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Abstract

This dissertation continues the work on the development of the ALIV project, proposing nonlinear
attitude and position controllers for the ALIV-3, a vertical take-off and landing capable aerial vehicle that
can change attitude without changing its position in space and vice-versa.

The nonlinear controllers are developed using two design methods: Command Filtered Backstepping
and Command Filtered Incremental Backstepping.

The control laws are obtained using the two methods, followed by implementing the controllers and
the ALIV-3 model in Simulink, a Matlab’s simulation tool, where the controller parameters are adjusted to
achieve the desired performance.

Thus, the model and controllers are validated in simulation. Both solutions show good stabilizing
and reference tracking capabilities as well as measurement noise and model error robustness after
implementation in simulation. Additionally, extensive testing on the robustness of the two controllers is
made in order to ensure that, if they are implemented on the real ALIV-3, they are able to achieve great
stabilizing and reference tracking performance.
Keywords: Incremental Backstepping, Backstepping, Command Filtering, ALIV, Attitude Control,
Position Control, Nonlinear Control, Nonlinear System, Over actuated System, Control Allocation

1. Introduction

In recent years, Unmanned Aerial Vehicles
(UAV) have been used for many applications, from
recreational and surveillance vehicles to cargo car-
rier, with increasingly popularity. With advancing
technology, it is now possible to build more ac-
curate and efficient sensors as well as smaller
and higher-performing computers, allowing for bet-
ter and cheaper controllers than ever before. Im-
plementing nonlinear controllers digitally was un-
likely some decades ago due to its high process-
ing power needs compared to traditional linear con-
trollers.

Despite their inherent unstable nature, quadro-
tors are an especially popular type of UAV due to
their reliability, relatively cheap manufacturing and
platform configuration versatility.

Linear control design achieves good stability re-
sults around the equilibrium point of quadrotors,
hovering with zero angular and linear speeds.
However, if a wider ranged performance is wanted,
this control strategy may have a reduced attraction
domain, affecting stability. This reason motivates
the design of nonlinear controllers for this type of
UAV.

This work aims to contribute with possible non-
linear control strategies for a specific quadrotor de-
veloped at Instituto Superior Técnico since 2008. It
continues the ALIV project on a fully actuated and
innovative quadrotor configuration.

1.1. The ALIV Concept and History
The Autonomous Locomotive Individual Ve-

hicle (ALIV) concept is based on the patent
US8128033B2 - ”System and Process of Vec-
tor Propulsion with Independent Control of three
Translation and Three Rotation Axis” [14].

The ALIV platform is similar to a classical
quadrotor with a cross-shaped structure. The dif-
ference is that two of the main arms are equipped
with two servo motors each along with shifted pro-
peller rotation direction. The servo motors can tilt
the attached propellers in two different axis, which
allows the ALIV to move in space without tilting its
main core. The platform can also maintain a tilted
attitude while not changing its position in space.

Being developed at Instituto Superior Técnico
(IST), the ALIV - IST is a project which several stu-
dents have contributed to. The project started in
2008 with Costa [6] modeling, simulating and build-
ing the first iteration of the ALIV.
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It was reiterated by Pedro [13], making the plat-
form more rigid with a substantial emphasis on the
theoretical design and improvement of the struc-
ture and the rotor performance.

The project was progressed by Fernandes [8],
who built the platform using carbon fibre composite
materials and obtained actuator components and
avionics.

In 2013, Mateos [12], updated the platform by
improving its balance and stiffness. The platform
was modelled, identified and simulated. Linear
Quadratic Regulator (LQR) controllers were de-
signed for the platform without the action of the
servos, for proof of concept. Motor curves and mo-
ments of inertia of the platform were identified.

Marques [11] was the last student to work on
the ALIV3 platform, in 2018. He designed and im-
plemented a linear controller for the Tilt-Quadrotor.
The model-based control design Linear Quadratic
Regulator (LQR) method. He obtained a control
law for the actuators in order to stabilize the plat-
form and validated the solution experimentally.

2. Background Theory
Command Filtered Backstepping control design

and its incremental counterpart are based on Lya-
punov theory, which can be studied in more detail
in [9], as well as command filtering. This section in-
cludes a small introduction to the design methods
and their foundations.

2.1. Backstepping
Backstepping is a method for nonlinear control

design applied to (n · p)-th order dynamic systems
in the form:

ẋi = fi(wi) + gi(wi) · xi+1, i = 1, .., n− 1 (1)
ẋn = fn(x) + gn(x) · u (2)

where t is omitted for simplicity as the input and all
state vectors are time-dependant, xi ∈ Rp is the
state vector of order i, u ∈ Rm, xT = [xT1 , ..,x

T
n ] ∈

Rnp and wT
i = [xT1 , ..,x

T
i ] ∈ Rip. fi and gi are

assumed to be known, bounded and differentiable.
This design method is recursive and each step

can be divided into three parts [3, 10]:

1. Define the i-th step tracking errors ζi = xi −
xi,des, where xi,des is the desired path for xi,
and their error dynamics;

2. Define a Lyapunov function candidate Vi con-
taining the tracking error ζi;

3. Design a virtual stabilizing control law xi+1,des,
i.e. makes the time-derivative of the Lyapunov
function, V̇i negative (semi-)definite if xi+1 =
xi+1,des.

This process is repeated for each subsystem i from
1 to n, in the last step the stabilizing control law is
designed directly for u, i.e. u = xn+1,des, the con-
trol input to the system. This model-based design
method is model dependent and may be model
sensitive. Further analysis on the design theory
of Backstepping control can be found in [3, 7, 2].

2.2. Incremental Backstepping
Incremental Backstepping (IBKS) follows the as-

sumptions that the control action is instantaneous
and that its change produces changes in the states
derivatives. For the attitude control case, ”for
small time increments and fast actuators, a change
in control input has a change in moment, which
in turn directly affects angular accelerations.” [3,
p. 135]

The IBKS controller design method is applied to
systems in the same form as Backstepping (1), (2)
with the added prerequisite that gi must be smooth,
i.e. exists higher than first order derivatives.

Applying the Taylor expansion to a ẋi around a
previous time instant, t0, (reference) point xi+1 =
xi+1,0 and wi = wi,0:

ẋi =fi (wi,0) + gi (wi,0) · xi+1,0

+
∂

∂wi
[fi(wi) + gi(wi) · xi+1] (wi −wi,0)

+
∂

∂ xi+1
[fi(wi) + gi(wi) · xi+1] (xi+1 − xi+1,0)

+ H.O.T.

(3)

where ”H.O.T.” stands for Higher Order Terms, for
sake of simplicity and notation, xn+1 is the con-
trol input u and the partial derivatives are taken for
wi = wi,0 and xi+1 = xi+1,0. For each integration
step i the approximate subsystem is

ẋi ≈ ẋi,0 +Ai,0 ·∆wi +Bi,0 ·∆xi+1,0 (4)

where

ẋi,0 = fi (wi,0) + gi (wi,0) · xi+1,0

Ai,0 =
∂

∂wi
[fi(wi) + gi(wi) · xi+1]

Bi,0 = gi(wi,0)

∆wi = wi −wi,0;

∆xi+1 = xi+1 − xi+1,0.

In a small neighborhood of the reference state,
the nonlinear system can be approximated by its
linearization about that reference state. For small
time increments and sufficiently fast control up-
date, ∆wi is negligible, allowing the subsystem to
be represented as:

ẋi ≈ ẋi,0 +Bi,0 ·∆xi+1 (5)
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Note that the term on fi (wi) was dropped and
that ẋi,0 may be measured (directly or indirectly),
which makes this control design method less de-
pendent on the model and very advantageous be-
cause, effectively, fi (wi) may not be known. How-
ever, gi (wi) must still be known.

After obtaining the intended approximated sub-
system, the procedure is analogous to the BKS de-
sign method, designing ∆xi+1,des and increment-
ing it with xi+1,0 instead of designing xi+1,des di-
rectly, i.e.

xi+1 = xi+1,0 + ∆xi+1,des,

which intrinsically gives integrative properties to
this design method.

2.3. Command Filtering
Using the backstepping or its incremental coun-

terpart control design methods ”for an n-th order
system is that the desired output and its first n
derivatives must be available for use in the con-
trol law implementation” [7, section I]. This case
is extended to the virtual stabilizing control laws
xi+1,des, whose first n−i time-derivatives must also
be available.

Command filtering serves the purpose of filtering
the influence of measurement noise on the con-
trol law as well as avoiding the, rather complicated,
analytical computation of the time-derivatives of
the virtual control laws xi+1,des for i = 1, .., n − 1
because the control signal u includes the time-
derivative of xn,des, which needs the second time-
derivative of xn−1,des and so on. Further analysis
on command filtering can be found in [7].

3. Tilt-Quadrotor Model and Controller Implementa-
tion
In order to model the ALIV-3 tilt-quadrotor, some

assumptions are made:

• The platform is a rigid body, i.e. the platform is
nondeformable,

• The platform is symmetric about the vertical
planes containing the UAV arms,

• Wind resistance is neglected,

• The ground effect is neglected, which is the
effect the presence of the ground has on the
platform, which tends to increase lift the closer
the propeller is to the ground,

• All sets of motors, servos and propellers (or
rotors) are identical,

• There is no slip between the motor shafts and
the propellers,

• The geometrical center of the platform is coin-
cident with the center of mass,

• The ALIV-3 is a planar body.

It is crucial to define the coordinate systems the
variables are related to in order to describe the
UAV motion. Two different reference frames are
adopted in this project: the Earth-fixed reference
frame, considered (approximately) inertial, and the
(local) body-fixed frame.

The adopted Earth-fixed frame uses the North-
East-Down (NED) convention. As the name in-
dicates, the three perpendicular axis are pointing
North, East and to the center of Earth respectively.
The frame origin is coincident with the quadrotor
initial position.

The body-fixed frame origin is coincident with the
quadrotor center of mass, the x axis pointing for-
ward, y axis pointing to its right and the z axis point-
ing downward.

The roll angle ϕ is the angle of rotation around
the x axis, the pitch angle θ around the y axis and
the yaw angle ψ around the z axis, all with respect
to the inertial frame following the usual signs con-
vention.

3.1. Actuators Model
For the ALIV-3 model, the actuators are four

motor-propeller sets and four servo motors for vec-
toring two of the rotors. The actuators, whose
states are controlled slave controllers, named Elec-
tronic Speed Controllers (ESC) in the case of
the motors, which have Pulse Width Modulation
(PWM) signals as inputs, are the means to affect
the linear and angular positions, velocities and ac-
celerations in order to stabilize and control the tilt-
quadrotor.

3.1.1. Brushless Motors
The motors present in the ALIV3 platform

are BrushLess Direct Current (BLDC) motors.
These require a driver, Electronic Speed Controller
(ESC). The desired angular speed is sent to the
ESCs digitally using PWM signals. PWM signals
are square waves whose duration is interpreted by
the ESCs as the desired speed. The ESCs receive
pulses ranging from PWMmin to PWMmax, setting
the motors, linearly, to the minimum and maximum
speed respectively.

Neglecting the dynamics of the electrical compo-
nents of the BLDC, as it has much faster dynamics
than the mechanical part, the dynamics of the mo-
tors may be approximated by:

ωi =
Kω

τωs+ 1
uωi, (6)

where ωi is the angular speed of the motor i in
radians per second, Kω is its steady-state gain in
rad/(s.µs), τω is its time constant in seconds and
uωi the input which is dependent on the pulse du-
ration of the PWM sent to the motor i in µs, which
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can be defined as

uωi = PWM ωi − uω,d, (7)

where PWM ωi is the pulse duration of the PWM
sent to the motor i in µs and uω,d is the ESCs PWM
dead-zone in µs.

3.1.2. Servo Motors
Similarly to the BLDC motors, the inputs to the

servo motors are PWM signals with the same
range, PWMmin to PWMmax. However, the op-
eration of the servo motors is symmetric, i.e.
PWMmin pulse duration sets the servo motor to
its minimum angle of −νmax and PWMmax pulse
duration sets it to its maximum angle of νmax. The
angular speed of each of the servo motors is lim-
ited to ν̇max.

For each of two motors with servos there is one
servo which tilts the motor in the roll direction, φ2

for motor 2 and φ4 for motor 4, and one servo that
tilts the motor in the pitch direction, ϑ2 for motor 2
and ϑ4 for motor 4.

νT =
[
φ2 φ4 ϑ2 ϑ4

]
, (8)

where ν is the concatenation of the four servo an-
gles φ2, φ4, ϑ2 and ϑ4.
The servo dynamics are modelled by:

νi =
Kν

τνs+ 1
uνi, (9)

where νi is the servo angle i in radians, Kν its
steady-state gain in rad/µs, τν its time constant in
seconds and uνi the input, in µs, which is depen-
dent on the pulse duration of the PWM signal sent
to each servo.

uνi = PWM νi −
PWMmin + PWMmax

2
, (10)

where PWM νi is the pulse duration of the PWM
sent to the servo i in µs.

3.1.3. Propellers
The Blade Momentum Theory [5] states that the

thrust T and the torque Q produced by a propeller
are

T = CT ρApr
2ω2, (11a)

Q = CQρApr
3ω2, (11b)

where CT is the coefficient of thrust of the pro-
peller, CQ is the coefficient of torque, ρ is the
fluid density, Ap is the circular area the propeller
sweeps, r is the the radius of Ap and ω is the an-
gular speed of the propeller.

Assuming the air density, propeller dimensions
and configurations to be constant allows the pro-

duced torque and thrust of each propeller to be ob-
tained as:

Ti = KTω
2
i , (12a)

Qi = KQω
2
i , (12b)

where Ti is the thrust produced by the propeller
i, in N , Qi is the torque produced by propeller i,
in N.m, ωi is the rotational speed of the propeller
i in radians per second, KT , in N.s2.rad−2, and
KQ, in N.m.s2.rad−2, are the thrust and moment
coefficients, respectively.

3.1.4. Actuation Induced Forces and Moments
The aforementioned propeller thrusts and mo-

ments combined with the servo angles and the Tilt-
Quadrotor configuration produce forces and mo-
ments on the platform.

For the ALIV platform, the resultant force F and
moment M are given as [6, 11]:

F T =
[
Fx Fy Fz

]
(13)

Fx = −KT

(
ω2

2 sinϑ2 cosφ2 + ω2
4 sinϑ4 cosφ4

)
(14)

Fy = KTω
2
2 sinφ2 cosϑ2 + ω2

4 sinφ4 cosϑ4 (15)
Fz = −KT

(
ω2

1 + ω2
2 cosφ2 cosϑ2 + ω2

3 + ω2
4 cosφ4 cosϑ4

)
(16)

MT =
[
Mx My Mz

]
(17)

Mx =ω2
2 cosφ2 (dKT cosϑ2 +KQ sinϑ2)

− ω2
4 cosφ4 (dKT cosϑ4 +KQ sinϑ4)

(18)

My =dKT

(
ω2

1 − ω2
3

)
−KQω

2
2 cosϑ2 sinφ2

+KQω
2
4 cosϑ4 sinφ4

(19)

Mz =KQ

(
ω2

3 − ω2
1

)
+ ω2

2 cosφ2 (KQ cosϑ2 − dKT sinϑ2)

+ ω2
4 cosφ4 (dKT sinϑ4 −KQ cosϑ4)

(20)

where d is the distance from the quadrotor geomet-
rical center to the rotors.

3.2. Equations of Motion
The ALIV3 platform equations of motion can be

separated into two parts: Kinematics and Dynam-
ics.

3.2.1. Kinematics
Kinematics is the study of geometry of motion

which is used to relate linear and angular position
and velocity with no mention to origin of the mo-
tion [4].
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The relative position of quadrotor to the inertial
frame is:

P =
[
x y z

]T
. (21)

The velocity, relative to the body-fixed frame, is:

V =
[
u v w

]T
. (22)

The attitude, described by the Euler angles, of
the platform is

Φ =
[
ϕ θ ψ

]T (23)

The angular velocity is defined by:

Ω =
[
p q r

]T
, (24)

where p, q and r represent the roll, pitch and yaw
rates, respectively, relative to the body-fixed frame.

These quantities relate to each other through re-
lations depending on the attitude of the quadrotor.
Define the rotation matrix S from the body-fixed
frame to the inertial frame as

S =

cos θ cosψ cosψ sin θ sinϕ− cosϕ sinψ sinϕ sinψ + cosϕ cosψ sin θ
cos θ sinψ cosϕ cosψ + sinϕ sin θ sinψ cosϕ sin θ sinψ − cosψ sinϕ
− sin θ cos θ sinϕ cosϕ cos θ

 .
(25)

Note that S−1 = ST , a property of rotation matri-
ces.

The velocity relative to the inertial frame is re-
lated to the body-fixed frame velocity by

Ṗ = S V (26)

The roll, pitch and yaw rates relate to the Eu-
ler angles time-derivatives through a different kine-
matic relation:

Φ̇ = T Ω, (27)

where

T =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

 . (28)

3.2.2. Dynamics
Dynamics, opposed to kinematics, takes into ac-

count the mass and inertia of the body as well as
the forces and moments applied to it to describe its
motion.

When it comes to the linear motion dynamics,
one can define it with relation to the body-fixed
frame [4]

V̇ =
1

m
F −Ω× V + STg (29)

where g =
[
0 0 g0

]
, g0 = 9.81m/s2 is the

Earth gravitational acceleration, F is composed by

the three components of the forces applied to the
quadrotor defined in (13) and S the rotation ma-
trix from the body-fixed frame to the inertial frame,
defined in (25).

The tilt-quadrotor is also subject to rotations
around the three axis, described by Euler ’s second
law of motion

JΩ̇ = M −Ω× (J Ω) (30)

whereM is composed by the three components of
the external moments applied to the platform de-
fined in (17) and J is its inertia matrix.

3.3. Backstepping Controller
In this section, a controller for the Tilt-Quadrotor

model is designed by applying the Backstepping
control design method. For controller design, it is
assumed that the actuators do not have dynamics
due to their relative small response time constants.

The ALIV3 system model presents the neces-
sary characteristics in order to apply the BKS
method, as it can be written as[
Φ̇

Ṗ

]
=

[
T 03×3

03×3 S

] [
Ω
V

]
(31)[

Ω̇

V̇

]
=

[
−J−1 (Ω× (JΩ))
−Ω× V + ST · g

]
+

[
J−1 03×3

03×3 m−1 · I3

] [
M
F

]
(32)

The dynamics above is equivalent to:

ṡ1 = g1(s1) · s2 (33)
ṡ2 = f2(s1, s2) + g2N (34)

which is in the form of (1) and (2). Note that
f1 ≡ 06×1, g2 is constant and t was suppressed for
notation simplicity. This model contains 12 states.
However, it is composed by two loops: the kine-
matics, s1, (outer) loop and the dynamics, s2, (in-
ner) loop which means that the Backstepping de-
sign method is composed of two steps.

3.3.1. Kinematics Loop
As aforementioned, in section 2.1, the first part

of each step is to define the tracking error

ζ1 =

[
ζΦ

ζp

]
= s1 − s1,des =

[
Φ
P

]
−
[
Φdes

Pdes

]
, (35)

where Φdes and Pdes are the reference attitude and
position in space, respectively. ζ1 dynamics is

ζ̇1 = g1(s1)s2 − ṡ1,des (36)

The second part of the first step is to define a
Lyapunov function V1 containing ζ1. In order to
avoid steady-state error due to model errors, the
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Lyapunov function candidate will be augmented
with an integrative term of ζ1, i.e.

V1 =
1

2
ζT1 ζ1 +

1

2
γTKiγ, (37)

whereKi is a diagonal matrix whose elements are
positive. Note that if there are large model uncer-
tainties the integrative term may introduce a wind-
up problem. However, for smaller uncertainties, it
may be beneficial to counteract them.

Ki =

[
KΦi 03×3

03×3 Kpi

]
.

The integrative term is defined as:

γ =

[
γΦ

γp

]
=

∫ t

0

ζ1 dt. (38)

The third stage is to design a virtual stabilizing
control law, s2,des, that makes V̇1 < 0 for ζ1 6= 0
when s2 = s2,des.

V̇1 = ζT1 (g1(s1)s2 − ṡ1,des)

= ζTΦ

(
T Ω− Φ̇des +KΦiγΦ

)
+ ζTp

(
SV − Ṗdes +Kpiγp

) (39)

If s2,des =
[
ΩT
des V T

des

]T , which will be com-
mand filtered later, is chosen as

Ωdes = T−1
(
−KΦζΦ −KΦiγΦ + Φ̇des

)
(40)

Vdes = ST
(
−Kpζp −Kpiγp + Ṗdes

)
(41)

where KΦ and Kp are positive-definite matrices,
then, when s2 = s2,des, V̇1 is simplified to

−ζT1 K1ζ1 ≤ 0

where

K1 =

[
KΦ 03×3

03×3 Kp

]
.

Note that the det (T ) = sec(θ) 6= 0 but arises
problems when θ = π

2 + kπ, k ∈ Z. It should
be pointed that it is not expected for the plat-
form to reach pitch attitudes near π

2 radians (or
90 degrees), meaning that the singularities will be
avoided and Ωdes can be defined as above. T−1 is
defined analytically as

T−1 =

1 0 − sin θ
0 cosϕ cos θ sinϕ
0 − sinϕ cosϕ cos θ

 (42)

3.3.2. Dynamics Loop
Similarly to the kinematics loop, the dynamics

loop control design starts by defining the tracking
error

ζ2 =

[
ζΩ

ζv

]
= s2 − s2,des,f =

[
Ω
V

]
−
[
Ωdes,f

Vdes,f

]
,

(43)

where Ωdes,f and Vdes,f are the command filtered
versions of Ωdes and Vdes respectively. The dynam-
ics of ζ2 are

ζ̇2 = f2(s1, s2) + g2N − ṡ2,des,f . (44)

With ζ2 defined, (39) can now be rewritten sub-
stituting Ω by (ζΩ + Ωdes,f + Ωdes −Ωdes) and V
by (ζv + Vdes,f + Vdes − Vdes), simplifying V̇1 to

V̇1 =−ζT1 K1ζ1︸ ︷︷ ︸
≤0

+ζT1 g1 (s1) ζ2

+ ζT1 g1 (s1) (s2,des,f − s2,des)

(45)

Second part of the second step is to define a
Lyapunov function candidate

V2 = V1 +
1

2
ζT2 ζ2 (46)

The third part is to design a virtual stabilizing
control law, Ndes, that makes V̇2 negative definite
for ζ1, ζ2 6= 0 when N = Ndes, V̇2 is simplified to

− ζT1 K1ζ1 + ζT1 g1(s1) (s2,des,f − s2,des)

+ ζTΩ

(
−J−1 (Ω× (JΩ)) + T T ζΦ + J−1Mdes − Ω̇des,f

)
+ ζTv

(
−Ω× V + STg + ST ζp +

1

m
Fdes − V̇des,f

)
In order to guarantee stability, one needs to

compensate the difference (s2,des,f − s2,des) with
ζ1,c [7], defined by

ζ̇1,c = −K1ζ1,c −Kiγ + g1(s1) (s2,des,f − s2,des)

ζ1,c(t = 0) = 0

(47)

If Ndes is defined as

Ndes =

 Ω× (JΩ) + J
(
Ω̇des,f −KΩζΩ

)
m ·

(
V̇des,f + Ω× V − STg −Kvζv

)− g−1
2 · gT1 (s1)(ζ1 − ζ1,c),

(48)

where KΩ and Kv are positive definite matrices,
then the control law satisfies the conditions for sys-
tem stability, more information can be found in [7].
The tracking error dynamics is

γ̇ = ζ1

ζ̇1 = −K1ζ1 −Kiγ + g1(s1)ζ2 + g1(s1) (s2,des,f − s2,des)

ζ̇2 = −K2ζ2 − gT1 (s1) (ζ1 − ζ1,c)
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where

K2 =

[
KΩ 03×3

03×3 Kv

]

3.3.3. Control Allocation
Above, the expressions for the desired applied

moments and forces to the platform were defined
and it is now necessary to know what motor speeds
and servo angles produce them.

∆f(x) ≈ ∂f(x)

∂x
·∆x, (49)

where ∂f(x)
∂x is analytically defined.

Let us introduce the saturation function

S(x,m,M) =

 m , if x < m
x , if m ≤ x ≤M
M , if x > m

.

Introduce a variable change from ωi and νi

υi =

{
S
(

1
10 ωi, 0, 100

)
, for i = 1, 2, 3, 4

S
(

300
π νi−4,−100, 100

)
, for i = 5, 6, 7, 8

(50)

where it is assumed that the motors rotate at a min-
imum and maximum speeds of 0 and 1000 radi-
ans per second, respectively, and the servo mo-
tors achieve angles from −π3 to π

3 radians. This
variable change expresses the actuation effort in
the same scale, as a percentage of the maximum
values. Define the associated vector to the new
variables υi

Υ =
[
υ1 υ2 υ3 υ4 υ5 υ6 υ7 υ8

]T
. (51)

To know what value of Υ producesNdes, use the
linear approximation of N(Υ):

Υ = Υ0 + ∆Υ (52)

∆Υ = −

[
∂N

∂Υ

∣∣∣∣
Υ0

]†
· (N(Υ0)−Ndes) (53)

where † denotes a pseudo-inverse, and ∂N
∂Υ

∣∣
Υ0

is the partial derivative of N with respect to Υ at
a given point Υ, which is defined analytically. For
constant Υ0, the Jacobian matrix, ∂N

∂Υ

∣∣
Υ0

, is con-
stant as so is its pseudo-inverse. Meaning

Υ = Υ0 +KAlloc (N(Υ0)−Ndes) , (54)

where

KAlloc = −

[
∂N

∂Υ

∣∣∣∣
Υ0

]†
. (55)

Having obtained Υ, the PWM signal on-time
can then be calculated through a linear relation as

PWM ωi = aυi + uω,d, i = 1, 2, 3, 4 (56)
PWM νi = bυi+4 + c, i = 1, 2, 3, 4 (57)

where
a =

PWMmax − uω,d
100

b =
PWMmax − PWMmin

200

c =
PWMmax + PWMmin

2
It is wanted for PWM ωi to be equal to PWMmax

when υi = 100 and uω,d when υi = 0, i = 1, 2, 3, 4.
Similarly for PWM υi, it is meant to be PWMmax

when υi+4 = 100 and PWMmin when υi+4 =
−100, i = 1, 2, 3, 4.

3.4. Incremental Backstepping Controller
The kinematics of the ALIV3 model does not

present uncertainty and as such, the incremental
design will not be applied for the first step of the
method (kinematics loop). This means that the first
step is identical to the Backstepping method, see
section 3.3.1. However, for the second step (dy-
namics loop) it may be advantageous to. The dy-
namics is the loop that is affected directly by model
or actuator parameter uncertainty and disturbance
forces such as wind resistance, which is not mod-
eled.

3.4.1. Dynamics Loop
The second step is similar to the BKS controller

design up to the s2 dynamics, which is approxi-
mated to

ṡ2 ≈ ṡ2,0 + g2 ·∆N

≈ ṡ2,0 + g2 ·

[
∂N

∂Υ

∣∣∣∣
Υ0

]
·∆Υ

(58)

which makes the ζ2 dynamics to be defined as

ζ̇2 ≈ ṡ2,0 + g2 ·

[
∂N

∂Υ

∣∣∣∣
Υ0

]
·∆Υ− ṡ2,des,f . (59)

For notation simplicity define

B0 = B0 ·

[
∂N

∂Υ

∣∣∣∣
Υ0

]
, B0 = g2

Similarly to the Backstepping design method,
with ζ2 defined, V̇1 and V2 can be rewritten in the
same way, (45) and (46), respectively.
It is left to design a virtual stabilizing control law,
∆Υ, that makes V̇2 negative definite for ζ1, ζ2 6= 0.

V̇2 = V̇1 + ζT2 (ṡ2,0 − ṡ2,des,f +B0 ·∆Υ)

= −ζT1 K1ζ1 + ζT2
(
ṡ2,0 − ṡ2,des,f + gT1 (s1) ζ1 +B0 ·∆Υ

)
+ ζT1 g1 (s1) (s2,des,f − s2,des)

(60)
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In order to guarantee stability, one needs to
compensate the difference (s2,des,f − s2,des) with
ζ1,c [7], defined by (47).

3.4.2. Matrix Pseudoinverse
In order to be able to compute ∆Υ, it is firstly

needed to compute B†0, where † represents a
pseudo-inverse. Since

B0 = B0 ·
∂N

∂Υ

∣∣∣∣
Υ0

,

then

B†0 =

[
∂N

∂Υ

∣∣∣∣
Υ0

]†
·B−1

0 .

It is possible to define analytically

B
−1

0 =

[
J 03×3

03×3 m · I3

]
because it is a constant diagonal matrix with non-
zero elements in the principal diagonal. For nota-
tion simplicity, define

X0 =
∂N

∂Υ

∣∣∣∣
Υ0

.
According to [1, pages 19-21], the pseudo-

inverse of X0 can be defined as

X†0 = lim
δΥ→0

XT
0 (X0X

T
0 + δ2

ΥI6)−1

where δΥ is a scalar whose magnitude is less than
the smallest non-zero eigenvalue of X0X

T
0 , guar-

anteeing that (X0X
T
0 + δ2

ΥI6) is non-singular, its
inverse exists and approximately equal to X†0 .

The Tilt-quadrotor is overactuated, which means
that there may be more than one ∆Υ that solves
the equation

X0∆Υ = b

for an arbitrary b. Note that X0 is an 6 × 8 matrix,
meaning that its rank is at most 6, i.e. has at most
6 linearly independent columns. Let the solution be
split into

∆Υ = y1 + y2,

where
y1 = X†0 · b

and
X0 · y2 = 0.

This is possible if y2 is obtained by [15, page 80]

y2 =
(
I8 −X†0X0

)
z

with arbitrary z, which means that it can be chosen
to penalize when Υ0 is close to saturation, defining

z = KΥ (Υ0 −Υr) ,

where Υr is a reference vector for Υ, a design pa-
rameter, andKΥ is a constant 8×8 diagonal matrix
whose elements are non-zero.

Finally, X†0 , ∆Υ and Υ are computed in the fol-
lowing way

X†0 =

[
∂N

∂Υ

∣∣∣∣
Υ0

]T  ∂N

∂Υ

∣∣∣∣
Υ0

·

[
∂N

∂Υ

∣∣∣∣
Υ0

]T
+ δ2

Υ · I6

−1

(61)

∆Υ =X†0B
−1

0

(
−ṡ2,0 + ṡ2,des,f − gT1 (ζ1 − ζ1,c)−K2ζ2

)
+
(
I8 −X†0X0

)
KΥ (Υ0 −Υr)

(62)

Υ = Υ0 + ∆Υ (63)

Achieving the stability properties in [7] (where more
information can be found), assuming model cor-
rectness and sufficiently high control update and
sampling frequency, but also avoiding actuator sat-
uration.

The PWM signals can then be calculated as
in (56) and (57).

4. Simulation Results
For a first performance comparison, a series of

step references are given to the controllers. Both
control strategies show excellent results, with zero
steady-state error for the three Cartesian coordi-
nates and three Euler angles.

The Backstepping controlled system has a re-
sponse overshoot of 1.6% for ϕ reference track-
ing and less than 0.86% for θ or ψ tracking. Posi-
tion reference tracking has smaller response over-
shoot, up to 0.0066%.
The Incremental Backstepping controlled system
has higher response overshoot: approximately
1.96% for all attitude, 1.78% for z and 1.44% for
x or y reference tracking.

In order to compare control allocation and sys-
tem decoupling, the responses to ϕ and x tracking,
including the actuation values are recorded in fig-
ures 1 and 2. Note that only two motor and two
servo responses are included for each controller
response. This way, it is included one motor with
servo, one without, one φ servo and one ϑ servo,
presenting no loss of generalization because the
other actuators of the same kind have the same re-
sponse. Changes in roll angle, ϕ, directs the force
in the y direction, having almost no effect on the
other two directions, hence the plotting of the y, ϕ
in the same figure 1. Analogously for the variables
θ and x in figure 2.

Figures 1 and 2 show that BKS and IBKS have
different control allocation solutions. The first one
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Figure 1: Roll Angle Reference Tracking System Responses
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Figure 2: x Coordinate Reference Tracking System Responses

tends to have the same speed on all motors, while
its incremental counterpart demands a higher ef-
fort of the motors with servos, decreasing the nec-
essary servo angle to maintain the tilted attitude.
In figure 1, it can be seen that a change in atti-
tude of 20 degrees, has a rather small impact of
0.02 meters on the position, with the same effect
on x for changes in θ. However, changes in the x,
y and z coordinates have little to no effect on the
Tilt-Quadrotors attitude, see figure 2.

For coupled reference tracking, with ϕ and θ ref-
erence values of up to 40 degrees and ψ values
of up to 80 degrees, both controllers have good
tracking capabilities for position, as can be seen
in figure 3. The BKS system showing an average
distance from the reference of 0.0703 meters and
the IBKS system of 0.1080 meters while both being
able to track the attitude references closely.
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Figure 3: Coupled Reference Tracking System Responses

4.1. Robustness
When it comes to controller robustness to mea-

surement noise, testing is made by simulation with
added zero-mean white noise to the system’s out-
puts s1, s2 and ṡ2 before being fed to the controller.
The linear position, velocity and acceleration mea-
surement noise variance is 4 · 10−3. In the case of
the attitude and angular velocity, the variance is of
10−4. Lastly, the variance of the noise added to the
angular acceleration measurement is 2 · 10−3.

In order to evaluate performance, the root mean
square residue between the responses with mea-
surement noise and the noise-free responses is
calculated.

RMSR =

√√√√ 1

N

N∑
k=0

(s(k · Ts)− sb(k · Ts))2
,

where s is the state response being studied, which
can stand for ϕ, θ, ψ, x, y or z, sb is the baseline,
noise-free, response for the same state, 0 ≤ k ≤ N
for k ∈ Z is the sample number, Ts is the sample
time and N ∈ N is the total number of samples.

For attitude tracking, the BKS controlled system
response RMSR values are of the order of mag-
nitude of 10−1 degrees and of 10−2 degrees for
the IBKS controlled system. For position tracking,
the BKS and IBKS controlled systems responses
RMSR have the same order of magnitude of 100

millimeters, showing that the IBKS controller is
more robust to measurement noise in general.

Testing shows that the IBKS controller is robust,
i.e. can stabilize and track references, to large pa-
rameter changes in center of gravity location, arm
length, mass, inertia, propeller constants, motor
and servo constants and single motor or servo con-
stants with respect to the other motors or servos.
The BKS controller can not stabilize and track ref-
erences to as large parameter changes, especially
for the location of the center of gravity or one of the
motors or servos to be different from the others.

5. Conclusions
The main purpose of this dissertation is to pro-

pose an Incremental Backstepping controller for
the ALIV platform in order to take full advantage
of its maneuverability and theoretical robustness
due to the actuator redundancy. A Backstepping
controller is also developed due to their similarity,
offering a second option for nonlinear control.

For the nominal model, i.e. no model parameter
variations, both controllers, Backstepping and In-
cremental Backstepping, offer excellent stabiliza-
tion and reference tracking results showing small
response overshoot and a decoupled system im-
pression despite knowing that the linear position
and velocity subsystem is coupled with the attitude
and angular velocity subsystem.
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Concerning the nominal model, i.e. no model
parameter variations, the Backstepping controller
shows very similar, if not better, performance than
the Incremental Backstepping, with lower compu-
tational effort, because the BKS controller uses
a constant allocation matrix while the IBKS con-
troller needs matrix inversion algorithms at each
time step. However, the BKS controller may have
larger wind-up problems as an integrative term is
introduced in the control law, while the IBKS con-
troller has integrative properties inherently.

The Backstepping controller splits the thrust de-
mand between all motors in an almost identical
way, which may be more energy efficient than
the Incremental Backstepping controller, that splits
the load unevenly between the motors, demanding
more from the motors with servos. However, this
approach allows for the platform to maintain stably
up to forty-degree roll and pitch attitude without ac-
tuator saturation, while the Backstepping controller
struggles to go over thirty degrees, due to servo
saturation.

Robustness analysis shows that the Incremen-
tal Backstepping controller is extremely robust to
model errors, being able to stabilize and track refer-
ences with severe model parameter changes. The
Backstepping controller is not as robust to model
errors. If the model does not differ significantly
from the real platform, it can still be applied to the
platform with no additional tuning.

This work was successful at solving the stabiliza-
tion and reference tracking problem for the ALIV
Tilt-Quadrotor using these two nonlinear control
design methods. However, points of improvement
regarding this work are possible.

As the relations between the Incremental Back-
stepping (or Backstepping) controller gains and
their performance are not trivial, they were chosen
by testing combinations. A study relating the con-
troller performance with the gain matrices would be
of interest.

The ALIV platform is controlled digitally, mean-
ing that the controller to implement has to be dis-
crete and not continuous. It would be interesting
to study how the sampling frequency affects both
controllers, especially the Incremental Backstep-
ping as it relies on the assumption of sufficiently
low time between samples.
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