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Abstract

The main focus of this paper is to develop a precise foundation for the design of reinforced concrete structures subjected
to both axial force and bi-axial moments. There are many developments around this subject, specially when it comes
to seismic actions, however a gap remains between the action and the resistance. With the purpose of diminishing this
lacuna, several methods were computed based on an object-oriented programming, in this case programming in Python,
trying simultaneously integrate various existing concepts and to create a solid foundation for the design of reinforced
concrete sections, allowing to decrease some safety factors. Although this is a theoretical problem, even it is studied a
lot in the scientific community, there are a few more questions that need to be answered. These might be possible when
the increasing computational capabilities is almost exponential. Beyond the main goal of this dissertation, the program
has sufficient versatility to treat many other problems, as design or security check of different kinds of stresses for several
types of cross sections, returning the results in a numerical or graphical mode, allowing comparisons with existent tables
or graphics, still giving the designer his critical sense.

Keywords: Reinforced concrete sections, Resistant capacity surfaces, palavra 3, Design of structures, Axial force and
bi-axial moments, Stress-resultant interaction

1. Introduction

The design of a reinforced concrete section submitted
to axial force and bi-axial moments is most of the times
an additional effort for the designers due to its three-
dimensional form. This paper takes this problem into
account trying to provide some tools allowing an easier
design or safety checks. On the side of the action, the seis-
mic action is one of the inspirations for the paper. Many of
the studies carried out contributed to a greater knowledge
of the action, of which sets of efforts are submitted to the
structure and which the correlations between directions of
the earthquake may exist. However, when the main goal
is to design the structure, there is an added difficulty in
its optimization. Section 2 presents an overview of the de-
velopments between the determination of the interaction
surfaces of the seismic action and the optimization of the
resistant capacity surface of the cross section, reinforcing
once again that there is still a gap between both themes.
Section 3 presents the methodologies used to answer this
question, after presenting the existing cross sections for
use in the methods. Section 4 gives the some interaction
resistant curves and the results obtained by the previous
methods, for a rectangular section. Finally, some conclu-
sions are drawn from the existing methodology.
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2. Related Works

With the technological advances in construction, caused
by an exponential population increase, civil engineering
has a fundamental role in terms of optimizing competitive
solutions from an economic point of view without com-
promising safety. A relevant subject in this regard that
has been studied over time is seismic action. The EC8 [1]
recommends the use of response spectra for the design of
the structures. However, an analysis that does not take all
correlations into account may oversize them.
The first developments on this subject were explored by
Gupta [2]. He was able to prove that the interaction di-
agram for an earthquake using a quadratic combination
takes the form of an ellipsoid. Considering that the el-
lipsoid has a well-known analytical form, it was a great
advance for the knowledge of this subject. In practice, it
will only be necessary to obtain a resistant diagram of the
cross section that completely envelops the ellipsoid. To
optimize the section using the minimum amount of rein-
forcement, this clause will be sufficient, which is not the
case in current situations for the design of structures, as
already mentioned by EC8, which can lead to an over-
design of the structure and, what for a relatively current
construction and with lower volumes it may not have a sig-
nificant preponderance, it will certainly have for complex
and/or larger structures. For this reason, it makes sense
to approach the topic more thoroughly, especially on the
resistance side. Menun and Kiureghian [3] state that in the
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design of a structure subject to seismic actions, the simul-
taneous effects of forces acting on the structure must be
considered. The use, in its dimensioning, of the response
spectrum, identifies the maximum values of the actions to
act separately, without taking into account that they may
never occur simultaneously. Menun and Kiureghian state
that, for a known orientation of the main axes, the inter-
action surface has the shape of an ellipsoid. When this ori-
entation is unknown, a supreme envelope is defined, built
from the critical orientation of the main axes. By super-
imposing a resistant surface that completely surrounds the
interaction diagram, very effective results are obtained for
the optimization of the structure. Exploring previous de-
velopments, and in order to correlate seismic action with
the cross section resistance in a more expeditious man-
ner, Rosati and colleagues [4] develop several algorithms to
check if the seismic action envelope, the ellipsoid, is com-
pletely contained in the domain of the resistant section.
In order to achieve the ultimate strength of the section
without the need to create the entire surface, it is based
on a convergence of the stiffness matrix secant, in order
to reduce the number of iterations, since one of the main
problems is the number of required equations for the effi-
cient creation of an optimized resistance surface. Erlicher
[5] reinforces the fact that the design is, on many occa-
sions, based on a conservative response, since the response
spectrum provides the maximum value of the action for
one direction independently, without taking into account
the probability of simultaneous responses in the different
directions of the earthquake. In this case, the interaction
diagram would correspond to a parallelepiped. Consider-
ing that these responses do not usually occur simultane-
ously, Erlicher believes that the so-called hyper-ellipsoid,
considering the probabilities of the occurrence of different
responses over time, is the way forward. To this end, he
formulates equations for the creation of a polyhedron that
approaches the interaction surface. It also proposes a new
approach to the method of equivalent forces, in which the
main problem, he considers, is the difficulty in defining a
field of static forces that are representative of non-linear
behaviour. Sessa and colleagues [6] continue to develop
methods for the design of resistant cross sections, with
an approach in which he calls Seismic critical multiplier.
This concept takes into account new research in the field of
seismic actions, with a Supreme Envelope [3, 7] with the
combination CQC3 [8], which involves the various seis-
mic actions regardless of their angle of occurrence or its
changes in time. The objective will be to increase the sur-
face of the envelope, until it finds a point tangent to the
resistant surface and it completely surrounds the envelope.
This multiplier, already mentioned, is the safety factor of
the resistant section in relation to the action performed.
An approach to the construction of the interaction dia-
grams, in [9], studies different modal combinations of the
seismic action for its construction. They conclude that
the interaction diagram can be a polyhedron, an ellipsoid
or something in between depending on the rules adopted.

However, this approach does not focus on the resistance
of the cross section, emphasizing once again the research
around the action.

3. Methods

The behaviour of the cross sections is discretized in a
several group of elementary points. Each point receives
some fundamental attributes for the creation of the cross
section. Supported with the Bernoully hipotheses, the ten-
sion in each point can be calculated by (1), being a and b
the vectors defined in (2).

ε = a · b (1)

a =

εGχy
χz

 b =

 1
z
−y

 (2)

The stresses in each point are calculated by (3).

dσ = Etdε (3)

Being r =

 NMy

Mz

, axial force and bi-axial moments are

defined by (4),

dr = K da (4)

with K in (5), the secant stiffness matrix.

K =


∫
A
Et dA

∫
A
zEt dA

∫
A
−yEt dA∫

A
zEt dA

∫
A
z2Et dA

∫
A
−zyEt dA∫

A
−yEt dA

∫
A
−zyEt dA

∫
A
y2Et dA

 (5)

To determine the resistance of the cross section to the ul-
timate limit state, the limit strains imposed by the regu-
lations must be respected, which are generally of the type
in (6).

εmin < ε < εmax (6)

Methods 3 and 4

Methods 1 and 2 were the base of the next methods, so
we will make some reference when they need to be called.
It is important to note that conceptually, method 3 gives
the safety factor of a cross section subjected to some kind
of stresses and, on the other hand, method 4 gives the min-
imum rate of reinforcement that needs to resist to those
stresses. In order to demonstrate the equations below, take
note that all of this methods (1 to 4) only give one point
of the resistant capacity surface.

Assuming that the applied forces are defined by an ini-
tial position (0) and a direction (1), a linear function of
the type (7) can be considered.
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N(λ) = N0 + λN (1) (7)

My(λ) = M0
y + λMy

(1) (8)

Mz(λ) = M0
z + λMz

(1) (9)

Be s the acting vector, in (10),

s =

 N(λ)
My(λ)
Mz(λ)

 (10)

it is possible to compact the equation, for the case of the
linear function, in (11).

s = s(0) + λs(1) (11)

To solve the equation, it is necessary to determine the
value of λ in the ultimate limit state and the correspond-
ing strains. Start by considering an initial estimative, for
example λ = 1, εG = 0, χy = 0 e χz = 0. Be aA the
point defined by the estimative. The residual vector [10]
will have the form presented in(12) or, defining the vector

r =

 N(εG, χy, χz)
My(εG, χy, χz)
Mz(εG, χy, χz)

, the compacted form is written in

(13).

RA =

 N(εG, χy, χz)−N(λ)
My(εG, χy, χz)−My(λ)
Mz(εG, χy, χz)−Mz(λ

 (12)

R = r − s (13)

It is necessary to find the solution a that satisfies R(a)=0.
To use Newton´s method, be (14) its linearised form.

RA +
dR

da
∆a+

dR

dλ
∆λ... = 0 (14)

Sensibilities are given by the matrix dR
da , that depends on

the point A where it is applied, and on the fixed vector
dR
dλ , presented in (15),

[
dR
da

]
=

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 [
dR
dλ

]
=

 −N (1)

−My
(1)

−Mz
(1)

 = −Q

(15)

so the solution is given in (16),

∆a = −
[
dR
da

]−1
(RA −∆λQ) = aR + ∆λaQ (16)

where aR, in (17), corresponds to the correction that needs
to be done for λ = constant and aQ, in (18), corresponding
to the correction when λ varies, keeping the error.

aR = −
[
dR
da

]−1
RA =

εRGχRy
χRz

 (17)

aQ =
[
dR
da

]−1
Q =

εQGχQy
χQz

 (18)

The new estimates of a and λ are presented in (19).

aB = aA + aR + ∆λaQ λB = λA + ∆λ (19)

∆λ is calculated with the limit conditions in (6). For ach
point of the section, the condition (20) must be respected.

εmin < b · a < εmax (20)

Replacing the value of the new estimate, it obtains (21).

εmin < b ·
(
aA + aR + ∆λaQ

)
< εmax (21)

If b · aQ > 0, which means increasing strains with λ, the
equation (22) is called.

εmin − b ·
(
aA + aR

)
b · aQ

< ∆λ <
εmax − b ·

(
aA + aR

)
b · aQ

(22)

On the other hand, if b · aQ < 0, is (23).

εmax − b ·
(
aA + aR

)
b · aQ

< ∆λ <
εmin − b ·

(
aA + aR

)
b · aQ

(23)

a(0) = aA + aR a(1) = aQ p = ∆λ (24)

The ∆λ to be adopted will be the minimum of the max-
imum values obtained for each material point. With ∆λ
obtained, it is now possible considerar in the iterative pro-
cess, in (19). The methodology for method 4 was almost
the same as in method 3, but this time iterating fω instead.

N(εG, χy, χz, fω) =
∫
A
σ dA = N b + fωN

a1

My(εG, χy, χz, fω) =
∫
A
zσ dA = M b

y + fωM
a1
y

Mz(εG, χy, χz, fω) = −
∫
A
yσ dA = M b

z + fωM
a1
z

(25)

RA +
dR

da
∆a+

dR

dfω
∆fω... = 0 (26)
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The previous methods generally determine a point on
the resistant surface, through a given direction. It is nec-
essary to find the critical direction of the resistant sur-
face. The following methods discuss the first steps towards
achieving it.

In the event that the stresses result from a seismic ac-
tion analysed by response spectra, it is necessary to obtain
its interaction diagram [9]. Be s(0) the solicited stresses of

a static analysis for permanent loads and s
(i)
k the stresses

of the responseof the structure for mode i due to the base
component k accordind to modal dynamic analysis. Vetot
s has three components, with m = 3.
The total dynamic response can be obtained by apply-
ing quadratic combination rules, such as CQC to combine
modes and SRSS to combine base components. To con-
sider the interaction between efforts, it is convenient to
apply the latter to linear combinations of the type in (27),

st = s · t (27)

being t the vector that contains the linear combination
factores.
The dynamic response in direction t in defined in (28),

t · s ≤ s(CQC+SRSS)
t =

√√√√ ng∑
k=1

n∑
i=1

n∑
j=1

ρij(t · s(i)k )(t · s(j)k )

(28)

where n is the number of modes, ng the number of base
components, ρij the modal correlation factors defined by
CQC rule which depend fundamentally of the relation be-
tween the frequencies of each mode.
Evidencing t, the equation can be written as in (29).

s
(CQC+SRSS)
t =

√√√√t ·
( ng∑
k=1

n∑
i=1

n∑
j=1

ρij(s
(i)
k ⊗ s

(j)
k )

)
t (29)

Defining the matrix S, in (30),

S =

ng∑
k=1

n∑
i=1

n∑
j=1

ρij(s
(i)
k ⊗ s

(j)
k ) (30)

the combination rule can be compacted to (31).

t · s ≤ s(CQC+SRSS)
t =

√
t · St (31)

Assume that the response space does not contain linearly
independent components and that therefore the matrix S

is invertible and s
(CQC+SRSS)
t > 0 for any direction t.

The set of conditions (31) written for all directions t allows
to define an ellipsoidal response diagram. It can be shown

that the critical point of this ellipsoid in the direction t is
given by (32),

s(CQC+SRSS) = s(0) +
St√
St · t

(32)

where the static contribution is included. The ellipsoid is
therefore tangent to a line/plane perpendicular to t. Note
that although the lenght of the vector t is irrelevant, since
it is affected by the numerator and the denominator, its
orientation is important. It is also possible to obtain the
point of the intersection of the ellipsoid with a given di-
rection v using (33). Figure 1 illustrates the relationship
between the vectors v and t and the seismic portion of s.

s(CQC+SRSS) = s(0) +
v√

v · S−1v
(33)

Figure 1: Response interaction surface of seismic action - relationship
between v and t

To extrapolate the previous methods for the interaction
surfaces, there are two existing approaches, either the cross
section safety check, or their design, thus optimizing the
section.

Method 5
Making sense to consider a permanent load, but the

seismic response affected by a parameter λ, we have (34),

s(CQC+SRSS) = s(0) + λ
St√
St · t

(34)

completely analogous to (11), being s(1) = St√
St·t , as long

as the vector t is fixed.
Verifying the security of a section involves the application
of method 3 to a representative set of t directions, so it
is important to verify that the smallest of the λ values is
still greater than 1. Essentially, this method is governed
by the SED strategy considered by Sessa et al. [6], al-
though they consider the supreme envelope of the CQC3
rule and use the secant strategy to obtain λ. In practice,
the interaction surface will be increased by a λ factor until
it intersects the resistant surface.
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Method 6

If the design of the cross section is the main objective
of the theme, we have (35),

s(CQC+SRSS) = s(0) + 1× St√
St · t

(35)

thus, the parameter λ receives a fixed value of 1. In this
case, the interaction surface does not change, unlike the
resistant one. Therefore, method 4 should be considered
for each t choosing the largest of the minimum values ob-
tained. Subsequently, method 3 will be called to draw the
resistant surface with fω = fminω .

4. Results

4.1. Resistant interaction surfaces

This section shows the results for three different kinds
of cross sections: rectangular, circular and T, respectively.
Before showing the results, the properties of each cross
section are shown by its corresponding table and is dis-
cretization is illustrated on the figure below.

Rectangular section

Table 1: Rectangular section - properties

Concrete Steel b [m] h [m] c [m] Rinf Rsup

C30/37 A500 0.3 0.5 0.042 5φ16 2φ16

Circular section

Table 2: Circular section - properties

Concrete Steel d [m] c [m] Rtot

C20/25 A400 0.45 0.032 25φ16

T section

Table 3: T section - properties

Concrete Steel bf
[m]

tf
[m]

bw
[m]

tw
[m]

c
[m]

Rinf Rsup

C35/45 A500 0.6 0.3 0.6 0.2 0.030 3φ20 9φ16

0.2 0.1 0.0 0.1 0.2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(a) Rectangular section - Discretization

1000 500 0 500 1000
My [kNm]

6000

4000

2000

0

2000

4000

N 
[k

Nm
] 1.0 2.0

(b) Resistant capacity surface - N −My

(c) Resistant capacity surface - Three-dimensional
diagram

(d) Projection N −My (e) Projection N −Mz

(f) Projection My −Mz

Figure 2: Definition of the resistant capacity surfaces according to
the reinforcement rates ω of the reinforced concrete rectangular sec-
tion
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0.3 0.2 0.1 0.0 0.1 0.2 0.3
0.3

0.2

0.1

0.0

0.1

0.2

0.3

(a) Circular section - Discretization

400 200 0 200 400
My [kNm]

4000

2000

0

2000

4000

N 
[k

Nm
] 1.0 2.0

(b) Resistant capacity surface - N −My

(c) Resistant capacity surface - Three-dimensional diagram

(d) Projection N −My (e) Projection N −Mz

(f) Projection My −Mz

Figure 3: Definition of the resistant capacity surfaces according to
the reinforcement rates ω of the reinforced concrete circular section

0.3 0.2 0.1 0.0 0.1 0.2 0.3

0.6

0.4

0.2

0.0

0.2

0.4

(a) T section - Discretization

4000 2000 0 2000 4000
My [kNm]

15000

10000

5000

0

5000

10000

N 
[k

Nm
] 1.0 2.0

(b) Resistant capacity surface - N −My

(c) Resistant capacity surface - Three-dimensional diagram

(d) Projection N −My
(e) Projection N −Mz

(f) Projection My −Mz

Figure 4: Definition of the resistant capacity surfaces according to
the reinforcement rates ω of the reinforced concrete T section

6



4.2. Resistant interaction surfaces subjected to a seismic
action

The results that follows consider the two possible sit-
uations for the occurrence of a seismic action: security
check and its design. The seismic action is defined by its
permanent components (s0) and dynamics(S)as shown in
(36).

s(0) =
[
−150 50 0

]
S =

640100 −24000 500
−24000 23400 0

500 0 2500


(36)

The cross section is rectangular and it is defined in
Table 4 and illustrated in Figure 5. The safety fator λ is
equal to 0.29, which means that the dynamic component
of the earthquake would have to decrease until 0.29 times
in order to verify the safety of the cross section.

Table 4: Rectangular section - properties

Concrete Steel b [m] h [m] c [m] Rinf Rsup

C25/30 A500 0.3 0.3 0.04 4φ16 4φ16

0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

Figure 5: Rectangular section - discretization

Let’s consider the design. Here, the main purpose is
to find the minimum rate of reinforcement ω so the cross
section resists to the earthquake.

In this case, the resistant capacity surface will be changed
until it reaches the interaction surface. For that, the min-
imum reinforcement rate ω of the cross section in order to
verify the safety of the structure is equal to 2.48.

5. Conclusion

Since the main goal of this paper is to define minimal
resistance surfaces that resist the totality of the active ef-
forts, several iterative methods were created. In general,
the final objective of the present work is to build a resis-
tant surface, as little as possible, that envelops the interac-
tion surface. In other words, the interaction surface must

(a) Method 5 - safety factor - 2D

(b) Method 5 - safety factor - 3D

(c) Projection (1) (d) Projection (2)

Figure 6: Results for method 5 - Find safety factor λ of the reinforced
concrete T section

be completely contained in the domain of the resistance
surface. The first methods, methods 1 and 2, the ones
already known and most studied, served as the basis for
the construction of the following methods. Method 3 can
be considered for a safety check, since given a direction of
efforts and a starting point, it returns the value by which
the direction provided can be multiplied until the interac-
tion surface is reached, which means that if the direction is
known, it is only necessary to define a point of the resistant
section. Method 4, on the other hand, must be considered
for the design. Unlike method 3, method 4 defines the min-
imum reinforcement rate to withstand the combination of
the stresses, in this case with a known direction. If this
direction is totally unknown, it will be necessary to think
about the resistant surface instead of a point. In this case,
methods 3 and 4 are extrapolated to methods 5 and 6,
creating routines for the recognition of the entire surface.
The programming developed in this paper also allows the
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200 100 0 100 200

3000

2000

1000

0

1000

(a) Method 6 - Minimum reinforcement - 2D

(b) Method 6 - Minimum reinforcement - 3D

(c) Projection (1) (d) Projection (2)

Figure 7: Results for method 6 - Minimum reinforcement factor fω
of the reinforced concrete T section

definition of interaction curves for any type of cross section
defined in the work, or any combination thereof, advantage
over the abacuses of reinforced concrete tables, since they
are limited to certain types of sections and coverings,and
its accuracy is lower. The abacuses were defined with a
reduction of 15 % in the breaking value of concrete under
compression, and as already explained, the EC2 allows this
reduction not to exist for current situations, since in the
conditions of loading in time the concrete is, in general,
required to lower stress levels. Object-oriented program-
ming also allows that, after the main program is created,
each method can be defined with a very small number
of lines of code, making its creation accessible. Theoreti-
cally, another step has been taken in the development of
this limitation, but it is important to create solid bases
for the implementation of a design based on surfaces of
interaction that, not being oversized, do not compromise
structural safety.
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