context switch is neces-
sary by checking the thread dispatch state. If so,
the control is passed to the dispatcher to perform
the context switch.

Finally, the low level handler is concluded by
restoring the previous context and returning from
the exception, which is done through AIR by calling
AIR SYSCALL RETT.

Clock
The precise timing responses that characterize

RTOS are achieved both in AIR and RTEMS
through periodic timer interrupts. When running
on top of AIR, since the interrupts are managed by
the hypervisor, the time counting in RTEMS must
be done through an AIR service rather than by ac-
cessing the real processor timer registers. AIR pro-
vides the AIR SYSCALL GET ELAPSED TICKS
routine, which gets the number of ticks elapsed since
the partition’s initialization.

The RTEMS clock handler is Clock isr(), which is
hardware independent, making its virtualization for
the SPARC architecture applicable to ARM as well.
It uses macros to call BSP specific functions, which
were virtualized to use the AIR system call to up-
date the RTEMS timecounter, so that the RTEMS

scheduler correctly allocates the execution time to
the right task.

Return from Exception

The virtualized exception handlers end by call-
ing AIR SYSCALL RETT in order to perform a
return to normal execution. While other excep-
tions need to store the context in order to return
to the previous one after the exception is handled,
AIR SYSCALL RETT does not need to return to
the context before the SVC was called, but rather
the context stored before that, corresponding to
the exception from which the return is intended.
The code that stores the context can therefore be
skipped, and once the execution reaches the con-
text restore, it will recover the context that was
stored before the SVC, as intended unless RTEMS
performed a context switch.

Context Switch

In an application with multitasking, RTEMS per-
forms context switches in the cases in which the
scheduler deems it necessary to change the task that
is allocated to the processor. This context switch
is performed inside the RTEMS IRQ handler, and
does not require virtualization. However, without
accounting for this feature, AIR is not aware that a
context switch occurred, and in the return system
call, it will always restore the last context regard-
less of the context that RTEMS is trying to recover.
This will lead to a different behaviour than the de-
sired.

Since RTEMS is running exclusively in user
mode, the contexts inside the OS are stored in
the user stack. In context switches inside the OS,
RTEMS changes the user SP to point to the con-
text of the next task. This means that it is possi-
ble to verify if RTEMS performed a context switch
in AIR SYSCALL RETT by comparing the current
user SP with the user SP stored in the previous
context. If different, then AIR knows that the OS
performed a context switch and is trying to recover
a different context. AIR can then go through all
the stored contexts to find the one with the user SP
that RTEMS means to restore.

The problem with this solution is that after the
context switch, the next exception will be stored in
the middle of the stack instead of the bottom. If the
handler of this exception calls SVCs, then the con-
text of the SVC will replace data that might have
yet to be recovered. This issue was solved by leav-
ing enough space for another context between two
consecutive IRQs. This way, when there is an SVC
inside the IRQ handler, its context will be stored in
this space and will not corrupt the contexts of the
IRQs below that have yet to be restored.

7



4.5. End of Test
When the test ends, RTEMS shuts down the hard-
ware, which must not happen in a virtualized en-
vironment. AIR provides a shutdown SVC that
should be called at the end of the user applications
to terminate AIR and shutdown the machine.

RTEMS may also attempt to shut down the
machine when a process level error occurs. In
this case, the shutdown system call should not
be used, as a process level error should not af-
fect the other partitions or terminate AIR. Instead,
the error should be caught by the HM, using the
AIR SYSCALL RAISE HM EVENT.

5. Evaluation
The tests performed to validade the hypervisor can
be divided into three categories: RTEMS Test-
suites, AIR examples and AIR validation tests. The
ARM tests were executed in the QEMU emulator
and the Arty Z7 board.

5.1. RTEMS Test Suites
There are over 600 tests comprised in the RTEMS
test suites, and without an automatized facility to
migrate these programs to AIR and execute the
tests, performing all of them would be a time con-
suming and exhaustive job, so only a six were se-
lected: 4 sample tests to start the virtualization
(hello, nsecs, ticker and paranoia), and 2 tests rec-
ommended by the RTEMS organization (pthread
test, designed to test the thread creation in con-
formity with the POSIX standard, and spcontext,
further explained ahead). From a functional level,
all the sample tests and the pthread test performed
as expected, showing the same behavior in the orig-
inal and the virtualized RTEMS.

The ticker test will be further discussed as it
was used to perform a basic timing analysis. This
test consists of 3 tasks that periodically print the
time:

• TA1, printing the time every 5 seconds;

• TA2, printing the time every 10 seconds;

• TA3, printing the time every 15 seconds.

The test was migrated into AIR partitions and
configured with different frequencies. Table 5.1
presents the results printed with the ticker test run-
ning in 2 partitions (P1 and P2), alternating at ev-
ery second, with a frequency of 100 ticks per second
(T/s).

These results demonstrate that the partitioning
did not affect the timings of execution, each par-
tition presenting the same timings as the original
RTEMS.

To analyze the influence of the frequency in the
results, the test was repeated in a single partition
configured with varying differences. With the same

Task RTEMS Virtualized RTEMS

TA1
TA2
TA3
TA1
TA2
TA1
TA1
TA3
TA2
TA1
TA1
TA2
TA1
TA3

0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

P1 P2
0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

Table 2: Times printed (in seconds) in the ticker
test, with a frequency of 100 T/s and two partitions.

Task 50 T/s 100 T/s 200 T/s 500 T/s
TA1
TA2
TA3
TA1
TA2
TA1
TA1
TA3
TA2
TA1
TA1
TA2
TA1
TA3

0,00
0,00
0,00
5,02

10,02
10,02
15,02
15,02
20,02
20,02
25,02
30,02
30,02
30,02

0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

0,000
0,000
0,000
5,005

10,000
10,005
15,005
15,000
20,000
20,005
25,005
30,000
30,005
30,000

0,000
0,000
0,000
5,002

10,002
10,006
15,010
15,004
20,004
20,014
25,016
30,006
30,018
30,006

Table 3: Times printed (in seconds) in the ticker
test running on AIR for ARM, with varying fre-
quencies and a single partition.

frequency as the original RTEMS, at 100 T/s, it
can be observed that the timings correspond ex-
actly to the expected. At different frequencies, how-
ever, the results oscillated, presenting errors of up
to 18ms that require further investigation. It should
be noted that these results were obtained from con-
sole prints, which is not a reliable method for time
analysis as the prints themselves may significantly
affect the timings. It is therefore imperative to ac-
quire tools to perform a more accurate time analysis
before implementing this software in safety critical
real time systems.

The spcontext test creates three tasks of dif-
ferent priorities and different FPU contexts, and
activates a timer that switches the task priorities
in periodic time intervals. The scheduler will there-
fore perform context switches, and the application

8



verifies whether the context was correctly restored.
This test was used to develop and validate the con-
text switch solution in the AIR exception return.
Through this test it was possible to verify that this
solution performs correctly, saving and restoring the
correct contexts without corrupting data.

5.2. AIR Examples

The examples provided by AIR allow the test-
ing of basic hypervisor functionalities such as the
inter-partition communication (ports example), the
shared memory (shm example) and the creation
of periodic tasks (periodic example). All of these
tests performed as expected, demonstrating that
the modifications applied to AIR did not negatively
affect these functionalities. The HM example was
used to test the possible responses to various faults,
and both the PMK and the partition HM behaved
as expected.

The time example was used to compare the
speed of the barebones OS and the virtualized
RTEMS running on AIR. The results are presented
in Table 5.2, in which tBARE and tRTEMS represent
the times printed in the test running on a barebones
OS and on RTEMS, respectively. ∆t corresponds to
the difference between the current and the last time
measurements.

tBARE tRTEMS
∆tRTEMS−∆tBARE

∆tBARE

3
5136

15403
41059
76976
77303
92700

108096

9
5709

17103
45585
85451
85814

102902
119994

2,0000
0,1105
0,1098
0,1101
0,1099
0,1101
0,1098
0,1102

Table 4: Times printed (in milliseconds) in the time
example of the ARM unit tests.

From these results it is possible to observe that
RTEMS is consistently slower than the barebones
OS, which is expected, considering that both the
initialization and the exception handling in RTEMS
are significantly more complex than the barebones
OS’s. After the initialization, RTEMS consistently
takes added 0,11ms for each ms of the execution
of the barebones OS. This consistency is a good
indicator of the predictability of RTEMS.

The hello world example was used to compare
the timings of execution of AIR for ARM (in the
Arty Z7 board) and AIR for SPARC (in the GR740
board). In this test 3 partitions print the time at
intervals of 0,1 seconds. The results are presented
in Table 5.2.

There is a considerable difference of up to 50ms

GR740 (SPARC) Arty Z7 (ARM)
P1 P2 P3

0,004 0,006 0,006
0,104 0,104 0,104
0,204 0,208 0,204
1,008 1,008 1,008
1,108 1,108 1,108
1,208 1,208 1,214
2,008 2,008 2,008
2,108 2,108 2,108
2,208 2,208 2,208
3,008 3,008 3,008

P1 P2 P3
0,010 0,010 0,010
0,116 0,116 0,116
0,222 0,222 0,222
1,044 1,044 1,044
1,150 1,150 1,150
1,256 1,256 1,256
2,044 2,044 2,044
2,150 2,150 2,150
2,256 2,256 2,256
3,044 3,044 3,044

Table 5: Times printed (in seconds) in the Hello
World example provided by AIR.

between the results obtained in SPARC and in
ARM, which might be due to the fact that AIR
for SPARC is compiled using optimization flags to
improve its performance, while AIR for ARM is
currently being compiled without optimization op-
tions to ease the debugging. Once AIR for ARM
achieves a higher maturity, these options should be
explored for a more accurate performance compar-
ison. In ARM, the timings of the three partitions
were exactly the same, showing that, despite the
lower speeds than SPARC, the system seems to be-
have in predictable timings, which is the main con-
cern in real time applications.

5.3. AIR Validation Tests

The qualification of AIR for space applications by a
recognized entity such as ESA would bring signifi-
cant value to the hypervisor. To achieve this in the
future, extensive testing is required, and the AIR
validation and qualification project was started to
implement a set of tests with a nearly total code
coverage with the goal of validating the required
functionalities of a TSP hypervisor. Currently the
AIR validation tests comprise 38 tests designed for
the SPARC architecture. 21 of these tests have been
successfully employed on AIR for ARM, presenting
the same results in both supported architectures.

The remaining validation tests that still need to
be investigated and adapted to the ARM architec-
ture include tests that fail due to timing constraints,
since AIR for ARM presents different timings than
AIR for SPARC as previously discussed; tests that
rely on hardware specific language to induce faults
in order to test the HM; and tests that use cache
register handling system calls that have not yet
been implemented in AIR for ARM.

6. Conclusions

Prior to this dissertation, AIR for ARM only sup-
ported a simple barebones guest OS that lacked im-
portant functionalities for the deployment on high

9



profile space missions. The goal of this thesis was to
further develop the ARM BSP for AIR by allowing
it to run RTEMS, the RTOS currently adopted by
ESA and NASA in a variety of space missions. This
objective was successfully achieved through the vir-
tualization of RTEMS, and through applying the
necessary modifications to the AIR hypervisor to
ensure that it does not interfere with the behavior
of the guest OS.

From a functional standpoint, the virtualization
of RTEMS was successfully accomplished. The
changes on RTEMS achieved a virtualized OS that
behaves as the original RTOS running in a non
virtualized environment. This virtualization made
AIR for ARM capable of running single core ap-
plications designed for this OS, including a wide
range of tests that were previously not available
in this target architecture due to the simplicity of
the barebones OS and that allow the further valida-
tion of the hypervisor. These tests include RTEMS
Testsuites, AIR examples and the validation tests
developed to test AIR for SPARC with a nearly
total code coverage. Of the 38 validation tests cur-
rently executing in AIR for SPARC, 21 were suc-
cessfully deployed in AIR for ARM. A comparison
between the two architectures currently supported
by AIR showed that AIR for ARM achieved the
same results regarding the hypervisor functionali-
ties as AIR for SPARC.

From a temporal perspective, the virtualized
RTOS allowed for a more detailed analysis of the
timings of execution, showing the limitations that
the ARM BSP still presents and that require fur-
ther investigation through the usage of profiling and
evaluation tools capable of more accurate timing
analysis.

Additionally to the software development, the it-
erative process used to achieve the stated goals of
this dissertation was documented step-by-step, pro-
viding a resource that can be used for guiding the
virtualization of RTOS in future projects.

6.1. Future Work

While this dissertation further developed the ARM
BSP for the AIR hypervisor, there is still work
to be done in order to achieve the maturity that
the SPARC BSP presents. The three next steps,
currently in progress, are virtualizing the RTEMS
support for multi-core applications, expanding the
number of device drivers supported by AIR for
ARM, and executing the 17 remaining validation
tests that have yet to run successfully on AIR for
ARM, either by adapting them to the ARM archi-
tecture or implementing the missing system calls in
AIR for ARM.

Although from a functional perspective the be-
havior of the software corresponds to the expected,

the timings of execution still require further study,
and in that prospect, it is crucial to acquire tools for
a more accurate timing analysis, such as RapiTime
or VectorCAST, and apply them to AIR to ensure
its timely behavior.

In the long term, the qualification of AIR for
space applications by ESA would bring value and
recognition to the hypervisor. To achieve this, ex-
tensive testing is needed, and therefore tools to au-
tomatically test, validate and verify AIR should be
implemented. A possible tool that is being stud-
ied is the Continuous Integration and Continuous
Development (CI/CD) tools built into GitLab Run-
ner, that can be used to perform scripts and send
the results back to GitLab. The possibility of tak-
ing advantage of GitLab Runner along with tools
to generate validation tests with the highest code
coverage achievable would provide a fast, easy and
reliable platform for effortlessly weaving the testing
into the development process, allowing the immedi-
ate detection of issues and assisting their solution.

References
[1] H. Butz. Open integrated modular avionic

(IMA): State of the art and future development
road map at airbus deutschland”. 1st Interna-
tional Workshop on Aircraft System Technolo-
gies, 2010.

[2] RTEMS Project and contributors. RTEMS
documentation project, 2018. [Online]
https://docs.rtems.org/. Accessed: 24 February
2020.

[3] R. A. Meyer and L. H. Seawright. A virtual ma-
chine time-sharing system. IBM Systems Jour-
nal, 1970.

[4] VMWare. Understanding full virtualization,
paravirtualization, and hardware assist. White
paper, March 2008.

[5] C. B. Watkins and R. Walter. Transitioning
from federated avionics architectures to Inte-
grated Modular Avionics. AIAA/IEEE Digi-
tal Avionics Systems Conference - Proceedings,
2007.

[6] Airlines Electronic Engineering Committee.
Avionics Application Software Standard Inter-
face Part 1 - Required Services, December 2005.

[7] M. Cheng. A Predictable Real Time Operating
System. University of Victoria, October 2003.

[8] I. Thornton. ARM: Investing for future growth,
ARM limited Q1 2019.

[9] ARM Limited. ARM R© Architecture Reference
Manual ARMv7-A and ARMv7-R edition ARM
Architecture Reference Manual, 2018.

10


