Thesis Title

Ricardo Manuel Teixeira Pires
ricardo.teixeira.pires@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

September 2020

Abstract

Nowadays portable flash devices like USB drives and SD cards are used globally. They are used to
carry personal or corporate data without any protection. These devices are easy to get lost or stolen.
Thus, an attacker can easily access the potential sensitive data stored in them. This study aims to tackle
this problem, with the use of an external micro-controller to handle security operations and data man-
agement. We defined the system’s architecture and how each of its components benefits from each
approach and algorithms analyzed. From the initial prototype we developed further tuning and improve-
ments in terms of functionality and performance, to abide by the requirements and function within our
hardware restrictions. The performance results show the compromise and inverse relation between the
amount of security operations performed and the system’s performance, further accentuated by the tight
hardware restrictions. In conclusion, this work is a significant step towards achieving digital security in
flash based devices with just the use of software and cheap hardware. This work offers a solution with
more digital security robustness than market alternatives which provide no integrity or authenticity while
charging steep prices for limited amounts of storage.

Keywords: Flash memory; File System; SD Card; Cryptography; Micro-controller;

1. Introduction

In today’s world portable devices likes universal se-
rial bus USB drives or SD cards are used globally
by millions of people. These devices offer a good
choice for storage since they can hold several gi-
gabytes of data. The storage capacity of these de-
vices keeps increasing every year, as such its ex-
pected that they remain popular. At the same time,
they are very small in size which gives them great
usability since they can transport large amounts
of information, while providing great comfort for its
users.

However there are some problems with this kind
of devices. They provide no digital security whatso-
ever. All the information is stored without any dig-
ital protection, so anyone who has possession of
the device can access all of its data. Since these
devices have small dimensions, they are easy to
lose or to get stolen.

The objective of this project is to create a secure
portable storage device with the use of a micropro-
cessor. The idea is to implement a software solu-
tion on a micro-controller, so that all the files that
are stored in the portable storage will be secure
against any attacks in case it gets lost.

2. Background
The Background section features algorithms that
exist today and can be used to accomplish differ-

ent objectives of this project. The algorithms are
analysed, pros and cons are presented and some
brief comparisons are made.

2.1. File Systems

The FAT32 file system is one of the most used file
systems for flash media storage, as such compati-
bility is it's major advantage. However this file sys-
tem has a severe downfall in this project. This is
due to the fact that the Arduino Library only sup-
ports the 8.3 file name convention. This limits the
possibilities of encryption of the name of the file.
The fact that the filename can only use 8 charac-
ters maximum compromises the confidentiality of
the files’ metadata.[6]

The exFAT file system is a newer version of the
FAT file system. It has several advantages over the
former. It allows the media storage to be over 32
GB, has a faster storage allocation, and allows file
sizes bigger than 4 GB.[18]

The F2FS is a new Linux file system created
by Samsung and designed specifically to perform
well on flash storage devices, by increasing per-
formance and lifetime. In the research conducted
it is shown to outperform the Ext4 file system. To
achieve this, the design had some key aspects to
it. It avoids unnecessary and costly data copy-
ing by matching the on-disk data structures to the
NAND flash memory layout. It has a cost-effective

index structure. Supports multi-head logging and
adaptive logging which turns random writes into
sequential ones or uses multi-threaded writing in
high storage utilisation.[16]

Flash memory has a drawback called the WAF.
In short this happens when a page of memory has
to be modified, at the physical level the entire block
has to be re-written. If one page has 8KB of mem-
ory and a block 64KB of memory, than the WAF
is 8. In other words it takes 8 times more writes
than what the file system sees at a virtual level. If
poor optimisation algorithms are used to minimise
the WAF then the SD card may have a significantly
shorter life cycle, since the memory will wear down
much faster.[12]

2.2. Encryption Algorithms

We focused on symmetric algorithms since these
are more efficient, and designed to encrypt large
files. Symmetric encryption uses one key to en-
crypt a file, this key is the same used in encryp-
tion and decryption. The algorithms usually cipher
blocks of 128 bits which means they must be com-
bined with a cipher mode algorithm. Most are com-
patible with the most common ones like ECB, CBC,
CFB and others.

Asymmetric encryption has some disadvantages
like the fact that it can only encrypt plain-texts up
to 2048 bits, in the case of the RSA. It would be
necessary to construct a cipher-block mechanism
to overcome this limitation. Keys are also larger,
NIST recommends keys of at least 1024 bits, which
is 8 times the necessary size for symmetric encryp-
tion algorithms like AES also known as Rijndael.[5]
Since users can have files that have gigabytes in
size, it is preferable to use symmetric encryption
which can handle these sizes.

The first algorithm to consider is 3DES. DES was
a very fast and secure algorithm for its time, but
now has become vulnerable due to the increase
of CPU processing power. Triple DES was then
designed to take advantage of DES strengths and
still provide a secure encryption. There are two
ways of using DES to use three different keys and
encrypt with every single one of them, or to use
two keys and perform a sequence of encrypt with
key one, decrypt with key two and encrypt again
with key one. The first technique is vulnerable to
key related attacks as demonstrated in [15], and
Tripe DES with only two keys also has also been
considered a weak cipher by NIST. [4]

The NIST and industry approved encryption al-
gorithm is AES or Rijndael. Rijndael was the can-
didate chosen to become the Advanced Encryption
Standard since it was the best overall algorithm. It
offered great security while also achieving an ex-
cellent trade-of with performance, since it had the

best performance overall. However it is still impor-
tant to check if Rijndael still has the best perfor-
mance in microprocessors, or if another of the fi-
nalists has the edge in this field.[9]

According to a study conducted by Toshiba Tech-
nology Centre[19] to evaluate the performance
of the different AES candidates on a smart-card
using software based implementations in C lan-
guage, it is clear that the Rijndael algorithm, com-
monly known as AES, has the best performance
in smartcards using a software implementation.
It can be implemented with extremely limited re-
sources since it only consumed 66 bytes of RAM
and required 980 bytes for storage. It is also the
fastest algorithm by far. The MARS algorithm re-
quired a complex and difficult implementation to
work on a smart-card, due to its complex struc-
ture. MARS also had other disadvantages of be-
ing implemented on a smartcard that causes the
algorithm to be vulnerable to timing attacks.

2.3. Ciphers

CBC uses an IV to combine (XOR) with the first
plain-text, then it ciphers the combination and uses
the resulting cipher-text as the next IV. The IV
can be known, but it's generation should be ran-
domised and a different IV should be used for each
encryption. Since the next block to encrypt de-
pends on the previous one, parallelism is not pos-
sible in CBC. It is possible in the decryption pro-
cess though, since all blocks are available. CBC is
prone to padding oracle attacks, which try to exploit
the padding that the algorithm requires.[10]

The XTS is a cipher block algorithm used to en-
crypt entire disks. It is based on XEX. XEX uses
two keys. Key one is used to encrypt XORed plain-
texts. The other is used to XOR plain-texts and the
cipher-texts resulting from the encryption with the
first key. For each block, to compute the XORs, it is
necessary to compute a derived key from the sec-
ond key. Differing from XEX, XTS uses cipher-text
stealing to allow for sector sizes with non-divisible
block sizes. It must still use two keys. The major
advantage of this block cipher is the fact that it al-
lows random writes without need to re-encrypt the
entire file, which is particularly useful for log files
for instance.[17]

3. State of the Art

The TCFS is a solution proposed for file transfer
between a user and a remote server. The main
idea is to have multiple users connect to a remote
file server to access their files, since their work-
stations would have very limited disk space. This
file system guarantees that the files are not read-
able by users other than the owner of the file, in-
cluding the superuser of the file system. Commu-
nication between the user and the remote server is

Plaintext

J
128-bit tweak a {
Key » AES-enc. S ® AES-enc. Key ,
Ciphertext
Figure 1: XTS cipher mode - Extracted from [2]
secure.[8] more than once using a number of patterns, like the

Keypad is a file system designed to offer secu-
rity in remote devices such as laptops, USB drives,
and others. It also provides the user with an audit-
ing mechanism to detect whether or not there have
been access attempts to the files in case the device
gets lost. Furthermore, in case the remote device
is lost, the user still has the capability to disable
future file accesses even in the absence of device
connectivity. Keypad uses a similar strategy ap-
plied in the TCFS. It uses different keys for each file
and stores those keys on a remote auditing server.
After the transaction, the key is securely deleted.
When a user wants to access a certain file, he has
to download a specific key from the server. All file
operations made by a user are registered in a log
file. This log allows a user to audit his remote de-
vices and check if there have been attempts to dis-
cover the password. As a last resort the user can
chose to delete all random keys for the lost device
which also makes the main password obsolete.[11]

Iris is a file system created to support workloads
of large enterprises while offering authentication,
file integrity and freshness. The system sits in
between the client and the cloud. A network of
distributed "portals” are responsible for managing
the inbound and outbound data from the company.
These portals are composed of different modules,
different types of cache, audit modules and others.
These portals store in cache data and metadata
recently accessed by users, they also check the
integrity and freshness of all files. For freshness
the system also authenticates the version of each
block. This prevents rollback attacks where users
are presented with an earlier state of the file. [21]

PurgeFS is a file system designed to make sure
that deletion of data is permanent and is impossi-
ble to recover or restore it. It's designed to be able
to be integrated with any running Operative Sys-
tem. This system overwrites file data and metadata

ones approved by NIST. PurgeFS can erase data in
asynchronously or synchronously. In synchronous
mode it waits for all the overwrite operations to con-
clude, in asynchronous mode it remaps data pages
to a temporary file and overwrites them later. It can
also eliminate only sections of a file. The system is
highly portable since it was designed as a file sys-
tem extension and can easily be added to most ex-
isting file systems. It performs data purging almost
immediately after a file’s deletion. In non-workload
environments it is shown to be non-intrusive and
quite efficient due to its asynchronous mode.[13]

A Secure Flash Card Solution for Remote Ac-
cess is one solution to the problem of guaranteeing
security in a SD card. This solution relies on two
main components, a tamper resistant module em-
bedded in the SD card, and a server for authenti-
cation. The tamper resistant module contains user
authentication information and cryptographic keys.
The communication between the user and the SD
card is also encrypted. In this system, the client
must first authenticate himself in the server. Af-
ter establishing a secure connection, the SD card
proceeds to transmit it’s signature to the server, to
which the server replies with the encryption key.
It utilises asymmetric encryption for the signature
and symmetric encryption for the data files. This
system also has an additional feature. In the event
of brute forcing attempts, of the security areas, it
will start to erase all data within the file. This pro-
cess cannot be stopped once set in motion, even
by cutting the power to the card since it will resume
once the power is reestablished.[14]

In "The State of Embedded-Device Security”
published in 2012, the article reports that mil-
lions of embedded devices connected to the in-
ternet have little to no security and can easily be
hacked by malicious individuals. It also denotes
that mobile devices are going to start to be targeted

more often due to their increase in computational
power.[22]

In 2016 a study that used Optical Fault Injection
attacks against the flash memory of smart cards
showed that it was possible to extract sensitive in-
formation from these devices. These attacks were
carried out using a device capable of analysing the
power consumption of the card, locating the flash
region and control logic region, identifying sensitive
points to the laser and then performing the Bump-
ing Attack [20]. By analysing the power consump-
tion of the card it is possible to control the time to
execute attacks. Then the physical location to con-
duct these attacks is mapped by using optical fault
injection, this is done with lasers. The final step is
to confirm that is it possible to change the value of
bytes of data when it is being transferred from flash
memory to registers.[7]

Today in 2020 the current solutions for this prob-
lem are encrypted USB drives, like the Kingston
IronKey D300 or the Aegis Secure Key 3z. These
USB drives offer data encryption with AES256-
XTS and anti-tamper protection with the use data
purging in the case of too many failed logins. How-
ever these drives offer no data integrity protection
and also have very steep prices, even with small
storage spaces like 4GB.[3] [1]

4. Architecture

The objective of this project is to provide a low cost
system that can guarantee digital security to flash
based portable memory devices, like SD cards or
USB flash drives. It is necessary to first develop an
architecture of the system. the architecture should
encompass three main criteria.

e Functionality;
¢ Digital Security;
e Ease of use.

Functionality is the most basic requirement for
this project. It guarantees that the system is us-
able. The user must be able to issue commands
and it must be possible to read or write to the SD
card. This involves studying possible methods of
transferring files, methods of communication be-
tween the microprocessor and the user. It is also
necessary to study how the SD card manages file
allocation and how the file system manages the
files. The most basic functions that a user should
be able to do are:

e Read;
e Write;

e Delete;

o List;

Digital security is guaranteeing that the sys-
tem protects the user data adequately. This in-
volves studying which cryptographic algorithm is
best suited for encryption. Studying ways of pro-
viding freshness, integrity and authenticity to the
files. Also how the user should authenticate him-
self to the system.

Ease of use is how the user interacts with the
system. It is a criteria dedicated to studying ways
to increase the comfort of the user in interacting
with the system. It has less priority then the other
two but it can enrich the work done since the easier
the system is to use, the more people can use it.

Figure 2 represents a diagram of the functions
that are necessary to implement. The functions
on the client are mere remote calls to the corre-
sponding functions on the Arduino. They do not
perform any critical actions. The functions on the
user end only transmit or receive information, com-
mands, or parameters like file size, flename, etc.
The Arduino is responsible to execute all the crit-
ical actions such as encrypting files, writing them
in an SD card or validating the user login. The
SD card already has its built in functions, for this
project the read, write and delete functions are the
most important. The Arduino interacts with the SD
card with the use of a file system. This file system
is responsible for managing virtual block allocation
and making API calls to the SD card.

User 5D Card

upload command Write(data)

download command Read(data)

delete command

Delete(data)

File name
File data File data

SD Card Reader

Commands

User Device Function calls,

file data

h

UploadFile{name, size, path) WriteFile(name, size, path)

Fy

DownloadFile(name, path) ReadFile(name, path)
File data

DeleteFile(name, path) DeleteFile(name, path)

Figure 2: High Level Concept

4.1. High Level Concepts
As depicted in figure 2 the four main components of
this solution can be observed. First the user which
interacts with the system. The user only interacts
with his user device (smartphone, laptop, etc..) by
sending commands. this can be done by typing
them in a terminal window, or by simply dragging
and dropping files similarly to how a USB drive is
used today. This depends on the level of develop-
ment of the end-user interface.

The user device is the device that the user
chooses to interface with the system. It does not

do any processing related to the data. It only in-
vokes functions on the SD card reader and sends
or receives file data.

The SD card reader is the name used to desig-
nate the middle system between the SD card and
the user device. The SD card reader, is the micro-
controller that will do the bulk of the data manage-
ment and processing. It is responsible for deciding
how the files are written in the SD card by imple-
menting a file system, encrypting the data before
it gets written, validating and assuring the integrity
and authenticity of the contents in the SD card. In
short, it is responsible for reading, writing, deleting
and assuring the digital security of the files in the
SD card. In this solution we assume the SD card
reader has limited resources, like small amount of
RAM and low processing capabilities. As such, the
transfer of the file will take significantly longer than
transferring a file via USB.

The SD card is the portable storage device
where the files get stored. It has built-in func-
tions from its manufacturer. For this project the im-
portant functions are related to the allocation and
writing of blocks. The way the SD card manages
blocks is decided by the algorithms and heuristics
the manufacturer has designed. It is beneficial to
not interfere with these processes since the man-
ufacturer of the card has expert knowledge of the
physical composition of the card. Interfering with
these processes can cause the blocks the become
unevenly worn out or the write amplification factor
might not be as efficiently controlled and this may
lead to a large waste of space at the physical level
in the SD card.

Figure 2 depicts the functions that can be exe-
cuted by each member. These represent the basic
functions necessary to guarantee that the system
is usable. With these functions the user can utilise
the SD card as a portable storage device, which is
its intended purpose.

4.2. Overview

Figure 3 describes how the system would process
the upload of a file to the SD card. First the user
writes in the terminal, that is executing the program
to communicate with the Arduino, the desired com-
mand. His device, in this case a laptop, relays that
command to the Arduino. The process of trans-
ferring data begins, the Arduino receives chunks
of data from the laptop and encrypts those chunks
before writing them into the SD card. This process
loops itself until the entire file is transferred. Then
the Arduino sends an ACK to acknowledge that the
file has been received without problems. The user
can then select another command, from the ones
showed to him in the interface of the terminal.

In Figure 4 it is possible to see the tree structure

User Device SD Card Reader SD Card
User

I		
I		
Command "Upload”		
[ld		
: ! Upload File ! :		
loop J 0.		
L Daa		
I		
I	EncryptData	
I		
I		
I)	
	Write Data	

| I | |
| T f T
| I | |
| le—RCK | |
| |
| |
I |

File has been uploaded ‘ |

o
<

1
Figure 3: Overview Diagram

used to guarantee integrity. Inside the folder SYS-
TEM, a replica of the file system is created. But
only file MACs and folder MACs are stored. The
R_MAC is the root's MAC which is copied to the
internal memory of the Arduino to guarantee data
freshness. This replica of the file system allows the
reading, insertion and deletion of file MACs to be
done in O(1). Itis only necessary to add the prefix
"SYSTEM/” to the path defined by the user and the
file MAC is obtained. The calculation of the folder
MAC is done in O(n).

4.3. Hardware

For this project we will use an Arduino Uno. There
are other more powerful variants like Arduino Mega
or Due, but Uno has enough processing power and
RAM to accomplish the requirements of this solu-
tion. It is also a cheap solution, which is important
for this project since it aims to not make hardware a
necessity or a deterrent. If the software developed
can run on an Arduino Uno then it will be able to be
scaled to any other type of hardware, like a smart-
phone, other more powerful micro-controllers, or
even dedicated servers. By choosing such a re-
stricted hardware environment we are guarantee-
ing that this solution is extremely scalable. This
choice also does not restrict the user devices. The
user has multiple choices of hardware to connect
to the Arduino. It can be a desktop computer, a
tablet, smartphone or any other thing capable of
accepting USB connections. Another reason is
also that Arduino features a large online commu-
nity with help forums where many bugs and prob-
lems are discussed and resolved. This made the
development of software easier, since many prob-
lems had already been addressed by others which
reduced the time needed to resolve bugs. The on-

/
/ (root) \

S
e | [ru]
TN

D

|F.png | | F.pdf | |Fi|e.7z| |Fi|e.txt|

SYSTEM

e

A |R7MAC.txt‘

[
P

‘ F_MAC.txt ‘

C F_MAC.txt| D

F.png

File.7z File.txt

F.pdf ‘ FfMAC.txt‘ ‘ FfMAC.txt‘

Figure 4: Integrity tree structure

line community is also quite active with constant
bug fixing and software innovation. New libraries
keep being created and added to the official fo-
rums. This helps to keep the solution maintainable
and updatable in case it is necessary. The Arduino
is connected to the user device via a USB cable,
which also acts as a power cable for the Arduino.

4.4. Development

In this section the development methodologies
used are presented. This work follows a three it-
eration process, where each iteration adds signifi-
cant changes and functionality to the solution.

The tasks of the first iteration consisted in, study-
ing and choosing the most appropriate file system
library to use, creating file transfer functions specif-
ically upload, download and file listing. Multiple file
systems were analysed during this task. The first
library used was the SdFat library. This library is
compatible with exFAT but it is still in beta. While it
was possible to create and write files with it, it had
some bugs. It also had a heavy implementation,
which when combined with the security libraries,
would use too much RAM and the Arduino would
simply not work. The next libraries used were
FatFS and PetitFS. FatFS was quickly dismissed
since it provided no advantage over the default SD
library. The PetitFS library has a very small im-
plementation size since it only included basic func-
tions, however it only supported FAT32 or FAT16, it
also only capable of writing files of up to 512 bytes.
Since there was no library which supported exFAT
and was lightweight, the default SD FAT3 library
was used. It is the most tested and stable library
so it is a good candidate.

In the first iteration of the solution it was nec-
essary to create everything from scratch. Even
though Arduino has a large online community with
lots of guides, there was no work done on trans-
ferring entire files to the SD card via Arduino.

The only similar work done consisted in sending
keystrokes to the Arduino via its own built-in termi-
nal. It was necessary to develop two scripts. One
on the Arduino side which will become the main
program. The second script is client side and is
used to receive and transmit user commands and
file data. During this iteration the main priority is to
be able to transfer files between the SD card and
the Arduino, encryption is the second priority.

The second iteration focuses on providing the
necessary digital security requirements. This is the
iteration where the encryption, file integrity, authen-
ticity, data freshness, secure deletion will also be
added. The tasks for this iteration involve creat-
ing the necessary functions to guarantee the secu-
rity requirements. The implementation of the se-
curity algorithms was achieved with the use of a li-
brary. The library used was Arduino Cryptography
Library. This library provides an extensive number
of not only encryption algorithms but also integrity
functions to chose from. As such it is a vastly su-
perior choice when compared to the other options
available which frequently only offer a single algo-
rithm. The library is public, this increases its ef-
fectiveness since the community can help to verify
and correct potential bugs in the implementation.
For this reason it is preferable to use a public imple-
mentation of AES-XTS rather than creating it from
scratch.

After selecting the library the encryption was
added. The encryption and decryption calls are
called in between the reception and the writing of a
file chunk. When a file chunk is received by the Ar-
duino, the block is encrypted and only then written
to the SD card. With the encryption working, the
next step was to add integrity. The integrity is done
by creating a hash and updating it with the en-
crypted file chunk. After the entirety of the file is re-
ceived, a file MAC is computed. The MAC consists
of a concatenation of the hash of the encrypted file

and its file key, both encrypted with the user’s mas-
ter key. However this is when difficulties related to
RAM space started to occur. The Arduino Uno’s
RAM was being used past its limit and the pro-
gram was not executing properly. The creator of
the library suggested to delete some functions that
weren’t being used and needlessly occupied RAM
space. After performing the necessary changes to
the library, there was enough RAM space to create
and validate file MACs alongside the encryption.
However it was still not possible to create and val-
idate folder MACs. This is because to do so, it is
necessary to have two open files, the directory and
the file MAC, and also to calculate the hash. This
problem persisted through weeks which forced the
Third iteration to be started before the conclusion
of this task. Eventually it was possible to com-
plete this task by disabling compiler optimisation
for specific functions. This allowed for less RAM
to be used in trade for execution speed. The se-
cure deletion implementation consists of rewriting
the file MAC with its decrypted contents generated
with a random key, the file is simply removed. To
guarantee data freshness, the root MAC is copied
into the Arduino’s internal memory in every log off,
and is verified in each log in.

The third and final iteration consisted of bug fix-
ing and the creation of a simple GUI. This GUI al-
lows the user to see the contents of its SD card in
a tree like structure, which is updated after every
file transaction. The GUI, which can be observed
in Figures 5 and 6, also allows the user to press
buttons to send commands. The main advantages
of using the GUI are the fact that the user no longer
needs to write the commands in a terminal, which
reduces input errors. Makes users more comfort-
able when using the system since the information
stored in the card is update in real time. The users
no longer have to rely on prints to verify the con-
tents of the SD card.

§ Arduino Fs - O x

Mame File Size

Upload

2453
5.7z 7434

Download
Delete
Exit

Figure 5: Graphical User Interface

5. Results and discussion

In this section we will discuss the results from the
tests conducted. The file transfer rate is the met-
ric to be studied since it shows the efficiency of the

{
Username:

Password:
Submit
Figure 6: Login Menu

whole program. The faster the transfer rate, the
more users who are likely to use this file system.
In terms of transfer rates, the tests were conducted
by measuring the time it took to either send a file
to the SD card or to send a file to the laptop. With
the file size and the time of transfer, it is possible to
calculate the transfer rate in bytes per second. The
file sizes increased exponentially so as to achieve
a sizeable file and get a realistic transfer time that
is not influenced by overheads or hardware exe-
cution fluctuations. Each file size was tested 100
times, which means each value in the graphs is the
average value of those 100 testes. Three different
scenarios were considered. The transfer time with
the full system in place, which means encryption
and integrity checks.

In the laptop to SD card transfer rates, the se-
curity operations overhead is noticeable. By en-
crypting the information as it is received the trans-
fer rate is reduced by approximately 30%. With en-
cryption and integrity checks and computations, we
see that the transfer rate suffers a reduction of ap-
proximately 70%. This penalty is due not only to
the fact that the data is being encrypted and the
hash is being computed in real time, but also be-
cause it was necessary for some functions to turn
off compiler optimisations to save RAM space in
exchange for execution time. The slow file transfer
times with smaller files can be attributed to file op-
erations. The transfer time was measured until the
interface received the final confirmation from the
Arduino that the file has been closed and properly
written to the SD card.

Overall, the maximum file upload rate is approx-
imately 10091 bytes per second, this means that
the file transfer achieves approximately 70% of the
baud rate maximum transfer capacity.

The tests conducted in Figure 8 consisted in
sending a file to a folder with one hundred files in
the SD card. The test was conducted one hundred
times, like the previous ones, with a file of 2000
bytes. With this test it is possible for us to calcu-
late the time it takes for the Arduino to calculate
the folder MAC of a folder with n files. The formula
to calculate a folder MAC and update it is

time = 0.0419 x n

With these times it is possible to calculate the time

12000

:g e [|| System
$10000
0 Encryption Only
EJ_ 8000 epe= No Encryption
Q
s
2 6000
el
()
(0]
2 4000
£ 2000
e
}_
0
500 1000 2000 4000 8000 16000 32000 64000 128000
File size (bytes)
Figure 7: Transfer Rates (Laptop to SD card)
6 having to use last resort measures, such as dis-
abling compiler optimisations.
5
References
4 [1] Aegis secure key 3z.
m 100 files in folder . . .
[2] Aes-xts block cipher mode is used in

m 1 file in folder

Transfer time (seconds)
w

1

0
Figure 8: Folder MAC verification and update comparison

it takes to transfer a file of any size, to a folder with
n files. The formula for transferring a file from the
laptop to the SD card, using the full system, is

time = 0.0419n + 925.79In(x) + 723.99

6. Conclusions
The objective of this work was to create a file sys-
tem that provided digital security to flash based
portable devices, using a micro-controller to handle
the data management and the security operations.
The micro-controller chosen was an Arduino. |t is
a fairly limited hardware. Despite its constraints, it
was possible to implement a solution that used a
file system that took into consideration the neces-
sities of flash memory while also achieving a robust
secure system. The system is able to encrypt the
data with a secure encryption algorithm and cipher
while also guaranteeing the integrity of each file,
including directories. By doing so, the system also
guarantees the freshness of the data, being imper-
vious to attacks that use previous versions of files.
In relation to the system performance, the full
system takes a heavy hit in performance, due to

kingston’s best secure usb flash drives.

[3] Ironkey d300 secure usb 3.0 flash drive -
4gb—128gb - kingston technology.

[4] E. Barker, W. Barker, W. Burr, W. Polk, and
M. Smid. Recommendation for key manage-
ment part 1: General (revision 3). NIST spe-
cial publication, 800(57):1—-147, 2012.

[5] E. Barker, W. Barker, W. Burr, W. Polk,
M. Smid, et al. Recommendation for key man-
agement: Part 1: General. National Institute
of Standards and Technology, Technology Ad-
ministration, 2006.

[6] W. A. Bhat and S. Quadri. Review of fat data
structure of fat32 file system. Oriental Jour-
nal of Computer Science & Technology, 3(1),
2010.

[7] F. Cai, G. Bai, H. Liu, and X. Hu. Opti-
cal fault injection attacks for flash memory of
smartcards. In 2016 6th International Con-
ference on Electronics Information and Emer-
gency Communication (ICEIEC), pages 46—
50, 2016.

[8] G. Cattaneo, L. Catuogno, A. Del Sorbo, and
P. Persiano. The design and implementation
of a transparent cryptographic file system for
unix. In USENIX Annual Technical Confer-
ence, FREENIX Track, pages 10-3, 2001.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Daemen and V. Rijmen. The design of Rijn-
dael: AES-the advanced encryption standard.
Springer Science & Business Media, 2013.

M. Dworkin. Recommendation for block ci-
pher modes of operation. methods and tech-
niques. Technical report, National Inst of
Standards and Technology Gaithersburg MD
Computer security Div, 2001.

R. Geambasu, J. P. John, S. D. Gribble,
T. Kohno, and H. M. Levy. Keypad: An au-
diting file system for theft-prone devices. In
Proceedings of the sixth conference on Com-
puter systems, pages 1—-16. ACM, 2011.

X.-Y. Hu, E. Eleftheriou, R. Haas, |I. lliadis,
and R. Pletka. Write amplification analysis in
flash-based solid state drives. In Proceedings
of SYSTOR 2009: The Israeli Experimental
Systems Conference, page 10. ACM, 2009.

N. Joukov and E. Zadok. Adding secure dele-
tion to your favorite file system. In Third IEEE
International Security in Storage Workshop
(SISW’05), pages 8—pp. IEEE, 2005.

T. Kato, T. Tsunehiro, M. Tsunoda, and
J. Miyake. A secure flash card solu-
tion for remote access for mobile workforce.
IEEE Transactions on Consumer Electronics,
49(3):561-566, 2003.

J. Kelsey, B. Schneier, and D. Wagner. Key-
schedule cryptanalysis of idea, g-des, gost,
safer, and triple-des. In Annual Interna-
tional Cryptology Conference, pages 237-
251. Springer, 1996.

C. Lee, D. Sim, J. Hwang, and S. Cho. F2fs:
A new file system for flash storage. In 13th
{USENIX} Conference on File and Storage
Technologies ({FAST} 15), pages 273-286,
2015.

L. Martin. Xts: A mode of aes for encrypting
hard disks. IEEE Security & Privacy, 8(3):68—
69, 2010.

Mikben. File system functionality comparison
- win32 apps.

F. Sano, M. Koike, S.-i. Kawamura, and
M. Shiba. Performance evaluation of aes fi-
nalists on the high-end smart card. In AES
Candidate Conference, pages 82—-93, 2000.

S. Skorobogatov. Flash memory ‘bumping’
attacks. volume 6225, pages 158-172, 08
2010.

(21]

[22]

E. Stefanov, M. van Dijk, A. Juels, and
A. Oprea. lIris: A scalable cloud file system
with efficient integrity checks. In Proceedings
of the 28th Annual Computer Security Appli-
cations Conference, pages 229-238. ACM,
2012.

J. Viega and H. Thompson. The state of
embedded-device security (spoiler alert: It's
bad). IEEE Security Privacy, 10(5):68-70,
2012.

