
Paravirtualization of a Real Time Operating System
Development of the AIR hypervisor with RTEMS for ARM

Carolina Pinto dos Santos Serra

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. João Nuno de Oliveira e Silva
Eng. Daniel Silveira

Examination Committee

Chairperson: Prof. Paulo Jorge Coelho Ramalho Oliveira
Supervisor: Prof. João Nuno de Oliveira e Silva

Member of the Committee: Prof. Luís Manuel Antunes Veiga

October 2020

ii

Acknowledgments

Firstly, I would like to thank GMV for welcoming me into the company. I thank Daniel Silveira for the

constant guidance and the AVOS team for the patience and unceasing support.

To João Silva, I thank for guiding me in the conception of this document.

To my family and friends, I am immensely grateful that I have a group of people that I can trust to

support me in everything I do. To my parents, for helping me unconditionally. To my brother, João,

who has inspired and helped me throughout all my education, and gave me valuable tips and feedback

without which this dissertation would not be the same. To Tiago Alexandre, for his daily support and for

being at my side throughout both fun and hard moments. To my grandfather, who did not live to see me

finish my Master’s degree, but whose endless curiosity for space, physics and mathematics will continue

to inspire me.

Finally, to all the amazing women that surround me. Mom, grandmothers, Mónica, Ana, Mariana,

Marta Duarte, Sofia, Joana, Marta Vilela, Sara, Yolanda, Mel, every single one of you inspires me

beyond words and I am grateful that I had you by my side while I was working on this project. Thank

you.

iii

iv

Resumo

Com o crescente interesse em transpor o conceito de sistemas aviónicos modulares integrados

da aviação para a indústria espacial, a GMV desenvolveu o AIR, um hipervisor que permite um único

computador executar múltiplas aplicações e sistemas operativos, mantendo rı́gida segregação temporal

e espacial através de virtualização.

Tendo sido originalmente desenvolvido para a arquitetura SPARC, as recentes propostas de utilização

de ARM em missões espaciais levaram ao inı́cio da migração de AIR para esta arquitetura. Foi anterior-

mente desenvolvido o suporte de AIR para a placa Arty Z7 baseada nos sistemas integrados Zynq-7000

da Xilinx, capaz de executar aplicações com um sistema operativo barebones, destinado apenas a tes-

tar as funcionalidades básicas do hipervisor.

Esta dissertação dá continuidade ao trabalho de migração de AIR para ARM através da virtualização

de RTEMS, o sistema operativo em tempo real presentemente adotado pela ESA e pela NASA e elegido

nas suas futuras missões. A virtualização deste sistema operativo para AIR permite que o hipervisor

suporte todas as aplicações desenvolvidas para RTEMS, introduzindo o conceito de Time and Space

Partitioning em presentes e futuras missões espaciais.

Foi alcançada com sucesso uma versão melhorada de AIR para ARM capaz de suportar RTEMS,

permitindo executar testes mais complexos do que anteriormente possı́vel. Foram executados 21 testes

de validação, assim como estudos comparativos a nivel funcional e temporal entre RTEMS original e

virtualizado, e entre AIR para ARM e para SPARC, que demonstraram a correta operação das funcional-

idades do hipervisor.

Palavras-chave: IMA, AIR, RTEMS, ARM, virtualização, hipervisor, RTOS

v

vi

Abstract

With the increasing interest in transposing the concept of integrated modular avionics from aviation

to the space industry, GMV developed AIR, a hypervisor that allows a single computer to run multiple

applications and operating systems, maintaining strict temporal and spatial segregation through virtual-

ization.

Having originally been developed for the SPARC architecture, recent proposals for the use of ARM

in space missions have led to the beginning of the migration of AIR to this architecture. It has been pre-

viously developed the support of AIR for the Arty Z7 board based on Zynq-7000 SoC by Xilinx, capable

of running applications with a barebones operating system, designed to test the basic functionalities of

the hypervisor.

This dissertation continues the migration of AIR to ARM through the virtualization of RTEMS, the

real time operating system presently adopted by ESA and NASA and elected for their future missions.

The virtualization of this operating system for AIR allows the hypervisor to be used for every application

developed for RTEMS, introducing Time and Space Partitioning to current and future space missions.

It was successfully accomplished an improved version of AIR for ARM capable of supporting RTEMS,

enabling the execution of tests of higher complexity than previously possible. 21 validation tests were

executed, as well as comparative studies at functional and temporal levels between the original and

the virtualized RTEMS, and between AIR for ARM and AIR for SPARC, which demonstrated the correct

operation of the hypervisor functionalities.

Keywords: IMA, AIR, RTEMS, ARM, virtualization, hypervisor, RTOS

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xiii

List of Figures . xv

Glossary . 1

1 Introduction 1

1.1 Motivation and Objectives . 2

1.2 Approach and Results . 3

1.3 Thesis Outline . 4

2 Avionics Concepts 5

2.1 Federated Architecture . 5

2.2 Virtualization . 6

2.2.1 Full Virtualization . 8

2.2.2 Paravirtualization . 8

2.3 Integrated Modular Avionics . 9

2.4 RTOS . 10

2.5 Space-grade Processors . 11

3 Technologies 13

3.1 RTEMS . 13

3.1.1 RTEMS Architecture . 14

3.1.2 Tasks . 14

3.1.3 Scheduling . 16

3.1.4 System Configuration and Build . 17

3.2 ARINC 653 . 18

3.2.1 Partitioning . 19

3.2.2 Fault Detection and Response . 21

3.3 AIR . 22

3.3.1 AIR Architecture . 22

ix

3.3.2 Health Monitor . 23

3.3.3 Communication with I/O devices . 25

3.3.4 Migration to the ARM architecture . 25

3.4 ARM . 28

3.4.1 Instruction Sets . 28

3.4.2 Program Status Register . 29

3.4.3 Coprocessors . 29

3.4.4 Operating Modes . 30

3.4.5 Exception Handling . 31

4 Implementation 33

4.1 Work Plan . 33

4.2 System Configuration and Build . 36

4.3 System Initialization . 36

4.3.1 Low Level Initialization . 37

4.3.2 Virtual Trap Table . 37

4.3.3 Initialization Manager . 40

4.4 User Application . 42

4.5 Exception Handling . 43

4.5.1 AIR Exception Handler . 43

4.5.2 RTEMS Exception Handlers . 44

4.5.3 Clock . 45

4.5.4 Return from Exception . 46

4.6 End of Test . 49

5 Evaluation 51

5.1 Testing Environment . 51

5.2 RTEMS Test Suites . 52

5.2.1 Ticker . 53

5.2.2 Pthread and spcontext . 54

5.3 AIR Examples . 55

5.3.1 ARM unit tests . 55

5.3.2 Tests migrated from SPARC . 56

5.4 AIR Validation Tests . 58

6 Conclusions 61

6.1 Achievements . 61

6.2 Future Work . 62

Bibliography 63

x

A RTEMS Code 69

B AIR Code 71

xi

xii

List of Tables

3.1 ARINC 653 Error Levels. 21

3.2 AIR virtualization system calls. 27

3.3 ARM exceptions. 31

3.4 ARM GIC Registers. 32

5.1 Times printed (in seconds) in the ticker test, with a frequency of 100 ticks per second and

two partitions. 53

5.2 Times printed (in seconds) in the ticker test running on AIR for ARM, with varying frequen-

cies and a single partition. 54

5.3 Times printed (in milliseconds) in the time example of the ARM unit tests. 56

5.4 Results obtained from the HM ARM unit test. 56

5.5 Times printed (in seconds) in the Hello World example provided by AIR. 58

xiii

xiv

List of Figures

1.1 Simplified AIR architecture. 2

2.1 Federated architecture organization. 6

2.2 Conventional extended machine organization. 7

2.3 Virtual Machine organization. 7

2.4 Possible IMA architecture. 9

3.1 RTEMS conceptual architecture. 14

3.2 RTEMS resource managers. 15

3.3 RTEMS Task State Diagram. 16

3.4 RTEMS configuration example. 18

3.5 ARINC 653 architecture overview. 19

3.6 Example of a possible partition schedule. 20

3.7 AIR architecture overview. 24

3.8 AIR Health Monitor flow chart. 24

3.9 AIR communication with I/O devices. 25

3.10 Bit allocation of the Program Status Register. 29

3.11 Virtual GIC registers data structure. 32

4.1 Adopted iterative workflow. 34

4.2 AIR exception handling procedure without a set virtual trap table. 38

4.3 AIR exception handling with a set virtual trap table. 38

4.4 Setting the virtual trap table in bootcard.c. 39

4.5 Routine to install the exception handlers. 41

4.6 Virtualization of the clock initialization and the timecounter tick. 41

4.7 Implementation of hm handler install in init.c.mako. 42

4.8 Single context storage in AIR exception handling. 44

4.9 Virtualization of the clock handler (Clock isr). 46

4.10 Virtualization of the clock initialization and the timecounter tick. 47

4.11 Storage of the context of an exception raised inside an exception handler. 47

4.12 Context switch example. 49

4.13 Current context switch solution. 49

xv

5.1 Vivado block design. 52

5.2 Code of the measurements in the time example of the ARM unit tests. 55

5.3 Hello World example schedule. 57

A.1 RTEMS trap table. 69

B.1 Application configuration XML example. 72

B.2 HM configuration XML example. 73

xvi

Chapter 1

Introduction

Since it was first implemented in the cockpit functions of the Boeing 777 in 1995, the concept of In-

tegrated Modular Avionics (IMA) has developed to be a vastly important and successful achievement in

the aviation field [1]. This architecture provides fault containment and system portability without compro-

mising the weight, volume and cost of the avionic system by centralizing the computing capacity into a

single processing unit. In an effort to standardize the access to shared resources, the Airlines Electronic

Engineering Committee (AEEC) has published a series of specifications, among which the ARINC 653

specification was defined [2]. It outlines the properties of the operating system (OS) that manages all

the other software functions.

The success of IMA in aviation caught the attention of the space community, and under the efforts

to transpose this concept into space avionics, GMV1 developed AIR [3], a Real Time Operating System

(RTOS) that implements the ARINC 653 standard. AIR allows several safety-critical applications to

run on the same processor while maintaining strict temporal and memory segregation through Time

and Space Partitioning (TSP). AIR was originally developed for SPARC, the architecture adopted by

the European Space Agency (ESA) for a large majority of space missions since the early 90’s. Using

SPARC, AIR has been integrated in various space projects, including several activities commissioned

by ESA, a Global Navigation Satellite System (GNSS) receiver [4] and ESROCOS, a Robot Control

Operating Software for space robotics applications [5].

While SPARC is still the dominant processor architecture in the European space industry today, the

traction that ARM processors gained in the Sistem on a Chip (SoC) market over the last decades and the

higher performances achievable through this architecture led to an increasing number of proposals for

the use of ARM based SoCs in space. It is expected that the relevance of ARM in the space sector will

increase over the following years, and this prediction prompted GMV to migrate AIR to this architecture.

In 2019, GMV started the development of an ARM processor’s Board Support Package (BSP) for AIR,

the software layer that acts as an interface between an embedded system’s hardware and the OS. A

simplified depiction of the structure of AIR running a single application can be seen in Figure 1.1. The

newly implemented BSP is targeted at an Arty Z7 board based on Zynq-7000 SoC by Xilinx, featuring a

1https://www.gmv.com/

1

https://www.gmv.com/

dual-core ARM Cortex-A9 processor [6].

Hardware

AIR

Virtualized	OS
(RTEMS	/	BARE)

Application

BSP	
(SPARC	/	ARM)

Figure 1.1: Simplified structure of AIR running a single application.

The migration of AIR to the ARM architecture broadens the scope of missions in which AIR can be

applied. AIR is planned to be deployed in INFANTE, the first satellite to be developed exclusively by the

Portuguese Industry [7]. The INFANTE project, along with the emergence of the Portugal Space Agency

in 2019 [8], marks a new age of opportunities for the space sector in Portugal.

1.1 Motivation and Objectives

AIR is a hypervisor, meaning a software layer that allows several OSs to run on the same hardware

through virtualization. In order to be able to run on top of AIR, as represented in Figure 1.1, an OS

must be virtualized to perform all accesses to the hardware through the hypervisor instead of directly

accessing the processor registers. Currently, AIR for ARM has only been tested with a simple virtualized

barebones OS, created specifically to test the basic functionalities of the hypervisor and with limited

capabilities. Providing a virtualized RTOS will not only allow features of higher complexity to be imple-

mented, but also enable further testing to be performed on AIR for ARM, raising the opportunity to fix

any issues that might have gone undetected so far and ensure the correct functioning of the hypervisor.

There are two possible approaches to this goal: a) Create a virtualized OS from scratch, implement-

ing the typical RTOS services, or b) Virtualize an existing RTOS, such as RTEMS. The second approach

was the one chosen, as it offers several advantages:

• it is simpler, allowing the reuse of code of an RTOS which has already been developed and tested;

• since RTEMS has already been virtualized for AIR for SPARC, the virtualization for ARM facilitates

the portability of applications between the two architectures, allowing the same program to run on

both ARM and SPARC by simply configuring a different target BSP;

• RTEMS is a recognized tool with valuable features, used in several space projects, and supporting

this RTOS will be a great benefit for AIR.

2

RTEMS stands for Real Time Executive for Multiprocessor Systems. It is an open source RTOS with

an active global community available for online support [9] that is currently in the process of qualification

for space applications [10]. RTEMS supports multiple processor architectures, including all the pro-

cessors currently used by ESA and The National Aeronautics and Space Administration (NASA), and

provides many relevant features such as multitasking capabilities, intertask communication and syn-

chronization protocols, priority-based preemptive scheduling and interrupt management [11]. The most

recent upgrades also implement Symmetric Multiprocessing (SMP) support. While the presence of mul-

tiple cores with SMP brings significant performance improvements, some challenges may arise from the

increased complexity of the system. The true concurrency achievable by multiple cores executing in

parallel makes race conditions more likely to occur. RTEMS offers task management services that can

provide support for using SMP systems to their maximum capability. These features and the extensive

testing that it has been subjected to led to RTEMS being a reliable and robust operating system, and

the most prevalent RTOS in space for decades [12], having been deployed in numerous NASA and ESA

missions.

The virtualization of RTEMS will elevate the potential of AIR for ARM as it allows it to support all of the

space applications that have been developed for RTEMS, making it suitable for integration in a variety

of high profile space missions. In this prospect, the goal of this dissertation is to virtualize RTEMS,

allowing it to run on AIR for ARM, and use the newly virtualized RTOS to further test and validate the

AIR hypervisor.

1.2 Approach and Results

This work accomplished to further develop the value of AIR for ARM by enabling it to run RTEMS

applications. To achieve this milestone, modifications to both RTEMS and AIR for ARM were needed,

and were performed through an iterative work flow.

To allow RTEMS to run on the AIR hypervisor, it is necessary to perform virtualization methods to

prevent it from accessing the real processor registers. Of the existing virtualization methods, the one

elected was paravirtualization, in which the guest OS is modified to replace these critical accesses by

system calls to the hypervisor. This way, the hypervisor performs the desired action instead of the guest

OS, and then returns to the normal execution. A correctly paravirtualized OS should behave as would

the same OS when running natively on the hardware. To ensure this, as well as to mantain the reliability

that RTEMS has achieved through years of testing, it is important to limit the changes to the RTEMS

code to a bare minimum.

The execution of RTEMS applications on AIR for ARM highlighted flaws of the original migration of

the hypervisor from the SPARC architecture that had previously been undetected from the testing with

a barebones OS. These flaws are mostly due to the architectural differences in the exception handling,

and require modifications to the hypervisor code.

The target processor of this dissertation is the ARM Cortex-A9 processor integrated in XILINX’s Zynq-

7000 series SoCs, and the software was developed in the Diligent’s Arty Z7 board provided by GMV. At

3

the end of this dissertation, AIR for ARM is capable of running single core RTEMS applications. The

virtualized OS was tested through running the RTEMS Testsuites and comparing the RTEMS behaviour

to the RTOS running in a non virtualized environment. By incorporating these tests in the development

process it was possible to check that every single modification applied to RTEMS achieved the expected

result. Then, AIR examples and validation tests were used to further test the hypervisor. AIR examples

allow the verification of basic hypervisor functionalities, such as TSP, exception handling and recovery

from faults. The AIR validation tests are a set of tests designed to achieve a nearly total code coverage

of AIR for SPARC. Of 38 validation tests currently running on AIR for SPARC, 21 have been successfully

employed on AIR for ARM, presenting the same results in both supported architectures.

Once the virtualization of RTEMS is extended to multicore and AIR for ARM is subjected to more

extensive testing, GMV will have the opportunity to compete in a larger number of proposals for space

projects and missions, ultimately leading AIR to an increased market value. The MIURA project is an

example of a system that will benefit from the advantages of AIR, and the first space mission in which the

work resulting from this dissertation will be implemented. The avionics for MIURA are being developed

by GMV, and the implementation of AIR could significantly decrease the weight, volume and cost of the

launcher while providing reliable isolation and fault containment.

1.3 Thesis Outline

This thesis is divided into 6 chapters. Chapter 1 starts by introducing the setting under which this work

takes place, the motivation that led to it and the main goals it will attempt to achieve. Chapter 2 presents

the avionics concepts that are relevant for this dissertation, providing the theoretical background to

understand the work ahead. Chapter 3 details the most important features of each of the technologies

that were the platform for this thesis. Chapter 4 covers the implementation, both the modifications to

the RTEMS code in order for it to run on top of AIR, and the changes that had to be applied to AIR

itself. Chapter 5 presents the testing environment and the results obtained from the tests performed to

validate the migration to ARM and the virtualization of RTEMS. Finally, the conclusions and future work

are presented in Chapter 6.

4

Chapter 2

Avionics Concepts

This chapter goes through avionics concepts that are fundamental to understand this thesis. Section

2.1 starts by introducing the federated architecture for avionic systems, and the problems that led to the

demand of an alternative architecture. Section 2.2 offers virtualization as a possible solution, giving a

brief historical overview of the concept as well as the most common virtualization procedures. Section

2.3 discusses Integrated Modular Avionics, and the context that led to its deployment in the space sector.

Section 2.4 approaches Real Time Operating Systems, and their relevance in space avionics. Finally,

Section 2.5 presents the challenges of sending processors to space, and the CPUs that overcome those

challenges.

2.1 Federated Architecture

Since radios for communication and navigation became the first avionic devices to be applied to

military aircrafts in the decade of 1910, the increasing demand for safer, more dependable and higher

quality systems limited by economic constraints led to more functionalities being performed by electronic

controllers rather than mechanical equipment. Moore’s Law states that processor speeds and capabil-

ities double approximately every two years, and this phenomenon can be observed in the evolution of

the performance of aviation electronics over the last five decades [13].

In the avionics system’s federated architecture, each function is assigned to one computer, iso-

lating the hardware into black boxes named line-replaceable units (LRUs) [14]. This organization is

represented in Figure 2.1. This modular design offers isolation between avionic functions as the fault

management is performed at the LRU level, avoiding fault propagation and easing recovery procedures.

However, the increasing complexity of avionics systems demands a progressively higher number LRUs

to be employed, and each hardware module adds weight and volume to an aircraft, eventually meeting

envelope restrictions. Another disadvantage is higher power consumption and increased cost [15]. In

the early 90’s, these drawbacks led to a demand for an alternative architecture that could centralize the

computing resources without compromising the fault containment. The research of virtualization by the

computing community would provide a solution.

5

Sensors Actuators

User	Interface
(Display	&	Controls)

I/OI/O I/O

CPUCPU

I/O

CPU

I/O

LRU

LRU

LRU

Figure 2.1: Possible federated architecture organization.

2.2 Virtualization

The research for virtual machines (VMs) started in the late 1960s with the purpose of allowing the

sharing of computer resources among several users through time-sharing solutions [16].

Virtualization refers to the separation of a service request from the underlying hardware that delivers

that service. Through virtualization, multiple VMs can operate in a single computer, managed by the

Virtual Machine Monitor (VMM). Each virtual machine is an efficient and isolated duplicate of a real ma-

chine, capable of running its own OS [17]. This architecture made it possible to overcome the limitations

of conventional processors, that are characterized by a dual state hardware organization, which allows

for two modes of operation:

• Supervisor, a privileged mode with access to all instructions;

• User, a non-privileged mode with access to a subset of the instructions.

When a non-privileged application attempts to execute a privileged instruction, the program is interrupted

by an exception, being redirected to a table of exception handlers. To be able to perform privileged ac-

tions, an application running on user mode resorts to system calls to the privileged software, which

performs the desired action for them if the application has the required permissions of the functional-

ity [18]. The subset of user instructions plus the supervisor calls form the extended machine. This

organization can be seen in Figure 2.2.

This architecture is successful in plenty computer systems. However, it has limitations: since there

is only one bare machine interface, only one OS can run at a time, and software that requires direct

access to privileged instructions is unable to be transposed into this architecture [19].

With the introduction of virtualization, the VMM runs at a higher privilege level than the OS, which

would usually run at supervisor mode. For this reason, the VMM can also be referred to as the Hyper-

visor. Some literature distinguishes the two terms, using VMM to refer to the software responsible for

6

Extended	MachineExtended	Machine

Operating	System

User	Program User	Program

Bare	Machine

Extended	Machine

User	Program

Figure 2.2: Conventional extended machine organization.

virtualizing an architecture and hypervisor as the junction of a VMM with an operating system. For this

dissertation, the isolation of a VMM from its OS is not meaningful, and therefore both the terms will be

used as synonyms.

The virtual machine organization is represented in Figure 2.3.

Virtual	Machine

Extended	Machine

Virtual	Machine	Monitor

User	Program

Bare	Machine

Operating	System

Extended	Machine

User	Program

Extended	Machine

User	Program

Operating	System

Extended	Machine

User	Program

Virtual	Machine

Figure 2.3: Virtual Machine organization.

In both conventional and virtualized architectures, the instructions can be categorized into sensitive

or innocuous. Sensitive instructions are both the instructions that attempt to change the processor

state (control sensitive instructions) and the instructions whose execution is dependent on that state

(behavior sensitive instructions). If an instruction is neither control sensitive nor behavior sensitive, then

it is considered innocuous.

In 1974, Gerald J. Popek and Robert P. Goldberg introduced a set of three conditions to determine

whether a computer architecture supports efficient virtualization [20]:

7

• Efficiency: The vast majority of the instructions should run with no intervention by the VMM. This

means that all innocuous instructions should be executed directly by the hardware.

• Resource Control: The VMM should hold complete control over the system’s virtualized re-

sources.

• Equivalence: The behavior of an application running on top of a VMM should be identical to the

behavior of that same application running with no VMM. The only exceptions to this condition are

the timings of execution and the system resources availability

In order to meet the first two conditions, all the sensitive instructions should be executed by the hyper-

visor, and therefore should be privileged instructions. However, most architectures have non-privileged,

sensitive instructions, referred to as critical instructions. In the presence of critical instructions the

Popek and Goldberg virtualization requirements cannot be met, so a different virtualization solution is

needed.

2.2.1 Full Virtualization

In this method, the VMM presents each VM with a complete duplicate of the bare machine. The guest

OS is not aware of the virtualization, and requires no modifications, which allows for direct portability.

However, the hardware must be modified in order to support virtualization. This is usually done through

hardware extensions.

The ARM V7-A Architecture implements the ARM virtualization Extensions [21], which introduce a

new privilege level, higher than supervisor, for the hypervisor to operate at. The guest OS can therefore

run at the privilege levels it was originally designed for. The hypervisor either traps sensitive instructions

or offers a duplicate of the system information in memory to the guest OS trying to perform a critical

sequence. A new level of translation is added to the Memory Management Unit (MMU) in order to

allow the guest OS to perform the memory translation as it normally would and only afterwards have the

hypervisor perform the final translation into physical memory. The interrupt handling is managed by the

hypervisor.

When virtualization extensions are not available, full virtualization can be achieved through binary

translation [22]. In this method, the hypervisor replaces the sensitive instructions by code sequences

with equivalent results.

Although Full Virtualization offers isolation and security for VMs, as well as OS portability, it also

represents more complex VMMs and loss of performance, especially in the case of binary translation,

due to the significant initial overhead.

2.2.2 Paravirtualization

In paravirtualization, the guest OS is modified by replacing the critical instructions with hypervisor

calls (HVCs) that communicate directly with the hypervisor. The HVCs interrupt the VM with a jump to

8

the hypervisor, which performs the service requested on their behalf, allowing information to be passed

to and from the hypervisor.

This method has the advantage of a simple VMM, making it possible to achieve performance similar

to the non-virtualized system [16]. However, since it can only support guest OS specifically modified for

the hypervisor, the compatibility and portability is poor. It also requires higher support and maintenance

costs, and is limited by the availability of the target guest OS for customization.

The goal of this dissertation is to allow the AIR hypervisor to run RTEMS as the guest OS on the

ARM Cortex-A9, which does not implement the virtualization extensions that would enable hardware

virtualization. As RTEMS is open-source, paravirtualization is the simplest and most favorable solution.

2.3 Integrated Modular Avionics

The concept of Integrated Modular Avionics (IMA) was presented by Honeywell in 1995, applied to

the cockpit functions of the Boeing 777 [1]. It consists on centralizing the computing capacity into a

single processing unit, using virtualization to separate the software functions from each other as well as

from the hardware [14]. An example of a possible IMA hardware configuration is presented in Figure

2.4. Honeywell proved that IMA systems could achieve a level of reliability comparable to the federated

architecture while significantly reducing the weight and volume of the avionics.

Airbus then further developed this idea by applying it to the entire design of the A380, with a set of

added properties that introduced Open-IMA. With this approach, the avionic components could be man-

ufactured by third party suppliers according to the Application Programming Interface (API) published

by Airbus. Since then, the AEEC has published a series of specifications in an effort to standardize the

access to shared resources in this architecture. Among them is the ARINC 653 – Avionics Application

Software Standard Interface, which describes the required and recommended properties of an IMA OS

[2, 23].

Sensors Actuators

User	Interface
(Display	&	Controls)

CPU

I/O

Figure 2.4: Possible IMA hardware configuration.

IMA systems are typically characterized by:

• a high fault tolerance, allowing a defective module to be replaced without harming the rest of the

system;

9

• technology transparency due to the standardization efforts, which in turn supports application

portability;

• scalability, enabling its application to systems of various sizes and supporting future growth;

• system reconfigurability.

These characteristics are also highly desired in space avionics, and the issues that led to the de-

velopment of the IMA concept in aeronautics have been addressed by The Consultative Committee for

Space Data Systems (CCSDS), through the definition of the Spacecraft Onboard Interface Services

(SOIS) standard [24]. SOIS provides an abstraction of each spacecraft unit through a layered architec-

ture, separating the mission-specific application blocks from the generic execution blocks. However, the

space community could not ignore the success of IMA in the aeronautics field, and in 2010 the IMA for

Space (IMA-SP) program was started [25]. In a first phase, the goal was to investigate the feasibility of

an IMA-SP system. Under this initiative, GMV developed AIR, competing with pikeOS by Sysgo [26] and

XtratuM by the Universitat Politècnica de Valência [27].

In parallel to IMA-SP, in November 2008 the Space Avionics Open Interface Architecture (SAVOIR)

initiative joined together the European space community with the goal of promoting the standardization

of the main avionic functions and the interfaces between them [28], and in 2012 a working subgroup

focused on transposing the IMA concept to space avionics was created – SAVOIR-IMA [29]. This new

initiative took over the responsibility of integrating IMA-SP into the already implemented space avionics

components, and AIR was upgrated to be compliant with the IMA-SP architecture that resulted from this

development.

2.4 RTOS

The development of Real Time Operating Systems started in the eighties in order to support real time

applications. Real time is an extremely important concept in the computing field, referring to systems

capable of assuring responses within precise timings.

A real time application is composed by a set of tasks that cooperate with each other [30]. These tasks

can be periodic, if invoked consistently over regular periods of time, or aperiodic, if only activated when

a certain event occurs. Most periodic tasks are also time critical, meaning that the task has a deadline

that must be met in order for the system to function. If the task does not have a deadline, it is not time

critical but it should be completed as fast as possible without compromising the deadlines of other tasks.

The deadlines can be categorized into hard, if the consequences of missing it are catastrophic, such as

life danger, equipment damage or environmental harm; firm, if after the deadline the results of the task

are no longer useful; or soft, if after the deadline the results are still applicable but their value decreases

over time. These deadlines are set by the application and introduce the timing constraints that are one

of the main aspects that differentiate RTOS from regular OS.

A key concept in RTOS is predictability, meaning the degree to which the times of execution are

guaranteed within minimal variations [31]. Rather than being fast, a predictable system is one whose

10

response times are known a priori. Predictability does not imply determinism, which refers to a fully

predictable system guaranteed to achieve the same results for the same initial conditions, with no margin

of uncertainty. For a system to be deterministic, it is required that the exact characteristics of all tasks

and the environment conditions are known at the time of the system design. For complex embedded

system such requirements are implausible, but an adequate predictability is usually enough for a robust

RTOS.

The predictability of RTOS is crucial for safety-critical, real time space applications, in which a failure

or delay may have catastrophic consequences. Some of these applications include the software that

monitors and controls the spacecraft’s health, position and response to harsh environment conditions.

The selection of an RTOS for space applications should take into consideration the unique requirements

of the space domain, as well as the particular constraints of each mission. One of the most important

criteria in choosing the adequate RTOS is its availability for the target processor, as the exposure to

radiation, vibrations and extreme temperatures demand specific hardware that can sustain those con-

ditions [32]. The RTOS should also provide support for the necessary device drivers, and be capable

of operating in an environment with severe memory and power constraints. At last, since often space

projects are planned to operate during a long lifetime, an RTOS may need to offer perenniality, meaning

the ability to endure the required period of time.

2.5 Space-grade Processors

The harsh environment to which hardware is subjected to during space missions demands extensive

testing to ensure that it is capable of sustaining conditions such as extreme temperatures, vibrations,

vacuum and radiation. While radiation was not a limiting factor in the first computing units to be sent

to space, the technological advances in processor design push a trend to decrease the size of the

integrated electronic circuits, making them more susceptible to the effects radiation [33]. The reason for

this is that, as transistors get smaller, so is the power supply voltage reduced. A single ionizing particle

can therefore change the state of the transistor and interfere with the system’s behavior. This change of

state is referred to as Single Event Upset (SEU) [34] and can be caused by galactic cosmic rays, solar

coronal mass ejections and the radiation belt of protons and electrons that surrounds each planet [35].

To prevent the harmful effects of radiation, space-grade processors must be subject to methods of

radiation hardening (rad-hard) [36]. There are multiple rad-hard techniques, both physical, consisting on

manufacturing chips on isolating substrates, and logical, using redundancy to detect possibly corrupted

data. Most of the modern rad-hard processors use logical methods, or Radiation Hardening By Design

(RHBD), since it allows processors to be produced through standard fabrication processes, significantly

reducing the costs [37].

The first European rad-hard processors were MAS281 and MA3170, both based on the MIL-STD-

1750A 16-bit Instruction Set Architecture (ISA) [38]. As new space projects demanded increasingly

higher performances, ESA began the investigation for 32-bit architectures that could replace the previous

processors. Of the set of architectures considered, the Scalable Processor Architecture (SPARC) was

11

chosen for its open architecture, with no patents or license fees, and the existing software support

[39]. The development of ERC32 started in 1992, successfully producing a rad-hard SPARC processor

deployed in the International Space Station (ISS), the Automated Transfer Vehicle (ATV) supply truck and

PROBA-1 Earth Observation microsatellite. Despite its success, the fact that ERC32 used proprietary

processing cores hindered the modifications necessary to the rad-hard processes [40]. This led ESA to

start the development of LEON, a new series of SPARC processors designed from scratch to incorporate

fault tolerance through redundancy techniques [41]. To this day, the LEON series are still the most

prevalent processors in European space missions. For this reason, AIR by GMV was developed for this

architecture.

In an effort to provide better performance to future missions, in 2016 NASA launched the High Per-

formance Spaceflight Computing (HPSC) Processor Chiplet program solicitation [42, 43]. This four year

project, won by Boeing, has the goal of designing a radiation-hardened multi-core ARM processor for

deep space exploration [44]. In the European Union the same goal is being pursued by DAHLIA, a

project born from the collaboration of Airbus Defense and Space, ISD, NanoXplore, STMicroelectron-

ics and Thales Alenia Space [45], in response to the Horizon 2020 topic ”COMPET-1-2016: Critical

Space Technologies for European Strategic Non-Dependence” [46]. The developed ARM-based SoC

is expected to achieve performances 20 to 40 times higher than the existing SoC for space, and will

integrate dedicated peripherals for GNSS, Telemetry and Telecontrol support. The possibility of running

key space applications in a single chip will significantly reduce the cost and the mass of the system. In

light of these proposals, it is expected that ARM will gain relevance in the space industry in the following

years, and this prediction raised the interest of GMV to migrate AIR to the ARM architecture.

12

Chapter 3

Technologies

This chapter introduces the technologies that are relevant to this dissertation, starting by, in Section

3.1, describing the OS to be paravirtualized, RTEMS. Then, Section 3.2 goes through the ARINC 653

specification, followed by Section 3.3 which introduces the AIR hypervisor by GMV. Finally, Section 3.4

approaches ARM, the target architecture of this thesis.

3.1 RTEMS

The predictability of RTOS along with the possibility of coordinating a large number of concurrent

tasks led the United States Army Missile Command to begin the research for a real time executive for

embedded systems in 1988 [12]. The result was the Real Time Executive for Military Systems [47], later

renamed Real Time Executive for Multiprocessor Systems (RTEMS).

From then onwards, RTEMS has gone through years of development, sustaining a philosophy of

cooperation between users and maintainers which further elevated the open source project. In 2006 the

Portuguese company EDISOFT started the development of an improved version of RTEMS that would

be qualified for space deployment, RTEMS 4.8i or RTEMS by EDISOFT [48]. Meanwhile, the RTEMS

community has continued to evolve the standard RTEMS, and as the qualified version is not maintained

in the main RTEMS repository, space project developers face the decision of using a qualified, older

version of RTEMS, or a newer version that is in the process of qualification [49]. AIR for SPARC currently

supports both RTEMS 4.8i and RTEMS 5, and at the end of this dissertation, AIR for ARM supports

RTEMS 5.

RTEMS supports over 160 BSPs, including the most relevant CPU architectures in European and

American space missions, such as SPARC, with BSPs for ERC32 and LEON, PowerPC, MIPS, x86

and ARM [50]. It has been the chosen RTOS for several space missions, examples of which are the

NASA Solar Dynamic Observatory, launched in 2010 with five radiation-hardened Coldfire CPUs running

RTEMS [51], and the Electra UHF antenna of the Mars Reconnaissance Orbiter [52].

13

3.1.1 RTEMS Architecture

RTEMS is structured to encourage the development of modular components, as well as to isolate

hardware dependent code so as to allow most of the source code to be shared across all architectures.

The RTEMS conceptual architecture, presented in Figure 3.1, consists of three main layers: the hard-

ware support layer, encompassing all the hardware dependent code, the kernel layer and the application

programming interface (API) layer.

HW	library BSP/Drivers

Hardware

SuperCore Support	Libraries

Super	API

ADA Classic POSIX ITRON

Hardware
support	layer

Kernel	layer

API	layer

Application

Figure 3.1: RTEMS conceptual architecture.

The kernel layer is further divided into the RTEMS SuperCore (score), the super API (sapi) and the

portable support libraries. The SuperCore provides a common foundation for the upper layers, with

services such as scheduling, dispatching and object management. The Super API contains code for

services such as API initialization and extensions support.

The API layer connects the kernel to the application through services provided by resource man-

agers, which are executive interfaces formed by grouping directives into logical sets. RTEMS allows the

application programmer to use APIs such as Ada, POSIX, µITRON and the Classic API developed by

RTEMS. The Classic API’s resource managers are represented in Figure 3.2.

3.1.2 Tasks

As defined by RTEMS, a task is the smallest thread of execution which can compete on its own

for system resources. RTEMS Tasks are created by the Task Manager by calling the TASK CREATE

service. When this service is called, RTEMS allocates Task Control Blocks (TCB), which are data

structures that contain all the necessary information related to executing a task, such as the task’s

14

Initialization Task

Clock

Timer

Interrupt

Dual	Ported
Memory

Partition

Region

Multiprocessing

Rate	Monotonic

Fatal	Error

Event

Message

Semaphore

Signal
I/O

RTEMS	Core

Figure 3.2: RTEMS resource managers.

name, priority and ID. The task is set at the dormant state until it is activated through the TASK START

routine. The operational states of the tasks and transitions between them are represented in Figure 3.3,

and comprise the following:

• Non-existent: State before a task is created or after a task is deleted. All the TCBs are preallo-

cated at initialization time, but are only associated with a user task at the creation service.

• Dormant: State after a task is created and before a task is started. In this state, a task is not able

to compete for resources.

• Ready: State after a task is started, after a blocked task is readied or after the processor is yielded.

The tasks can be allocated to the processor and the scheduler considers them for execution.

• Executing: State of a task that is allocated to the processor.

• Blocked: State after a blocking action. A blocked task is unable to be scheduled to the CPU until

a readying action is taken.

RTEMS supports both periodic and sporadic tasks. When a task is created, it is sporadic by default.

In order to be repeated periodically, a rate monotonic period should be created using the rate monotonic

manager.

Each task has a priority level, ranging from 1 to 255, which is used by the scheduler to determine

which ready task will be executed. The scheduling process can be changed through the task’s mode,

which can also be used to alter the execution environment. The task’s mode is defined by four compo-

nents:

15

NON-EXISTENT

NON-EXISTENT

N
O
N
-E
X
IS
T
E
N
T

N
O
N
-E
X
IST

E
N
T

DORMANT

READY

EXECUTING BLOCKED

start

block	or
suspend

yield	or
preempt

unblock
or	resume

suspenddispatch

create

delete

delete delete

delete

Figure 3.3: RTEMS Task State Diagram.

• Preemption – if enabled, the executing task will be interrupted when a higher priority task is made

ready, and the control of the processor will be passed to the higher priority task; if disabled, the

task will retain control of the processor for as long as it is in the executing state, even if a higher

priority task is ready.

• Asynchronous signal processing (ASR) – This component only affects tasks that have a routine

for processing asynchronous signals established. If enabled, the signals sent to the task will be

processed the next time the task is executed. If disabled, the signals will only be processed when

the signal processing is enabled.

• Timeslicing – This component is only considered by the scheduler if preemption is enabled. If

timeslicing is enabled, when multiple tasks of the same priority are ready, the time that each task

can hold the control of the processor is limited to the period defined in the configuration table. If

disabled, the task will continue executing until a higher priority task is ready.

• Interrupt Level – It is used to determine which interrupts are enabled when the task is executed.

3.1.3 Scheduling

The scheduler is the component responsible to allocate the processor time to the various competing

tasks. The implementation of scheduling algorithms is done through a plugin framework, which allows

users to select from multiple scheduling algorithms provided by RTEMS or to implement their own.

16

The most common scheduling algorithm is Priority Scheduling, which allocates the processor to the

ready task with the highest priority. A task that is readied is placed in the ready chain behind all of the

other tasks with the same priority, being executed in a First in, First Out (FIFO) order.

There are plenty of priority-based schedulers. The default scheduler for single-core systems is the

Deterministic Priority Scheduler. This is the classic RTEMS scheduling algorithm, and the only one

available in RTEMS 4.10 and earlier. It is implemented through an array of FIFOs and achieves fixed

and predictable execution time, hence the deterministic designation. An alternative with a lower memory

footprint is the Simple Priority Scheduler, which uses a single linked list to manage all tasks. Its disad-

vantage is that the number of ready tasks is limited, but in systems with few tasks this does not raise

performance issues. Both of these schedulers are only aware of a single core. There are alternative

schedulers such as the Earliest Deadline First scheduler (EDF), which considers the deadlines declared

by the Rate Monotonic Manager as priorities, and the Constant Bandwidth Server (CBS) scheduling,

which assigns each task to a server characterized by a deadline (period) and a computation time (bud-

get). The fraction of the CPU to be reserved by the scheduler for each period is calculated by the ratio

budget/period (bandwidth).

For symmetric multiprocessor (SMP) configurations, the default scheduler is EDF SMP scheduler,

and some alternatives include the Deterministic Priority SMP scheduler, the Simple Priority SMP sched-

uler and the Arbitrary Processor Affinity Priority SMP scheduler, which places the ready tasks in a table

of chains with one chain for each priority level.

As mentioned in Section 3.1.2, the scheduling process can be modified by the Task mode, namely

by the Preemption and Timeslicing controls. The scheduler can also be customized by the user through

assigning the desired priority levels to each individual task, either when it is being created or during

run-time, and through a mechanism called manual round-robin, invoked by the rtems task wake after

directive. When this function is called, the task is returned to the end of the ready-chain of its priority

group and the control of the processor is taken to the next task of the same priority. When no other task

of the same priority is ready to run, the task keeps the control of the processor.

The allocation of the processor for each task is done by the dispatcher, which retrieves the control

of the processor from the current task and passes it to the next by performing a context switch. The

context switch consists on saving the context of the current task and restoring the context of the task

that has been allocated to the processor. The context includes all of the necessary information to ensure

that the task is capable of returning to execution without suffering any change by the interruption. This

information is stored either in the TCB or the task’s stacks.

3.1.4 System Configuration and Build

The build system in RTEMS relies on makefiles that can be split into two types: directory and leaf.

Each directory containing source code for libraries or programs is compiled through a leaf makefile, and

the build is propagated to the source directory through a directory makefile.

RTEMS provides tools to assist the build process by automatically generating all the necessary

17

makefiles. The first step of this procedure is to bootstrap the build system. The bootstrap uses a file

called configure.ac to generate the files needed to configure an application. RTEMS provides several

BSPs, but not the Arty Z7 board which is the target of this thesis. As such, to run RTEMS on the

target hardware, it was necessary to add the Arty Z7 board to the configure.ac file. This file defines

the memory regions of the BSP. RTEMS provides a BSP for the Zedboard, a board that is also based

on the Zynq-7000 SoC [53], and therefore, the memory regions defined for the target Arty Z7 board in

configure.ac were the same as the ones RTEMS defines for the Zedboard. It was also necessary to

provide a build configuration file with information such as the compiler flags and libraries included, so

the xilinx zynq artyz7.cfg was added, containing the default flags for the Cortex-A9 processor.

The following step is to configure the system. RTEMS is configured for each application through a

set of macros to automate the generation of the data structures used at the system initialization. These

macros encompass information such as the length of each clock tick, the application initialization tasks,

the task scheduling algorithm and the device drivers needed by the application. An example of the

possible configuration macros is presented in Figure 3.4. The configure program generates a variety of

files based on these macros, including the necessary Makefiles to build and install RTEMS.

1 #define CONFIGURE_INIT_TASK_ATTRIBUTES RTEMS_FLOATING_POINT

2
3 #define CONFIGURE_MICROSECONDS_PER_TICK 1000

4
5 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

6
7 #define CONFIGURE_MAXIMUM_TASKS 20

8
9 #define CONFIGURE_MAXIMUM_TIMERS 4

10
11 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE

12
13 #define CONFIGURE_MAXIMUM_PROCESSORS 1

14
15 #define CONFIGURE_INIT

16
17
18 #include <rtems/confdefs.h>

Figure 3.4: RTEMS configuration example.

3.2 ARINC 653

In an effort to standardize the accesses to shared resources in IMA systems, in October 1996 the

AEEC published the first version of ARINC 653 - Avionics Application Software Standard Interface [2].

While originally a single document, it has since been divided into 5 parts, which describe the required

and recommended services of an IMA OS, the subset services, the core software recommended ca-

pabilities and the conformity tests specification. Part 1 - Required Services of ARINC 653 defines the

application executive (APEX), an added software layer that separates the application from the operating

system. Figure 3.5 shows the ARINC 653 architecture overview.

18

APEX	Interface

Application
Partition	1

Application
Partition	N System

Partition	1
......

...

OS	Kernel System	Specific	Functions

System
Partition	1

Application	Software	Layer

Core	Software	Layer

Hardware

Figure 3.5: ARINC 653 architecture.

This specification offers several benefits, such as:

• Modularity, achieved by removing hardware and software dependencies;

• Portability of software applications;

• Reusability of components;

• Integration of software with multiple criticalities.

3.2.1 Partitioning

One of the main purposes of the hypervisor in an IMA system is to support multiple avionic appli-

cations, independent from each other. The separation of the applications is crucial in order to provide

fault containment and ease of verification, validation and certification. To ensure this separation, both in

time and in space, the ARINC 653 specification describes the concept of partitioning. Each partition is

a program in a single application environment, which encompasses their individual data, context, con-

figuration attributes and other partition specific information. Robust partitioning ensures that partitions

with different criticality levels can be executed without affecting one another. With robust partitioning,

partitions should not be able to interfere with other partition’s code, I/O and data storage areas, nor to

consume shared processor and I/O resources out of their period of execution. Any failure occurring

inside a partition should not be propagated to the rest of the system.

Application partitions comprise the software specific to avionic applications, and are restricted to

only using the system calls defined in the APEX. Optionally, there can be System Partitions that are also

19

subject to the robust TSP but are allowed to use services other than those defined in the APEX. System

partitions can be used, for example, for managing faults or communication with hardware devices.

The partitioning is enforced by the hypervisor, which not only ensures that the partitions are com-

pletely contained from each other, but also handles any error that is raised in one application without

interfering with the other partitions.

Temporal Partitioning

To ensure that each partition is temporally contained, the hypervisor implements a fixed schedule,

defined beforehand through configuration tables. The schedule is implemented in a major time frame of

fixed duration which is periodically repeated until the end of the runtime operation. The major time frame

is divided into minor time frames that can be allocated for a partition.

During the execution, at the end of each minor time frame, the hypervisor checks if the next minor

time frame is assigned to the same partition as the previous. If so, the partition is resumed. Otherwise

the partition context is saved and the succeding partition’s context is restored, returning the execution

to the application. Through this method a deterministic behavior is achieved, and the partitions are

provided uninterrupted access to common resources during their assigned time periods. An example of

a possible schedule with three partitions in a dual core configuration is presented in Figure 3.6.

			

						P2

Major	Time	Frame

Minor
time
frame

Core	0

Core	1

P0

P1

P1 P0

P1

P1

			

						

			

						

P2 P2

Figure 3.6: Example of a possible schedule with three partitions and two cores. Two major time frames
are represented, each consisting of 8 minor frames.

Memory Partitioning

Spacial containment is achieved by allocating predetermined areas of memory for each partition.

The partition is prohibited to access memory outside its designated areas.

In targeted hardware that contains an MMU, such as the Cortex-A9 processor, the MMU can be

used to translate the partition’s virtual memory to physical memory, ensuring that the memory accesses

of the partition are within the permitted boundaries. A possible alternative would be to virtualize every

instruction that accesses the memory, but the performance would significantly deteriorate.

The communication between partitions is accomplished through messages, which are defined as

continuous blocks of data of limited length. These messages are sent and received through channels to

20

which the partitions access via source and destination ports. The hypervisor conducts the ARINC 653

services that establish this inter-partition communication.

3.2.2 Fault Detection and Response

Although partitioning can provide fault containment, by itself it is not enough to ensure that the

occurring failures are properly handled without interfering with the remaining system. It is important

that there is a mechanism to monitor and report faults in the hardware, application and OS, providing

isolation and adequate recovery.

Following the ARINC 653 specification, this is achieved through the implementation of the Health

Monitor (HM). The Health Monitor uses configuration tables to decide the adequate response to a certain

fault according to the error level, which is established in light of the operational state in which the fault

occurs as well as the error ID. The three error levels defined by the ARINC 653 are presented in Table

3.1. These levels do not include the errors that might occur in the hypervisor, leaving them and their

reporting mechanisms to the responsibility of the system integrator.

Error Level Impact Examples

Process
One or more processes
in the partition, or entire partition;
The HM will not violate partitioning.

Errors raised by an application process;
Illegal OS requests;
Process execution errors such as overflows
or memory violations.

Partition One partition;
The HM will not violate partitioning.

Errors during partition initialization,
process management or error handling;

Module All the partitions within the module.

Errors during module initialization,
system specific functions or partition
switching;
Power fail.

Table 3.1: ARINC 653 Error Levels.

In case of a partition or module fault, the Health Monitor uses the error level and the error ID to de-

termine the appropriate HM Callback to respond to that particular fault. The HM Callback is independent

of the implementation, and should not violate the partitioning: If the fault is raised at the partition level,

the HM Callback should be performed within the partition’s time slice. If raised at the module level, all

the partitions within the module are affected, but the HM Callback should not interfere with the other

modules. In both of these cases, there are three possible recovery actions:

• Ignore (the error should be resolved by the HM Callback);

• Stop the partition/module;

• Stop and restart the partition/module.

As for errors at process levels, the adequate response should be determined by the application using

the error handler process, a higher priority task of the partition. Several process level errors are assigned

21

error codes that can be returned to the faulty application to be used in the recovery. These error codes

are implementation independent to allow portability. Aside from the possible recovery actions of the

partition level errors, in the process level the HM might also choose to stop the faulty process and either

re-initialize it, start another process or assume that the partition is capable of recovering unassisted.

The HM recovery actions might instigate mode changes to the partition. There are four possible

modes of operation:

• IDLE – The partition is not initialized and no processes are executing

• NORMAL – The process scheduler is active, the processes have been created and those in the

ready state are able to run.

• WARM START and COLD START – The partition is initializing. The distinction between the two

modes depends on the implementation: The information of which mode is running can be useful

for the application.

According to the action that is performed to recover from partition or process errors, the adequate par-

tition mode will be set. When operational, the partition mode is NORMAL. When the partition is stopped,

the mode will be set to IDLE. When the partition is restarted, its mode will be either WARM START or

COLD START. Apart from the changes through the Health Monitor, the mode of the partition can also

be changed through the SET PARTITION MODE request.

3.3 AIR

AIR stands for ARINC 653 Interface for RTEMS, and, as the name implies, it was developed as an

adaptation of RTEMS to implement the ARINC 653 standard. It is a real time TSP hypervisor, allowing

multiple VMs to run on a single processor while mantaining temporal and spacial isolation between

applications.

GMV started developing AIR under the IMA-SP [25] and SAVOIR-IMA [29] initiatives, and it has

been upgraded to be compliant to the core requirements set by the IMA Separation Kernel Qualification

Project [54]. The AIR project is managed in a Gitlab repository [55] and is currently kept under the open

source GPLv2 license.

3.3.1 AIR Architecture

AIR consists of four development independent modules, presented in Figure 3.5:

• The Partition Management Kernel (PMK) holds the main functionalities of the hypervisor. It

implements temporal and spacial segregation, the scheduling initialization, the interrupt handling

and the context switch between partitions. It can be further split into three submodules:

– Core holds the core functionalities of AIR such as partition managment, TSP, multicore han-

dling, implementation of system calls and the HM;

22

– Arch implements the functionalities required for AIR to run on the target processor architec-

ture, such as exception handling and memory management;

– BSP provides functionalities required for AIR to run a BSP. This includes the board initializa-

tion and shutdown, and the access to peripherals.

• Each partition has its own Partition Operating System (POS), a paravirtualized RTOS capable of

features such as scheduling tasks and managing virtual interrupts. Currently AIR for SPARC sup-

ports RTEMS 5, RTEMS 4.8i and a bare executive without an RTOS. The goal of this dissertation

is to have AIR for ARM also support RTEMS 5, in addition to the barebones OS that it previously

supported.

• The LIBS module consists of a set of libraries that implement functions to assist the connection

between the modules. It currently includes five libraries:

– IMASPEX implements the APEX interface which defines services that conform to the ARINC

653 standard;

– LIBAIR assists the POS virtualization by implementing the adequate system calls;

– LIBIOP configures a system partition to manage peripheral I/O devices;

– LIBPRINTF supplies the printf functionality;

– LIBTEST provides functions to test and validate the software.

• The AIR toolchain (TOOLS) is a parallel module coded in python to aid the build process. It is

split into two submodules:

– The Configurator generates the necessary makefiles to build AIR. It is called through the

configure script, that can be used at two levels: first at the root level, to configure AIR for the

target processor and BSP; then, at the application level, to extract the application configura-

tion options from the config.xml file. This file contains the partition options, the schedules,

module information and Health Monitor Tables, and an example can be seen in Figure B.1.

– The Partition Assembler aggregates the built partitions into a single executable to allow PMK

to manage the partitions.

3.3.2 Health Monitor

As defined by the ARINC 653 standard, a fault in the execution should be handled by a Health Monitor

(HM). In the ARM architecture, the HM handles abort and undefined exceptions. Figure 3.8 depicts the

HM procedure. The HM handler starts by searching the error ID and the operational state in the system

HM table to check whether the fault occurred at the module or partition level. It then searches for the

error ID in the table corresponding to that error level to obtain the action that should be performed. These

tables are defined by the user in the application configuration XML file (config.xml). An example of these

tables is presented in Figure B.2

23

	
				
		PMK

Hardware

BSP

			LIBS

POS

		POS

LIBS

Partition	1 Partition	N...

ArchCore

LIBIOP

LIBAIR IMASPEX

LIBPRINFT

LIBTEST

RTEMS	5

RTEMS	4.8iBARE

Configurator

Partition	Assembler

Tools

Figure 3.7: AIR architecture.

In the module level, the available actions are IGNORE, SHUTDOWN and RESTART. In the partition

level, the actions are IGNORE, SHUTDOWN, COLD START AND WARM START. The COLD START

and WARM START both perform a partition reset, but the information of which occurred can be useful

for the application.

IGNORE is used to leave the handling of the exception to the application programmer’s criteria. This

action returns to the partition HM handler, which the application programmer can change to resolve the

fault however they see fit.

Exception

! Check	error	level	in
System	State	HM	table

Check	action	in
module	HM	table Restart	Module

Check	action	in
partition	HM	table

Shutdown

Restart

Ignore

Shutdown	Module

Call	Module
HM	callback

Set	Partition	to
COLD	START	mode

Shutdown

Ignore

Set	Partition	to
IDLE	mode

Call	Partition
HM	callback

Set	Partition	to
WARM	START	mode

Warm	Restart

Cold	Restart

Figure 3.8: AIR HM flow chart.

24

3.3.3 Communication with I/O devices

To ensure TSP in the communication with hardware devices, AIR defines a system partition responsi-

ble for managing the transmission and reception of data to and from I/O device drivers. The I/O partition

(IOP) operates in a loop which verifies the messages to be sent to or received from the driver, perform-

ing a write and/or read for each of the configured drivers. The configuration of the device drivers and

communication routes between them and the IOP is done in the iop.xml file.

The application partitions communicate with the IOP through the inter-partition communication ser-

vices defined by the ARINC 653. Figure 3.9 presents a possible system comprised of two application

partitions and the IOP.

P1 P2 IOP

PMK

HW I/O Device

Figure 3.9: Communication with I/O devices.

AIR for SPARC currently supports Ethernet, Spacewire, CANBUS and MIL1153 device drivers. As

for the ARM architecture, the drivers of UART and CAN are available while the time-sentitive network

(TSN) driver is currently in development.

3.3.4 Migration to the ARM architecture

In the recent migration of AIR from SPARC to ARM [6], a comparative study between the two archi-

tectures was performed in order to maintain the same logic of the hypervisor for both architectures and

to minimize the hardware dependencies. This migration comprised all of the required functionalities for

AIR to run on the target Zynq-7000 SoC, such as initialization, shutdown and access to peripherals, as

well as most of the hypervisor features.

The most influential dissimilarity between ARM and SPARC is the exception handling. While SPARC

processes the exceptions through a single table of handlers (trap table), ARM resorts to multiple redi-

rection tables. Despite the significant changes on the logic of handling exceptions that this difference

entails, the implementation of the AIR exception handlers achieved the same results in both architec-

tures.

The goal of a hypervisor is to add a virtualization layer to allow several VMs to run on the same

machine while providing strict segregation of each application’s resources. To enforce isolation, the

25

partitions are assigned a virtual memory region that is then translated into real memory by the MMU.

Although the implementation of spacial segregation through the MMU is hardware dependent, SPARC

and ARM MMUs share a similar structure and therefore the logic of the implementation was kept mostly

the same.

The temporal segregation is achieved through the scheduler, which is shared between the two ar-

chitectures. The scheduler is activated at each timer interrupt, and checks if the schedule demands a

partition switch. The context switch between the partitions is specific to each architecture, and resorts

to virtualization data structures to store the current VM state.

The first of the two main data structures that aid virtualization is the core context, used to restore

and store data whenever there is a partition switch. Prior to this dissertation, the core context for ARM

comprised:

• The virtual CPU structure, including:

– the CPU ID,

– the Program Status Register (PSR), clarified in Section 3.4.2 ,

– the virtual trap table address,

– the MMU control registers;

• A structure containing the virtual Generic Interrupt Control (GIC) registers (further explained in

Section 3.4.5);

• The core entry point;

• A pointer to the current Interrupt Stack Frame;

• The interrupt nesting level;

• The information on the current AIR state;

• The Floating Point Unit (FPU) context, if enabled;

• The HM event currently being serviced, if there is one.

The other main virtualization data structure is the Interrupt Stack Frame (ISF), stored and restored at

each exception, and it included:

• The ARM general registers, r0 to r12;

• The current exception name;

• The Stack Pointer (SP) and Link Register (LR) prior to the current exception;

• The return address;

• The return PSR.

26

Both of these structures required modifications throughout this dissertation, which will be approached in

Chapter 4.

The communication between a VM and the hypervisor is done through system calls. While a few

system calls were added or completed in this dissertation, most of them were already provided. Table

3.2 presents some of the available system calls to be used in the paravirtualization of an RTOS.

Syscall Description

AIR SYSCALL GET NB CORES Get the number of virtual cores in the partition.

AIR SYSCALL GET CORE ID Get the current virtual core ID.

AIR SYSCALL GET US PER TICK Get the number of microseconds per tick.

AIR SYSCALL GET ELAPSED TICKS Get the number elapsed ticks since the partition
start.

AIR SYSCALL ENABLE FPU Enable or disable the FPU unit.AIR SYSCALL DISABLE FPU

AIR SYSCALL ENABLE TRAPS Enable or disable the virtual traps.AIR SYSCALL DISABLE TRAPS

AIR SYSCALL ENABLE INTERRUPTS Enable or disable the virtual interrupts.AIR SYSCALL DISABLE INTERRUPTS

AIR SYSCALL GET IRQ MASK REGISTER Get or set the virtual interrupt mask.AIR SYSCALL SET IRQ MASK REGISTER

AIR SYSCALL GET TBR Get or set the virtual trap table.AIR SYSCALL SET TBR

AIR SYSCALL GET PSR Get or set the virtual processor status register.AIR SYSCALL SET PSR

AIR SYSCALL RETT Return from the virtual exception.

Table 3.2: AIR virtualization system calls.

The migration of AIR to the ARM architecture resulted in the successful deployment of the AIR

hypervisor in an ARM based SoC, achieving the same behavior as the SPARC’s BSP. The broadening

of the AIR supported architectures allows the hypervisor to be a candidate for various space projects,

having already won proposals for the INFANTE [56], PERIOD1 and EROSSplus2 projects and being

planned to be integrated in MIURA 5 [57], a suborbital micro launcher being developed by PLD Space

for research and technology development purposes, as a successor of MIURA 1.

Prior to this dissertation, AIR for ARM had only been tested with a basic barebones OS, and some

important functionalities were not yet implemented or lacked testing, such as the virtual exception han-

dling, the error processing inside the application and multitasking capabilities. Through the virtualization

of RTEMS, this dissertation accomplished an improved version of AIR for ARM capable of running this
1PERASPERA In-Orbit Demonstration is a project to develop European space robotics technologies using ESROCOS, a RTOS

that incorporates AIR to provide TSP. The project is led by Airbus and the target hardware is the Zynq UltraScale SoC.
2EROSSplus is pursuing the same goal as PERIOD. It is led by Thales-F and targeted at the DAHLIA SoC

27

RTOS, allowing more complex tests to be executed and consequently further the validation of the hyper-

visor.

3.4 ARM

ARM is a family of Reduced Instruction Set Computing (RISC) processor architectures whose first

chip had been in development since the 80’s by Acorn Computers. In 1990, this company partnered

with Apple Computer and VLSI Technology and founded Advanced RISC Machines Ltd which in 1994

created a 16-bit instruction set that lowered memory demands. This design was licensed by Texas

Instruments and deployed on the Nokia 6110, which was greatly successful [58].

ARM introduced an innovative and profitable business model in which, rather than building and selling

a product themselves, ARM develops intellectual property (IP) blocks that are then licensed to semicon-

ductor companies. This led to ARM being designed into more and more SoCs, becoming the standard

for the growing market of cell phones [59]. By 2015 ARM had a share of 96% of the mobile market, and

at the end of 2018 ARM held a share of 33% of the SoC market [60].

In 2005, ARM introduced the three Cortex families in order to diversify their offers to better cover

the demands of the industry. The Cortex-A, or the Application Processor family, focuses on higher

performance. The Cortex-M provides extremely low-power, low-cost microcontrollers. The Cortex-R

provides high performance, real time processors. In 2008, in order to provide increased performance

while maintaining a long battery life, ARM introduced the Cortex-A9 MPCore, which implements the

ARMv7-A architecture. This is the processor equipped in the Arty Z7 provided by GMV, and will be the

target processor of the work ahead.

3.4.1 Instruction Sets

The ARMv7 architecture, implemented by the Cortex-A9 MPCore, has two main instruction sets:

• The ARM instruction set is a set of 32-bits instructions, aligned on a four-byte boundary, supporting

performance critical functions such as interrupt handling.

• The Thumb instruction set was initially developed as a 16-bit instruction set to offer higher code

density in detriment of performance. An extension of this instruction set was then released as

Thumb-2, which includes the original 16-bit instructions as well as added 32-bit instructions, allow-

ing this instruction set to perform similarly to the ARM instruction set with the benefit of improved

code density.

Each of these instruction sets has a corresponding processor state which can be interchanged freely

from Thumb to ARM and vice versa. The information on the processor state is stored in the program

status register (PSR) [61].

ARMv7 also provides two additional instruction sets to support execution environments:

28

• The ThumbEE is a variant of Thumb designed for dynamically generated code, providing support

for Just-in-Time (JIT), Dynamic Adaptive Compilation (DAC), and Ahead-Of-Time (AOT) compilers.

However, it can’t interwork freely with ARM and Thumb.

• The Jazelle instruction set allows the execution of Java Bytecode directly on hardware.

In AIR, most code is written in C, leaving only the start-up code and the exception handlers in As-

sembly. In space applications, memory constraints make code density an advantageous trait. For this

reason, in AIR, only the exception handlers are compiled in ARM and the remaining code in Thumb-2.

As for RTEMS, in addition to the start-up code and the exception handlers, the Context Switch is also

coded in Assembly. The exception handlers contain both ARM and Thumb-2 segments, while the rest

of the assembly code is ARM.

3.4.2 Program Status Register

The Program Status Register is a 32-bit processor register that holds information on the processor

status and control. Figure 3.10 shows the allocation of the bits of PSR. Bits 0-4 store the processor

mode, further explained in the Section 3.4.4. The bits 5 and 24 are the Instruction Set Flags, T for thumb

and J for Jazelle. Bits 6-8 are the interrupt flags, disabling IRQ (I), FIQ (F) and imprecise aborts (A) if

set. Bits 28-31 are the condition flags: Negative (N), zero (Z), carry (C) and overflow (V).

4:05678915:1019:1623:202426:252728293031

Z C V M[4:0]TFIAEIT[7:2]GE[3:0]reservedJIT[1:0]N Q

Figure 3.10: Bit allocation of Program Status Register.

The current state of the processor is stored in the Current Processor State Register (CPSR), and

each mode (except for User and System modes) has its own Saved Processor State Register (SPSR)

which holds the previous CPSR from before changing to the current mode, so that the previous context

can be restored.

3.4.3 Coprocessors

ARM processors can be complemented by coprocessors, which expand the processing features of a

core by either extending the instruction set or by providing configuration registers. The coprocessors are

accessed through dedicated ARM instructions, which support the connection up to 16 coprocessors.

The Vector Floating-Point (VFP) coprocessor is mapped as CP10 and CP11, and it provides single

and double precision floating point arithmetic operations through an added instruction set.

CP14 and CP15 are reserved for configuration and control related to the architecture. CP14 is

the debug coprocessor, implementing debug features, and CP15 is the system control coprocessor,

providing control over the standard memory and system facilities. Most of the CP14 and CP15 registers

require privileged access.

29

3.4.4 Operating Modes

The ARMv7 basic model operates in two privilege levels: PL0, the lowest privilege level, in which an

exception is raised if there is an attempt to access privileged resources, and PL1, in which an operating

system is expected to run. If the Virtualization Extensions are implemented, another privilege level (PL2)

is added for the hypervisor to execute at.

There are seven basic operating modes, each with its own stack pointer (SP) and link register (LR):

• USER: The mode most applications are expected to run at, being the only one executing at PL0.

This means that it can only access unprivileged system resources and its assigned memory, and

that in order to switch to a mode that runs at a higher privilege level, an exception must be raised.

• SYSTEM: While this mode shares the USER registers, it runs at PL1, making it possible to access

the USER’s SP and LR without sacrificing the access to privileged resources. This mode can’t be

entered through an exception.

• ABORT: This mode runs at PL1 and is entered through the Data Abort and Prefetch Abort excep-

tions. Prefetch Aborts occur when the CPU attempts to fetch an instruction from an invalid memory

region. Data Aborts are raised when there is an attempt to write or to read data from an illegal

memory location.

• UNDEFINED: Running at PL1, it is entered through the Undefined Exception, which occurs when

the processor does not recognize the instruction it is attempting to execute, or when the processor

recognizes it as a coprocessor instruction but no coprocessor recognizes it - for instance, if there

is an VFP instruction but the floating point unit (FPU) is disabled.

• SUPERVISOR: Without the Virtualization Extensions, this is the standard entry mode of the pro-

cessor after a reset. It can also be entered through a Supervisor Call (SVC). This should be the

default mode in which the OS runs.

• IRQ: The Interrupt Request mode, running at PL1, is entered through IRQ exceptions.

• FIQ: The Fast Interrupt Request mode, running at PL1, is entered through FIQ exceptions. These

are higher privilege interrupts that are able to interrupt IRQ.

If CPU extensions are implemented, two additional operating modes might be available:

• HYPERVISOR: Introduced by the Virtualization Extensions, this mode runs at the higher privilege

level PL2. It is entered through Hypervisor Calls or Hypervisor Traps.

• MONITOR: Introduced by the Security Extensions, this mode runs at PL1 and manages the

switches between the Secure and Non-secure states. If this extension is available, all the basic

operating modes have copies in the Secure and Non-secure states, and the son-secure applica-

tions are not permitted to interfere with the secure. The Monitor mode is always in the Secure and

the Hypervisor mode is always in Non-Secure. The Monitor mode is entered through a Secure

Monitor Call.

30

3.4.5 Exception Handling

Exceptions, also referred to as traps, are anomalous or exceptional events that interrupt the nor-

mal execution and require special processing. When an exception is raised, the execution jumps to a

predefined table of handlers.

While in other architectures exceptions are handled through a single trap table (such as SPARC,

with a 256 entries trap table), ARM handles exceptions through multiple redirection levels: a first main

trap table contains the 7 main exceptions that can be raised, presented in Table 3.3, and redirects the

execution to a low level handler, coded in assembly. Within the 7 main exceptions, there are several

possible interrupt sources, such as timers, device drivers and different faults. The low level handler

calls a C subroutine, or a high level handler, to identify the interrupt source and perform the adequate

actions.

Exception Corresponding Mode

Reset Supervisor
Undefined Instruction Undefined
Supervisor Call (SVC) Supervisor
Prefetch Abort Abort
Data Abort Abort
Interrupt Request (IRQ) IRQ
Fast Interrupt Request (FIQ) FIQ

Table 3.3: ARM exceptions.

When an exception occurs, the CPSR is stored in the SPSR of the mode that corresponds to the

exception raised, and the return address is stored in the LR. The execution jumps to the trap table,

assuming the operating mode corresponding to the exception, and performs the low level handler as-

signed, which should store the processor context, link to the high level handler and restore the context

before returning to the normal execution.

The information needed to manage the interrupts is mapped in the General Interrupt Controller (GIC)

registers [62, 63].

The GIC architecture is logically divided into:

• A Distributor block that centralizes all interrupt sources, determines the priority of each interrupt

and forwards the interrupt with the highest priority to each CPU interface;

• CPU interface blocks, which perform priority masking and preemption handling for a processor

connected to the GIC.

The most relevant GIC registers for the work ahead are presented in Table 3.4

The high level handler, or the Interrupt Service Routine (ISR), should verify if the interrupts are en-

abled through the CPU Interface Control Register (ICCICR) and then check the interrupt priority through

the Interrupt Priority Register (ICDIPR). If the current priority is higher than the Interrupt Priority Mask

(ICCPMR), then the interrupt is handled. If not, the interrupt is set as pending until the ICCPMR priority

is lower than the current interrupt priority.

31

Register Description

ICDISER Interrupt Set-Enable
ICDICER Interrupt Clear-Enable
ICDPR Interrupt Set-Pending
ICDIPR Interrupt Priority
ICDSGIR Software Generated Interrupt
ICCICR CPU Interface Control
ICCPMR Interrupt Priority Mask
ICCIAR Interrupt Acknowledge
ICCEOIR End of Interrupt
ICCHPPIR Highest Priority Pending Interrupt

Table 3.4: ARM GIC Registers.

When an interrupt is handled, the CPU should access the interrupt ID stored in the Interrupt Ac-

knowledge Register (ICCIAR) and perform the handler installed for that interrupt ID. For instance, the

Global Timer interrupt ID is 27, and this prompts the ISR to perform the clock handler.

In a virtualized environment, the virtualized OS running in a non privileged level should not access

the real GIC blocks, so the necessary registers must be copied into the VM. The data structure that

holds the virtual GIC registers in AIR for ARM is presented in Figure 3.11

1 typedef struct {

2 air_u32_t vm_ctrl; /**< VM interrupt control */

3 air_u32_t ilist[16]; /**< 32 virtual interrupts */

4 air_u32_t apr; /**< active priority */

5 air_u32_t pmr; /**< priority mask */

6 air_u32_t bpr; /**< binary point */

7 air_u32_t iar; /**< interrupt acknowledge */

8 air_u32_t eoir; /**< end of interrupt */

9 air_u32_t rpr; /**< running priority */

10 air_u32_t hppir; /**< highest priority pending */

11 } arm_virtual_gic_t;

Figure 3.11: Virtual GIC registers data structure.

When returning from the exception, the SPSR is put in the CPSR, returning to the previous mode,

and the program jumps back to address stored in the LR.

32

Chapter 4

Implementation

This chapter presents the work performed in order to accomplish an improved version of AIR for

ARM capable of running RTEMS 5 as the Partition Operating System (POS). It starts by, in section

4.1, describing the work procedure used throughout this dissertation, and then goes through the logical

sequence of running RTEMS on AIR while detailing the modifications applied to RTEMS and to the AIR

hypervisor.

4.1 Work Plan

Prior to this dissertation, the migration of AIR to ARM had already accomplished some Partition Man-

agement Kernel (PMK) functionalities on AIR, such as the memory translation between virtual and real

memory, the hypervisor scheduler, partition switching, AIR exception handling and the implementation

of several system calls. It was tested with a simple barebones OS, created specifically to test the basic

hypervisor functionalities. However, due to the simplicity of the barebones OS, some important function-

alities were not implemented or lacked testing. For instance, AIR did not have a mechanism to run the

guest OS’s virtualized exception handlers, and consequently the guest OS’s scheduler and multitasking

were not supported. This means that, in order to run RTEMS on AIR for ARM, it was not enough to apply

the required modifications to paravirtualize RTEMS. It was also necessary to perform modifications to

the PMK to ensure that it correctly interoperates with the POS in order to maintain the expected behavior

of RTEMS.

RTEMS is a reliable RTOS that has been subjected to extensive testing with a nearly total code

coverage [64]. To keep this reliability, it is important to minimize the amount of changes applied to the

RTEMS code.

The easiest way to perform the necessary modifications to both the POS and the PMK is through

a sequential and iterative workflow, by executing the RTEMS code on top of AIR in a logical order,

detecting the flaws, correcting them and repeating the process until the program is capable of reaching

the end of the test as expected. The expected behavior of RTEMS is known from the execution of the

tests in the original RTEMS, without the hypervisor. To facilitate this comparison, the first tests used for

33

this iterative process were from the RTEMS test suites [65], starting with a simple example such as the

hello test and evolving to more complex examples and intricate features as the basic functionalities are

ensured. This workflow is depicted in Figure 4.1.

System	Configure	and
Build

System	Initialization

Exception	Handling

User	Application

End	of	Test

System	Configure	and
Build

System	Initialization

Exception	Handling

User	Application

End	of	Test

	Fault	or
different
behaviour

Fix

More	complex	test

Yes

No

Yes

No

Yes

Yes

No

Yes

No

No

Configuration
or	Build	Error

	Fault	or
different
behaviour

	Fault	or
different
behaviour

	Fault	or
different
behaviour

Virtualized
RTEMS

RTEMS	running	on	HW

Figure 4.1: Adopted iterative workflow.

RTEMS was designed so that most of the code is hardware independent. The required modifications

can therefore be split into five main areas of focus:

34

1. System configuration and build;

2. System initialization;

3. User Application;

4. Exception Handling;

5. System shutdown (End of Test).

This logical sequence will be followed through the method depicted in Figure 4.1.

In RTEMS, the illegal accesses must be detected and prevented. These accesses generally raise

faults, and must evaluated as to whether it is necessary to replace them by system calls or if they can

simply be removed. System calls should only be used if no other solution allows the desired results, as

they interrupt the OS code through an exception, forfeiting efficiency. There are many instances in the

code in which RTEMS attempts to perform an action that, in a virtualized environment, should be left to

the hypervisor. These segments can be removed, reducing and simplifying the POS code.

In summary, the changes applied to RTEMS comprised the following:

• Remove code that performs actions that should be left to the hypervisor;

• Prevent accesses to privileged resources, either by removing them or by replacing them with sys-

tem calls;

• Fix issues raised from running in user mode a function designed for more than one operating

mode.

The adopted iterative workflow also allows to spot flaws in the hypervisor code. These flaws include

lacking the implementation of a required system call, corrupting data or restoring the wrong contexts,

which affect the behavior of the POS and can therefore be detected through the comparison of the

obtained and expected results. A flaw can also be due to an incomplete migration of the code that was

intended for SPARC. The modifications to AIR included:

• Implementing the missing system calls;

• Completing the exception handling to support virtualized exception handlers and multitasking;

• Completing the virtual data structures with needed information;

• Adapting code intended for SPARC in order to run on ARM as well, minimizing hardware depen-

dencies when possible.

The next sections present an overview of the changes performed in RTEMS and AIR, following the

logical sequence presented in Figure 4.1.

35

4.2 System Configuration and Build

The first step to run RTEMS on AIR for ARM is to add it as a supported POS in the AIR toolchain,

so that the AIR configure script can generate the necessary files to compile the system and run the

application while incorporating the RTEMS configuration and build process described in Section 3.1.4.

The python toolchain resorts to Mako templates to generate these files, which include makefiles, the

init.c that initializes the user application and, in the case of RTEMS partitions, the rtems config.h, which

contains the RTEMS configuration macros mentioned in Section 3.1.4.

Since RTEMS is already a supported POS for SPARC, at this point the implementation consists only

on migrating the RTEMS configuration and makefile template from SPARC and applying it to ARM by

changing the name of the target BSP.

Before building the system it is also necessary to provide each partition a script that configures the

memory regions in which the code and data of the application will be written to. This data is configured in

the linkcmds file, which is used by the partition assembler to generate an executable encompassing the

partitions that will be decompressed by the PMK at the partition initialization. The memory assigned to a

partition in the linkcmds was contained between the addresses 0x10000000 and 0x10200000, providing

each partition 2MB. The memory regions attributed to the partitions correspond to virtual memory, which

will be translated into physical memory by the MMU.

4.3 System Initialization

The initialization of the AIR hypervisor is responsible for starting the BSP and initializing the hypervi-

sor features such as the scheduler, spacial segregation, HM and, if available, multicore. Once the PMK

is ready to run the applications, the execution enters the entry point of the partition assigned to the first

minor time frame by the scheduler. If the OS assigned to that partition is RTEMS, then this entry point

corresponds to the start of the RTEMS initialization.

The RTEMS initialization is performed at two levels. First, at a lower level, by the start code present

in the start file. This file is typically written in assembly and is specific for each architecture, performing

the minimum actions possible that enable the processor to run C code correctly. As in a virtualized

environment the board is already initialized when entering a partition, most of the low level initialization

required to run RTEMS directly on the HW is redundant and unnecessary when running on top of AIR,

and can be removed.

The start code is concluded by calling the boot card() function to perform the high level initialization.

This function is common to every BSP, and calls the rtems initialize executive directive provided by the

Initialization Manager, which is responsible for passing the control of the processor from the OS to the

user application.

36

4.3.1 Low Level Initialization

RTEMS starts by initializing the registers if the system configuration deems it necessary. If not, the

bootloader parameters are saved in registers that will not be changed throughout the function. When

running on top of AIR, none of these cases is applicable: the hypervisor should manage both. Therefore,

these instructions can be removed.

RTEMS then accesses the coprocessor CP15 in order to get the current processor ID. On AIR, to

get the core ID without accessing the CP15, which would require a privileged instruction and is therefore

illegal in user mode, the AIR SYSCALL GET CORE ID could be used instead. However, the core ID is

only used to perform actions that are not applicable when running on the hypervisor: storing information

in real processor registers, to which the partition should not have access, and setting the SP for each

operating mode. Inside the partition, the only SP available is the user mode SP, already set by the

hypervisor. Thus, getting the core ID is unnecessary at this stage, and there is no need to run or replace

the instruction.

The initialization of the BSP, including setting up the cache and the MMU, starting the global timer,

and copying the standard sections from load to run time, should be performed exclusively by the hy-

pervisor, and were removed from the POS. The function to clean the .bss was kept, to ensure that the

statically allocated variables are initialized with the value 0. This function only affects memory within the

partition and therefore requires no virtualization.

The RTEMS start code for ARM also performs the initialization of the exception vectors, that is, as-

signing an address to the trap table. While in a virtualized environment the exceptions should be handled

by the hypervisor, it is crucial to provide a virtual trap table so that the RTEMS handlers are performed

after the AIR handlers. The setting of the virtual trap table will be delayed to the high level initialization in

order to keep the virtualization of RTEMS for ARM consistent with the existing virtualization of RTEMS

for SPARC. This implementation as well as the necessity of performing the virtualized RTEMS handlers

will be further explained in Section 4.3.2.

As expected, most of the low level initialization could be removed, greatly simplifying the code.

After the low level initialization, the system is capable of running C code safely, so the boot card()

function is called to complete the initialization at a high level. In the original RTEMS, all this func-

tion does is prepare to pass the control to the Initialization Manager and call the initialization directive

rtems initialize executive(). However, as previously mentioned, the virtualized RTEMS for AIR still needs

to set the virtual trap table.

4.3.2 Virtual Trap Table

When running RTEMS on top of AIR, the exceptions should be handled by the hypervisor. When an

exception is raised, it will be caught by the AIR trap table and handled by the AIR handler. If AIR is not

informed of a virtual trap table address, then after handling the exception, it will resume the partition from

the same point where the exception was raised, as represented in Figure 4.2. The RTEMS handlers will

not be executed, which means that the POS will not be aware that an exception occurred. This affects

37

several functionalities. In the case of timer interrupts, not performing the RTEMS clock handler means

that its scheduler will not be activated at regular intervals, and the task management will be severely

limited; regarding faults that are handled by the HM, the RTEMS exception handlers also need to be

executed to allow the application programmer to assign a HM Callback to resolve the fault.

Partition

AIR

t

POS

Application
!

Exception

AIR	Exception	Handler

Resumes	the	Application

Figure 4.2: AIR exception handling procedure without setting a virtual trap table.

It is therefore imperative to set a virtual trap table using the AIR SYSCALL SET TBR, to inform AIR

that after performing the AIR exception handler and before resuming the user application, the execution

should be redirected to the RTEMS handler assigned in the virtual trap table. Figure 4.3 depicts this

exception handling procedure, which will be detailed in Section 4.5. The current section is focused in

the initialization of the virtual trap table to allow future exceptions to be handled through this method.

Partition

AIR

t

POS

Application
!

Exception

AIR	Exception	Handler

Virtualized	Exception	Handler

RETT

svc

AIR	syscall
return

Figure 4.3: AIR exception handling procedure with a set virtual trap table.

This initialization will be applied to the boot card() function to keep consistency between the virtual-

ization of RTEMS for SPARC and ARM. This function is shared between all BSPs, so it it is crucial to

ensure that the virtualization is valid for both architectures supported by AIR.

In SPARC, the CPU INTERRUPT NUMBER OF VECTORS macro holds the total number of entries

to the trap table, and is used to declare an address to a vector that will be set as the virtual trap table

base address, in which all the entries will be initialized with empty handlers to later replace them with the

correct virtualized handlers. However, this macro is only defined for architectures with simple vectored

38

interrupts, which is not the case for ARM due to resorting to multiple redirection levels, as explained in

Section 3.4.5.

A possible solution would be to define the CPU INTERRUPT NUMBER OF VECTORS macro as

8, the number of entries in the main ARM trap table, corresponding to the 7 main exceptions and an

additional empty field to ensure memory alignment. Doing this would allow the virtualized boot card()

function to be the same for ARM and SPARC, initializing the trap table with empty handlers and after-

wards installing each of the exception handlers one by one, but this solution is inefficient and would

demand more modifications to the RTEMS code later on. Instead, the fact that the macro is not defined

for architectures with multiple redirection tables can be taken advantage of, allowing a simpler solution

to be implemented for the ARM architecture, shown in Figure 4.4.

1 #ifdef AIR_HYPERVISOR

2 /**

3 * @brief trap table of the system redefined by AIR

4 */

5 #ifdef CPU_INTERRUPT_NUMBER_OF_VECTORS

6 void *trap_table[CPU_INTERRUPT_NUMBER_OF_VECTORS];

7 #else

8 #include <bsp/start.h>

9 void *trap_table = bsp_start_vector_table_begin;

10 #endif

11 #endif /* AIR_HYPERVISOR */

12
13 void boot_card(const char *cmdline)

14 {

15 rtems_interrupt_level bsp_isr_level;

16
17 #ifdef AIR_HYPERVISOR

18 /*

19 * AIR redefines take control of the trap table here

20 */

21
22 #ifdef CPU_INTERRUPT_NUMBER_OF_VECTORS

23 /* clear trap table */

24 uint32_t i;

25
26 for (i = 0; i < CPU_INTERRUPT_NUMBER_OF_VECTORS; ++i) {

27 trap_table[i] = NULL;

28 }

29 #endif

30 /* set TBR */

31 air_syscall_set_tbr((air_u32_t)&trap_table[0]);

32
33 /* enable traps*/

34 air_syscall_enable_traps();

35
36 #endif /* AIR_HYPERVISOR */

37 }

Figure 4.4: Setting the virtual trap table in bootcard.c.

The original RTEMS for ARM defines the main trap table at the start.S file, starting at the address

bsp start vector table begin (see Figure A.1). In the boot card() function, for architectures that handle

exceptions through multiple redirection levels, it is merely necessary to define the trap table as a pointer

39

to this address, as done in line 9 of Figure 4.4. This way the trap table already points to a table with

the default exception handlers, and it is not necessary to install empty handlers (as done for architec-

tures with simple vectored interrupts in lines 22 to 29) only to replace them with the desired handlers

afterwards.

Having defined an address in which the handlers are installed, the AIR SYSCALL SET TBR is used

in line 31 to set that memory address as the virtual trap table, so that the hypervisor knows the address

that it must return to after the AIR exception handler.

4.3.3 Initialization Manager

The rtems initialize executive() directive is responsible for preparing the system to pass control to the

user application, and will initialize the RTEMS features that are configured for that particular program

through a system initialization linker set. Most of these features do not require virtualization. The two

services that do require modifications are the routine to start the BSP, which initializes the interrupts,

and the routine to initialize all the device drivers.

The interrupts are initialized in bsp interrupt facility initialize(), a function that is specific for each BSP.

In ARM, this function accesses the GIC registers to enable and set the priority of the interrupts. The GIC

should not be accessed in user mode, and since the interrupts should be managed by the hypervisor,

these accesses can simply be removed.

The BSP start also uses arm cp15 set exception handler() to install the IRQ exception handler. As

explained in the previous section, ARM’s main trap table is already initialized with the default low level

exception handlers. These default handlers are simple routines coded in assembly that assume that

the exception was an error and therefore terminate the program. However, it might be desired that the

exception handler calls a high level handler, adequate for the particular interrupt that occurred. For

instance, the IRQ handler should distinguish a timer interrupt and redirect the execution to the clock

handler. In those cases, RTEMS provides alternative low level exception handlers, prepared to store the

context, redirect to a high level handler and finally restore the context to return to the normal execution.

The function that installs the low level handlers is arm cp15 set exception handler(). This function per-

forms several accesses to the processor that should not be performed with AIR, so a simplified version

was implemented and can be seen in Figure 4.5.

This function receives two arguments: the exception for which the handler should be replaced, and

the routine that should replace the current handler. It declares, in line 10, a pointer to the memory

region containing the addresses of the current handlers, and, if the current and the new handlers are

different functions, replaces, in line 16, the address corresponding to the current exception handler by

the address of the function received as an argument.

As for the initialization of device drivers, the only driver that should be configured is the clock. All

the remaining I/O drivers should be managed by AIR through the IOP, and the header file containing the

RTEMS configuration macros that was generated by the AIR configurator does not include any other

device.

40

1 void arm_cp15_set_exception_handler(

2 Arm_symbolic_exception_name exception,

3 void (*handler)(void)

4)

5 {

6 if ((unsigned) exception < MAX_EXCEPTIONS) {

7
8 #ifdef AIR_HYPERVISOR

9 uint32_t *tbr = (uint32_t *)bsp_vector_table_begin;

10 uint32_t *mirror_table = tbr + MAX_EXCEPTIONS;

11 uint32_t current_handler = mirror_table[exception];

12
13 if (current_handler != (uint32_t) handler) {

14 rtems_interrupt_level level;

15 rtems_interrupt_local_disable(level);

16 mirror_table[exception]=(uint32_t) handler;

17 rtems_interrupt_local_enable(level);

18 }

19
20 #else

21 (...)

Figure 4.5: Routine to install the exception handlers.

The clock initialization consists on, first, installing a clock handler to the corresponding interrupt ID. In

the Cortex-A9 this is done through the a9mpcore clock handler install() function, which does not require

virtualization. This function is used to install the Clock isr() routine as the exception handler for the

Global Timer (GT) interrupt. The virtualization of Clock isr() will be approached in Section 4.5.3.

Then, in a9mpcore clock initialize(), the GT registers are accessed in order to initialize the RTEMS

timecounter. With AIR, this function is replaced by air a9mpcore clock initialize, its virtualized version,

presented in Figure 4.6.

1 static uint32_t air_clock_get_timecount(struct timecounter *tc) {

2 (void) tc;

3 return (uint32_t)air_syscall_get_elapsed_ticks()*

rtems_configuration_get_microseconds_per_tick();

4 }

5
6 static void air_a9mpcore_clock_initialize(void) {

7 uint32_t now;

8 now = (uint32_t) air_syscall_get_elapsed_ticks();

9 air_clock_last = (uint32_t) now;

10
11 air_tc.tc_get_timecount = air_clock_get_timecount;

12 air_tc.tc_counter_mask = 0xffffffff;

13 air_tc.tc_frequency = 1000000/rtems_configuration_get_microseconds_per_tick();

14 air_tc.tc_quality = RTEMS_TIMECOUNTER_QUALITY_CLOCK_DRIVER;

15 rtems_timecounter_install(&air_tc);

16 }

Figure 4.6: Virtualization of the clock initialization and the timecounter tick.

This function, instead of accessing the real processor registers, uses the AIR system call in line

8 to get the time elapsed since the beginning of the partition, and set the AIR timecounter with the

41

appropriate data in lines 11 to 15.

This concludes the features that require virtualization in the system initialization. After going through

all features configured for an application, the RTEMS initialization is complete, and the OS is ready to

pass the control to the user application.

4.4 User Application

The application’s init.c is generated by the configurator through the init.c.mako template. This file is

part of the user application, designed to run in an unprivileged mode, so it does not require virtualization.

However, since it was intended for SPARC, some modifications need to be applied so that it can run on

ARM as well.

The Init() function, before redirecting the execution to the entry point defined in the configuration,

installs a HM handler. The reason why AIR installs a HM handler is so that the application programmer

can change the HM Callback as desired. When AIR only supported the SPARC architecture, the HM

handler was installed through the rtems interrupt catch() function. This function is only defined for CPU

architectures with simply vectored interrupts, which, as previously discussed, is not the case for ARM.

In order to keep Init() a common function between all architectures, the rtems interrupt catch() function

was replaced by a new function, hm handler install(), which is defined in the same file. Figure 4.7 shows

the implementation of install hm handler() in the init.c.mako template.

1 /**

2 * @brief Install the HM handler

3 */

4 %if os_configuration.arch == "arm":

5 void hm_handler_install(void *handler){

6 arm_cp15_set_exception_handler(ARM_EXCEPTION_DATA_ABORT, &_ARMV4_Exception_data_abort);

7 _ARMV4_Exception_data_abort_set_handler(handler);

8 arm_cp15_set_exception_handler(ARM_EXCEPTION_PREF_ABORT, &_ARMV4_Exception_prefetch_abort);

9 _ARMV4_Exception_prefetch_abort_set_handler(handler);

10 arm_cp15_set_exception_handler(ARM_EXCEPTION_UNDEF, &_ARMV4_Exception_prefetch_abort);

11 }

12 %else:

13 void hm_handler_install(void *handler){

14
15 rtems_isr_entry isr_ignored;

16 rtems_interrupt_catch(

17 (rtems_isr_entry)handler,

18 AIR_IRQ_HM_EVENT,

19 &isr_ignored);

20 }

21 %endif

Figure 4.7: Implementation of hm handler install in init.c.mako.

The Mako template allows for conditionals, and so, in case of configuring a target architecture other

than ARM, the hm handler install() will consist of the same code that previously installed the handlers,

as shown in lines 12 to 21 of Figure 4.7. If the target architecture is ARM, then the HM handler

needs to be installed for each of the abort and undefined exceptions. This was achieved through the

42

arm cp15 install handler() function, used in lines 6, 8 and 10 to replace the RTEMS default exception

handlers by the alternative low level handlers provided by RTEMS, as discussed in the previous section;

followed by the routines to set the high level handler for each abort exception, in lines 7 and 9, which set

the desired C handler that the low level exception handlers will redirect to.

RTEMS does not provide a handler for the undefined instructions other than the default handler. For

this reason, and since this exception’s handler should perform the same actions as the abort handlers,

the low level handler installed for the undefined exception was the prefetch abort handler (line 10), as a

simpler solution than implementing a new function with the same goal for the undefined exception.

4.5 Exception Handling

Having successfully initialized both RTEMS and the application, the next step is to guarantee that

the exception handling is working correctly. Throughout the application run-time, the execution will be

interrupted by exceptions. These exceptions can be periodic, such as the clock interrupts which will

be raised as IRQ exceptions, or occur in particular events, such as an error that raises an abort or an

undefined exception.

4.5.1 AIR Exception Handler

When an exception is raised, the execution jumps to the trap table in AIR, which branches to the

AIR Exception Handler. This handler starts by storing the Interrupt Stack Frame (ISF) in the IRQ stack,

as depicted in Figure 4.8, making the IRQ SP go from position SP1 to SP2. Then, AIR performs the

adequate actions to handle the exception. IRQs will be handled by the ISR, while the HM handles

aborts and undefined instructions, as well as FIQ exceptions as they are not currently being used by

AIR. SVCs should only be handled by the hypervisor, therefore AIR will not redirect the execution to the

RTEMS SVC handler, instead returning it to the application, following the procedure described in Figure

4.2 and not the one detailed in this section, corresponding to Figure 4.3.

Inside the ISR and the HM, if a) the exception was raised inside a partition, b) the virtual trap table

is initialized, and c) the virtual exception is enabled both by the interrupt flags and by the exception’s

priority, then the handler defines the return address as the address of the corresponding entry in the

virtual trap table configured in Section 4.3.2, rather than the instruction in which the exception was

raised. This means that AIR recognizes that a virtual exception must be raised, and after handling the

real exception, it will redirect the execution to the virtual trap table so that RTEMS can also perform its

exception handling.

If AIR does not recognize a virtual exception, then the context will be restored from the stack, moving

the IRQ SP back to the top of the ISF (position SP1 in Figure 4.8) so that when the next exception occurs,

its context will replace the one that has already been restored. The execution returns to the application,

as in Figure 4.2.

If AIR recognizes a virtual exception, then the processor registers take the values that are stored in

43

the IRQ, but the SP remains at the bottom of the ISF (position SP2) until the end of the virtual exception

handling. This way, if another exception occurs inside the virtual handler (for instance, one of the several

SVCs that are raised inside the virtualized RTEMS IRQ handler), it will be stored below the previous

exception, not corrupting the context that has yet to be restored.

IRQ	Stack

Exception
ISF

IRQ	SP1

IRQ	SP2

Save
Context

Restore
Context

Figure 4.8: Single context storage in AIR exception handling.

4.5.2 RTEMS Exception Handlers

After the AIR exception handler sends the execution to the virtual trap table, the RTEMS exception

handler will be performed. Currently, this applies to IRQs, aborts and undefined instructions, and the

handlers for these exceptions required virtualization. The virtualization of the handler functions is similar,

and mostly consists on preventing the processor to access the PSR registers, either by replacing these

accesses with supervisor calls or, if these accesses are unnecessary when running on top of AIR, by

removing them entirely.

Both the data abort and prefetch abort exception handlers save the previous context before calling

the high level handler. Without hypervisor, the SPSR is saved and the CPSR is accessed to change to

system mode in order to save the user SP and LR. With AIR, the AIR exception handler already has

the previous context stored in the IRQ stack, so these instructions can be removed. It is then verified

whether there is a high level handler installed for that exception. If not, the low level handler will call

the ARM Exception default function, which terminates the program. Otherwise, the installed high level

handler will be executed. As described in Section 4.4, in the application initialization file generated by

the AIR tools, the hm handler was installed as the abort and undefined exceptions’ high level handler,

and will therefore be executed at this point. Afterwards, the context is restored and the exception is

returned to normal execution. The virtualization of this section of the code consist on removing the write

to SPSR and replacing the return from exception instruction for AIR SYSCALL RETT, further explained

in Section 4.5.4.

Although the principle of virtualizing the IRQ handler is the same as for the abort handlers – that is,

preventing accesses to the PSR and using AIR SYSCALL RETT to return to normal execution - the IRQ

handler presents more challenges and will therefore be further detailed.

The main challenge in virtualizing the IRQ handler is that, without a hypervisor, both the SVC stack

44

and the IRQ stack are used to store data. When running on AIR, the whole function will run on user

mode, therefore requiring adaptations to ensure that the data is not corrupted. Two possible solutions

were tested:

• Adjusting the stack pointer so that the storage of data does not replace information that was previ-

ously stored;

• Virtualizing both the SVC stack and the IRQ stack, assigning each virtual stack a part of the user

stack memory.

While the second option is safer in case of an unexpected access to the stack, it requires more

modifications to AIR and more system calls throughout the IRQ handler function, as all the accesses

to the CPSR need to be replaced by supervisor calls to access the virtual PSR, in order to change the

virtual mode and point to the corresponding stack. The first solution is simpler, and, since the operating

mode does not affect the execution, the accesses to the CPSR directed at changing the mode can be

removed from the virtual IRQ handler, not needing to be replaced by system calls, which makes it more

efficient. Since both methods seem to be achieving the same results, the first option is the currently

implemented solution.

After the context is stored, bsp interrupt dispatch() is called. This function accesses the GIC registers

to get the interrupt ID from the Interrupt Acknowledge Register (IAR). While the non-virtualized RTEMS

accesses the real processor register, the AIR SYSCALL ACKNOWLEDGE INT was implemented in AIR

for ARM to get the interrupt ID from the virtual IAR. The bsp interrupt dispatch() function then executes

the handler corresponding to that ID, which has previously been installed during the initialization. Cur-

rently, the only IRQ that is being passed from AIR to the RTEMS handler is the Global Timer (ID=27).

The clock handler will be discussed further in Section 4.5.3.

Having completed the interrupt dispatch, the IRQ handler then verifies if a context switch is necessary

by checking the thread dispatch state. If so, the control is passed to the dispatcher to perform the context

switch. Although the dispatcher itself does not require virtualization, the context switch presents another

challenge for the implementation of AIR SYSCALL RETT, which will be tackled in Section 4.5.4.

Finally, as with the abort exception handlers, the IRQ handler is concluded by restoring the previous

context and returning from the exception, which is done through AIR by calling AIR SYSCALL RETT.

4.5.3 Clock

The precise response times that characterize RTOS are achieved both in AIR and RTEMS through

periodic timer interrupts. When running RTEMS on top of AIR, since the interrupts are managed by the

hypervisor, the time counting in RTEMS must be done through an AIR service rather than by accessing

the real processor timer registers. AIR provides the AIR SYSCALL GET ELAPSED TICKS routine,

which gets the number of ticks elapsed since the partition’s initialization. This routine is used both

in the clock initialization (approached in Section 4.3.3) and in the clock interrupt handler.

The RTEMS clock handler is Clock isr(), installed as the handler for the Global Timer interrupt ID

during the OS initialization. This routine is global to all architectures, and had already been virtualized

45

for AIR for SPARC. Although it uses functions that are specific for each architecture, it calls them us-

ing general macros that RTEMS defines for each BSP, making Clock isr() itself hardware independent.

Therefore, the virtualization of this function for SPARC is applicable for ARM as well, and is presented

in Figure 4.9. The BSP specific functions that it calls are the ones who require modifications.

1 rtems_isr Clock_isr(rtems_vector_number vector)

2 {

3 /*

4 * Accurate count of ISRs

5 */

6 #ifdef AIR_HYPERVISOR

7 /*

8 * AIR control Control_driver_ticks

9 */

10
11 /* AIR sets accurate count of clock ISRs */

12 Clock_driver_ticks= (uint32_t) air_syscall_get_elapsed_ticks();

13
14 /*

15 * Do the hardware specific per-tick action.

16 *

17 * The counter/timer may or may not be set to automatically reload.

18 */

19 Clock_driver_support_at_tick();

20
21 /*

22 * The driver is one ISR per clock tick.

23 */

24 Clock_driver_timecounter_tick();

25
26 #else /* AIR_HYPERVISOR */

27 (...)

Figure 4.9: Virtualization of the clock handler (Clock isr).

The first RTEMS function is called through the macro Clock driver support at tick() in line 19 of Fig-

ure 4.9, which for the Cortex-A9 is defined as a9mpcore clock at tick(). This function updates the global

timer flag by accessing the real processor timer registers, and since this is prohibited in user mode, the

virtualized function was left empty, as the corresponding function in SPARC.

Then, the Clock driver timecounter tick() macro is used in line 24 to call a9mpcore tc tick(). This

function was replaced by its virtualized version, air a9mpcore tc tick(), shown in Figure 4.10.

The air a9mpcore tc tick() routine gets the current time using the AIR system call in line 6 of Figure

4.10, compares it with the last time measurement stored in the global variable air clock last in line 8,

and updates the timecounter accordingly in line 9 through the function rtems timecounter tick(), which

is crucial to ensure that RTEMS scheduler correctly allocates the execution time to the right task.

4.5.4 Return from Exception

The virtualized exception handlers end by calling AIR SYSCALL RETT in order to perform a return

to normal execution. The implementation of this SVC is different from the other exceptions. While other

exceptions need to store the ISF in order to return to the previous context after the exception is handled,

46

1 static void air_a9mpcore_tc_tick(void)

2 {

3 uint32_t now;

4 uint32_t last;

5
6 now = (uint32_t)air_syscall_get_elapsed_ticks();

7 last = air_clock_last;

8 while (now != last) {

9 rtems_timecounter_tick();

10 last += 1;

11 }

12 air_clock_last = last;

13 }

Figure 4.10: Virtualization of the clock initialization and the timecounter tick.

AIR SYSCALL RETT does not need to return to the context before the SVC was called, but rather the

context stored before that, corresponding to the exception from which the return is intended.

When an exception occurs, AIR stores the context in the IRQ stack, as explained in Section 4.5.1.

If another exception is raised before the previous is returned, then the context of the second exception

is stored below the context of the first, as represented in Figure 4.11. For example, when there is a

timer interrupt, an IRQ exception is raised, and its context is stored, taking the place of ISF 1 in the

figure, and moving the SP from SP1 to SP2. Inside the virtualized RTEMS IRQ handler, several SVCs

are called, and their context is stored below the context of the IRQ exception in the IRQ stack, taking

the place of ISF 2 and moving the SP to SP3. The easiest way to implement the AIR SYSCALL RETT

is simply skipping the routine that saves the context. This way, the ISF 2 will not be stored, and the SP

stays in position SP2. Unless RTEMS performed a context switch in the virtual exception handler, the

SP is already pointing to the context that should be recovered, and it is only necessary to update the

exception priority before getting to the routine that restores the context ISF 1.

IRQ	Stack

ISF	1

SP1

SP2

ISF	2

SP3

Figure 4.11: Storage of the context of an exception raised inside an exception handler.

47

Context Switch

In an application with multitasking, RTEMS performs context switches in the cases in which the

scheduler deems it necessary to change the task that is allocated to the processor. This context switch

is performed inside the RTEMS IRQ handler, and does not require virtualization. However, without

accounting for this feature, AIR is not aware that a context switch occurred, and in the return system call,

it will always restore the last context regardless of the context that RTEMS is trying to recover. This will

lead to a different behaviour than the desired.

The solution to this problem relies on the difference between the user SP before and after the RTEMS

exception handling. Recall from Section 3.4.4 that the user SP is separate from the IRQ SP, the former

corresponding to the POS and the latter pointing to the current ISF in AIR. Since RTEMS is running

exclusively in user mode, the contexts inside the OS are stored in the user stack. In context switches

inside the OS, RTEMS changes the user SP to point to the context of the next task. This means that

it is possible to verify if RTEMS performed a context switch in AIR SYSCALL RETT by comparing the

current user SP with the user SP stored in the previous context. If the SP before the exception (the user

SP stored in the ISF) differs from the SP at the end of the exception handler (the current user SP, which

can be obtained by accessing system mode), then AIR knows that the OS performed a context switch

and is trying to recover a different context. AIR can then go through all the stored contexts to find the

one with the user SP that RTEMS means to restore. By changing the IRQ SP, AIR can restore the right

context.

Figure 4.12 exemplifies this situation. In it, an IRQ was raised, its ISF stored (IRQ 1) and a context

switch occurred inside the RTEMS IRQ handler. Since RTEMS changed the task allocated to the pro-

cessor, the handler that was running did not reach AIR SYSCALL RETT, so the IRQ SP stays in position

SP1. When the next timer interrupt occurs (IRQ 2), the context will therefore be stored below IRQ 1, and

the IRQ SP will take the position SP2. Inside IRQ 2, RTEMS performed another context switch to change

back to the context of IRQ 1, and RTEMS changed the user SP to restore this context. The execution

will continue from where the first context switch interrupted, which is the IRQ handler, and will reach

AIR SYSCALL RETT. The last context AIR stored was IRQ 2, and therefore the IRQ SP is in position

SP2. Without the solution presented in this section, AIR would restore IRQ 2, unaware that RTEMS is

attempting to restore IRQ 1. With the presented solution, AIR obtains the user SP by accessing the

system mode, and compares this value to the user SP stored in IRQ 2. As it is different, AIR is informed

that a context switch occurred, and will search the IRQ stack for a context with the same user SP. Once

it finds that IRQ 1 is the context to be restored, AIR moves the IRQ SP to position SP1 to restore the

right ISF.

However, this solution brings a problem of its own as the IRQ SP will no longer be pointing to the

bottom of the stack. When another exception is raised, its context will take the place of the context that

was last restored (IRQ 1), but when the exception handler calls SVCs, the SVC context will replace the

context stored below (IRQ 2), corrupting data that might have yet to be recovered. To solve this issue, the

way IRQs are stored was changed to leave enough space for another frame between two consecutive

IRQs, as depicted in Figure 4.13. This way, when there is an SVC inside the IRQ handler, its context will

48

IRQ	Stack

IRQ	1

IRQ	SP1

IRQ	2

IRQ	SP2

User	SP

User	SP

Figure 4.12: Context switch example.

IRQ	Stack

IRQ	1

IRQ	SP1

IRQ	2

IRQ	SP2

User	SP

User	SP

Space	for
SVC

Figure 4.13: Current context switch solution.

be stored in this space and will not corrupt the contexts of the IRQs below that have yet to be restored.

Floating Unit Registers

As mentioned in Section 3.3.4, when AIR was first migrated to the ARM architecture, the FPU context

was stored in the core context rather than the ISF, meaning that only one FPU context was stored per

core, per partition. This did not take into account the multitask capabilities of the POS, which might be

running different tasks with different FPU registers, and must be able to restore the FPU context as well

as the general registers. For this reason, the FPU context was moved into the ISF, and the stack size

increased in order to contain enough space for multiple FPU and general contexts.

4.6 End of Test

When the test ends, RTEMS shuts down the hardware. When running on top of AIR, the POS should

not be allowed to shutdown the board, and that responsibility falls onto the hypervisor. AIR provides the

AIR SYSCALL SHUTDOWN MODULE, an SVC that should be called at the end of the user applications

to terminate AIR and shutdown the machine.

RTEMS may also attempt to shut down the machine when a process level error occurs. In this

case, the shutdown system call should not be used, as a process level error should not affect the

other partitions or terminate AIR. Instead, the error should be caught by the HM. AIR provides the

AIR SYSCALL RAISE HM EVENT, which receives as an input the ID of the error that should be raised.

The AIR UNIMPLEMENTED ERROR was chosen as the error ID for this case. By using this system

49

call, the user can decide the action that should be taken through the HM tables in the configuration XML

file, and install a HM Callback to resolve the fault.

50

Chapter 5

Evaluation

This chapter describes the tests that were performed to evaluate and validate the improved hypervi-

sor. Section 5.1 introduces both platforms used to test the software, QEMU and Arty Z7. Then, the tests

that were executed were categorized into three main groups:

The first group of tests, approached in Section 5.2, corresponds to the RTEMS Test Suites, a set of

tests that verify several RTEMS features. Through these tests, the behaviour of the virtualized OS can

be compared to the behaviour of RTEMS when running without a hypervisor.

The second group, discussed in Section 5.3, consists of AIR examples, both those designed for

the ARM BSP and those migrated from SPARC. The former are the tests that were already executed

on ARM with the barebones OS, and running them on the current software ensures not only that the

basic OS functionalities are met by the virtualized RTEMS, but also that the modifications to the AIR

hypervisor did not negatively impact the behaviour of the ARM BSP. The latter use RTEMS routines, so

by running them on AIR for ARM the virtualized OS can be further tested, and the behaviour of AIR for

both architectures can be compared.

The third group, presented in Section 5.4, includes the AIR validation tests, a set of tests developed

in the scope of the AIR validation and qualification project to test the required functionalities of a TSP

hypervisor.

5.1 Testing Environment

Throughout this dissertation, the modifications applied to RTEMS and AIR for ARM were tested

through two platforms: QEMU and the Arty Z7 Board.

QEMU is an open source machine emulator [66], that using dynamic translation virtualization meth-

ods, allows software to be executed in machines other than the one it was designed for. It is capable

of emulating a variety of different architectures, including almost fifty ARM machines, one of which is

the Xilinx Zynq SoC equipped with the Cortex-A9, the target architecture of this work. Although QEMU

is a useful tool to test software when the target machine is not available, it is not as accurate as the

real hardware. The limitations of QEMU were mostly felt in the timings of execution, as QEMU does

51

not seem to have the precise notion of time that the board takes in performing certain actions. For this

reason, the testing on the hardware was crucial to detect issues in the program which are not perceived

by the emulator.

The Arty Z7 board [67] by Digilent is based on the Zynq-7000 All Programmable SoC from Xilinx.

This architecture integrates a dual-core, 650 MHz ARM Cortex-A9 processor with Xilinx 7-series Field

Programmable Gate Array (FPGA) logic, which allows several peripherals and controllers to be defined

through design environments such as the Xilinx Vivado Design Suite. The block design conceived in

Vivado and used in this dissertation is depicted in Figure 5.1. This design allows data to be transmitted

through the UART 1 peripheral module by setting it as an external I/O. Through an intuitive design flow,

Vivado can be used to generate an HDL wrapper for the designed configuration and compile it into a

bitstream that can be programmed to the SoC’s FPGA.

Figure 5.1: Vivado block design.

In order to run AIR on the Cortex-A9 and program the FPGA with the bitstream generated from the

Vivado Design, this bitstream was exported to Xilinx’s Software Development Kit (SDK), an Integrated

Design Environment for the development of embedded applications, which provides tools to design,

integrate, launch, and debug a software application in the target Zynq SoC.

5.2 RTEMS Test Suites

There are over 600 tests comprised in the RTEMS test suites, and without an automatized facility to

migrate these programs to AIR and execute the tests, performing all of them would be a time consuming

and exhaustive job. Therefore, only a few of these tests were selected.

First, some of the sample tests were used to start the basic virtualization. These include the hello,

ticker, nsecs, and paranoia tests. Through them it was possible to virtualize and test the RTEMS initial-

ization, exception handling without context switching, and the end of test. Despite their simplicity, the

execution of these tests was critical as most of the modifications performed to RTEMS were decisions

made based on the issues detected from them. In all of them, the functional behavior of the virtualized

RTEMS corresponded to the behavior found in the original RTEMS.

52

5.2.1 Ticker

The ticker test was used to perform a basic timing analysis, comparing the results from the virtualized

RTEMS running on AIR with those of the original RTEMS, both on the QEMU emulator and on the Arty Z7

board. This test is comprised in the RTEMS Sample Test Suite and consists on 3 tasks that periodically

print the time in seconds:

• TA1, printing the time every 5 seconds;

• TA2, printing the time every 10 seconds;

• TA3, printing the time every 15 seconds.

To compare the original RTEMS with the virtualized RTOS, as well as to study the impact of partition-

ing in the response timings, the application was migrated into two partitions, splitting a major time frame

of 2 seconds into two applications running for 1 second each. The example was configured at a fre-

quency of 100 Ticks per second. As observable in Table 5.2.1, the results of both partitions correspond

exactly to the expected, demonstrating that the partitioning did not affect the timings of execution.

Original
RTEMS Virtualized RTEMS

Task Arty Z7 QEMU Arty Z7

TA1
TA2
TA3
TA1
TA2
TA1
TA1
TA3
TA2
TA1
TA1
TA2
TA1
TA3

0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

P1 P2

0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

P1 P2

0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

Table 5.1: Times printed (in seconds) in the ticker test, with a frequency of 100 ticks per second and two
partitions.

To further analyze the influence of the frequency in the timings of the system, the test was repeated

in AIR with different values of ticks per second. Table 5.2.1 presents the results. It is possible to observe

that QEMU presents a consistent margin of error corresponding to the value of seconds per tick in one

or more tasks. The Arty Z7 board seems to be more affected by the different frequencies, presenting

errors of up to 18ms for the highest frequency tested, 9 times the value of seconds per tick.

The higher the frequency, the more times the AIR scheduling routine will be executed, introducing

delays that need to be taken into consideration when integrating AIR in real time space applications,

hence requiring these errors to be further investigated. However, it should be noted that these results

53

Task 50 Ticks/s 100 Ticks/s 200 Ticks/s 500 Ticks/s

TA1
TA2
TA3
TA1
TA2
TA1
TA1
TA3
TA2
TA1
TA1
TA2
TA1
TA3

QEMU & Arty Z7

0,00
0,00
0,00
5,02

10,02
10,02
15,02
15,02
20,02
20,02
25,02
30,02
30,02
30,02

QEMU & Arty Z7

0,00
0,00
0,00
5,00

10,00
10,00
15,00
15,00
20,00
20,00
25,00
30,00
30,00
30,00

QEMU Arty Z7

0,000
0,000
0,000
4,995
9,995
9,995

15,000
14,990
19,995
20,000
25,000
29,995
30,000
29,990

0,000
0,000
0,000
5,005

10,000
10,005
15,005
15,000
20,000
20,005
25,005
30,000
30,005
30,000

QEMU Arty Z7

0,000
0,000
0,000
5,002

10,000
10,002
15,002
15,000
20,000
20,002
25,002
30,000
30,002
30,000

0,000
0,000
0,000
5,002

10,002
10,006
15,010
15,004
20,004
20,014
25,016
30,006
30,018
30,006

Table 5.2: Times printed (in seconds) in the ticker test running on AIR for ARM, with varying frequencies
and a single partition.

were obtained from console prints, which is not a reliable method for time analysis as the prints them-

selves may significantly affect the timings. It is therefore imperative to acquire tools to perform a more

accurate time analysis before implementing this software in safety critical real time systems.

5.2.2 Pthread and spcontext

Once the sample tests achieved a behaviour similar to the one presented in the original RTEMS, two

more complex tests were selected based on the recommendations of the RTEMS organization: pthread

and spcontext.

The pthread test is part of the POSIX API Test Suite, designed to test the thread creation in confor-

mity with the POSIX standard. This test performed as expected, presenting the same behavior on the

original and the virtualized RTEMS, requiring no modifications to the software.

The spcontext test is comprised in the RTEMS Single Processor Test Suite, which are tests de-

signed to provide a code coverage of more than 98% of the single processor code in RTEMS. The

spcontext test was selected for its complexity by suggestion of the RTEMS organization, but in the fu-

ture, more of these tests should be performed to ensure the correct virtualization of the single processor

code. This test creates three tasks of different priorities and different FPU contexts, and activates a timer

that switches the task priorities in periodic time intervals. The scheduler will therefore perform context

switches, and the application verifies whether the context was correctly restored. This test was used to

develop and validate the context switch solution in the AIR exception return, described in Section 4.5.4.

Through this test it was possible to verify that this solution performs correctly, saving and restoring the

correct contexts without corrupting data.

54

5.3 AIR Examples

AIR provides a set of examples to test the basic functionalities of the hypervisor. These examples do

not have hardware dependencies, but can still be split into the tests that were designed to test the ARM

BSP and those that were originally developed for SPARC.

5.3.1 ARM unit tests

The ARM unit tests of the AIR example set were first designed to test the initial migration of AIR

to the ARM architecture, when only a barebones OS was available. By running these applications with

RTEMS, it is possible to compare the behaviour of the two operating systems, as well as to verify that the

modifications applied to AIR did not negatively impact the hypervisor. All of the single processor ARM

unit tests were successfully deployed on the current software, being the two most relevant the time and

the HM examples.

Time example

RTEMS offers mechanisms to create periodic tasks and to sleep for a defined period of time. The

barebones OS does not provide such functionalities, and since the time example was developed for the

barebones OS, it does not use functions with precise timings, but rather relies on loops to print the time

at unpredictable intervals, as presented in the code of Figure 5.2. Therefore, this test will not allow an

accurate timing analysis, but will present a basic means of comparison of the speeds of the barebones

OS and the virtualized RTEMS.

1 /*Measurement m*/

2 for(m = 0; m < 8; m++) {

3 for(i = 0; i < wait_loops[m]; ++i) {

4 /*Do nothing*/

5 }

6 tick = air_syscall_get_elapsed_ticks();

7 t = tick * ms_per_tick;

8 printf("time = %d\n", t);

9 }

Figure 5.2: Code of the measurements in the time example of the ARM unit tests.

The times printed by this test in a single partition are presented in Table 5.3.1 in milliseconds, t

referring to the time stamp at the print and ∆t to the time passed since the last stamp.

From these results it is possible to observe that RTEMS is consistently slower than the barebones

OS. These results are expected, considering that both the initialization and the exception handling in

RTEMS are significantly more complex than the barebones OS’s. The RTEMS initialization presents an

overhead of 9ms, 3 times the overhead of the barebones OS. After the initialization, RTEMS consistently

takes added 0,11ms for each ms of the execution of the barebones OS. This consistency is a good

indicator of the predictability of RTEMS.

55

Measurement Arty Z7

m wait loops

0 0
1 16777215
2 33554431
3 83886079
4 117440511
5 1048575
6 50331647
7 50331647

BARE RTEMS

t(ms) ∆t(ms)

3 0
5136 5133

15403 1026
41059 25656
76976 35917
77303 327
92700 15387

108096 15396

t(ms) ∆t(ms)

9 0
5709 5700

17103 11394
45585 28482
85451 39866
85814 363

102902 17088
119994 17092

∆tRTEMS−∆tBARE

∆tBARE

2,0000
0,1105
0,1098
0,1101
0,1099
0,1101
0,1098
0,1102

Table 5.3: Times printed (in milliseconds) in the time example of the ARM unit tests.

HM example

The other relevant ARM unit test is the HM example, in which different errors can be induced to

ensure that the HM is capable of adequately containing and handling them through the actions defined

in the HM tables of the configuration XML. Both partition and module level errors were tested and AIR

performed as expected, as presented in Table 5.3.1.

Level Action Results

Partition

IDLE Stops the partition and enters IDLE mode.

WARM START Restarts the partition.COLD START

IGNORE Performs the HM Callback and returns to execution.

Module
SHUTDOWN Shuts down the module.

RESET Restarts the module.

IGNORE Returns to the instruction that raised the error.

Table 5.4: Results obtained from the HM ARM unit test.

The test was performed with 1 and 2 partitions, obtaining the same results. The partition level

errors were successfully contained inside the partition in which they were raised, while the module level

errors affect the whole module. Errors inside the partition HM Callback were also tested, performing as

expected, achieving the same results as the partition level errors in Table 5.3.1.

5.3.2 Tests migrated from SPARC

The tests that were developed for SPARC use RTEMS routines, hence why they had not previously

been deployed in AIR for ARM. After achieving a virtualized RTEMS for the ARM architecture, these

examples can be effortlessly deployed in the target hardware, making it possible to perform a basic

comparison of the behavior of AIR for both architectures. The SPARC based hardware used to perform

this comparison was GR740, a rad-hard SoC featuring a LEON4 SPARC processor that is provided by

GMV.

56

The tests executed include hello world, periodic, ports and shm (shared memory).

The virtualization of RTEMS should not affect the inter-partition communication nor the AIR shared

memory, and the ports and shm tests ensured that these functionalities remained unchanged.

The periodic example tests the creation of periodic tasks through RTEMS functions, ensuring that

these features provided by the Task and the Rate Monotonic managers are correctly virtualized. These

tests all performed as expected, exhibiting same behavior as AIR for SPARC.

The hello world example provided by AIR prints not only the classical hello message but also the

time, and it was used to compare the timings of execution of the two ARM platforms with the SPARC

board. It consists on 3 partitions (P1, P2 and P3), each performing a loop of 10 iterations in which they

print the hello message and the time at intervals of 0,1 seconds. The configured schedule uses a single

core (CPU 0) and defines a major time frame of 1 second, assigning 0,3 seconds to each partition, at a

rate of 500 ticks per second. Figure 5.3 represents the first major time frame of this example’s schedule.

As depicted, the time counters in each partition are configured to count the global time, meaning the

total time elapsed since the partition start (including the time in which the partition is not active). The

diamond shapes in the diagram represent each print of the time.

P2,	CPU	0

0 t0,3 0,6 0,9 1

Major	Time	Frame

P3,	CPU	0

P1,	CPU	0 P1,	CPU	0P1

P2

P3

C1	=	0,0

C2	=	0,0

C3	=	0,0

...

Cx	=	Time	counter	of	partition	X
=	Partition	prints	the	time

C1	=	0,3

C2	=	0,3

C1	=	1,0

C2
C3

C1

C3	=	0,3

Figure 5.3: Diagram of the Hello World example schedule.

Table 5.3.2 shows the times, in seconds, printed in the tests. The horizontal lines in between the

values represent partition switches. Although the applications are not running at the same time, since

each time counter starts at the start of the partition, the three partitions can be viewed as parallel.

There is a considerable difference of up to 50ms between the results obtained from GR740 and

those of the Arty Z7 board. One possible reason might be the fact that AIR for SPARC is compiled using

optimization flags to improve its performance, while AIR for ARM is currently being compiled without

optimization options to ease the debugging. Once AIR for ARM achieves a higher maturity and stability,

these options should be explored for a more accurate performance comparison.

57

SPARC ARM

GR740 QEMU Arty Z7

P1 P2 P3

0,004 0,006 0,006
0,104 0,104 0,104
0,204 0,208 0,204

1,008 1,008 1,008
1,108 1,108 1,108
1,208 1,208 1,214

2,008 2,008 2,008
2,108 2,108 2,108
2,208 2,208 2,208

3,008 3,008 3,008

P1 P2 P3

0,016 0,014 0,014
0,116 0,114 0,114
0,216 0,214 0,214

1,006 1,006 1,004
1,102 1,102 1,106
1,202 1,202 1,206

2,006 2,006 2,006
2,102 2,106 2,106
2,202 2,206 2,206

3,006 3,006 3,008

P1 P2 P3

0,010 0,010 0,010
0,116 0,116 0,116
0,222 0,222 0,222

1,044 1,044 1,044
1,150 1,150 1,150
1,256 1,256 1,256

2,044 2,044 2,044
2,150 2,150 2,150
2,256 2,256 2,256

3,044 3,044 3,044

Table 5.5: Times printed (in seconds) in the Hello World example provided by AIR.

In the Arty Z7 board, the timings of the three partitions were exactly the same, showing that, although

the reason for the lower speeds than those obtained in SPARC must be studied, the system seems to

behave in predictable timings, which is the main concern in real time applications.

5.4 AIR Validation Tests

The qualification of AIR for space applications by a recognized entity such as ESA would bring

significant value to the hypervisor. To achieve this in the future, extensive testing is required, and the

AIR validation and qualification project was started to implement a set of tests with a nearly total code

coverage with the goal of validating the required functionalities of a TSP hypervisor.

Currently the AIR validation tests comprise 38 tests designed for the SPARC architecture. 21 of these

tests have been successfully executed on AIR for ARM, presenting the same results in both supported

architectures:

• TEST-DEF-00021 Tests different partition mode transitions. Verifies that invalid transitions raise

HM errors and that the valid mode transitions are performed correctly.

• TEST-DEF-00022: Verifies that a HM error is raised when one partition attempts to change the

mode of another.

• TEST-DEF-00023: Tests the GET A PARTITION ID syscall.

• TEST-DEF-00500: Tests if a branch into a non-code address raises a HM error. Checks that the

remaining partitions are not affected.

• TEST-DEF-00510: Tests if a branch into an unaligned address raises a HM error. Checks that the

remaining partitions are not affected

• TEST-DEF-01390: Tests a schedule change during the application execution

58

• TEST-DEF-01590: Tests the TSP Abstraction Layer Initialization (TSAL INIT) service

• TEST-DEF-01620: Tests the Module Level Recovery (RESET)

• TEST-DEF-01630: Tests the Module Level Recovery (SHUTDOWN)

• TEST-DEF-01650: Tests the SET PARTITION MODE system call to an invalid mode.

• TEST-DEF-01730: Tests the inter-partition communication through multicast messages

• TEST-DEF-01740: Tests READ UPDATED SAMPLING MESSAGE function.

• TEST-DEF-01741: Tests GET SAMPLING PORT CURRENT STATUS function.

• TEST-DEF-01750: Tests the routines to get the module schedule ID and status.

• TEST-DEF-02100: Tests Multiple Module Schedules (MMS) Data Types.

• TEST-DEF-02101: Test the SET MODULE SCHEDULE without partition restart.

• TEST-DEF-02102: Tests the SET MODULE SCHEDULE with partition restart.

• TEST-DEF-02105: Tests the SET MODULE SCHEDULE with invalid schedule identifiers and par-

tition privilege.

• TEST-DEF-02107: Tests the GET MODULE SCHEDULE ID with valid parameters.

• TEST-DEF-02108: Tests the GET MODULE SCHEDULE ID with invalid parameters

• TEST-DEF-80060: Tests the system partition memory permissions.

From the tests that are currently running successfully on AIR for ARM it can be concluded that the

basic hypervisor requirements are met. The validation tests that still need to be investigated and adapted

to the ARM architecture include:

• 3 tests that fail due to timing constraints, as AIR for ARM presents different timings than AIR for

SPARC, as discussed in Section 5.3;

• 9 tests that rely on SPARC specific language and that have yet to be adapted to run on ARM;

• 5 tests that use cache register handling system calls that have not yet been implemented in AIR

for ARM.

59

60

Chapter 6

Conclusions

Prior to this dissertation, AIR for ARM only supported a simple barebones guest OS that lacked

important functionalities for the deployment on high profile space missions. The goal of this thesis was

to further develop the ARM BSP for AIR by allowing it to run RTEMS, the RTOS currently adopted by

ESA and NASA in a variety of space missions. This objective was successfully achieved through the

virtualization of RTEMS, and through applying the necessary modifications to the AIR hypervisor to

ensure that it does not interfere with the behavior of the guest OS.

6.1 Achievements

From a functional standpoint, the virtualization of RTEMS was successfully accomplished. The

changes on RTEMS achieved a virtualized OS that behaves as the original RTOS running in a non

virtualized environment. This virtualization made AIR for ARM capable of running single core appli-

cations designed for this OS, including a wide range of tests that were previously not available in this

target architecture due to the simplicity of the barebones OS and that allow the further validation of the

hypervisor. These tests include RTEMS Testsuites, AIR examples and the validation tests developed to

test AIR for SPARC with a nearly total code coverage. Of the 38 validation tests currently executing in

AIR for SPARC, 21 were successfully deployed in AIR for ARM. A comparison between the two archi-

tectures currently supported by AIR showed that AIR for ARM achieved the same results regarding the

hypervisor functionalities as AIR for SPARC.

From a temporal perspective, the virtualized RTOS allowed for a more detailed analysis of the timings

of execution, showing the limitations that the ARM BSP still presents and that require further investigation

through the usage of profiling and evaluation tools capable of more accurate timing analysis.

Additionally to the software development, the iterative process used to achieve the stated goals of

this dissertation was documented step-by-step, providing a resource that can be used for guiding the

virtualization of RTOS in future projects.

61

6.2 Future Work

While this dissertation further developed the ARM BSP for the AIR hypervisor, there is still work to

be done in order to achieve the maturity that the SPARC BSP presents. The three next steps, currently

in progress, are virtualizing the RTEMS support for multi-core applications, expanding the number of

device drivers supported by AIR for ARM, and executing the 17 remaining validation tests that have yet

to run successfully on AIR for ARM, either by adapting them to the ARM architecture or implementing

the missing system calls in AIR for ARM.

Although from a functional perspective the behavior of the software corresponds to the expected, the

timings of execution still require further study, and in that prospect, it is crucial to acquire tools for a more

accurate timing analysis, such as RapiTime [68] or VectorCAST [69], and apply them to AIR to ensure

its timely behavior.

In the long term, the qualification of AIR for space applications by ESA would bring value and recog-

nition to the hypervisor. To achieve this, extensive testing is needed, and therefore tools to automatically

test, validate and verify AIR should be implemented. A possible tool that is being studied is the Con-

tinuous Integration and Continuous Development (CI/CD) tools built into GitLab Runner, that can be

used to perform scripts and send the results back to GitLab. The possibility of taking advantage of

GitLab Runner along with tools to generate validation tests with the highest code coverage achievable

would provide a fast, easy and reliable platform for effortlessly weaving the testing into the development

process, allowing the immediate detection of issues and assisting their solution.

62

Bibliography

[1] H. Butz. Open integrated modular avionic (IMA): State of the art and future development road map

at airbus deutschland”. 1st International Workshop on Aircraft System Technologies, 2010.

[2] Airlines Electronic Engineering Committee. Avionics Application Software Standard Interface Part

1 - Required Services, December 2005.

[3] GMV Innovating Solutions SL. AIR: ARINC 653 in real time. [Online] https://www.gmv.com/en/

Products/air/, . Accessed: 24 February 2020.

[4] B. Gomes, D. Silveira, L. Gouveia, and L. Mendes. AIR hypervisor using RTEMS SMP. European

Workshop on On-Board Data Processing, 2019.

[5] M. Muñoz, G. Montano, M. Wirkus, K. Höflinger, D. Silveira, N. Tsiogkas, J. Hugues, H. Bruyn-

inckx, I. Dragomir, and A. Muhammad. ESROCOS: A Robotic Operating System For Space And

Terrestrial Applications. June 2017.

[6] L. Mendes. Hypervisor board support package migration. Master’s thesis, Instituto Superior

Técnico, May 2019.

[7] INFANTE Space. INFANTE – Satellite for Maritime Applications, 2019. [Online] http://www.

infante.space/. Accessed: 24 February 2020.

[8] Portugal Space. PT Space Website, 2019. [Online] https://www.ptspace.pt/. Accessed: 5

August 2020.

[9] RTEMS Project and contributors. RTEMS User Manual, 2020. [Online] https://docs.rtems.org/

branches/master/user/index.html. Accessed: 24 February 2020.

[10] RTEMS Project and contributors. RTEMS Qualification Project, 2017. [Online] https://

qualification.rtems.org. Accessed: 24 February 2020.

[11] RTEMS Project and contributors. RTEMS documentation project, 2018. [Online] https://docs.

rtems.org/. Accessed: 24 February 2020.

[12] RTEMS Project and contributors. RTEMS historical timeline, 2020. [Online] https://devel.rtems.

org/wiki/History/Timeline. Accessed: 24 February 2020.

63

https://www.gmv.com/en/Products/air/
https://www.gmv.com/en/Products/air/
http://www.infante.space/
http://www.infante.space/
https://www.ptspace.pt/
https://docs.rtems.org/branches/master/user/index.html
https://docs.rtems.org/branches/master/user/index.html
https://qualification.rtems.org
https://qualification.rtems.org
https://docs.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/wiki/History/Timeline
https://devel.rtems.org/wiki/History/Timeline

[13] H. Butz. The airbus approach to open modular avionics (IMA): Tehcnology, methods, processes

and future road map. Department of Avionic Systems at Airbus Deutschland GmbH, 2007.

[14] C. B. Watkins and R. Walter. Transitioning from federated avionics architectures to Integrated Mod-

ular Avionics. AIAA/IEEE Digital Avionics Systems Conference - Proceedings, 2007.

[15] H. Kuqshal. An Approach to Electrical Integration: Integrated Modular Avionics. A Workshop on

Futuristic Aerospace Vehicles Integration and Testing, 2014.

[16] Y. Li, W. Li, and C. Jiang. A survey of virtual machine system: Current technology and future trends.

Electronic Commerce and Security, International Symposium, July 2010.

[17] R. A. Meyer and L. H. Seawright. A virtual machine time-sharing system. IBM Systems Journal,

1970.

[18] R. P. Goldberg. Survey of virtual machine research. Computer, June 1974.

[19] J. P. Buzen and U. O. Gagliardi. The evolution of virtual machine architecture. In Proceedings of the

June 4-8, 1973, National Computer Conference and Exposition, New York, USA, 1973. Association

for Computing Machinery.

[20] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third generation architectures.

Communications of the ACM, July 1974.

[21] R. Mijat and A. Nightingale. Virtualization is coming to a platform near you. White Pa-

per, ARM Limited, 2011. [Online] https://virtualization.network/Resources/Whitepapers/

62e6d178-424d-4faa-81e2-98ef3833313a_System-MMU-Whitepaper-v8.0.pdf. Acessed: 7 June

2020.

[22] VMWare. Understanding full virtualization, paravirtualization, and hardware

assist. White paper. [Online] https://www.vmware.com/techpapers/2007/

understanding-full-virtualization-paravirtualizat-1008.html, March 2008. Accessed: 7

June 2020.

[23] Airlines Electronic Engineering Committee. Avionics Application Software Standard Interface Part

2 - Extended Services, March 2008.

[24] The Consultative Committee for Space Data Systems. Spacecraft Onboard Interface Services. In

Ccsds 850.0-G-2, pages 1–88. CCSDS Secretariat, Washington DC, 2007.

[25] J. Windsor. IMA-SP and Security Status of Activies & Roadmap - 4th ESA Workshop on Avion-

ics, Data, Control and Software Systems , 2010. [Online] https://indico.esa.int/event/63/

contributions/2842/. Accessed: 7 June 2020.

[26] R. Kaiser and S. Wagner. Evolution of the PikeOS microkernel. International Workshop on Micro-

kernels for Embedded Systems, January 2007.

64

https://virtualization.network/Resources/Whitepapers/62e6d178-424d-4faa-81e2-98ef3833313a_System-MMU-Whitepaper-v8.0.pdf
https://virtualization.network/Resources/Whitepapers/62e6d178-424d-4faa-81e2-98ef3833313a_System-MMU-Whitepaper-v8.0.pdf
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://indico.esa.int/event/63/contributions/2842/
https://indico.esa.int/event/63/contributions/2842/

[27] M. Masmano, I. Ripoll, and A. Crespo. An overview of the xtratum nanokernel. Proceedings of

the Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT),

January 2005.

[28] D. J. A. F. Miranda, M. A. Ferreira, F. Kucinskis, and D. McComas. A Comparative Survey on Flight

Software Frameworks for New Space Nanosatellite Missions. Journal of Aerospace Technology

and Management, 11, 2019. ISSN 2175-9146.

[29] Space Avionics Open Interface Architecture. SAVOIR-IMA. [Online] https://savoir.estec.esa.

int/, 2017. Accessed: 7 June 2020.

[30] K. G. Shin and P. Ramanathan. Real-time computing: a new discipline of computer science and

engineering. Proceedings of the IEEE, 1994.

[31] M. H. M. Cheng. A Predictable Real Time Operating System. University of Victoria, October

2003. [Online] https://webhome.csc.uvic.ca/~mcheng/research/predictable.pdf. Accessed:

7 June 2020.

[32] L. Beus-Dukic. COTS Real-Time Operating Systems in Space. Safety Systems: The Safety-Critical

Systems Club Newsletter, pages 1–5, 2001.

[33] E. G. Stassinopoulos and K. A. Label. The Near-Earth Space Radiation Environment for Electron-

ics. Info Espacio, Boletin Informativo Space Magazine, pages 1–6, 2004.

[34] O. Hoftberger. Design Approaches for Radiation Hardening in Digital Circuits. December 2014.

[35] A. S. Keys, J. H. Adams, D. O. Frazier, M. C. Patrick, M. D. Watson, M. A. Johnson, J. D. Cressler,

and E. A. Kolawa. Developments in Radiation-Hardened Electronics Applicable to the Vision for

Space Exploration. pages 1–10, 2007.

[36] T. M. Lovelly. Comparative Analysis of Space-Grade Processors. PhD thesis, University of Florida,

2017.

[37] J. Krywko. Space-grade CPUs: How do you send more computing power into space?

Ars Technica, November 2019. [Online] https://arstechnica.com/science/2019/11/

space-grade-cpus-how-do-you-send-more-computing-power-into-space/. Accessed: 10 Au-

gust 2020.

[38] The European Space Agency. Leading up to LEON: ESA’s first microprocessors,

2013. [Online] https://www.esa.int/Enabling_Support/Space_Engineering_Technology/

Leading_up_to_LEON_ESA_s_first_microprocessors. Accessed: 10 August 2020.

[39] J. Gaisler. 25 Years of SPARC - a personal introspective, 2017. [Online] https://indico.esa.int/

event/182/contributions/1526/attachments/1400/1625/0905_-_Gaisler.pdf. Accessed: 10

August 2020.

65

https://savoir.estec.esa.int/
https://savoir.estec.esa.int/
https://webhome.csc.uvic.ca/~mcheng/research/predictable.pdf
https://arstechnica.com/science/2019/11/space-grade-cpus-how-do-you-send-more-computing-power-into-space/
https://arstechnica.com/science/2019/11/space-grade-cpus-how-do-you-send-more-computing-power-into-space/
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Leading_up_to_LEON_ESA_s_first_microprocessors
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Leading_up_to_LEON_ESA_s_first_microprocessors
https://indico.esa.int/event/182/contributions/1526/attachments/1400/1625/0905_-_Gaisler.pdf
https://indico.esa.int/event/182/contributions/1526/attachments/1400/1625/0905_-_Gaisler.pdf

[40] J. Gaisler. Fault-Tolerant and Radiation Hardened SPARC Processors. [Online] https://indico.

cern.ch/event/11994/contributions/84457/attachments/63921/91833/P2_Gaisler.pdf. Ac-

cessed: 10 August 2020.

[41] J. Gaisler. A Portable and Fault-Tolerant Microprocessor Based on the SPARC V8Architecture.

Proceedings International Conference on Dependable Systems and Networks, 2002.

[42] W. Powell. High-Performance Spaceflight Computing (HPSC) Project Overview. Radiation

Hardened Electronics Technology (RHET) Conference, 2018. [Online] https://ntrs.nasa.gov/

archive/nasa/casi.ntrs.nasa.gov/20180007636.pdf.

[43] J. Keller. Air force, nasa to develop radiation-hardened arm processor for next-generation space

computing. Military & Aerospace Electronics, June 2016.

[44] C. Christopherson. New ARM-based computing system to enable deep space missions. ARM

Research, March 2018.

[45] DAHLIA. Deep sub-micron microprocessor for spAce rad-Hard appLIcation Asic, 2017. [Online]

https://dahlia-h2020.eu/. Accessed: 7 June 2020.

[46] J. Poupat, T. Helfers, P. Basset, A. G. Llovera, M. Mattavelli, C. Papadas, and O. Lepape. DAHLIA -

very high performance microprocessor for space applications. IEEE Conference on Space Mission

Challenges for Information Technology.

[47] U.S. Army. Real Time Executive for Military Systems, 1993. [Online] https://www.rtems.org/

sites/default/files/RTEMS_Army_Brochure_1993.pdf. Accessed: 7 June 2020.

[48] H. Silva, J. Sousa, D. Freitas, S. Faustino, A. Constantino, and M. Coutinho. RTEMS Improvement-

Space Qualification of RTEMS Executive. Library, 2009.

[49] K. K. Sheridan-Barbian. A survey of real-time operating systems and virtualization solutions

for space systems. [Online] https://core.ac.uk/download/pdf/36737386.pdf. Accessed: 7

September 2020.

[50] G. Bloom and J. Sherrill. Scheduling and thread management with rtems. SIGBED Review, Asso-

ciation for Computing Machinery, February 2014.

[51] J. Sherrill. First Images From NASA Solar Dynamic Observatory, April 2010. [Online] https:

//www.rtems.org/node/47. Accessed: 7 June 2020.

[52] The European Space Agency. Software Engineering and Standardization - Operating

Systems. [Online] http://www.esa.int/TEC/Software_engineering_and_standardisation/

TECLUMKNUQE_2.html. Accessed: 7 June 2020.

[53] Digilent. ZedBoard Zynq-7000 Development Board Reference Manual. [Online] https://

reference.digilentinc.com/reference/programmable-logic/zedboard/reference-manual.

Accessed: 6 July 2020.

66

https://indico.cern.ch/event/11994/contributions/84457/attachments/63921/91833/P2_Gaisler.pdf
https://indico.cern.ch/event/11994/contributions/84457/attachments/63921/91833/P2_Gaisler.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180007636.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180007636.pdf
https://dahlia-h2020.eu/
https://www.rtems.org/sites/default/files/RTEMS_Army_Brochure_1993.pdf
https://www.rtems.org/sites/default/files/RTEMS_Army_Brochure_1993.pdf
https://core.ac.uk/download/pdf/36737386.pdf
https://www.rtems.org/node/47
https://www.rtems.org/node/47
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECLUMKNUQE_2.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECLUMKNUQE_2.html
https://reference.digilentinc.com/reference/programmable-logic/zedboard/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/zedboard/reference-manual

[54] The European Space Agency. IMA Separation Kernel Qualification - preparation. [On-

line] https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_

Future/IMA_Separation_Kernel_Qualification_-_preparation, 2016. Accessed: 11 August

2020.

[55] GMV Innovating Solutions SL. AIR Repository, . [Online] https://spass-git-ext.gmv.com/AIR.

Accessed: 7 November 2019.

[56] GMV Innovating Solutions SL. GMV participates in the payload of the Infante satellite,

2017. GMV News [Online] https://www.gmv.com/en/Company/Communication/News/2017/12/

Infante.html. Accessed; 11 August 2020.

[57] PLD Space. MIURA Webpage, 2018. [Online] http://pldspace.com/new/2018/11/13/

pld-space-miura/. Accessed: 24 February 2020.

[58] B. Walshe. A brief history of ARM: Part 1, 2015. [Online] https://

community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/

a-brief-history-of-arm-part-1. Accessed: 6 May 2020.

[59] B. Walshe. A brief history of ARM: Part 2, 2015. [Online] https://

community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/

a-brief-history-of-arm-part-2. Accessed: 6 May 2020.

[60] I. Thornton. ARM: Investing for future growth, ARM limited Q1 2019. [Online] https:

//www.arm.com/-/media/global/company/investors/PDFs/Arm_SBG_Q1_2019_Roadshow_

Slides_FINAL.pdf. Accessed: 6 May 2020.

[61] ARM Limited. ARM R© Architecture Reference Manual ARMv7-A and ARMv7-R edition ARM Archi-

tecture Reference Manual, 2018.

[62] Xilinx. Zynq-7000 SoC Technical Reference Manual, July 2018. [Online] https://www.xilinx.

com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf. Acessed: 6 July 2020.

[63] ARM Limited. ARM Generic Interrupt Controller Architecture Specification, 2013.

[64] RTEMS Project and contributors. RTEMS Coverage Analysis, 2018. [Online] https://devel.

rtems.org/wiki/GCI/Documentation/CoverageAnalysis/Coverage. Acessed: 7 June 2020.

[65] RTEMS Project and contributors. Test Suites, 2020. [Online] https://docs.rtems.org/branches/

master/eng/test-suites.html. Accessed: 7 September 2020.

[66] Qemu. [Online] https://www.qemu.org/. Accessed: 6 July 2020.

[67] Arty Z7 Reference Manual. Digilent. [Online] https://reference.digilentinc.com/reference/

programmable-logic/arty-z7/reference-manual. Accessed: 6 July 2020.

[68] Rapita Systems Ltd. RapiTime Webpage, 2020. [Online] https://www.rapitasystems.com/

products/rapitime. Accessed: 7 September 2020.

67

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/IMA_Separation_Kernel_Qualification_-_preparation
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/IMA_Separation_Kernel_Qualification_-_preparation
https://spass-git-ext.gmv.com/AIR
https://www.gmv.com/en/Company/Communication/News/2017/12/Infante.html
https://www.gmv.com/en/Company/Communication/News/2017/12/Infante.html
http://pldspace.com/new/2018/11/13/pld-space-miura/
http://pldspace.com/new/2018/11/13/pld-space-miura/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-brief-history-of-arm-part-1
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-brief-history-of-arm-part-1
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-brief-history-of-arm-part-1
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-brief-history-of-arm-part-2
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-brief-history-of-arm-part-2
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-brief-history-of-arm-part-2
https://www.arm.com/-/media/global/company/investors/PDFs/Arm_SBG_Q1_2019_Roadshow_Slides_FINAL.pdf
https://www.arm.com/-/media/global/company/investors/PDFs/Arm_SBG_Q1_2019_Roadshow_Slides_FINAL.pdf
https://www.arm.com/-/media/global/company/investors/PDFs/Arm_SBG_Q1_2019_Roadshow_Slides_FINAL.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://devel.rtems.org/wiki/GCI/Documentation/CoverageAnalysis/Coverage
https://devel.rtems.org/wiki/GCI/Documentation/CoverageAnalysis/Coverage
https://docs.rtems.org/branches/master/eng/test-suites.html
https://docs.rtems.org/branches/master/eng/test-suites.html
https://www.qemu.org/
https://reference.digilentinc.com/reference/programmable-logic/arty-z7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/arty-z7/reference-manual
https://www.rapitasystems.com/products/rapitime
https://www.rapitasystems.com/products/rapitime

[69] Vector Informatik GmbH. VectorCAST Webpage, 2020. [Online] https://www.vector.com/int/

en/products/products-a-z/software/vectorcast/. Accessed: 7 September 2020.

68

https://www.vector.com/int/en/products/products-a-z/software/vectorcast/
https://www.vector.com/int/en/products/products-a-z/software/vectorcast/

Appendix A

RTEMS Code

1 bsp_start_vector_table_begin:

2 ldr pc, handler_addr_reset

3 ldr pc, handler_addr_undef

4 ldr pc, handler_addr_swi

5 ldr pc, handler_addr_prefetch

6 ldr pc, handler_addr_abort

7 /* Program signature checked by boot loader */

8 .word 0xb8a06f58

9 ldr pc, handler_addr_irq

10 ldr pc, handler_addr_fiq

11
12 handler_addr_reset:

13 #ifdef BSP_START_RESET_VECTOR

14 .word BSP_START_RESET_VECTOR

15 #else

16 .word _start

17 #endif

18
19 handler_addr_undef:

20 .word _ARMV4_Exception_undef_default

21
22 handler_addr_swi:

23 .word _ARMV4_Exception_swi_default

24
25 handler_addr_prefetch:

26 .word _ARMV4_Exception_pref_abort_default

27
28 handler_addr_abort:

29 .word _ARMV4_Exception_data_abort_default

30
31 handler_addr_reserved:

32 .word _ARMV4_Exception_reserved_default

33
34 handler_addr_irq:

35 .word _ARMV4_Exception_interrupt

36
37 handler_addr_fiq:

38 .word _ARMV4_Exception_fiq_default

Figure A.1: RTEMS trap table at the start.S file.

69

70

Appendix B

AIR Code

71

1 <ARINC_653_Module ModuleName="bare">

2 <!-- partition 0 -->

3 <Partition PartitionIdentifier="1" PartitionName="p0"

4 Criticality="LEVEL_A" SystemPartition="false" EntryPoint="entry_point">

5 <PartitionConfiguration Personality="BARE" Cores="1">

6 <Libs>LIBAIR;LIBPRINTF</Libs>

7 <Cache>CODE; DATA</Cache>

8 <Memory Size="0x2000000" />

9 <Permissions>

10 FPU_CONTROL; CACHE_CONTROL; GLOBAL_TIME; SET_TOD; SET_PARTITION_MODE;

11 </Permissions>

12 </PartitionConfiguration>

13 </Partition>

14
15 <!-- partition 1 -->

16 <Partition PartitionIdentifier="2" PartitionName="p1"

17 Criticality="LEVEL_A" SystemPartition="false" EntryPoint="entry_point">

18 <PartitionConfiguration Personality="RTEMS5" Cores="1">

19 <Libs>LIBAIR;LIBPRINTF</Libs>

20 <Cache>CODE; DATA</Cache>

21 <Memory Size="0x2000000" />

22 <Permissions>

23 FPU_CONTROL; CACHE_CONTROL; GLOBAL_TIME; SET_TOD; SET_PARTITION_MODE;

24 </Permissions>

25 </PartitionConfiguration>

26 </Partition>

27
28 <!-- schedule 0 -->

29 <Module_Schedule ScheduleIdentifier="1" ScheduleName="test_sched" MajorFrameSeconds="1.0">

30 <Partition_Schedule PartitionIdentifier="2" PartitionName="p1"

31 PeriodSeconds="1.0" PeriodDurationSeconds="0.5">

32 <Window_Schedule WindowIdentifier="101" WindowStartSeconds="0.0"

WindowDurationSeconds="0.5"

33 PartitionPeriodStart="true"/>

34 <WindowConfiguration WindowIdentifier="101" Cores="0" />

35 </Partition_Schedule>

36 <Partition_Schedule PartitionIdentifier="1" PartitionName="p0"

37 PeriodSeconds="1.0" PeriodDurationSeconds="0.5">

38 <Window_Schedule WindowIdentifier="201" WindowStartSeconds="0.5"

WindowDurationSeconds="0.5"

39 PartitionPeriodStart="true"/>

40 <WindowConfiguration WindowIdentifier="201" Cores="0" />

41 </Partition_Schedule>

42 </Module_Schedule>

43
44 <!-- module configuration -->

45 <AIR_Configuration TicksPerSecond="100" RequiredCores="1"/>

Figure B.1: Application configuration XML example.

72

1 <!-- HM configuration -->

2 <System_HM_Table>

3 <System_State_Entry Description="PMK Execution" SystemState="1">

4 <Error_ID_Level Description="Power Interrupt" ErrorIdentifier="0" ErrorLevel="MODULE"/>

5 <Error_ID_Level Description="Illegal Instruction" ErrorIdentifier="1"

ErrorLevel="MODULE"/>

6 <Error_ID_Level Description="Segmentation Error" ErrorIdentifier="2" ErrorLevel="MODULE"/>

7 <Error_ID_Level Description="Unimplemented Error" ErrorIdentifier="3"

ErrorLevel="MODULE"/>

8 <Error_ID_Level Description="Floating Point Error" ErrorIdentifier="4"

ErrorLevel="MODULE"/>

9 <Error_ID_Level Description="Overflow Error" ErrorIdentifier="5" ErrorLevel="MODULE"/>

10 <Error_ID_Level Description="Divide by zero" ErrorIdentifier="6" ErrorLevel="MODULE"/>

11 </System_State_Entry>

12 <System_State_Entry Description="Partition Initialization" SystemState="2">

13 <Error_ID_Level Description="Power Interrupt" ErrorIdentifier="0" ErrorLevel="PARTITION"/>

14 <Error_ID_Level Description="Illegal Instruction" ErrorIdentifier="1"

ErrorLevel="PARTITION"/>

15 <Error_ID_Level Description="Segmentation Error" ErrorIdentifier="2"

ErrorLevel="PARTITION"/>

16 <Error_ID_Level Description="Unimplemented Error" ErrorIdentifier="3"

ErrorLevel="PARTITION"/>

17 <Error_ID_Level Description="Floating Point Error" ErrorIdentifier="4"

ErrorLevel="PARTITION"/>

18 <Error_ID_Level Description="Overflow Error" ErrorIdentifier="5" ErrorLevel="PARTITION"/>

19 <Error_ID_Level Description="Divide by zero" ErrorIdentifier="6" ErrorLevel="PARTITION"/>

20 </System_State_Entry>

21 </System_HM_Table>

22
23 <Module_HM_Table>

24 <System_State_Entry Description="PMK Execution" SystemState="1">

25 <Error_ID_Action Action="SHUTDOWN" Description="Power Interrupt" ErrorIdentifier="0"/>

26 <Error_ID_Action Action="SHUTDOWN" Description="Illegal Instruction" ErrorIdentifier="1"/>

27 <Error_ID_Action Action="SHUTDOWN" Description="Segmentation Error" ErrorIdentifier="2"/>

28 <Error_ID_Action Action="SHUTDOWN" Description="Unimplemented Error" ErrorIdentifier="3"/>

29 <Error_ID_Action Action="SHUTDOWN" Description="Floating Point Error"

ErrorIdentifier="4"/>

30 <Error_ID_Action Action="SHUTDOWN" Description="Overflow Error" ErrorIdentifier="5"/>

31 <Error_ID_Action Action="SHUTDOWN" Description="Divide by zero" ErrorIdentifier="6"/>

32 </System_State_Entry>

33 </Module_HM_Table>

34
35 <Partition_HM_Table PartitionIdentifier="1" PartitionName="p0">

36 <System_State_Entry Description="Partition Initialization" SystemState="2">

37 <Error_ID_Action Action="IGNORE" Description="Power Interrupt" ErrorIdentifier="0"/>

38 <Error_ID_Action Action="COLD_START" Description="Illegal Instruction"

ErrorIdentifier="1"/>

39 <Error_ID_Action Action="COLD_START" Description="Segmentation Error"

ErrorIdentifier="2"/>

40 <Error_ID_Action Action="COLD_START" Description="Unimplemented Error"

ErrorIdentifier="3"/>

41 <Error_ID_Action Action="IGNORE" Description="Floating Point Error" ErrorIdentifier="4"/>

42 <Error_ID_Action Action="COLD_START" Description="Overflow Error" ErrorIdentifier="5"/>

43 <Error_ID_Action Action="COLD_START" Description="Divide by zero" ErrorIdentifier="6"/>

44 </System_State_Entry>

45 </Partition_HM_Table>

46 </ARINC_653_Module>

Figure B.2: HM configuration XML example.

73

74

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Glossary
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Approach and Results
	1.3 Thesis Outline

	2 Avionics Concepts
	2.1 Federated Architecture
	2.2 Virtualization
	2.2.1 Full Virtualization
	2.2.2 Paravirtualization

	2.3 Integrated Modular Avionics
	2.4 RTOS
	2.5 Space-grade Processors

	3 Technologies
	3.1 RTEMS
	3.1.1 RTEMS Architecture
	3.1.2 Tasks
	3.1.3 Scheduling
	3.1.4 System Configuration and Build

	3.2 ARINC 653
	3.2.1 Partitioning
	3.2.2 Fault Detection and Response

	3.3 AIR
	3.3.1 AIR Architecture
	3.3.2 Health Monitor
	3.3.3 Communication with I/O devices
	3.3.4 Migration to the ARM architecture

	3.4 ARM
	3.4.1 Instruction Sets
	3.4.2 Program Status Register
	3.4.3 Coprocessors
	3.4.4 Operating Modes
	3.4.5 Exception Handling

	4 Implementation
	4.1 Work Plan
	4.2 System Configuration and Build
	4.3 System Initialization
	4.3.1 Low Level Initialization
	4.3.2 Virtual Trap Table
	4.3.3 Initialization Manager

	4.4 User Application
	4.5 Exception Handling
	4.5.1 AIR Exception Handler
	4.5.2 RTEMS Exception Handlers
	4.5.3 Clock
	4.5.4 Return from Exception

	4.6 End of Test

	5 Evaluation
	5.1 Testing Environment
	5.2 RTEMS Test Suites
	5.2.1 Ticker
	5.2.2 Pthread and spcontext

	5.3 AIR Examples
	5.3.1 ARM unit tests
	5.3.2 Tests migrated from SPARC

	5.4 AIR Validation Tests

	6 Conclusions
	6.1 Achievements
	6.2 Future Work

	Bibliography
	A RTEMS Code
	B AIR Code

