
X-arq Webification

Isaac Macedo Vargas
isaac.vargas@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

September 2020

Abstract

In today’s world, the Internet and the World Wide Web is pervasive in society, an example of this is the
Internet of Things, but many applications still don’t take advantage of the prevalence of them.

A web application was developed to make use of this new reality, this application is X-arq Description,
a module of X-arq. X-arq is a standardised archive solution created by Mind, that is used by several
archives in Portugal to manage their archival collections.

The development of X-arq Description was the main goal of this thesis. It’s a web application that was
built using Vue.js, a JavaScript framework.
Keywords: X-arq Webification; Archival Management Software; Records System.

1. Introduction

X-arq, the name being derived from ”extended
archive”, is an archival management software ap-
plication by Mind, a Portuguese company founded
in 1997. It was created in 2001 and runs on the
.NET Framework environment. It is a standardised
archive solution that is used by several archives in
Portugal to manage their archival collections.

It follows standards of the International Council
on Archives among others.

Currently, X-arq is used by over 50 institutions,
some of them are the Arquivo Municipal de Lis-
boa, Arquivo Municipal de Oeiras, Arquivo Munici-
pal de Pombal, Arquivo Municipal de Cascais, Ar-
quivo Municipal de Albufeira, Arquivo Municipal de
Montemor-o-Novo, and Empresa Portuguesa de
Águas Livres.

1.1. Motivation and Objectives

X-arq is an old desktop application, started in 2001,
that is build with old technology with an user inter-
face that looks outdated, and it has some quirks
that degrade the user experience.

It was decided to reimplement X-arq using newer
technology, to move away from Microsoft Visual
C++ into C# and into web technology.

X-arq Description is to have the same function-
alities as the old X-arq description module but with
a revamped user interface and user experience as
well as allowing for the system to be accessed re-
motely.

1.2. Contributions
The current solution is at the stage of being a pro-
totype with the core functionalities ready to be ex-
hibited to customers, but it’s not ready to be used
in production and to replace the old X-arq module.
A new feature that was introduced during the de-
velopment was making it a Progressive Web Appli-
cation and not simply a web application.

X-arq Description being a progressive web ap-
plication brings additional properties that are use-
ful for X-arq Description, mainly the caching of the
static parts of the user interface which allows for a
faster and responsive user experience for succes-
sive uses of the application.

The frontend is currently in very good shape, it
has a good structure that is easy to understand,
and it has been heavily tested, allowing for it to be
easily modified and introduce new features if you
already know the structure of Vue. It was all done
from scratch, being a brand new user interface.

The backend has a very simple and linear struc-
ture with the responsibilities of each component
clearly defined making it easy to understand and
added upon. The database queries used have to
be refined, currently they don’t have the necessary
performance.

1.3. Project Structure
This project is structured in 6 different chapters as
follows:

1. Introduction: The current chapter, where a
contextualisation of the project is exposed.

2. Related Work: An overview of what is archival

1



management and the current state of X-arq.

3. Analysis and Architecture: The project ob-
jective and proposal are examined.

4. Solution: A detailed report of the work done
during the project.

5. Evaluation: The solution compliance with the
requirements.

6. Conclusions and Future Work: The knowl-
edge obtained during the project and future
work.

2. Related Work
In this section, the context of this project is de-
fined by having an overview of archival manage-
ment software. Followed by examples of other so-
lutions currently in the Portuguese market.

2.1. Archival Management Software
Archival management software is software that
was created to manage archival collections. A
management system for records is defined as
”management system to direct and control an orga-
nization with regard to records”[5]. A records sys-
tem is defined as ”information system which cap-
tures, manages and provides access to records
over time”[5, 7].

This software needs to have certain capabilities,
the main three are: being able to capture[8]; do
records management[5, 7]; and have access[5, 7].
It also has to ensure that each record is classified,
retained, and disposed following the provided infor-
mation long with other concepts[5, 7, 4].

These concepts are all defined and standard
by different standard authorities, by the previ-
ously mention International Council on Archives,
Direção-Geral do Livro, dos Arquivos e das Bib-
liotecas, Open Archives, and International Organi-
zation for Standardization.

2.2. Market Solutions
In the current market there are two other main so-
lutions, namely archeevo, by KEEP SOLUTIONS,
and gead, by Libware. There’s also an open source
international solution, Access to Memory (AtoM)
that is currently maintained by Artefactual Systems
after being originally built with the support of Inter-
national Council on Archives.

In respect to the functionality of X-arq Descrip-
tion, AtoM is web-based while gead is a desk-
top application and archeevo is mixed having sev-
eral of the functionalities in a web-based approach
and even offering a limited version of their soft-
ware for Android devices, allowing the connection
of records and their physical location while navigat-
ing the locale.

Both archeevo and AtoM have a demo avail-
able. For archeevo the demo is available online
on their website while AtoM has it available to be
downloaded to be run locally. These two demos
were used to experience the products and take the
screenshots that are in the figures of this section.

3. Analysis and Architecture
This chapter presents an overview of the current
state of the X-arq description module, analysis and
requirements of the system are presented, and the
architecture of the new solution is introduced.

3.1. Current Application
Most of the X-arq code is currently in Microsoft Vi-
sual C++ only the X-arq Web module code is cur-
rently on C#. It has four modules: the descrip-
tion module, X-arq; the configuration module, X-
arq Config; and the two search modules, X-arq
Search and X-arq Web.

The X-arq user interface is in Portuguese and
no other languages are provided which means
that some acronyms maybe be used in their Por-
tuguese version.

The main view of X-arq has six zones. There
are the menus. The actions shortcuts. The three
navigation areas that the users have access. The
zone with the hierarchy of records that the user can
visualize. The zone where the records’ data is ex-
hibited.

3.2. Analysis
In this section the system will be analysed by using
use cases, exploring the system’s domain model,
and documenting the software requirements.

Analysing the current X-arq module of descrip-
tion, the features can be grouped into three loose
categories: core; complementary; and add-ons.
Due to time constrains only the core functionalities
are in the scope of this project and as such are
here specified.

3.2.1 Use Cases

For the core use cases of X-arq Description there
are two actors: the anonymous user which only
has access to the home page and other static
pages like it and one feature, authentication; and
the authenticated user which can perform opera-
tions on the records according to the permissions
it has.

Use cases relating to complementary and add-
ons features weren’t included, as previously stated
only the core functionalities are the focus of the
project. An example of a complementary use case
would be a ”managing users” subgroup that is a
generalization of creating new users and setting
user permissions. An add-on use case would

2



Figure 1: Use case diagram of X-arq Description.

be, for example, connecting X-arq Description with
Kapture.

3.2.2 Requirements

A software requirement is the software capability
needed by a user to solve a problem or to achieve
an objective or the software capability that must be
met or possessed by a system or system compo-
nent to satisfy a contract, standard, specification,
or other formally imposed document[9].

A functional requirement is a statement that
identifies what results a product or process shall
produce or a requirement that specifies a func-
tion that a system or system component shall
perform[9]. A functional requirement defines the
behaviour of the system.

X-arq functionalities can be grouped into three
loose categories: core; complementary; and add-
ons. The core requirements can be further sub-
divided into three subgroups: permissions; record
operations; and data management.

• G1: Permissions

– G1.1: Authentication - users must be
authenticated to access the system.

– G1.2: Component - users only access
the components they have permission.

– G1.3: Record - users can access the
records they have permission.

– G1.4: Operation - users can only per-
form operations that they have permis-
sion.

– G1.5: Lock - users can only modify a
record if they have its lock, meaning that
no one else is accessing that record.

• G2: Record Operations

– G2.1: Creation - a new record can be
created.

– G2.2: Validation - a record can be vali-
dated.

– G2.3: Change Level - a record can be
moved on the hierarchy to be a child of a
record that accepts that type of record.

– G2.4: Allow Display Content on the In-
ternet - a record can be set to be view-
able through the internet.

– G2.5: Deletion - a record can be set to
deleted.

• G3: Data Management

– G3.1: Visualisation - present each field
and subfield correctly.

– G3.2: Modification - allow each field and
subfield to be modified correctly.

In general these are the three subgroups of the
core totalling 12 general functional requirements.
These were the expected requirements to be com-
pleted in the period of this project.

A nonfunctional requirement is a software re-
quirement that describes not what the software will
do but how the software will do it[9].

Examples of nonfunctional requirements are
quality attributes that end with ”ility” such as avail-
ability, interoperability, etc.

Several of nonfunctional requirements that are
considered important for X-arq Description are the
following:

• Accessibility is the degree to which a prod-
uct or system can be used by people with the
widest range of characteristics and capabili-
ties to achieve a specified goal in a specified
context of use[6].

• Performance in particular time behaviour
which is defined as the degree to which the re-
sponse and processing times and throughput
rates of a product or system, when performing
its functions, meet requirements[6].

• Testability is the degree of effectiveness and
efficiency with which test criteria can be estab-
lished for a system, product or component and
tests can be performed to determine whether
those criteria have been met[6].

• Usability is the degree to which a product
or system can be used by specified users to
achieve specified goals with effectiveness, ef-
ficiency and satisfaction in a specified context
of use[6].

3



• Maintainability is the degree of effective-
ness and efficiency with which a product
or system can be modified by the intended
maintainers[6]. Testability can be considered
a subpart of this quality.

• Security is the degree to which a product or
system protects information and data so that
persons or other products or systems have
the degree of data access appropriate to their
types and levels of authorization[6].

These six nonfunctional requirements are con-
sidered important for X-arq Description each for
their reason.

The main target audience for this project’s soft-
ware is government employees, which mean it’s
software that will be bought by the government and
there are guidelines to follow. The European Union
publishes directives that each government in the
union has to implement in their way.

The Directive (EU) 2016/2102 was one of such
directives and it was about the accessibility of the
websites and mobile applications of public sec-
tor bodies[1]. This directive was implemented by
the Portuguese Government with Decreto-Lei n.o

83/2018[2].
The Decree Law sets the accessibility guidelines

to follow as the AA level of the Web Content Acces-
sibility Guidelines 2.1 created by the World Wide
Web Consortium[12].

Testability and maintainability are important for
the code quality of the product so while it doesn’t
have much direct impact on the product it has a
considerable indirect impact. A system must be
testable to ensure it’s correct behaviour and have
high maintainability so that the developers have an
easier time understanding the system and being
able to modify it.

The cost is also a big factor, studies have shown
that over the entire life-cycle of software mainte-
nance can cost over 40% and that has been in-
creasing up to 80%[10, 11].

Usability has a part of subjectivity because in
part it is determined by user satisfaction, which is a
major point. If a user starts getting frustrated with
the software then the desire to use it and the pro-
ductivity of using it decreases. X-arq Description
should have slightly higher usability than the old
version it’s trying to replace since the user experi-
ence was one of the reasons for the change.

Performance is a basic requirement in most sys-
tems. For X-arq Description the part that isn’t trivial
is the hierarchy of the records. To achieve good
performance the most important part is to have
good database indexes, good SQL queries in the
server, and a good tree component to display and
control the records in their hierarchy form in the

client. The component used for the tree in the client
is an open-source package that was imported as a
dependency. Its name is LiquorTree and it was cre-
ated by Kostiantyn.

X-arq Description being a web application in-
stead of a desktop application means that there
is now additional importance on the security. So
there are two important sides now. The external
security that only authorized agents can use the
system, and the internal security that each user
can only perform tasks and access the parts of the
system that they have permissions to do so.

3.3. Architecture
X-arq software architecture is a client-server archi-
tecture, more specifically a three-tier architecture:
presentation tier; application tier; and data tier.

3.3.1 Deployment Diagram

X-arq Description follows a three tier architecture.

Figure 2: Deployment diagram of X-arq Description.

The first tier, the presentation layer that is client-
side and can be accessed using a web browser.
The main modules on the presentation tier are:
login; archive; and axios. The axios module
is a dependency, it is a HTTP client, and is used
to make all requests to the backend, the API. The
login and archive modules are Vue views. The
login vie is used for authentication while archive

is the main view. The other modules make a tree
with archive as the root.

In the middle layer there is the application tier,
this is the API and lives in a server running Win-
dows Server.

The interaction with the API server is done
through REST HTTP requests using the JSON for-
mat. These requests are received by the con-
trollers that then call the services. The services
are where the business logic is implemented.

A module in the application tier worth mentioning
is X-arq common, this is a module that already ex-
isted, it is also used by X-arq Web. It implements
common functionalities that aren’t X-arq Descrip-
tion specific such as authentication.

The third layer, is the data tier that consists of the
database that is a Microsoft SQL Server database
that runs on Windows Server.

4



3.3.2 Technology

The purpose of this project was to reimplement X-
arq using newer technology.

These technologies can be grouped into four:
the frontend group; the backend group; the
database technology; and the server group that the
backend and the database run on top of.

• Node.js is a JavaScript runtime environment
that it is used for development. An important
part is npm (originally short for Node Pack-
age Manager) which allows for the use of over
1.2 million packages as dependencies in the
project.

– Vue.js is a progressive JavaScript frame-
work for building user interfaces and
single-page applications.

– TypeScript is a strict syntactical super-
set of JavaScript which adds optional
static typing to the language. It is then
transcompiled into JavaScript.

• .NET is an open-source developer platform,
created by Microsoft, made up of tools, pro-
gramming languages, and libraries for building
many different types of applications. Included
is NuGet, the environment package manager.

– .NET Framework is the original imple-
mentation of .NET.

– ASP.NET Core is a open-source web
framework that will mainly serve as the
backend.

– Entity Framework Core is an object-
relational mapping to ease communica-
tion with the database and the manipula-
tion of the data by use of the Entity Data
Models.

• Microsoft SQL Server is a relational
database management system that is used to
store the persistent data used by all the X-arq
modules mainly X-arq Description.

• Windows Server is a server operating system
that serves has the basis for the web and the
database server.

– IIS is a web server to run the ASP.NET
Core application.

Not all of the previously listed technologies are
new in the X-arq technology stack.

The ones used in the frontend, the Node
(Node.js) group are all new as well as ASP.NET
Core and Entity Framework Core from the .NET
group.

While the old implementation of X-arq also
ran in .NET Framework and used Microsoft SQL
Server and Windows Server it didn’t use an object-
relational mapping and it was build using Microsoft
Foundation Class Library which is now being re-
placed by ASP.NET Core.

3.3.3 User Interface

A mock up of how the new user interface should
look for X-arq Description was created by a Mind’s
designer. Changing the old windows application
look for a modern web flat design and moving to a
more vibrant color by using orange instead of blue.

Development of X-arq Description was made fol-
lowing the mock-up as the guide.

4. Solution
In this section, a detailed description of the new
solution is presented. The difficulties encountered
are discussed as well as the differences between
the planning and the execution are examined.

4.1. Development Process
This project has gone through several phases:

• Technology Research and Related Works

• Requirements Gathering and user interface
Design

• Implementation Process and Technical Test-
ing

• Functional Testing

This project looks at all four phases but in this
section, the focus is on the third point.

For the third point, Implementation Process and
Technical Testing, agile methodology principles
were adopted to manage the development pro-
cess. Mind uses Team Foundation Server to man-
age their projects as well as for version control.
Team Foundation Server has several functional-
ities, it’s possible to create sprints and Product
Backlog Items and associate them with a devel-
oper, etc.

After setting up a very bare-bones project with-
out tests, the unit and integration testing was done
in concurrency with the implementation of each
functionality. When the project had a few basic
functionalities implemented it was then deployed
onto a local server allowing the access of it through
Mind’s intranet to allow easy access to other stake-
holders in the project.

4.2. Dependencies
Being in the .NET and Node ecosystems they
possess package managers, NuGet and npm, re-
spectively. Both have a huge registry of pack-
ages, NuGet has over 190 thousand, which is good

5



enough for fifth on the list of package managers
with the most packages in their registry, but this
falls short of the number of packages accessible
through npm with over 1.2 million, being the pack-
age manager with the most of packages in their
registry[3].

To put in perspective the number of available
packages in npm, if you sum the following five
package managers after npm which are the only
other package managers that have over 100 thou-
sand packages it comes to around 1.15 million
packages which is still short of npm. This lead will
only continue to increase due to npm having the
biggest growth rate of all package managers and
also bigger than the following five package man-
agers combined[3].

All the previously stated numbers were taken
from this website that tracks the number of pack-
ages in each package manager registry.

In the package.json file of the client source code
there are three different types of dependencies:
dependencies; devDependencies; and optionalDe-
pendencies. The client has 13 dependencies, 22
devDependencies, and two optionalDependencies,
for a total of 37 direct dependencies. But these are
just the tip of the dependencies tree of the project,
in total there are 1781 packages.

The backend naturally also has dependencies,
these are installed through NuGet, the .NET
environment package manager. It contains 12
packages: six are the Microsoft.AspNetCore

package and sub-packages; one is
Microsoft.EntityFrameworkCore.SqlServer

that allows the use of Entity Frame-
work Core with SQL Server, four are
Microsoft.Extensions sub-packages, and
the last is Microsoft.TypeScript.MSBuild.

Along with packages dependencies X-arq De-
scription also has project dependencies on other
Mind projects, these amount to four. Three pre-
viously existing projects and one that was refac-
tored from X-arq Description. The latter is the
X-arqDatabaseModels project that holds the Entity
Data Models of the X-arq database.

4.3. Source Code Structure

X-arq Description is structured in a single C#
project, in that project, there’s a folder named
client that contains all of the frontend source
code

While the server-side code, the backend, is in
the root of the C# project, the important source
code is in three folders: Controllers; ModelsApp;
Services.

4.3.1 Frontend

On the frontend there are several loose files, these
are all configuration files for different tools. For
example, the package.json file has one propri-
ety, browserslist, that lists what browsers are be-
ing targeted, so tools that need that information
will grab it from there. One final example is the
.eslintrc.js file that is the configuration file for
ESLint that guarantees that all the frontend code in
the project follows the same style guide.

In the public folder, files in this folder won’t go
through webpack, a module bundler, and will in-
stead simply be copied. The files in it are simple
things like favicon.ico, and index.html that is
the base HTML file on which the web application
is inserted dynamically. This file consists of a head

tag with the necessary information defined and a
body tag that has a noscript tag and a empty div

tag with an id on which the vue web application is
then connected to.

The main folder of the frontend is src, it con-
tains six folders as well as two files. The main.ts

file that is the entry point of the application, it will
create the base Vue instance and connect it to the
previously mentioned div in the base HTML file.
The Vue object that is created is the base one that
is defined in app-root.vue, the other file contained
in src folder. This is a vue file, all the files ending in
’.vue’ are single-file components, these files have
three root tags: template; script; and style. In
the interior of each of these respective tags, there
is the HTML markup, a JavaScript dialect in this
project being TypeScript, and the CSS classes.

4.3.2 Backend

The backend source code structure is mainly di-
vided in three folders: Controllers; ModelsApp;
Services.

The Controllers folder holds the API endpoints,
all API requests are received by controllers that
are located here. All controllers except for the
HomeController.cs are for different parts of the
API.

The HomeController.cs receives the requests
for the frontend. The frontend is served by the
same server that serves the API. It was decided
to not separate the frontend so there’s no need for
an extra server in production only serving the fron-
tend.

All controllers have a more or less explanatory
name. The AuthenticationController.cs

deals with authentication requests; the
FrdController.cs deals with requests con-
cerning each record’s data, Folha de Recolha de
Dados (FRD) means ’Data Collection Sheet’; the
LogController.cs deals with log requests; and

6



NavigationController.cs deals with requests
concerning the hierarchy of records, the tree of
records.

The controllers then call the necessary functions
to respond to the requests, this normally implies
a call to a services function. These services are
located in the Services folder.

The Services folder contain most of the busi-
ness logic of the backend. In this folder there’s also
a CachedQueries.cs file. This file holds queries
that are expected to not change, for example, the
list of rules. The cache has a 12 hours lifespan.

The ModelsApp folder holds the format of the
complex types for the requests and responses from
and to the frontend, such as how a record’s data
should be structured in RecordData.cs.

4.4. Goal Completeness

There are three groups with a total of 12 well-
defined functionalities in the core requirements of
X-arq Description. Out of the 12 core require-
ments, 10 have been fulfilled, one (G2.1 - Records
Operations: Creation) has been partially com-
pleted, and the only goal that wasn’t reached was
G2.3 (Records Operations: Change Level).

The Creation (G2.1) functionality has two vari-
ants, the basic one, creation of an empty record
was fulfilled, while the second variant consists on
copying an existing record and pasting it, creating
a copy in another location, wasn’t.

The Change Level (G2.3) functionality was sup-
posed to have been implemented using drag and
drop directly on top of the navigation tree. The Vue
tree component that was selected to be used in the
project, LiquorTree, has a drag and drop function-
ality but it hasn’t been activated. This functionality
has database implications, so simply activating the
functionality on the frontend without implementing
it on the backend to update the database would
only be a detriment as it would put the frontend
on an inconsistent state with the state saved on
the database. One other reason is that there are
rules to which records can be associated with other
records so even in the frontend it’s not as simple
as just activating the feature on LiquorTree due to
moving the record needing to be validated if such
change was permitted to happen.

5. Evaluation

With creating software there’s also a need to test
it. In this chapter, the testing and evaluation of the
work done are exposed.

The technical tests were carried out in conjunc-
tion with the development of the software while its
evaluation was done on the last weeks of the de-
velopment.

5.1. Technical
For the technical tests, several types can be done:
unit; integration; functional; load; etc.

On the frontend two types were done, unit and
integration. These tests were done with Vue Test
Utils on top of Jest.

At the end of the project it was using version
1.0.0-beta.31 of Vue Test Utils but it started on
version 1.0.0-beta.29. This version had a major
bug, it had a feature, sync, that tried to make
asynchronous code run synchronously but it wasn’t
working correctly and was then removed.

The project suffered with this bug and quite a lot
of time was lost trying to deal with it as well as try-
ing to see when a test failed if it was because of
the bug or the underlying code was wrong.

On the backend, there were tests planned to
have been done with NUnit but testing the frontend
was given priority. After working on the frontend
tests and dealing with the difficulties that came up
and seeing the time to complete the project keep
going down it was decided to be left for future
work as the software is currently still only a pro-
totype with the core functionalities, to keep adding
those core functionalities was deemed higher pri-
ority than to test the backend.

Jest using Istanbul can be configured to report
the test coverage of the project. The current cover-
age is almost 100% in each category, only missing
the branches. The branches category isn’t 100%
due to the tests loading five variables from the envi-
ronment process. To achieve 100% the tests would
need to run twice. Once loading the variables from
the environment process and the other using the
fallback branches.

Type % Covg # Covered # Total

Statements 100 1142 1142
Branches 99.17 595 600
Functions 100 303 303
Lines 100 1138 1138

Table 1: Combined unit and integration testing coverage sum-
mary. (Covg is Coverage)

Type Passed Skipped Failed Total

Suites 24 2 0 26
Tests 656 68 0 724
Snaps 131 0 0 131

Table 2: Combined unit and integration testing coverage stats.
(Snaps is Snapshots)

5.1.1 Unit

For unit testing, the procedure was to mock ev-
erything not directly under testing. For example,

7



testing a function that called a getter of the store
and then made a request to the back end and then
called a function that returned a value and then
called another function that is void. The getter, the
backend request, both the calls to other functions
and the returned value of the called function were
mocked. Just testing that one function without it
propagating to other elements.

No major obstacles appeared during unit testing.
Following there is the table with the coverage sum-
mary.

Type % Covg # Covered # Total

Statements 99.47 1136 1142
Branches 98.50 591 600
Functions 99.34 301 303
Lines 99.47 1132 1138

Table 3: Unit testing coverage summary. (Covg is Coverage)

5.1.2 Integration

For integration testing the procedure was to only
mock the backend requests and nothing else, al-
lowing for all the frontend components to interact
and change information. On integration testing,
there were two issues, one minor and one major.

The minor issue is due to trying to use and mod-
ify the ValidityState of the HTML Document Object
Model form elements such as input, textarea, etc.
The reason to modify the ValidityState of the form
elements was to set the error messages in Por-
tuguese instead of using the default English ones.

The major issue appears to be due to
component used for the tree visualisation,
LiquorTree. On the integration testing for the
navigation-section.vue component and the
view that uses it, archive-page.vue, when
running all the tests some of them will fail and re-
running the tests without changes will sometimes
make other tests fail instead of the original ones.
Running each individual test alone will show that
the tested code is correct as the test will pass.

The true cause and a fix for this problem hasn’t
been found and as such these components while
they have tests written for them that pass if run in-
dividually for the run used to obtain the data in the
following table they were set to be skipped over.

Type % Covg # Covered # Total

Statements 52.89 604 1142
Branches 52.17 313 600
Functions 57.76 175 303
Lines 52.72 600 1138

Table 4: Integration testing coverage summary. (Covg is Cov-
erage)

5.2. functional requirements
As mentioned in several other sections, this project
looked at 12 functional requirements. At the end of
the project, only 10 were totally completed with an-
other one partially completed and one that wasn’t
done.

These functional requirements were tested man-
ually by an area colleague inside Mind in the last
weeks of the project. While doing these tests nat-
urally some bugs were discovered and reported
which then were fixed and retested again.

A spreadsheet that specified each functionality
and several operations under that functionality was
used to track these manual functional tests. Each
operation was then tested one by one and eval-
uated. When a failure was discovered it was re-
ported in order for an analysis to be done to find
the fault that caused the error and afterwards im-
plement a bug fix to resolve it.

5.3. Nonfunctional Requirements
Like the functional requirements, the nonfunctional
requirements were only tested at the end of the
project, but unlike the functional requirements,
there weren’t many actions derived from their re-
sults, the focus was on the functional requirements.

Four categories of nonfunctional requirements
were planned with a focus on three different areas:
the user, with accessibility and usability; the appli-
cation, with performance; and the source code with
testability.

They were chosen due to various reasons and
according to different criteria but make for a basic
rounded overview of X-arq Description nonfunc-
tional requirements.

5.3.1 Accessibility

The accessibility of the application was tested in
two different tools: AccessMonitor, which is pro-
vided by the Portuguese government; and Light-
house, which can be used by accessing Google
Chrome DevTools.

The AccessMonitor tool verifies that the website
follows the Web Content Accessibility Guidelines
2.1 directive, checking the accessibility of it. Light-
house is broader and not only checks accessibility
but also audits performance and more.

X-arq Description scored a 6.3 out of 10 in Ac-
cessMonitor and a 88 out of 100 in Lighthouse.
Which means there is still room for improvement
on this, taking in special care the report from Ac-
cessMonitor.

5.3.2 Performance

One failure of this project that needs to be rectified
before production are the SQL queries.

8



Most queries used by X-arq Description were
new queries. Near the end of the project, X-
arq Description was connected to a production-like
database, which has a huge amount of data in-
stead of using the development database that is
nearly empty only having a few records of each
type. The API response time then increased
hugely rendering the application near unusable.
The original X-arq doesn’t suffer from this problem
using the production-like database.

No measurements were taken to quantify the
performance of either application, due to it being
very clear that the new queries were significantly
worse, there was no need to even measure it.

On a whole, there is still a lot of X-arq Description
parts that need to be analysed under the perfor-
mance optic but during development, the only one
that stood out even without doing a serious analy-
sis were the queries.

5.3.3 Testability

At the end of the project, only half of the system
had been tested.

The backend was planned to be tested using the
NUnit framework but due to priority decisions, it got
pushed back. The backend is a simple API, in that
it has very few controllers and only two major ones:
FrdController; and NavigationController.

The controllers themselves only have a few end-
points that only received around three arguments.
While there doesn’t seem to be any major issues
that should arise when testing it, the frontend also
seemed to be straight-forwarded but then indeed
there were some problems. So the testability of
the backend can’t be determined.

The frontend has been heavily tested as dis-
cussed in the previous section, which was where
the most time was invested while testing X-arq De-
scription.

While Vue Test Utils can still be improved to
make tests with more reliability and testing Vue
applications smoother, it already provides a good
base. The project testes were done with 1.0.0-beta
versions, but since then version 1.0.0 has been re-
leased and work has already started with alphas
on version 2.0.0 that will be used to target Vue 3
that is also being developed right now.

While the frontend has mostly high coverage, the
major issue in the integration tests means that it
can’t be said that it is highly testable.

The original X-arq didn’t have tests, so the cur-
rent state is already an improvement over it.

5.3.4 Usability

For usability, the original proposed plan was for X-
arq Description to be deployed as a prototype in

real Mind clients using the original X-arq. This plan
did not work for a multitude of reasons, one be-
ing that the clients that use X-arq are government
organizations and therefore are quite bureaucratic
and it was deemed that it was not feasible in the
time frame of the project due to its short duration.

A backup plan was then for colleagues in Mind
that had knowledge of the original X-arq to do this
usability analysis after all the core functionalities
had been implemented and the functional require-
ments evaluation had been done. In the end, this
plan also wasn’t realised due to several reasons,
the major one being that not all core functionali-
ties had been completed by the end and that the
colleagues with knowledge of the original X-arq all
had high workload and at then taking time to eval-
uate X-arq Description wasn’t a priority.

6. Conclusions and Future Work
In this final section, a retrospective about the
project is presented and conclusions are drawn
from it as well as some thoughts about the future
of it.

6.1. Conclusions
Several challenges appeared during the develop-
ment of X-arq Description. Some were external
such as the sync bug in Vue Test Utils, while others
were internal such as the bad performing queries.
Some have been resolved, some have not.

The project also had 12 objectives, but only 10
were completely fulfilled with another one being
partially done. So progress hasn’t been fast.

Having reflected on some of the shortcomings
during this project there are also some positives,
such as Mind seeming to like how X-arq Descrip-
tion was turning out.

X-arq Description was developed to update X-
arq to the reality of today’s world.

Using Vue.js, a vanguard in the JavaScript
framework area, for the frontend brought consider-
able aesthetic improvements as well as testability
and maintainability among others.

Using C# and ASP.NET Core also brought many
of the same improvements such as testability and
maintainability. The backend is now simpler than
the original X-arq due to several reasons, one be-
ing that there is an actual separation of the back-
end and frontend now, among others.

All of the source code is now cleaner and has
clear and divided responsibilities. This makes it
easy to understand and maintain as well as easy to
build upon it and add new features or modify cur-
rent behaviours.

So while not all goals were reached and there
was a misstep with the performance of the queries,
the project’s structure is in an excellent state mak-
ing it easy for future work on X-arq Description.

9



6.2. Future Work
As mention in several of the previous sections,
there are still several actions needed.

The two major actions are finishing the imple-
mentation of the last two core functionalities that
still need to be completed, as well as rewriting the
database queries that simply don’t have enough
performance to deal with the amount of data that
the archives hold.

Some medium priority actions should be taken,
mainly dealing with Nonfunctional Requirements
such as improving accessibility and conducting
the usability analysis as well as implementing the
backend API tests.

This future work was just about the core of X-arq
Description. Afterwards, there are still more func-
tionalities that need to be added, the previously
mentioned that were categorized as complemen-
tary and add-on functionalities.

References
[1] Directive (EU) 2016/2102 of the European

Parliament and of the Council of 26 October
2016 on the accessibility of the websites and
mobile applications of public sector bodies.
Accessed on 2020-02-17.

[2] Diário da República. Decreto-Lei n.o 83/2018,
October 2018. Accessed on 2020-02-17.

[3] Erik DeBill. Amount of packages in package
manager registries. Accessed on 2020-02-24.

[4] International Organization for Standardiza-
tion. ISO 16175-3:2010: Information and doc-
umentation — Principles and functional re-
quirements for records in electronic office en-
vironments — Part 3: Guidelines and func-
tional requirements for records in business
systems, December 2010. Accessed on
2020-01-24.

[5] International Organization for Standardiza-
tion. ISO 30300:2011: Information and
documentation — Management systems for
records — Fundamentals and vocabulary,
November 2011. Accessed on 2020-01-24.

[6] International Organization for Standardiza-
tion. ISO/IEC 25010:2011: Systems and
software engineering — Systems and soft-
ware Quality Requirements and Evaluation
(SQuaRE) — System and software quality
models, March 2011. Accessed on 2020-01-
27.

[7] International Organization for Standardiza-
tion. ISO 15489-1:2016: Information and doc-
umentation — Records management — Part

1: Concepts and principles, April 2016. Ac-
cessed on 2020-01-24.

[8] International Organization for Standardiza-
tion. ISO 23081-1:2017: Information and
documentation – Records management pro-
cesses – Metadata for records – Part 1: Prin-
ciples, October 2017. Accessed on 2020-01-
24.

[9] International Organization for Standardiza-
tion. ISO/IEC/IEEE 24765:2017: Systems
and software engineering — Vocabulary,
September 2017. Accessed on 2020-01-27.

[10] Penny Grubb, Armstrong A. Takang. Soft-
ware Maintenance: Concepts and Practice.
World Scientific Publishing Company, 2 edi-
tion, 2003.

[11] Shari Lawrence Pfleeger, Joanne M. Atlee.
Software Engineering: Theory and Practice.
Prentice Hall, 4 edition, 2009.

[12] World Wide Web Consortium. Web Content
Accessibility Guidelines 2.1, June 2018. Ac-
cessed on 2020-02-17.

10


