
1

DynamicPOI - Middleware for developing
exhibition navigation applications

Diogo Salgueiro
diogo.m.neves.salgueiro@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa

Abstract—Museums and exhibition venues have been growing
in the last decades, allowing a greater diversification both on
their layouts and on the displayed artwork. On the other hand,
the mobile application market growth allowed for these venues to
provide better exhibition support and navigation applications to
their visitors. However, each application is developed specifically
for a single exhibition and the developer must implement a
suitable exhibition structure and configure the necessary location
systems.

One contribution of this work is the definition of a generic
schema that allows the definition of entire exhibition structures by
establishing relationships between each of their points-of-interest,
ranging from physical areas to displayed artwork items.

The other contribution is a middleware that improves the
development process of exhibition navigation applications. This
middleware aggregates several location systems transparently to
the developer and automatically determines the most relevant
POI of the exhibition, according to the visitor’s location. Fur-
thermore, an automatic services’ management was also included
to guarantee only the necessary location services are active during
an entire visit.

The middleware was implemented in the Android environment
by creating a library package and separate location service
classes. Its operation was evaluated by testing its features during
demonstration visits and the energy savings of an application
using this middleware were also determined.

I. INTRODUCTION

Cultural related venues, e.g. museums and exhibitions, have
been growing steadily in the last decades. This growth was
accompanied by a greater diversification on the types of
cultural heritage available to the general public. Furthermore,
the technological evolution, particularly of mobile devices,
allowed for a better exhibition experience [1].

Considering the growing concern with improving exhibi-
tion experience and visitor interaction, many museums have
developed tour guides for their exhibitions [2]. These guides
can have multiple technologies and purposes, ranging be-
tween simple audio guides to fully developed applications
implementing several services (e.g. artwork information or
augmented reality).

Regarding the diversity of exhibition applications, two main
problems can be outlined:

• Each exhibition must have suitable representation for
the venues’ artwork, POIs and areas. The nonexistence
of a common solution that supports multiple types of
exhibitions implies that each venue must answer this
requirement independently. As a result, when a pro-
grammer creates a guide or support application to each

venue, it must obey and adapt to the representation
guidelines previously defined. In addition, these types of
representations are not scalable or do not have any type
of hierarchy between their elements.

• In order to determine the user’s position relative to
an exhibition, one or more location services must be
configured and accessed. The existence of different types
of venues and areas inside those venues implies that
a given location service that suits some areas may not
be used accurately on others. Again, when developing
solutions that need to determine the visitor’s position
inside a heterogeneous exhibition, the programmer must
configure each location service individually and combine
the information of multiple services. After that, the pro-
grammer must take the visitor’s location and find the
nearest POI by accessing the POI structures described
above.

As a consequence to the problems outlined for an exhibi-
tion’s helper application, identified on the previous section,
there are two main objectives defined for this work.

The first objective is the definition of an generic repre-
sentation for POI’s structures. The main requirement for this
representation is to be able to describe a large variety of
POI structures, independently of their size, complexity and
nature of the venues (indoor, outdoor or both). This implies
that several location types must be considered as the most
suitable one varies with each locale characteristics and location
accuracy requirements. Other desired feature is not to be
restricted to a single platform or data type or, in other words,
to be able to easily be loaded into any relevant type of
platform (e.g. web or mobile applications). This representation
model must also be extensible with respected to the supported
location types. At the same time, each POI structure that obeys
to this representation’s guidelines must be able to easily add,
delete or modify its elements.

The second objective for this work is the development of
a middleware that aims to simplify the development process
of exhibition helper applications. The main purpose of this
middleware is to determine the most relevant POIs identifier
and make it accessible to any application that implements the
middleware. This module must combine the information of an
exhibition structure with the necessary location services’ call-
backs in order to determine the nearest POI at any given time.
This modules’ operations should be completely concealed not
only from the application layer (that receives the nearest POI
updates) but also from the layer that provides all the sensor

mailto:diogo.m.neves.salgueiro@tecnico.ulisboa.pt


2

information needed for the different location services.

II. RELATED WORK

A. Exhibitions

Nowadays, exhibitions are capable of displaying a large
variety of the physical cultural heritage to the general audi-
ence. The scope of an exhibition may vary tremendously as it
can span between the artwork of a single person to artifacts
of an entire civilization [3]. Furthermore, exhibitions venues
can have different dimensions, ranging from single rooms to
geological parks.

On the other hand, the smartphone market growth allowed
museums and other exhibition venues to personalize and
diversify the visitors’ experience inside their venues [4] [5].

Prior to the use of mobile phones inside exhibitions, visitors
only had access to predefined routes (via maps or audio
guides). Nowadays, several museums have their own applica-
tions, capable of displaying different types of tour information
directly on the visitors’ phone.

Utilising the smartphones’ multimedia capabilities, exhibi-
tion visitors can now have on-demand access to videos and
audio descriptions. One of the most recent technologies to be
used to enhance the visitor’s experience is Augmented Reality
[6]. This technology allows live rendering of 3D objects in the
smartphone’s viewfinder while the user pans around an area.

Lastly, gamification and storytelling frameworks can be used
to further improve the experience and make the user feel like
he is an active part of the exhibition and not just a spectator
[7].

B. Location identifiers

The basis for any location system is the type of location
identifier it uses to describe its determined locations. Three
categories of location identifiers are described below:

• Geographical or absolute coordinates - the location is
described by a set of coordinate system whose origin
point is the Earth’s center. The most commonly used
coordinate systems are ellipsoidal coordinate systems,
which describe locations using two angles relative to two
orthogonal reference planes: latitude, the angle relative to
the Equator plane and longitude, the angle relative to the
Greenwich meridian plane [8];

• Relative or local coordinates - This type of coordinates
differ from the geographical ones by recurring to an
referential other than the Earth’s center. Therefore, these
coordinates are accompanied by which referential they
are relative to, e.g. a map or a predetermined physical
point;

• Symbolic identifiers - a location is described by an
identifier or human understandable name, e.g. locating
an object simply as ”inside a room”, not specifying its
position with discrete coordinates.

C. Location systems

Nowadays, mobile phones have several available location
systems. A list of those systems is presented below:

1) Global Navigation Satellite Systems (GNSSs): Location
systems that are comprised of a group (constellation) of
satellites and ground control stations. The currently operating
GNSSs are GPS, GLONASS, Galileo and the Beidou Nav-
igation Satellite System (BDS). All of these systems share
a common operating principle for locating client devices:
By having several satellites visible to any client device, the
distance between each satellite and a client device can be
determined by measuring the signal travel times. The final
position is calculated as the intersection of the ”imaginary”
spheres based on the distances to each satellite.

When clear line-of-sight is guaranteed between a group of
satellites and the receivers (e.g. open areas) the GNSSs can
produce very accurate positioning. Several GNSSs can be used
simultaneously to further increase the accuracy [9]. On the
other hand, on places with a large amount of tall buildings
and indoors, the accuracy of these systems plummets and can
even stop operating under these conditions.

2) Cellular networks: Complex mobile networks that pro-
vide wireless communication to devices inside its constituent
cells. These networks’ Base Stations allow for several po-
sitioning techniques of the connected Mobile Stations (e.g.
mobile phones): cell identification, Angle of Arrival (AOA),
and Time of Arrival (TOA)/Time Difference of Arrival(TDOA)
[10]. A brief performance comparison between some of these
techniques was presented by Adusei et al. [11]. These net-
works’ positioning capabilities are almost exclusively used
on outdoor environments and can only determine locations
with a maximum accuracy of several meters. Thus, to improve
location accuracy, cellular networks based location systems are
usually paired with GNSSs.

3) WiFi: One of the most relevant technologies for both
wireless communication and mobile devices location. One
simple approach for determining device locations is through
Access Points (AP) databases such as Wigle [12] . Generally
at a fixed position, if a device is in range of a known AP, its
location can be estimated. Other complex approaches include
fingerprinting methods [13], which create signal maps for
known locations during an ”offline” phase and the location
of a device estimated by matching algorithms on a ”online”
phase.

4) BLE: Protocol built from the original Bluetooth speci-
fications, aimed at reducing energy consumption while main-
taining a similar range of communication [14]. This reduced
energy consumption allowed the creation of a set of devices
called beacons. Mobile devices can estimate distances by
evaluated the RSSI values of a set of beacons. However, due
to complex signal propagation models (particularly indoors)
and great interference from other devices on the same wave
spectrum (e.g. WiFi), fingerprinting methods are often used to
achieve better accuracy [15] [16].

5) NFC: Bidirectional wireless communication technology,
that enables information exchange between devices when
placed a few centimeters apart. NFC tags are small passive
chips that can store data. If the position of a NFC tag is know
a priori, the location of a mobile device can be determined
after scanning this tag (given the inherent proximity of this



3

protocol). Ozdenizci et al. [17] proposed an indoor navigation
system using NFC tags.

6) QR codes: Bi-dimensional bar codes that can encode
information in a machine-readable format. As a mean for
encoding information, QR codes can be used to locate a user
by two approaches:

• A QR can directly encode its position, e.g. geographical
coordinates;

• A QR code can be an unique identifier of an item inside a
venue. If the position of the item is known, one can assess
the device’s location when this identifier is scanned.

D. Points of Interest

The ”Point of Interest Group” of the World Wide Web
Consortium (W3C) proposed a set of guidelines to represent
POIs [18]. Despite allowing a large set of properties for a
POI, this data model has a limited set of features to describe
POI relationships: only single level lists can be defined and
the ”Relationship” element only allows for spatial relation
between two POIs.

The FIWARE open source initiative also provided a data
model for POI representation [19]. This model, besides the
core properties of a POI, allows for its physical representation
to be a GEOJson location and/or an address description.
Nonetheless, this data model lacks any kind of explicit re-
lationship between POIs.

POI data models are the core of POI-based applications.
On the context of Smart Cities, the CitySDK’s Tourism API
[20] is based on the W3C’s POI data model and provides
a unified access for tourism solutions and their stakeholders.
Nitti et al. [21] proposed a IoT based architecture for tourism
applications, taking advantage of IoT devices placed at POIs to
provide relevant real-time information. Regarding POIs inside
exhibitions, Hashemi et al. [22] studied a POI recommendation
system, demonstrating how good POI structuring is fundamen-
tal on this type of applications.

Taking into consideration the three POI-based applications
presented above, one of the outcomes is the ability to have
both indoor and outdoor POIs but rarely combining these two
types inside an application. Furthermore, these applications
didn’t present complex relationships between their POIs.

E. Programming challenges

In the first place, the exhibition’s physical properties must be
mapped to suitable data structures by the programmer. These
properties can refer to the exhibition’s areas, buildings and
rooms but also where the different items are placed within
them. This task becomes more tiresome if the developer needs
to outline different kinds of exhibitions as a suitable format
for a venue might not be appropriate for another.

The developer must also guarantee that all the necessary
location systems are integrated into the application, allowing
the location of both areas and their items. However, if a new
location system is to be added, the developer has to openly
integrate this new system which might possibly resulting of
code changes on the entire application.

Lastly, the developer is also responsible for managing all
the location systems in these applications, i.e. determine when
they should be active and with which parameters should they
operate.

III. SOLUTION DESIGN

A. Requirements

When considering an application for exhibition navigation,
one can consider three different concerned user classes: the
exhibition curator - who defines the exhibition layout; the
developer - who programs the application; and the visitor - the
final user of the application and visitor of the exhibition. This
categorization is important as each of these user classes has
a different role and, therefore, can have different requirements:

Exhibition curator
1) Define relationships between the constituent areas of an

exhibition and their items;
2) Assign location identifiers to areas and their items,

supporting a variety of location systems;
3) Modify a previously defined exhibition structure.

Developer
1) Develop applications that allow information access about

items and areas;
2) Modify the exhibition structure without recompiling the

application;
3) Easily access to exhibition’s identifiers;
4) Integrate several location systems with future inclusions

without rewriting the application;
5) Seamless management of the necessary location services

during a visitation;
6) Have mechanisms to automatically display widgets.

Visitor
1) Automatic notifications for needed user actions;
2) Seamlessly turns on the necessary location services

during a visitation.

In addition, two non functional requirements can be consid-
ered for the proposed solution:

• Efficient battery consumption - regarding the high
energy consumption of several device’s location systems,
particularly GNSSs and cellular networks, it is desirable
to minimize the up time of these services;

• Minimize impact on application size - The incorpora-
tion of the middleware must not result in a noticeable
increase on the final application size.

B. Architecture

Considering the requirements presented in section III-A, the
two main components of the proposed solution are a schema
for the definition of POI structures and a middleware that
simplifies the development process of exhibition navigation
applications. Figure 1 presents a generic architecture of the
solution and where these two components are integrated.



4

Application

M
id

dl
ew

ar
e

Ap
pl

ic
at

io
n

La
ye

r

Hardware
abstraction layer

Location
controllerParser

Active Services
Controller

Sensor 1

Service 1 Service 2

Sensor 2

POI Tree

Sensor 3

Sensor UI
controller

POI Tree

API

Callbacks

Service 3

Event 1 Event 2 ...

Sensor UI

POI Information Backend

Application Logic

UI

Curator

Fig. 1. Generic architecture for a middleware aimed at exhibition navigation
applications

POI Tree The generic model for this POI Tree will be
described on section III-C. A set of these structures must be
loaded into the middleware by the application via a provided
API.

Parser After a POI structure is loaded into the middleware,
it needs to be parsed into runtime data in order to be
easily accessible by the other middleware components.
Straightforwardly, the Parser module has decoding
mechanisms that obtain data objects from the externally
loaded structures.

Location controller The main purpose of the Location
controller is to determine the most relevant POI to the applica-
tion’s user (visitor). The controller analyzes the runtime POI
structure and continuously maps the location responses from
several location services into a position inside the exhibition.

Furthermore, upon changing to a new ”most relevant” POI,
an event is sent to the application and the Location controller
also determines the necessary location services for the newly
determined position inside the exhibition. This information is
then passed to the Active Services controller.

Active services controller The Active Services controller
manages the activity of all the location services configured
on the middleware. Upon knowing from the Location
controller which services are necessary to be active, it starts
(or maintains) only those and stops the unnecessary ones.
Contrary to the majority of the location services, some
services need explicit user interactions to operate properly. In
these cases, a separate controller must be notified in order to
request the necessary interactions.

Sensor UI This component of the middleware is responsible
for displaying widgets and prompt the user to perform spe-
cific actions when needed. The Sensor UI controller receives
requests from the Active Services controller and invokes the

name:
location:
children:

string

node

location
List of node

id: number

geographical_location
(...)

radius:

circle
center: (latitude, longitude)

number

polygon
points: List of 

(latitude, longitude)

relative_location

map_id

radius:

circle
center: (x, y)

number

polygon

points: List of (x, y)

(...)

symbolic_location

technology:
threshold:

string

number

id: string
location

Fig. 2. Generic POI data model diagram

correspondent UI resource that will be displayed to the user.
The user interaction’s result is sent back to the Sensor UI
controller and will be used by the Location controller to assess
necessary location updates.

C. POI data model

The proposed data model for representing POI structures is
illustrated on figure 2.

1) POI nodes: To achieve a hierarchical representation for
a group of diverse POIs, a recursive approach was taken.
The ”node” entity, that represents a POI, is the fundamental
element in any POI structure.

It has the ”identifier” and ”name” properties, as well as
a property for describing its location (presented on the next
subsection). As some POIs can have other POIs inside them,
the ”children” property allows the possibility for a ”node”
to have a list of inner ”nodes” (with an identical structure).
Therefore, using a set of recursive ”nodes”, a tree of POIs
can be constructed, with a varying depth accordingly to the
corresponding physical layout of the POI group.

2) Location: As stated above, each POI node has a ”lo-
cation” property which stores its positioning information.
POIs can have different types of location identifiers, generally
dependent on the chosen referential. In addition, an area of
”significance” must be defined for each POI, i.e. an region i
is relevant, visitor outside, not relevant. Considering this two
guidelines, the ”location” property can be one of three types:
absolute, relative or symbolic and each one has properties that
define an active region.

Geographical locations allow to locate anything on Earth,
using geographical coordinates, such as latitude and longitude.
In order to support geographical areas for POIs, the ”geograph-
ical location” on the proposed data model can be defined by
a circle, with a single point and radius, or a polygon, with an
array of three or more points.

Relative locations have a similar principle to geographical
location but the set of coordinates is relative to a specific
referential, such as a building or room. Therefore, instead of
using pairs of latitude and longitude, relative locations use 2D
coordinates and an identifier for the chosen referential.

Symbolic locations differ from the previous two types by the
absence of a unequivocally position on a referential. Instead,



5

they identify an area, generally indoors such as rooms or hall-
ways. This limitation does not hinder its usefulness, as some
POIs might not require more precise location descriptions. The
proposed data model for this location type has an ”identifier”
property for the corresponding area and ”technology” and
”threshold” properties for possible technologies differentiation
and a threshold condition.

D. API

In order to an application use the proposed library, a com-
munication mechanism must be implemented between the two
components. The library itself must have a publicly accessible
API, composed of several methods calls that the application
integrating the library could execute. On the other hand, the
library will also have to provide callbacks or event responses
in order to send information back to the application.

1) Method calls: The available API calls are presented
below.

• init - This method initiates the runtime components of
the library by providing a POI structure. This structure
has to comply to the predefined set of rules in order to
be initialize correctly;

• getNearestPOI - request the library for the nearest
POI relative to the visitor;

2) Callbacks/events: The set of events from the library to
the application using it are described below.

• enteredPOI - notifies the application that the visitor
entered a new POI region;

• exitedPOI - notifies the application that the visitor had
exited a previously entered POI region, i.e. deviated from
its defined region;

• nearestPOI - returns the identification of the nearest
POI to the application;

IV. IMPLEMENTATION

A. JSON schema

A JSON Schema was built using Schema guidelines [23] to
implement the POI data model described on section III-C. The
schema definition is based on a set of ”definitions” that assure
the entire POI structure validation, from each of its elements
properties to the multiple possible ”location” structures.

B. Android middleware implementation

The proposed solution was implemented on the Android
environment, using the Kotlin programming language. Figure
3 provides an overview of the implemented solution.

The middleware component was implemented inside a sin-
gle library package and by external location services. The or-
ange colored components are runtime components that enable
all the middleware’s functionalities. The green colored compo-
nents correspond to location services, each one implemented
as a Service class (described on section IV-C).

The library’s core class is named PoiManager. This class
is responsible for aggregating several components, with
varying levels of complexity but, most importantly, is the
contact point between the middleware and the application

Application

M
id

dl
ew

ar
e

Ap
pl

ic
at

io
n

La
ye

r

Hardware
abstraction layer

Location
controller

Parser

GNSSs, Cellular,
WiFi

Fused Location
Service

Bluetooth ...

POI Tree

PoiManager
Interface

PoiManager
Listener Event 1 Event 2 ...

Application Logic

Library
Fragment

Activity

BLE Service ...

UI

Active Services
Controller

Controller

Tree
Service UI

Fig. 3. Diagram of the implemented Android middleware

layer. Two interfaces are defined to establish a bidirectional
communication between the middleware and the application.

PoiManagerInterface The purpose for this interface is
to define which are the publicly accessible methods for the
middleware and their respective parameters:

• init(jsonContent) - responsible for the middleware ini-
tialization process. A POI tree is provided via the ”json-
Content” parameter, which will be parsed into runtime
objects;

• retrieveCurrentPoi() - requests the middleware for
the most relevant POI, considering the current visitor’s
position.

PoiManagerListener This interface specifies the callbacks
sent by the middleware to the application layer:

• enteredNode(nodeId) - triggered event each time a new
node location condition is met, updating the current POI;

• exitedNode(nodeId) - triggered event each time the de-
termined visitor’s location invalidates a previously active
location condition, i.e. when a node ceases to be the most
relevant for the visitor;

• currentPOI(nodeId) - returns the current POI’s
identifier, if it exists.

JSON parsing Upon receiving the JSON content via
the init() API call, it needs to be parsed into memory
objects through a set of JSON adapters. As part of a JSON
parsing library, JSON adapters where used to convert JSON
objects into Kotlin data class. Some JSON elements could
be converted directly, others needed the definition of custom
adapters, e.g. the ”location” properties. After defining the
direct and custom adapters for all expected JSON properties,
a ”Tree” class object is obtained and stored in memory while
the library is operating.

Tree controller The Tree object is saved inside the
Tree controller, implemented through a simple class. The
TreeController class is responsible not only for store the



6

Fragment Activity

User performs the
needed interaction

Data

User touches
the Fragment

Active Services
Controller

Send Data as
 Service response

"Display Fragment"

Fig. 4. Interaction between Service UI components

runtime content of the POI, but also a linked list containing
the path between the tree’s root and the ”most relevant
POI node” or current node. Furthermore, some methods are
available to easily access and modify this linked list while
determining the most relevant node.

Service UI While the majority of the location services
can operate seamlessly in the application’s background, some
services rely on user interactions to to operate properly, e.g.
NFC and QR codes. Given these required interactions, some
UI elements must be defined, in this case, Fragments and
Activities. Figure 4 describes the interaction between these
components.

When the defined Fragments receive requests from the
Active Services Controller, they become visible (or hidden)
on the application’s UI. Upon user interaction, the Fragment
will invoke the Activity to obtain the required information.
Lastly, this information is sent back to the runtime library
components and used as a regular location update callback.

To include these components into an application, the devel-
oper simply has to define a placeholder on the application’s UI
layout indicating where the desired Fragment will appear and
instantiate its class as a regular UI component. The remaining
logic is already defined on the middleware.

C. Location services

Two location services were defined on the middleware,
one for obtaining geographical location callback and other
to detect the nearest BLE beacon. Both services share a
common operating principle: independent service classes, ini-
tiated/stopped by the Active Services Controller which send a
set of Broadcast events (containing the location data) which
will be captured by the Location Controller of the middleware
through BroadcastReceivers.

1) FusedLocationProviderService: The Google Location
Services API [24] have a ”Fused Location Provider” that
aggregates the GNSSs, cellular networks and WiFi location
systems of a mobile device. A FusedLocationProviderClient
was set up inside an external service class by configuring two
objects: LocationRequest - for operational parameters such
as update frequency and accuracy - and LocationCallback -
defining what actions should be performed after a location is
obtained. On the LocationCallback, a broadcast event was de-
fined to send the determined geographical coordinates, which
will be captured by a BroadcastReceiver configured at the

PoiManager class. These coordinates will then be used to
assess the most relevant POI to the visitor.

2) BeaconService: A BLE beacon detection service was
also defined an external service class. Using the AltBeacon’s
library and its APIs [25], this service can estimate the distance
to a set of beacons and determine which one is the nearest
to the visitor. A thread was set up to provide regular update
events. Each of these updates contains the nearest beacon
identifier and an estimate for its distance to the device, or
an empty message if no beacon is found. Similarly to the
previous service, these updates are broadcast and captured
by a BroadcastReceiver on the PoiManager. Once again,
this information will be used on a set of POI assessment
algorithms.

D. POI algorithms

Upon receiving a location update from a location service,
a set of algorithms must search the POI tree for the visitor’s
most relevant node, by evaluating their location conditions.

1) Geographical nodes: Considering the location callback
obtained for geographical nodes, e.g. a set o coordinates, two
observations can be made:

• Only geographically described nodes can be evaluated;
• A single pair of geographical coordinates can match

several POI nodes’ area conditions.

With this conditions in mind, three algorithms (two of them
recursive) were created for determining the most relevant
POI from a single pair of coordinates, navigating through
the entire POI tree. Every time a location match is found,
a recursive downwards search algorithm attempts to find the
lowest level that still match that condition. If no matches
are found downwards, other recursive algorithm is invoked to
search the tree upwards (an then downwards is a new match
is found). Regarding the middleware events, each time a new
node is determined to be the most relevant, a corresponding
”enteredNode” event is triggered. On the other hand, if no
matches are found, an ”exitedNode” event is sent to the
application.

2) Beacon nodes: The search algorithms for beacon iden-
tifier and distance callbacks share some similarities with
the geographical ones, having also three connected search
algorithms and the same events. However, in this case, each
match condition is unique on the entire tree, i.e. only a single
POI node will match the received beacon identifier. In order
to avoid searching the entire tree trying to find a single match,
a few search rules were defined. These rules were shaped to
allow a common practical case on exhibitions: easily search
neighbor beacon nodes (indoor rooms) as common children of
a single geographical node (a building) while the visitor walks
through the building exhibition.

E. Active services’ management

The purpose of the Active Services Controller is to ensure
only the necessary services are activated, given the current vis-
itor’s location. Considering the previously described services’



7

Location
Location

Location

List

Location
Location

Service

List
Map Location into

Service class

Current node

Location

Children

Location
Location

Location

Activate necessary services
Update Active

Services hash-map

Register necessary receivers
Deactivate necessary services

Unregister unnecessary receivers

Activate necessary services

Register necessary receivers
Deactivate necessary services

Fig. 5. Active services’ controller operation

implementation, this controller must start (and stop) the ser-
vices’ classes and register (and unregister) the correspondent
receivers. This controller’s operation is described on figure 5.

The first requirement for this controller is to store which ser-
vices are currently active. Secondly, some mapping algorithms
must be defined in order to obtain the correspondent service
class for a given location type. The final step is to determine
which location types are relevant given the current node. In
order to be able to detect the current node’s exit condition
and its children (if exist) enter conditions, a list containing
the current both node’s and its children location types is built
and then mapped to a list containing the corresponding service
classes which will be used to only activate the necessary
services and their respective receivers.

F. QR code integration

As a demonstration for the middleware feature to also
support user interaction dependent location services, a QR
code scanning service was integrated. Two connected UI
components were defined:

• IndicatorFragment - indicator shown to the user when
a QR code is available. When the user touches this
Fragment, it launches the QRCodeActivity, expecting it
to return a read value. This component;

• QRCodeActivity - camera activity that automatically
scans QR codes. After a successful scan, the scanned
value is returned to the Indicator Fragment.

These UI components are shown on figure 6. In order to
integrate them on the middleware runtime operations, a helper
QRCode service class was created which is activated by the
Active Services Controller each time the current node has
one or more QR code children. This service sends broadcast
messages to a receiver included on the IndicatorFragment,
requesting it to be visible or invisible on the UI. When
the Fragment receives the QR code value from the Activity,
it broadcasts an event to a POIManager BroadcastReceiver
(like any other location service receiver). Therefore, using
the already defined structures of the middleware, a complex
location system was integrated in a similar fashion as the
others.

G. Demonstration application

In order to correctly configure and integrate the proposed
middleware, a demonstration application was developed. The

(a) Indicator-
Fragment

(b) QRCodeActivity

Fig. 6. UI elements presented to the visitor for QR code scanning.

Map Info
POI

GPS Beacon QR code

Logic

Middleware

Backend
Info POI

Id POI

Id POI

UR
L

URL Application

Fig. 7. Application logic diagram

logic diagram of the application is illustrated on figure 7
The application starts by instantiate the middleware by

loading a POI tree contained on a JSON file. The middleware
is configured to use three location systems: GPS, BLE and
QR codes. These systems will provide location callbacks to
the middleware which will determine the most relevant POI
and send its identifier to the application. In order to obtain
further information about the POIs, the application has an
URL reference to a backend to which it will send the POI
identifiers. Lastly, after receiving the POI information from
the backend, the application will display this information to
the visitor.

The demonstration application has two main screens: one
for displaying a map and the current POI’s information and
other to display web pages (when the current POI has an
associated URL). Both of this screens are displayed on figure
8. Figure 8a displays the previously defined QR code Indica-
torFragment.

V. EVALUATION

A. Functional requirements validation

Regarding the identified functional requirements on section
III-A, the following topics demonstrate how the implemented



8

(a) Map/POI screen (b) WebView screen

Fig. 8. Main screens of the demonstration application

middleware features fulfilled those requirements:

Exhibition curator
1) The proposed JSON schema provides a set of guidelines

which allow the definition POI tree structures. In these
structures, a wide variety of POIs is supported, enabling
not only relationships between exhibition areas but also
items inside them;

2) The proposed JSON schema has a location property
which supports three types of location identifiers: ge-
ographical, relative and symbolic. These identifiers will
be supported by corresponding location services;

3) In order to make changes to an already defined
exhibition structure, it only necessary to modify the
corresponding JSON file and load it into the application.

Developer
1) The implemented middleware greatly simplifies the de-

velopment process of an exhibition navigation appli-
cation, by providing area or item identifiers to the
application using it;

2) The JSON defined POI trees are not included into the
application’s code. If a POI tree needs to be modified,
the application will remain unchanged;

3) The proposed middleware provides POI identifiers the
application;

4) The developed middleware abstracts the whole location
services logic from the developer as they are defined
inside the middleware and solely managed by it. when a
location service is added or modified, it is only necessary
to compile a new version of the middleware and include
it on the application (no need to change its code);

5) Accordingly to the visitor’s location at any given time,
the middleware disconnects the location services that

TABLE I
NODE TYPING AND CORRESPONDING TIME SPENT FOR EACH

DEMONSTRATION EXHIBITION

Demo 1 Demo 2
Type

of node
Number
of nodes

Time spent
(minutes)

Number
of nodes

Time spent
(minutes)

Geographical 5 15 7 20
Beacon 20 60 14 42
QR code 53 - 45 -
Total time 75 62

serve no purpose for such location, ensuring only the
necessary services are kept running;

6) the developed middleware lays the foundations for
presenting buttons on the application’s UI to activate
specific location services.

Visitor
1) The implemented middleware includes a set of com-

ponents which enable location services that rely user
interactions;

2) As the management of the active location services is
automatically performed by the middleware, the visitor
does not need to manually turn on or off each one while
visiting an exhibition.

B. Performance

In order to evaluate the middleware’s operation and its en-
ergy consumption, two demonstration exhibitions were created
to mirror real exhibitions and possible paths followed inside
them by a visitor. A JSON file was built for each exhibition
and both had similar layout: one geographical root node
containing the entire exhibition venue, some geographical
nodes corresponding to different buildings and indoor rooms
identified through BLE beacons. Lastly, some QR nodes were
added to each room to simulate displayed artwork. Table I
presents the number of nodes for each location type and the
time spent on each node type during the defined visit for each
exhibition.

The geographical nodes of both exhibitions were placed
inside the Instituto Superior Técnico campus. A Pycom [26]
LoPy board was used to simulate the different BLE beacons.
For simulating the retrieval of POI information from a web
service, the Gulbenkian Foundation [27] artwork database was
used and the QR codes on each room (defined by a beacon)
were given identifiers for this database.

After defining the simulated exhibition visits, the next step
was to define which were the scenarios for evaluating the
middleware’s performance. The chosen four scenarios were:

• Idle - for providing baseline measurements, the device
was kept only with the screen on during the visits’
duration;

• Optimized without QR code - middleware performs an
active services’ management, i.e. it deactivates unneces-
sary location services according to the visitor’s location,
without scanning any QR codes;



9

TABLE II
MEASURED ENERGY CONSUMPTION DURING THE DEMONSTRATION VISITS

Demo 1 (75 min) Demo 2 (62 min)
Estimated

consumption (mAh)
Percentage

drop
Estimated

consumption (mAh)
Percentage

drop
Idle 102 5% 98 6%
Optimized w/o QR code 194 11% 162 10%
Optimized with QR code 252 12% 170 10%
All Services On 425 18% 302 13%

• Optimized with QR code - middleware performs an
active service management and the available QR codes
are scanned;

• All Services On - all location services are kept active by
the middleware and available QR codes are also scanned.

On all the scenarios, except for the ”Idle” one, the demon-
stration application was kept open and only the middleware
managed the location services. The user followed the pre-
defined path for each demonstration visit and simulated the
entering and exiting of rooms by changing the advertised
beacon identifier.

In order to evaluate the energy consumption in the different
test cases, two indicators were used. The first is the battery
percentage drop given by the device’s operating system and
the other is determining the energy consumed by the device.
This latter measurement was performed by an external current
meter.

Analyzing the obtained energy consumption measures on
table II, the ”Idle” scenario obtained the lowest energy con-
sumption, as expected. On the other hand, the highest energy
consumption was obtained on the scenario where all the loca-
tion services were kept active during the visits. Comparing this
scenario with the scenario where the middleware performed
an active service management (”Optimized with QR code”),
the energy savings were about 40%. Given the majority of
the simulated visits duration is spent inside rooms identified
by BLE beacons, having the GPS service to be turned off in
these areas achieved a significantly lower energy consumption.

Considering the two scenarios when the active service
management is performed by the middleware but differ on
the scanning of the available QR codes, one can observe the
scanning process resulted on a measurable impact on the
energy consumption. The increased consumption is justified
not only by repeatedly accessing the camera but also by the
several network requests to obtain the items’ details.

In order to evaluate the impact of the middleware on the
size of an application that incorporates it, a comparison was
made between the demonstration application (developed on
section IV) and the same application without importing the
middleware’s classes. The Android Studio APK analyzer was
used to compare the final sizes of both applications. Table III
contains the obtained size differences.

Regarding the total size of the APK, where the entirety
of the application is compressed on a single file, one can
asses that the inclusion of the middleware increased the
file size by less than 350 KB. Considering the size of the
application’s classes, when including the middleware into the

TABLE III
SIZE COMPARISONS BETWEEN AN APPLICATION WITH OR WITHOUT

INCLUDING THE MIDDLEWARE

Without
Middleware

With
Middleware Difference

APK total size
(compressed) 2.1 MB 2.5 MB 335.4 KB

Application classes size
(uncompressed) 1.3 MB 2.0 MB 753.8 KB

application, the uncompressed size of this classes increased
753.8 KB. Therefore, the inclusion of the middleware did not
have a significant impact on both the classes’ and the APK’s
sizes, which suggests the majority of the application classes
correspond to core libraries of the Android environment.

VI. CONCLUSIONS

A. Accomplishments

This work starts by consider a wider definition for the
POIs and how hierarchical relationships can be established
between them. In other words, not only relevant areas can
be treated as POI but also smaller areas and relevant items
contained inside them as well. In order to properly describe
the arrangement of a wide diversity of POIs, a JSON schema
was developed. This schema enforces a set of guidelines for
defining these structures while supporting several location
description techniques for each element.

The defined POI structures were defined to be external
to any exhibition navigation application. In order to access
an exhibition layout, this type of applications simply need
to load the corresponding POI structures at run-time. Thus,
if future modifications are made on the physical layout of
the exhibition, the POI can be updated independently of the
application and, consequently, it is not necessary to recompile
it.

The other main contribution of this work is a middleware
that simplifies the development process of exhibition naviga-
tion applications. By receiving a compliant structure to the
JSON schema defined above and aggregating the location
callback of several location services, the middleware is able
to determine which is the most relevant POI at any given time
for an exhibition visitor.

One the main abstractions provided by the middleware is
the integration of several location services. Therefore, during
the development process of applications that utilize this mid-
dleware, the developer does not need to integrate and configure
any location service. Furthermore, the middleware also is able
to perform an automatic management of the running services.



10

By analysing the visitor’s location relative to an exhibition’s
layout (using its POI representation), the middleware only
activates the necessary location services for that location.
This management not only further decouples the application
developer from the services by also allows for significant
energy savings while using exhibition navigation applications.
Considering the scenario of an exhibition application that does
not have any kind of active service management, the inclusion
of this middleware can obtain energy savings of about 40%,
without requiring any extra effort to the application developer.

B. Future work

Despite the accomplishment of the identified requirements
for this work, some future improvements could further improve
this solution:

1) Support more complex relationships between POIs;
2) Variable runtime service parameters;
3) Integration of new location services.

REFERENCES

[1] S. Medic and N. Pavlovic, “Mobile technologies in museum exhibitions,”
Turizam, vol. 18, no. 4, pp. 166–174, 2014.

[2] K. Best, “Making museum tours better: Understanding what a guided
tour really is and what a tour guide really does,” Museum Management
and Curatorship, vol. 27, no. 1, pp. 35–52, feb 2012.

[3] B. Lord and M. Piacente, Manual of Museum exhibitions. Rowman &
Littlefield Publishers, 2014.

[4] X. Wei and Z. Jianping, “Mobile Application Used in Museum Learning
and Its Case Study,” in Proceedings - 2015 International Conference of
Educational Innovation Through Technology, EITT 2015. Institute of
Electrical and Electronics Engineers Inc., apr 2016, pp. 90–93.

[5] H. Tsai and K. Sung, “Mobile applications and museum visitation,”
Computer, vol. 45, no. 4, pp. 95–98, apr 2012. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6178133

[6] R. Wojciechowski, K. Walczak, M. White, and W. Cellary, “Building
Virtual and Augmented Reality Museum Exhibitions,” in Proceedings
of the ninth international conference on 3D Web technology - Web3D
’04. New York, New York, USA: ACM Press, 2004.

[7] F. Borrero, P. C. Sanjuán Muñoz, and G. Ramı́rez González, “Técnicas
de gamificación en el turismo, prueba de aplicación, Casa Museo
Mosquera,” Sistemas y Telemática, vol. 13, no. 33, pp. 63–76, 2015.

[8] A. Küpper, Location-Based Services: Fundamentals and Operation.
John Wiley and Sons, dec 2005.

[9] X. Li, X. Zhang, X. Ren, M. Fritsche, J. Wickert, and H. Schuh, “Precise
positioning with current multi-constellation Global Navigation Satellite
Systems: GPS, GLONASS, Galileo and BeiDou,” Scientific Reports,
vol. 5, no. 1, p. 8328, feb 2015.

[10] H. Laitinen, S. Ahonen, S. Kyriazakos, J. Lähteenmäki, R. Menolascino,
and S. Parkkila, “Project Number: IST-2000-25382-CELLO Project
Title: Cellular network optimisation based on mobile location Cellular
Location Technology,” 2001.

[11] I. K. Adusei, K. Kyamakya, and K. Jobmann, “Mobile positioning
technologies in cellular networks: An evaluation of their performance
metrics,” in Proceedings - IEEE Military Communications Conference
MILCOM, vol. 2, 2002, pp. 1239–1244.

[12] Wigle.net, “WiGLE: Wireless Network Mapping,” 2020. [Online].
Available: https://www.wigle.net/https://wigle.net/ Accessed on 2020-
08-07.

[13] A. Khalajmehrabadi, N. Gatsis, and D. Akopian, “Modern WLAN Fin-
gerprinting Indoor Positioning Methods and Deployment Challenges,”
pp. 1974–2002, jul 2017.

[14] Bluetooth SIG, “Bluetooth Core Specification versiom 5.2,” 2019.
[Online]. Available: www.bluetooth.org/docman/handlers/downloaddoc.
ashx?doc{ }id=478726 Accessed on 2020-08-09.

[15] R. Faragher and R. Harle, “Location fingerprinting with bluetooth low
energy beacons,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 11, pp. 2418–2428, nov 2015.

[16] Y. C. Pu and P. C. You, “Indoor positioning system based on BLE loca-
tion fingerprinting with classification approach,” Applied Mathematical
Modelling, vol. 62, pp. 654–663, oct 2018.

[17] B. Ozdenizci, V. Coskun, and K. Ok, “NFC internal: An indoor
navigation system,” Sensors (Switzerland), vol. 15, no. 4, pp. 7571–
7595, mar 2015.

[18] W3C, “Points of Interest,” 2012. [Online]. Available: https://www.w3.
org/2010/POI/wiki/Main{ }Page Accessed on 2020-08-11.

[19] Fiware, “PointOfInterest - Fiware-DataModels,” 2020. [Online]. Avail-
able: https://fiware-datamodels.readthedocs.io/en/latest/PointOfInterest/
PointOfInterest/doc/spec/index.html Accessed on 2020-08-12.

[20] R. L. Pereira, P. C. Sousa, R. Barata, A. Oliveira, and G. Monsieur,
“CitySDK Tourism API - building value around open data,” Journal of
Internet Services and Applications, vol. 6, no. 1, pp. 1–13, 2015.

[21] M. Nitti, V. Pilloni, D. Giusto, and V. Popescu, “IoT Architecture for
a sustainable tourism application in a smart city environment,” Mobile
Information Systems, vol. 2017, 2017.

[22] S. H. Hashemi and J. Kamps, “Exploiting behavioral user models for
point of interest recommendation in smart museums,” New Review of
Hypermedia and Multimedia, vol. 24, no. 3, pp. 228–261, jul 2018.

[23] J. schema org, “JSON Schema — The home of JSON Schema,” 2020.
[Online]. Available: https://json-schema.org/http://json-schema.org/

[24] Google, “Google Location Services API,” 2020. [Online].
Available: https://developers.google.com/android/reference/com/google/
android/gms/location/package-summary Accessed on 2020-08-18.

[25] Radius Network, “Android Beacon Library,” 2016. [Online]. Available:
https://altbeacon.github.io/android-beacon-library/ Accessed on 2020-
08-16.

[26] Pycom, “Pycom - Next Generation Internet of Things Platform,” 2019.
[Online]. Available: https://pycom.io/ Accessed on 2020-09-11.

[27] Fundação Calouste Gulbenkian, “Fundação Calouste Gulbenkian,” 2020.
[Online]. Available: https://gulbenkian.pt/ Accessed on 2020-08-07.

https://ieeexplore.ieee.org/abstract/document/6178133
https://www.wigle.net/ https://wigle.net/
www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc{_}id=478726
www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc{_}id=478726
https://www.w3.org/2010/POI/wiki/Main{_}Page
https://www.w3.org/2010/POI/wiki/Main{_}Page
https://fiware-datamodels.readthedocs.io/en/latest/PointOfInterest/PointOfInterest/doc/spec/index.html
https://fiware-datamodels.readthedocs.io/en/latest/PointOfInterest/PointOfInterest/doc/spec/index.html
https://json-schema.org/ http://json-schema.org/
https://developers.google.com/android/reference/com/google/android/gms/location/package-summary
https://developers.google.com/android/reference/com/google/android/gms/location/package-summary
https://altbeacon.github.io/android-beacon-library/
https://pycom.io/
https://gulbenkian.pt/

	Introduction
	Related work
	Exhibitions
	Location identifiers
	Location systems
	Global Navigation Satellite Systems (GNSSs)
	Cellular networks
	WiFi
	BLE
	NFC
	QR codes

	Points of Interest
	Programming challenges

	Solution Design
	Requirements
	Architecture
	POI data model
	POI nodes
	Location

	API
	Method calls
	Callbacks/events


	Implementation
	JSON schema
	Android middleware implementation
	Location services
	FusedLocationProviderService
	BeaconService

	POI algorithms
	Geographical nodes
	Beacon nodes

	Active services' management
	QR code integration
	Demonstration application

	Evaluation
	Functional requirements validation
	Performance

	Conclusions
	Accomplishments
	Future work

	References

