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Abstract

The inability to sustain continued technology scaling with detained voltage reduction (end of Moore’s
and Dennard’s laws) severely limits further performance increase of computer architectures. Cutting-
edge technologies to overcome these limitations are not expected in the near future, so contemporary
architectures rely on heterogeneity to improve performance and energy-efficiency. General-purpose sys-
tems that integrate multi-core CPUs and GPU on the same die share physical and virtual memory, and
can provide atomic and cache coherent access to data. After research into common transactional mem-
ory mechanics (specifically TinySTM’s internals) and existing OpenCL features on supported hardware,
early experimental simulations demonstrate that an integrated GPU can run a persistent GPU daemon
that would efficiently perform value based validation, required by modern transactional memory systems
such as NOrec and TinySTM, without interfering with the underlying STM’s real-time execution. A
partial offloading of such computations yielded an up to 2.1x increase in transactional throughput of
TinySTM in a popular STMBench7 benchmark when facing large, long running transactions.
Keywords: software transactional memory, heterogeneous computing, transactional validation, inte-
grated architecture

1. Introduction
Hardware manufacturers are no longer scaling

clock speed but are focusing their efforts on increas-
ing the number of cores inside micro-processors. As
noted by Herb Sutter in 2005 - in the past, sequen-
tial code would automatically become faster with
each new hardware generation1, and today, due
to the inability of sustaining Moore’s law, single-
threaded applications no longer see the benefit from
recent hardware, as Central Processing Unit (CPU)
clock rates remain steady. Besides increasing the
core count to support more concurrent threads,
each new processor architecture has been steadily
improving its vectorization capacity by increasing
the size of Single Instruction, Multiple Data (SIMD)
registers, making it possible to apply single instruc-
tions on even larger data sets with reduced power
consumption [10].

Parallelism has become an integral part of de-
signing performance critical software but is chal-
lenging because a programmer has to reason about
shared memory and synchronization when access-
ing it simultaneously from multiple threads. The
usual technique for a programmer to build con-
current data structures is to use locking. Using
coarse grained locks sacrifices performance, while
fine grained locking is error prone and their ac-
quisition order is difficult to orchestrate correctly.
Conventional locking techniques come with conven-

1http://www.gotw.ca/publications/concurrency-ddj.htm

tional locking problems, such as priority inversions,
convoying, difficulty in avoiding deadlocks and lack
of composability. Transactional memory, on the
other hand, aids mainstream application develop-
ment by providing a simple yet efficient use of
the available and exponentially growing multi-core
hardware by allowing the programmer to declare
atomics blocks within code to be executed concur-
rently.

While conducting research into the latest Trans-
actional Memory (TM) systems and their various
incarnations, namely hardware, software, hybrid,
as well as the inner workings of cutting edge STM
systems, it was observed that their common Value
Based Validation (VBV) process executes sequen-
tially during each read and the commit phase, by
iterating over a list of transaction private reads and
checks that values previously read remain valid -
that is, unchanged concurrently by other transac-
tions - in the global main memory. This behavior
reflects a single set of instructions affecting multi-
ple data that can be naturally parallelized in order
to increase the transactional throughput of a Soft-
ware Transactional Memory (STM) system with-
out halting its real-time execution - using the par-
allel nature of a contemporary mainstream Accel-
erated Processing Unit (APU), housing a CPU and
a Graphics Processing Unit (GPU) on a single die.

Studies to improve STM systems mainly fo-
cus on the design of conflict detection, version
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management and conflict resolution [15]. To
our knowledge, no other study investigates the
possibility of validation hot-spot acceleration
in TMs using an APU. Additionally, this work
documents the research performed into the means
of applying zero cost submission (section 5) for
computations offloaded onto an integrated GPU,
and presents results (section 6) from simulations
of a persistent GPU daemon (to instantaneously
validate a transaction), taking full advantage of the
shared memory and coherent caches available on
the same chip - integral for non-interference with
parallel transactions while running validation.

The practical challenges, with respect to offload-
ing read-set validation to the GPU, came down to
locating the lower bound of the validation set size,
starting at which the GPU outperforms the CPU,
and the validation offloading is justifiable.

Generally, word based STM application access ar-
bitrary memory addresses, while the efficiency of
vector instructions in many-core environments is
based on an ability to load multiple contiguous ar-
ray elements into vector-wide registers. Having co-
alesced memory accesses is crucial for optimal per-
formance and lower energy consumption with vec-
torization, thus it is necessary to experiment with
various GPU memory access patterns.

2. Background
Heterogeneous applications execute on a set of

different architectures consisting of host code - ex-
ecuted on general purpose CPUs, and kernel code
- executed on parallel devices such as GPUs. The
CPU takes responsibility of managing code, data
and the environment before loading tasks to the
device (iGPU) which runs highly parallel computa-
tions. After the kernel is launched, the control flow
is returned to the CPU so that it can operate inde-
pendently while data parallel code runs on the de-
vice asynchronously. Heterogeneous programming
has vast benefits but increases the complexity of
programs because of the differences in instruction
set architectures and asymmetries in capabilities
between the various processors used in this style
of programming.

2.1. The Intel R© graphics processor compute engine
An Intel R© graphics processor provides graphics,

media, compute and display capabilities for many
of Intel’s SoC products [7]. Some applications of
Intel graphics for computation include face detec-
tion, dynamic crowd simulation algorithms, as well
as malware detection that offloads computations to
the integrated GPU [12].

Global memory coherency is supported between
Intel Gen9 processor graphics and the CPU cores
though snooping mechanisms and updated cache

protocols ([7], Section 5.7.2). Notably, Intel’s GEN
architecture has a clearly defined notion of hard-
ware threads, which can be accessed programmati-
cally, and are responsible for running SIMD instruc-
tions.

Intel graphics compute capabilities are accessed
through the OpenCL [6] portable standard (main-
tained by the Khronos2 group) for cross-platform
and many-core programming. It generates SIMD
code that maps a kernel to multiple work-items
(within a work-group) for simultaneous execution
across thousands of threads. To maximize the si-
multaneous utilization of an Execution Unit (EU),
all work-item instances within a thread should be
executing the same instruction. Divergent branch-
ing work-items are masked off and are executed se-
rially in separate cycles.

A kernel enqueue creates an N-dimensional
abstract index space of work-items, called the
NDRange, consisting of global and local dimensions.
The Shared Local Memory (SLM) supports fast
data sharing among EU hardware threads inside
a single work-group. Inter work-group communi-
cation has to be done through the global memory.
Additionally, each work-group can enjoy a rich suite
of 32-bit atomic read-modify-write memory opera-
tions on a slice’s L3 cache, global memory and on
the SLM.

2.2. Performance Characterization and Simulation
of Intel’s Integrated GPU Architecture [3]

Figure 1: Memory hierarchy access latency Intel
CPU (i7-6700k) vs. iGPU (HD 530 GT2). Single-
threaded micro benchmark. Data obtained from
joining Figures 4 and 5 in work by Gera et al.[3].

Memory Hierarchy Latency
Gera et al.[3] conducted memory hierarchy la-

tency experiments with a single threaded random-
access micro-benchmark to determine the latencies
for various levels of the Intel iGPU’s memory hier-
archy. The single-threaded random pointer chasing
algorithm they executed on the CPU and iGPU re-
semble what we are aiming to achieve in our work

2https://www.khronos.org/opencl/
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with an STM validation system, where each CPU
thread is responsible for validating it’s own trans-
action’s read-logs whose entries map to random
memory addresses in an array of locks (ownership
records).

The latency for the first general purpose L3 cache
in Intel HD530 is 125ns (Figure 1). Next in hierar-
chy is the Last Level Cache (LLC) which is shared
with the CPU. Here, we can highlight the difference
between the latency of accessing the same resource
between the CPU and the GPU. Notably, the re-
source we are after with the iGPU (read-log + lock
table) is most likely already resident withing the
CPU core’s LLC slice (the read-log and locks on
which the transaction has been operating). The
access time for the LLC from the CPU is ≈10 ns,
whereas for the GPU, it starts at 212 ns (first work-
ing set size larger than GPU ’s L3).

Because the access time steadily increases in the
LLC region for the GPU (1MB-8MB) and are pretty
flat for the CPU, the authors believe that the GPU
is not able to take advantage of the full capacity
of the LLC, and perhaps some capacity is always
reserved for the CPU. Finally, for 64MB and be-
yond there is a stable average DRAM access time
of about 73 ns for the CPU and 355 ns for the GPU.

The authors point out, that this sort of single
threaded pointer chasing workload is unusual for a
GPU, as they are designed for high throughput, and
not low latency.

2.3. An overview of transactional memory

It is simpler to write correct concurrent programs
using transactions than it is with locks, by not hav-
ing to reason about resource acquisition and release
orders. Transactions provide a basis to construct
parallel abstractions which can be combined, much
as procedures and objects provide composable ab-
stractions for sequential code. It requires program-
mers to simply identify which code blocks should
be executed atomically by enclosing a sequence of
statements, that access shared resources which ap-
pear to happen instantaneously, into atomic trans-
actions.

A transaction is executed speculatively which
means tentative changes are made that are only vis-
ible to the world when it commits. Whenever there
is a failure during a transaction it is aborted and
the effects of its changes are not visible - the system
stays consistent. For a transaction to get executed
successfully, any data read during the transaction
must not be modified during its execution by other
tasks or threads (tracked by validation). Generally
transactions that abort must retry until they are
successful.

Software transactional memory, which is what we
are focusing upon in our work, is a flexible system

that does not have any specific hardware require-
ments. It relies on a hypothesis that conflicts are
unlikely and in most cases, transactions can com-
mit. Besides the cost of instrumenting instructions
within blocks of code that are explicitly denoted as
atomic, the TM must also make sure to instrument
function or method calls from within atomic blocks
and make sure they use the TM API.

Validation

A validation technique is used by most STMs
(e.g., TinySTM, NOrec) that use invisible reads.
Time based validation allows to mark each update
with a timestamp taken from a discrete global time
that is shared by all transactions. It is a costly
operation that ensures the consistency of a transac-
tion through a comparison of logical timestamps of
every entry in the read-log.

The concept of transactional validation is one of
the largest remaining STM design questions [2] in
TM development, and is what this work aims to
accelerate.

2.4. STM on the GPU

Besides the idea of implementing TM on discrete
GPUs [11, 14], there has been recent work done by
Villegas et al. [13] in the field of transactional mem-
ory and its acceleration on Heterogeneous System
Architecture (HSA) compliant hardware, namely
the integrated GPU.

The authors created a configurable transactional
memory system called APU-TM that can run on
the CPU, GPU or split the workload in between.
The CPU version is highly inspired by NOrec and
has a timestamp based conflict detection mecha-
nism. The STM that runs on the GPU (inspired by
GPU-STM [14]) uses a similar global sequence lock
to the CPU counterpart, which makes it possible for
both sides to shared a lock. Because of this princi-
ple transactional conflicts must firstly be detected
within the same GPU wavefront (AMD’s equivalent
of a CUDA’s warp) and only then checked against
other wavefronts on the GPU and other CPU trans-
actions.

APU-TM replicates an STM on the GPU, and
does not alter the sequential validation process,
while the work proposal described in this project
aims to accelerate it using the highly parallel na-
ture of the integrated GPU.

3. Methodology and Testbed

To evaluate the proposed augmentation to soft-
ware transactional memory systems we have set
up numerous existing benchmarking applications
[4, 8, 9] with state-of-the-art STM systems, to
execute transactions on a configurable number of
threads.

Four of the most performant, and referenced in
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Figure 2: Instrumented counters from n threads.
Performance counters are gathered from n STM
threads from all transactions for the program’s du-
ration and are aggregated at the end of program
execution.

academia, word based STM systems were selected
to evaluate the solution proposed in this work and
instrumented to track relevant performance coun-
ters. Namely, they are SwissTM, TinySTM, TL2
and NOrec. Amongst the STM systems we con-
ducted a study on the validation call frequency and
the amount of work performed on average in that
benchmark configuration. Ultimately, we settled
to develop the proof of concept on a single STM
(TinySTM) system without compromising the ap-
plicability of our proposed solution.

All 12 benchmarking applications were parame-
terized for their duration and a balance between
being more read, write or read-write dominant -
which provokes every transaction to spend more or
less time validating its read set.

In the initial stages of development of the
validation tool we focused mainly on the
reads-validated/s metric. This metric paints
a clearer picture on any (possibly slightest) dif-
ferences and improvements among the various
versions of the validation tool (OpenCL kernel
modifications; communication protocol changes;
atomic memory orders).

Time spent performing validation is much smaller
compared to the total program execution time.
This means that slight performance gains would not
have been so easily detectable. In later stages of de-
velopment, the commits/s performance metric was
considered, as we approached to our most perfor-
mant kernel and synchronization algorithm.

The current work has very specific hardware and
software requirements. Shared Virtual Memory
support is enabled in the MS Windows version of
the Intel OpenCL driver. However, we found that
support under Linux is lacking. We suspect this is
due to the existence of many commercial applica-
tions in MS Windows such as the Adobe suite, that
require state of the art features that drive commer-

cial progress. The only hardware/software configu-
ration that permitted us to work on Intel were the
4th and 6th generation CoreTM processors under
the Linux 4.7 kernel patched for OpenCL3. Luckily,
we had the i7-6700k processor available (the more
performant of the two commodity CPUs that ships
with an integrated GPU). In contrast, on the AMD
platform, we used the 2400G APU with Vega 11
graphics.

4. Validation analysis in benchmarks

We are seeking the best possible use cases to
prove the utility of our work within transactional
memory. In this section, we attempt to look inside
the behavior of value based validation.

We started by gathering counters from a mul-
titude of benchmark executions on a set of STM
systems with varied degree of parallelism and input
parameters. We are looking for STM/Benchmark
combinations with the largest transactions. They
possess a notably larger read-set, and most impor-
tantly, complete validating its majority.

Contention among threads influences the number
of reads actually validated before returning because
of an invalidation - naturally reducing the utility of
our GPU validation tool as the number of executing
STM threads increases.

Among all benchmark/STM combinations eval-
uated, TinySTM executing STMBench7 showed
the largest reads-validated/transaction. Enabling
long structural traversals in STMBench7 lead to
larger transactions, regardless of Read, Write or
ReadWrite dominated worloads.

5. Proposed transactional APU validation

TM systems have surpassed the boundaries of
CPU execution and extended their reach onto the
GPU architectures. There are solutions that imple-
ment transactions simultaneously on the CPU and
GPU [13], however, in these systems, validation re-
mains a single-threaded phenomenon. To the best
of our knowledge, there are no systems that fully
dedicate the computational capabilities of the inte-
grated GPU to read-set validation in software.

There is a multitude of challenges accompany-
ing the heterogeneity of this type of hardware, with
the most notable one being a high latency in inter-
device communication [3]. However, recent devel-
opments and software/hardware support, as well as
some unconventional programming models [5] have
interesting characteristics able to tackle these limi-
tations.

OpenCL 2.0 Shared Virtual Memory (SVM) fea-
tures with fine-grained system/buffer sharing with
atomics, executed on an Intel APU allows for

3https://www.spinics.net/lists/intel-
gfx/msg160963.html
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pointer-rich data structures, like TinySTM’s con-
currently accessed global lock table and transac-
tional read-logs, to be shared seamlessly in real-time
between the host application’s transactions and de-
vice validation without data structure marshalling
or software translation techniques such as mapping
and unmapping shared buffers on the host (required
in the OpenCL 1.x programming models).

Persistent GPU threads The traditional way
of doing computations on GPUs is writing C-like
kernels and having them queued in and executed
by the framework’s runtime, passing the request
through the graphics driver stack, waiting for the
thread creation, execution and then mapping and
copying the results back from the device memory
to the host. However, low latency is critical for
lock/Orec access in transactional validation.

The Persistent Threads (PT) GPU programming
method has been concisely defined by Gupta et
al.[5] to address this shortcoming. According to
the authors, PT can achieve an order-of-magnitude
speedup over some non-PT kernels by reducing ker-
nel launch latencies.

Using the OpenCL2.0 SVM features with fine-
grained buffer sharing + atomics, it is possible to
exclude steps from the kernel enqueue process each
time a parallel computation is needed, and commu-
nicate between the CPU and a device without going
through the OpenCL driver. Specifically - removing
the clEnqueueNDRangeKernel + clFlush/clFinish
latency. By creating a lightweight communication
protocol, new work such as validation requests may
be submitted directly to an already running kernel
daemon - executing it with minimum delay required
for seamless integration into the STM - although
possibly requiring some scheduling of the available
GPU resources.

With zero cost submission, an STM transaction
requiring validation on its private read-set can sig-
nal the integrated GPU through a shared variable
in a pre-shared SVM buffer for validation to com-
mence immediately on the entries using the await-
ing pool of GPU threads.

5.1. Implementation

Basic overview of instant validation After
the first enqueue of the Instant Kernel, the CPU
waits until it is submitted into the cl queue, and
each hardware thread (OpenCL 2.0 sub-group) re-
sponds that it is ready to poll for incoming vali-
dation requests. Having collected responses from
all hardware threads, the CPU resumes its regular
STM operation. In the meantime, every work-group
leader in the GPU polls for instructions on the pre-
allocated SVM buffer (this is done to reduce atomic
traffic on the data-port), while all the other work-

items poll on a SLM round variable which will be
set by the work-group leader once an STM thread
submits a validation request and fills the necessary
validation metadata (read-set index, write-set ad-
dress offsets, etc.).

The validation tools created during our research
have been modified multiple times and undergone
numerous architectural changes over the course of
this work. Small changes were introduced, and mea-
sured, to interfere as little as possible with the oth-
erwise normal execution of transactions in an unal-
tered STM environment.

Early adopted approaches offload the entirety of
the validation to the GPU, idle the CPU, and return
control of the sequence after all work-groups in the
Instant Kernel complete.

Coalesced validation Our GPU kernel follows
the most sought after access pattern in GPGPU
programming - the coalesced memory access pattern
(Figure 3). It is an important optimization tech-
nique in high performance kernels that combines
multiple memory accesses into a single transaction.
Data elements that are spatially close to each other
in memory are loaded in chunks to be processed
simultaneously by the parallel nature of the GPU.

Figure 3: Full GPU validation - coalesced read-set
access by work-items in a hardware thread (row).

Strided validation Besides the simplest and
most intuitive assignment of elements (a coalesced
memory access), we experimented with alternative
memory access patterns (Figure 4).

Work-items in a hardware thread get executed as
memory fetch instructions are complete (pipelined
execution). The first work-items (sub group local id
in OpenCL) of every Hardware threads in an EU
gets truly executed in parallel, because memory for
those work-items is the first to be fetched.

This memory access pattern is possible because
in a persisting Instant Kernel execution that uses
no more than the device’s maximum occupancy,
the mapping of sub group local id/ sub group id/
group id is invariant for the duration of the kernel’s
execution.
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Figure 4: Full GPU validation - strided memory ac-
cess; synchronous work-items in the EU load spa-
tially local read-set entries. In this example - two
elements per work-item (K=2).

In Figure 5 we show the strided memory access
pattern outperform coalesced by up to 2.3x (1M en-
tries).

Figure 5: Full GPU validation - coalesced vs strided
memory access (Intel).

Iterative validation in blocks This mode of op-
eration allows the substitution of 5376 loops that
calculate offsets, within each kernel instance of
the Instant Kernel, for a single loop on the CPU
thread delegating SVM communication. This new
iterative kernel dispatch triggers instant validation
ceil (read-set/occupancy) times, where occupancy
is 5376 work-items on the Intel HD530 testbed ma-
chine.

In this mode, each work-item is responsible for a
single read-set entry at a time until the entire de-
vice re-submerges and moves to the next block. It
was configured to operate with both the coalesced
and strided memory access patterns. Block itera-
tions perform best out of all versions that we have
conceived.

The overhead of triggering the Instant Kernel it-
eration number of times apparently outweighs the
computations of the offsets and the banking con-

Figure 6: Full GPU validation - blocks with variable K
(1-24966); (MAX-occupancy ∗ K) - coalesced memory
access (Intel); reads-validated/s.

flicts, possibly occurring when thousands of work-
items iterate individually over the read-set to load
multiple read-set entries. Additionally, the synchro-
nization on the stop/invalidated condition no longer
happens on global memory within each work-item
in the kernel - but once, between iterations, in the
CPU delegate thread.

However, we suspect that mapping a kernel work-
item to a single read-set entry (K=1 ) may not be
sufficient to saturate the GPU with enough memory
accesses for an optimal Memory Level Parallelism
(MLP). At the same time, having a large K will
most likely spill GRF (register) memory into the
L3-data cache, and result in worse performance.

We present an ideal K assignment, with our em-
pirical analysis, to be 2 elements in a coalesced
memory access in an Instant Kernel (Figure 6), for
the Intel HD530 (GT2) GPU.

Cooperative validation With a cooperative ar-
chitecture we tackle two issues: one, we task the
otherwise idle CPU with work, as opposed to idling
while waiting for the GPU to complete. And two,
simultaneously increase the performance of each in-
dividual device by making them cooperate.

A variation of work attribution and the dataset
size was experimented with to discover the optimal
separation of work among the devices. The bench-
mark to discover this balance was a simple transac-
tional array walk (random element accesses), with
no computations in between loads and stores.

Data from the benchmark (Figure 7) shows
an increase in performance over the baseline
TinySTM’s reads-validated/s, beginning at ap-
proximately 250k elements, and maintains domi-
nance over the baseline throughout the entire read-
set range - until reaching ≈130M elements with an
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up to 1.7x increase in performance in the largest
read-sets. We observed an ideal partition of work
for large read-sets to be close to 50%, while leaning
slightly in the CPU’s favor.

A dynamic partitioning of the read-set be-
tween the two devices brought on a more compli-
cated synchronization logic, due to the workload
assignment not being predetermined:

The GPU works at the granularity of a work-
group. An Instant Kernel running on Intel has 24
work-groups which would have to constantly poll
the CPU’s position, and add extra branching logic
(to stop if they surpass the CPU’s position). The
solution to this problem was for the GPU to pro-
cess its assignment in iterations of blocks of maxi-
mum device occupancy. This concept has the de-
vice submerge into work by validating a block and
re-surfacing to synchronize (Figure 8). The GPU
notifies the CPU whether the transactions should
be aborted because it found a discrepancy in the
read-set (within any work-item), and queries the
CPU for the same information.

The comparison between the strided and coa-
lesced memory access patterns (Figure 5), and a
variation of the K value (Figure 6) helped us deter-
mine the optimal memory access pattern and work
assignment within the GPU’s blocks, which was ul-
timately applied to this dynamic partition scheme.

For a multi-threaded environment, we devised a
simple and inexpensive competitive method of dy-
namically sharing the GPU between STM threads
through a compare-and-swap resource acquisition.
The winning thread would employ the GPU, while
the others carry on performing their own validation
themselves.

From similar experiments to Figure 7 we observed
that, in a dynamic partitioning of work, the GPU

Figure 7: Statically assigned, cooperative CPU-GPU
validation. reads-validated/s with variable data-set
size, intersected with the baseline TinySTM (black
plane).

Figure 8: CPU-GPU cooperative validation in
blocks on the GPU (blue, left); CPU (yellow,right).

catches-up to the CPU much sooner, in the amount
of reads-validated/s, at ≈ 250 − 500k elements.
However, the GPU reaches larger increases in raw
validation volume (compared to the static partition
version) because its kernel has an optimized value
for K (number of read-set elements/work-item),
and performs the validation in iterations of Blocks,
whereas the static split had to compute ceil(read-
set/5376) elements per work-item.

Finally, it is noted that the relative cost of syn-
chronization between the devices is a systematic loss
of 2k read-set elements (wasted work/double vali-
dation).

CPU only - multi-threaded validation We
took a side-step and pivoted development into an
alternative validation scheme using a pool of unuti-
lized hardware threads to be used when the degree
of parallelism is low.

This alternative validation scheme may be
adopted in special situations with a purposefully
reduced degree of parallelism and a prior knowl-
edge of a highly abort-prone workload. In this case
some CPU hardware threads shall be reserved for
the unique purpose of serving as validating threads
- either as a pool of workers or a statically assigned
number of threads.

Validator thread pools are initialized at
TM INIT, and sleep awaiting a signal from
their employing STM thread. The read-set is par-
titioned evenly, with irregular parallelism stacked
at the last thread, and validation is performed the
regular way.

We experiment with 2,4 and 8 validator threads
per STM thread. Among others, combinations such
as (2, 8) and (4, 8) of (STM -threads, V alidators)
result in an over-subscription of hardware resources
(8 threads), but interesting nonetheless, because
STM threads do not always call validation simul-
taneously.

For the following experiment, as the number
of threads increased, the array size they operate
within remained constant as a single list of read-set
size. According to our study of a CPU validator
thread pool’s performance in the amount of reads-
validated per second with the micro-benchmark, in
Figure 9, the optimal thread count is between 4 and
8 threads. From the figures, the trade-off seems ap-
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parent, for the same overall performance, half the
threads being employed is a better choice.

Figure 9: CPU Validator threads reads-validated/s
(TX Array micro-benchmark (RND elements).

6. Results
We shall attempt to verify the concept of val-

idation offloading, orchestrated with some existing
benchmarks as well as some micro-benchmarks that
we have created for specific use cases.

We aim to discover the lowest bound, present-
ing itself as the smallest read-set size, starting from
which it is justifiable to involve the GPU in per-
forming value based validation. The obtained re-
sults are presented by means of empirical observa-
tions and analysis, under a variety of workload sizes
and parallelism degrees.

6.1. Kernel deconstruction analysis
We performed an Instant Kernel kernel decon-

struction analysis, in a simple transactional array
benchmark environment, with systematically sub-
tracted features.

The overhead of every step of an Instant Kernel
with Persistent Threads was measured. The specific
set of inspected operations is the following:

• a loop to compute a read-log chunk, and an out
of bounds check;

• load of read-entries in a chunk (has spatial lo-
cality - relatively cheap operation);

• following/de-referencing a pointer to some ar-
bitrary address in the lock table (most expen-
sive operation);

• validation branching logic checking whether
the lock is taken and retrieving the owner’s
write set start address and offset (cheap in

single-threaded, can get more expensive in
multi-threaded).

Unfortunately this experiment is inconclusive
with regard to the subsequent branching logic di-
vergence expected to occur in a multi-threaded en-
vironment after the aforementioned loads. Never-
theless, it provides an important insight into the
overhead introduced by a GPU Instant Kernel.

From our analysis, we conclude that the most ex-
pensive set of operations is the chasing of the lock
pointer. This indicates that the kernel performance
is bound only by memory latency of loading poten-
tially arbitrary memory locations.

We expect CPU threads to have a clear advan-
tage, as they access the locks prior to performing
validation (i.e., performing writes, retrieving times-
tamps) with a much smaller memory access latency,
and cache them into a much larger LLC.

6.2. Multi-threaded array traversal micro-bench
Until now, we have only focused on analyzing

a single-threaded validation scenario. The valida-
tion code would always fall into the same branch,
because no ownership record is ever locked by a
competing thread. It is expected, however, that
the presence of contention among STM threads will
negatively affect GPU performance, because of ker-
nel thread divergence during lock availability veri-
fication. The cost of branching on a GPU, after all,
is much higher due to a thread lockstep execution.

The potential for the GPU to have a higher stake
in validation may increase when the CPU threads
throttle their performance by reaching their hard-
ware limits/thermal ceiling much sooner. However,
this case is difficult to reason about, as the GPU
is not employed in every validation request of every
STM thread. It is a contended for resource, and its
utility is less prominent as the degree of parallelism
increases.

Figure 10 shows our cooperative validation tool
being applied to multiple STM threads in an array
micro-bench with disjoint sets. It includes execu-
tions of a cooperative validation on both Intel and
AMD platforms, and CPU validator threads nor-
malized to TinySTM-untouched.

6.3. STMBench7 analysis
Through our custom array traversal micro-

benchmark, we conducted an analysis of our best
kernel and work-separation algorithm for the CPU
and the GPU to cooperatively validate read-sets.

We performed a study on the amount of
reads-validated in the most popular transactional
benchmarks and their various input parameters.
Out of that study STMBench7 produced the largest
number of reads-validated per validation call, thus
delivering the best potential utility for our coop-
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Figure 10: Disjoint set array traversal - reads-validated/s (speedup). GPU’s ability to aid validation
scaled with parallelism. Threads operate on isolated data sets (no contention). Speed-up of Intel-coop,
AMD-coop, Intel-CPU-validator-threads, in reads-validated/s over TinySTM-untouched (baseline).

erative GPU validation tool. We would now like
to present our further assessment of the validation
tool, with a more relevant transactional throughput
metric, using a handful of selected STMBench7 ver-
sions, from a previous analysis, with long traversals
enabled.

TinySTM-cooperative-validation Finally, we
evaluated our work with a high caliber benchmark
- STMBench7. We expected, however, the GPU to
vastly under-perform, as it was shown in Figure 1,
where the memory latency of the iGPU is an order
of magnitude greater compared to the CPU. How-
ever, given a large volume of long transactions, our
validation tool outperformed the baseline TinySTM
by up to 2.1x in commits/s, as shown in Figure 11,
where each validation call consisted of (≈ 260k val-
idated elements). Notably, the highest speedup co-
incides with a full usage of hardware threads on the
CPU.

7. Conclusions

After having configured and instrumented a mul-
titude of benchmarks to execute with multiple
cutting-edge STMs, we performed a broad study of
read-set validation volumes throughout a high va-
riety of program executions, under different sets of
parameters. Then, after thoroughly studying zero-
copy DMA methods, the Persistent Threads and
Instant Kernel programming models, as well as var-
ious hardware architectures for GPGPU, we devel-
oped the novel iGPU STM validation tool.

Given enough execution time to hide the Instant
Kernel initialization, the system managed to over-
come the baseline TinySTM in STMBench7’s long
running, large transactions. Long running systems
are additionally beneficial to our validation tool, as

Figure 11: STMBench7 - 20 second runs - transac-
tional throughput (speedup).

it is able to service more ”well timed” validation re-
quests (where GPU is not wasted on short, doomed
[to be invalidated early] read-sets).

We provide evidence suggesting that a partial off-
loading of validation to the iGPU has placement in
transactional memory applications. All our results
measured in reads-validated/s demonstrated some
improvement in performance compared to a base-
line, unaltered TinySTM (Figure 10).

Our cooperative validation tool achieves best util-
ity, given enough time to operate, by delivering an
improvement in transactional throughput of up to
2.1x, with large read-sets (≈ 250k) in STMBench7
(Figure 11).

We have also applied a novel (strided) mem-
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ory access pattern to an Instant Kernel/Persistent
Threads programming paradigm, with offset calcu-
lations based on the permanent residency of work-
groups in hardware threads, which showed good re-
sults (Figure 5).

In the future, we would like to perform an in-
depth study on the trade-off between consistency
and performance for the optimal K value; i.e., a
highly contained workload will require faster re-
sponse from individual work-items/work-groups to
terminate validation and free the GPU resource.
The higher the K value, the larger the block size and
latency. At the same time, under low contention,
performance is reduced while performing more fre-
quent and unnecessary synchronization. We have
not yet determined the effects of variable K in a
highly contended work environment.

Fine grained work-group validation - We exper-
imented with, but ultimately abandoned the shar-
ing of the iGPU on a finer-grained level. Future
work should consider a finer grained/non-compete
employment of GPU resources, and attempt a si-
multaneous sharing of the GPU on the work-group
level. Thus, having every work-group simultane-
ously validating a different transaction’s read-set.

Workload grouping - There have been re-
cent developments in optimizations for irregular
data-parallel workloads, through custom workload
scheduling and work-item re-arranging algorithms
on the integrated GPU [1]. More abort prone trans-
actions can be grouped to a predetermined subset
of work-groups of the kernel to reduce branch di-
vergence.
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