
Vehicle Counting with Object Detection on Traffic Webcams
Ana Schclar Leitão

madalena.schclar@tecnico.ulisboa.pt
Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal

Abstract
As the population residing in urban areas continues to grow, the
need for understanding the traffic flow of a city is becoming increas-
ingly more essential. Several cities have invested in the installation
and deployment of Intelligent Transportation Systems (ITS). Some
of the most commonly used sensors in ITS are traffic cameras used
for analysis and monitoring purposes. Among the existing meth-
ods that can perform this analysis based on low-resolution camera
footage, Object Detection is a compelling and yet to be specifically
adapted approach. In this work, we are using a state-of-the-art
general object detector, Faster-RCNN [1], and adapting it to real-
world low-resolution traffic footage. The traditional applications
of this type of object detectors present considerable differences to
our intended application on traffic data. These differences pose the
main challenge of this approach and are mentioned throughout
our work. On the low-resolution traffic dataset we are using, our
implementation of Faster-RCNN achieved a mean Average Preci-
sion (mAP) of 70%. Other state-of-the-art general object detectors
achieved results 10% or 20% lower on the same testing conditions.
In another traffic dataset, our approach achieved results compara-
ble to those achieved by density estimation, a standard object and
vehicle counting technique.

Keywords: Vehicle Counting, Object Detection, CNNs, TrafficMon-
itoring

1 Introduction
With the ever-growing size of theworld population, and particularly
the increase of those living in urban areas, urban planning and
management have become an essential part of any large metropolis.
Streets, roads and traffic are one of the main components of a city,
hence, its population can only achieve a satisfactory lifestyle if
proper traffic flow conditions are maintained. For this reason, cities
are placing a large interest in traffic monitoring and planning. This
interest has led to the development and evolution of Intelligent
Transport Systems (ITS). The aim of ITS is to provide accurate
information to road users, allowing them to make better use of
the transportation networks. Recently, research on ITS has been
going in the direction of computer vision and machine learning.
Both these fields have seen tremendous advances, reaching an
unprecedented level of accuracy and speed in image analysis and
object detection. However, the transition from general computer
vision techniques to traffic monitoring applications is not trivial.
These approaches require large amounts of training data to perform
correctly and the traffic camera data is available is not extensive
and varies considerably in terms of quality and resolution.

Our main goal with this work is to adapt a general object de-
tection model to real-world traffic data. Through the application
of object detection, our aim is to perform vehicle counting, one of
the essential tasks of traffic monitoring. The key challenge lies in
the use of real-world traffic data. Most traffic cameras were not

installed to be analysed through computer vision techniques, pre-
senting serious problems to these approaches: low resolutions,
cluttered and busy scenes, small and vehicles, among others.
Considering all the impediments above, we intend to evaluate if
object detection is a feasible method of vehicle counting to be used
with the existing traffic camera networks.

2 Background
The ITS application we are focusing on is vehicle counting. To
understand a region’s traffic, it is essential to know how many
vehicles occupy the roads and at what times. Vehicle counting
provides the information needed to understand the use and capacity
of the current road infrastructure and also to plan new roads. Large
quantities of data are required for this purpose and they tend to
be analysed offline. There are two main methods to count vehicles
in camera footage: detection and density estimation. Our primary
concern is vehicle detection.

Vehicle detection is a specific application of object detection.
Object detection is one of the fundamental tasks of computer
vision. It is the task of determining whether an object of a particular
class is present in a given image and returning its spatial location.
With vehicle detection, the systems analyse input traffic photos
and provide as output the locations and classes of vehicles in the
image.

There are some challenges in applying general object detection
techniques directly to traffic monitoring applications. Most arise
from the differences in data type and quality. Most traffic footage is
of low-resolution and low frame-rate. The images present very
dense and cluttered scenes with vehicles at severely different
scales. A substantial number of vehicles have extremely small di-
mensions in the images. Another characteristic of these images is
the occlusion of the vehicles. In heavy traffic, several vehicles are
almost completely hidden by others. Vehicle detection is concerned
with only two main classes, vehicles and, less often, pedestrians.
However, systems should be capable of recognizing the small dis-
tinctions between sub-classes of vehicles. Two other influencing
factors are illumination, mainly the daytime vs nighttime differ-
ences, and weather, harsh weather conditions (heavy rain, snow,
fog) are quite detrimental to the quality of the video captured.

Related Work - Here we present some works on vehicle detec-
tion that use deep learning methodologies. However, unlike with
object detection, there are still several studies based on traditional
detection techniques being proposed. This is especially evident for
works focusing on low-resolution traffic camera data. In vehicle de-
tection, researchers have mainly focused on applying deep learning
detectors to autonomous driving problems. In general, a detector,
such as Faster RCNN [1] and YOLO [2], is trained and tested on
a high-resolution dataset, captured with on-vehicle cameras. The
main benchmark for these systems is the KITTI dataset [3] and
very successful results have been achieved. In [4] Faster RCNN is



Ana Schclar Leitão

trained and reported on KITTI and in [5] it is applied to Stanford
Cars Dataset [6].

Regarding traffic camera footage, in [7] the authors propose a
three module system to track and efficiently query the obtained
data, using YOLOv2 [8] as the detector. They use their own traf-
fic camera data (720p resolution) to train and report results on
vehicle counts. In [9], the authors present a new highway traffic
dataset with vehicles at very distinct scales. The system they pro-
pose begins by dividing the road area in the video into two, the
proximal area and the remote area. Both areas are separately sub-
mitted through YOLOv3 [10] detector. The obtained vehicles are
merged and the ORB algorithm [11] is used to obtain features from
each object. These features are used to track vehicles and compute
their trajectories in the video stream.

As mentioned, another method to count vehicles is through
density estimation. The idea is to find a mapping between local
image features and the corresponding density map. On said map,
the count of vehicles is obtained by summing the pixel values. In
this method it is unnecessary to find individual vehicles. Guerrero-
Gomez-Olmedo et al. [12] analysed two counting by density models
[13, 14] on their dataset, TRANCOS, a dataset especially designed
for counting severely overlapped vehicles. In 2017, Zhang et al. [15]
published a work focusing on low-resolution traffic webcam data.
They propose two solutions to the problem. The first solution is
an improvement based on [13], where they introduce geometry
information by dividing a target region into blocks. Their second
solution is a FCN model that simultaneously learns vehicle density
and vehicle count, using convolutional and deconvolutional layers.
Both these solutions achieved positive results and adapt well to
different vehicle scales.

3 Vehicle Counting By Detection
Our work focuses on the traffic monitoring task of vehicle counting
through detection. The goal is to apply a well-known general object
detection architecture to webcam traffic data. In this section we
present the detection architecture and the datasets used. as well as
the metrics used for evaluation.

3.1 Faster RCNN Architecture
In this project, we chose to implement the Faster RCNN Architec-
ture [1]. It is one of the most precise detection models while also
being one of the most adaptable due to its modular architecture. The
model can be divided into three parts: (1) feature extraction, (2) re-
gion proposal, and (3) classification. Figure 1 is a representation of
this architecture.

  Classifier
 per RoI

  RPN
 per feature map location

input img
hxwx3

feature extraction
CNN

feature map
(hxw)/16x512 C

on
v

BBox Regression

Binary Classifier
NMS

binary
classifications

bbox proposals

R
oI

 P
oo

lin
g

RoI
7x7x512

Softmax Classifier

BBox Regression

Classifications

Bounding Boxes

Figure 1. Representation of Faster RCNN architecture.

To briefly describe the architecture: an input image goes through
a feature extraction CNN (VGG16 [16]), this CNN is known as the
shared layers of the network. A feature map is computed and used
as input to the region proposal network (RPN). This module uses
a sliding window-like technique to extract a fixed number of box
proposals in all image locations. The number and dimensions of the
proposals at each location is also fixed. The RPN module applies
two simultaneous loss functions to each box proposal, a binary
classifier to attribute the probability of an object being represented
by that box and a bounding box regressor which improves the
proposal’s location. The last section of the network, the classifier,
receives as input the feature map from the CNN and the best region
proposals from the RPN. Each of those proposals is extracted from
the feature map and warped to a fixed size. A softmax function is
used to produce class probability scores and another box regression
is applied to further improve the proposal’s location. The final
output of the network are all these class probabilities and bounding
boxes.

Training Details - The network has 4 losses, two in the RPN and
two in the classifier. Also, it has a modular architecture, in which
two separate parts of the network share the convolutional layers of
the feature extraction network. This demands particular training
techniques. Three different techniques are proposed by Ren et al. in
[1]. In this project we will adopt the method applied in the paper,
the 4 step alternating training:

1. The RPN module is trained with an ImageNet pre trained
VGG16 model. Only the altered RPN layers are saved at the
end of this step, as well as the region proposals.

2. The classifier module is trained, with the same ImageNet
pre trained VGG16 model as the previous step and using
the regions proposed by it. Both parts of the network are
trainable and their updated weights are saved.

3. The RPN module is again trained, initializing the VGG lay-
ers with those obtained in step 2 and the RPN layers with
those obtained in step 1. The VGG layers, also known as
shared layers, remain fixed. This step is used to fine-tune the
RPN to the shared layers trained with the classifier, actually
accomplishing the sharing of the feature extraction layers.

4. On the last step, the classifier layers are fine-tuned using the
region proposals from the previous step and the same fixed
shared layers.

To implement this training technique, we joined the 4 steps in 2
phases. Phase 1 contains steps 1 and 2, while phase 2 contains the
remaining steps.

ImplementationDetails -Wewill be using as foundation a Faster
RCNN implementation available at [17] on GitHub. It is a Python
project using the Keras deep learning framework. This implementa-
tion is quite similar to the original one by Ren et al. in [18] written
in Matlab and using the Caffe [19] framework. As backend we will
use Tensorflow.

3.2 Traffic Datasets
For this project, we need real-world cluttered scenes captured by
traffic cameras. Preferably, footage of lower resolution as that is the
norm for most traffic monitoring video systems. For these reasons,
we will be using the CityCam dataset for training. Additionally,



Vehicle Counting with Object Detection on Traffic Webcams

Figure 2. Frames from the CityCam dataset with annotations. The
two top frames represent an urban traffic scene and the bottom two
represent highway traffic.

we will be analysing non-annotated traffic data from the city of
Tallinn.

CityCam - CityCam is a large labeled traffic webcam dataset cre-
ated for traffic analysis by [15] (Figure 2. The dataset is composed
of 60 million frames obtained from 212 webcams over a 4 week
period. 60,000 of those frames have been annotated, containing
around 900,000 labeled vehicles. It depicts real world urban traffic
scenes on a large city, New York City. The annotated frames belong
to 16 different cameras, 11 are placed on typical urban intersections
while 5 are on higher traffic and higher speed roads, similar to
highways. The annotations provide information on the vehicle type
and count, bounding box locations, camera orientation, the time
and the weather when the footage was obtained. In the next section
we present a more thorough analysis of the CityCam data.

Tallinn data - To perform further traffic analysis, we have avail-
able a dataset comprised of traffic footage from over one hundred
cameras installed throughout the city of Tallinn. This data is not an-
notated for detection, however, there is a density estimation score
for each frame. The purpose of analysing this data is to compare
both methods of Vehicle Counting and to assess our work on a
different dataset.

3.3 Evaluation Metrics
The performance of object detection algorithms is evaluated based
on three criteria: precision, recall and speed. Generally, precision
and recall are represented by a single metric, mean Average Preci-
sion (mAP).

There is one more measure essential to object detection, the
Intersection over Union (IoU) overlap score. IoU is a measure of
overlap between two bounding boxes. Having two bounding boxes,
their area of overlap (intersection) and area of union are computed,
they are then divided giving

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜 𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜 𝑓 𝑈𝑛𝑖𝑜𝑛
(1)

To determine whether a prediction is suitable, a threshold is applied
to the IoU score. We will be testing several threshold values to
determine a suitable one for our problem.

Precision is the fraction of the detections made that are correct.
Recall is the fraction of correct detections made compared to the
detections that should have been returned. In more general terms,
precision is the number of TP (True Positives) over the number
of TP + FP (False Positives) and recall is the number of TP over
the number of TP + FN (False Negatives). For each class and each
image 𝑖 , the detector returns predictions as (𝑏𝑖 𝑗 , 𝑠𝑖 𝑗 ), where 𝑏𝑖 𝑗
is the predicted location and 𝑠𝑖 𝑗 is the confidence of prediction
𝑗 . The locations predicted are matched to ground-truth bounding
boxes, using an algorithm described in [20], and binarily scored
according to a certain threshold applied to the IoU overlap result,
the score (𝑧𝑖 𝑗 ) is 1 if the boxes IoU is greater than the threshold, and
0 otherwise. The formulas for precision and recall are as follow:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑡) =
∑
𝑖 𝑗 1[𝑠𝑖 𝑗 ≥ 𝑡]𝑧𝑖 𝑗∑
𝑖 𝑗 1[𝑠𝑖 𝑗 ≥ 𝑡] (2)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑡) =
∑
𝑖 𝑗 1[𝑠𝑖 𝑗 ≥ 𝑡]𝑧𝑖 𝑗

𝑁
(3)

where N is the number of ground-truth instances of a certain
class, across all images.

These two metrics are combined to compute the Average Preci-
sion. For each class, AP is calculated as the average of themaximum
precision over the different levels of recall, or, in other words, AP is
the area under the Precision-Recall curve. We sort the predictions
in a descending order according to confidence score, incrementally
compute the precision and recall and plot all these values, obtaining
the Precision-Recall curve. Before computing the area under the
curve, the precision in interpolated. The precision at each recall
value becomes the maximum precision at that recall or higher (4).
The AP is then computed as the mean of the interpolated precision
at all the recall values (5).

𝑝𝑖𝑛𝑡𝑒𝑟𝑝 (𝑟 ) = max
𝑟 :𝑟 ≥𝑟

(𝑝 (𝑟 )) (4)

𝐴𝑃 =

∫ 1

0
𝑝𝑖𝑛𝑡𝑒𝑟𝑝 (𝑟 )𝑑𝑟 (5)

Themean Average Precision (mAP) is simply the average of
the AP over all classes. In our evaluation we will be using three
levels of mAP according to bounding box dimension. The box di-
mension values are adapted to the CityCam dataset and as follows:

• small: width ≤ 13px;
• medium: 13px < width ≤ 29px;
• large: width > 29px.

These values are explained in 4.1. From these values, the difficulty
levels are: (1) easy - large boxes; (2) medium - medium and large
boxes; (3) hard - small, medium and large boxes.

Detection speed is measured in FPS (Frames per Second), i.e.
how many images the detector can evaluate in one second. The
constraints to this measure depend immensely on the application.
Vehicle counting is usually employed as an offline method. This
implies that time constraints are not too severe.

4 CityCam: Analysis and Training
The most significant part of our work is the adaptation of a general
object detection architecture, Faster RCNN, to the low-resolution
traffic dataset CityCam. To achieve this we begin by analysing the
data in the first section. In the second section, we adapt the net-
work’s parameters with the results obtained by studying CityCam.



Ana Schclar Leitão

4.1 Analysis of CityCam Dataset
In this section we analyse the CityCam dataset. The information
given is on the following topics: data format, scene type, annotation
box statistics, box scales and ratios, class distribution and finally,
weather conditions.

The CityCam dataset is available as video files and .xml anno-
tation files. The majority of the videos present a frame rate of
around 1 frame/second and all the frames have a resolution of
240x352 pixels. We converted the videos to individual .jpg frames
and the annotations from a per frame .xml file to a general .txt file.
Each line in this annotations file represents one vehicle instance
in the following format: frame_path, x1, y1, x2, y2, class. The full
dataset was partitioned as subsets of 90% for training+validation
and of 10% for testing. The training+validation set was further
partitioned into 80% for the training set and 20% for validation.

The CityCam dataset is composed of images from 16 different
cameras, most of these are installed in urban intersections, depicting
regular urban traffic. Observing the footage from each camera, we
have decided to divide them into three scene types: urban (78.26%),
highway (16.24%) and other (5.5%).

To understand the dimensions of the vehicles in this data, we
computed the median values of the areas, widths and heights of all
bounding boxes per camera. In Table 1, we show these and other
statistics per scene type.

With these values we can confirm two expected characteristics
from this type of traffic footage: (1) A frame tends to contain a very
large number of annotations, 14 vehicles per image, on average.
(2) The size of the annotations is extremely small for common object
detection applications. The average width and height don’t reach
25𝑝𝑥 . Compared to the KITTI [3] traffic dataset where annotations
must have a height greater than 25𝑝𝑥 and the MSCOCO challenge
[21] where areas inferior to 1024𝑝𝑥 are classified as small. Also,
we note that the highway cameras present considerably smaller
median dimensions than the rest of the dataset. This could imply
that the detector’s performance will be lower on the highway scenes
of CityCam.

To study the discrepancy in object scales in CityCam, we per-
formed a clustering of the widths and the heights of all the anno-
tations in the training+validation set. We used Kmeans to cluster
each of the measures into three groups with the intention of obtain-
ing three scales: small, medium and large. We also computed the
three width/height ratios that best represent the overall set. The
results attained from this analysis are the widths 13, 29 and 65 as
bounding box scales and the box ratios [0.8 0.6], [1.1 0.8] and
[1.4 1.1], where the first number in brackets is for the width and
the second for the height. These values will be used during training
given that the Faster-RCNN architecture requires the specification
of bounding box scales and ratios in the RPN stage.

The class distribution in CityCam is imbalanced, as expected
in real traffic conditions. Table 2 presents the class counts on the
training+validation data, The three first classes solely constitute
over 85% of the entire dataset. These are the vehicle subclasses that
represent the car class. All other vehicle types occur a noticeably
smaller number of times, which might become an obstacle to the
correct classification of instances belonging to these classes. Com-
paring the class distributions between the different traffic scenes
and the total set, we can note that the urban cameras present the
most similar distribution to the total set one. This is expected given

that most of the cameras are installed in typical urban roads. We
also see that the highway set is almost entirely composed of black
sedans and other cars (91%) and the other set has considerably more
trucks than the rest.

To determine the weather conditions affecting the CityCam
datawe observed each of the videos, dividing them into fourweather
categories: normal (151 videos), rain (23 videos), heavy rain (5
videos), shadows (21 videos). The frames classified as heavy rain
present a much more severe distortion and it is unlikely that an
object detector will perform acceptably on these images.

This dataset contains a few errors in its annotations, mostly
by having extremely small areas that don’t represent any vehicle.
These are unlikely to have any effect on the detection algorithm,
due to the way in which the training data is generated. Also, these
don’t occur enough to be significant.

4.2 Network Parameters for CityCam
The Faster RCNN architecture was created having general object
detection tasks in mind. Considering the main differences between
this type of task and vehicle counting, it is likely that adapting the
parameters to the CityCam traffic data will improve the detection
results. In this section, we present three of the most relevant net-
work parameters and how we adapt them to our data: input size,
anchor scales and ratios, IoU thresholds.

The input image size is one of the most significant parameters
in this architecture. It affects the dimensions of the feature map
produced by the Feature Extraction module (the VGG) which will,
in turn, affect the number of anchor locations to be analysed. The
VGG used, outputs a feature map with dimensions 16 times smaller
than the input’s. In table 3, we show how different rescalings of
the input image (from 1x to 3x) alter these details, assuming the
image dimensions of CityCam, 352x240px. By performing a scaling
of 2.5 times, i.e., equivalent to the parameters in [1], the network
has 6.25 times more anchor locations to evaluate, which will have
a considerable impact on the amount of time the network spends
per image. However, while expanding the image size decreases the
time efficiency, it is practically a necessity in the CityCam dataset.
In Table 1, we can observe that over a third of the cameras have
annotations with a median area smaller than 256px = 16x16. This
means that, when not performing a scaling of the image, half of
the annotations’ areas are smaller than the windows considered,
and consequently not captured by the network. When using an
input two times larger that the image, the sliding window area
corresponds to a 64px = 8x8 area in the original image, which is an
area small enough to capture most of the vehicles in the dataset.

In the RPNmodule, Faster RCNN uses fixed-size anchor boxes
to extract region proposals from each section of the feature map.
During training, these proposals are considered positive only when
they have an IoU higher than a threshold with a ground-truth (GT)
box. For this to be the case, the dimensions of the anchors have
to be representative of the GT object’s dimensions. In the origi-
nal implementation, the anchor scales and ratios were defined to
possibly represent large objects from diverse classes. They applied
nine bounding box proposals per feature map location. These are
combinations of the scales 128, 256, 512 with the ratios 1:1, 2:1, 1:2.
We will be comparing these to the values computed for our data in
the previous section (4.1): [13, 29, 65] and [0.8:0.6, 1.1:0.8 , 1.4:1.1]
for the scales and ratios, respectively.



Vehicle Counting with Object Detection on Traffic Webcams

Table 1. Analysis of CityCam training set. The table shows the distribution of frames and annotations per scene type, as well as the median
of annotations in each image. The last three columns present the median area, width and height.

Num Frames Num Annotations
per camera

Num Annotations
per frame

Median
Annotation Dims

Cam id count % count % median area width height
urban 39935 78.27 518476 72.25 13 349 21 16

highway 8284 16.24 152630 21.21 18 127 13 9
other 2830 5.5 46841 6.53 16 387 26 15
Total 51049 100% 717947 100% - - - -
Avg - - - - 14.38 319.56 20.19 15.13

Table 2. Class counts in training+validation set. The table contains the class distributions for the total set and for each of the three types of
scene. Values above 15% are shown in bold font.

class id 1
taxi

2
black
sedan

3
other
car

4
small
truck

5
medium
truck

6
big
truck

7
van

8
medium
bus

9
big
bus

10
other total

total count
(x1000) 113 240 259 12 19 4 27 7 17 19 718

total % 15.72 33.48 36.05 1.72 2.7 0.61 3.7 1.04 2.32 2.66 100%
urban % 19.1 30.8 32.76 1.81 3.04 0.49 4.03 1.26 3.12 3.61 100%

highway % 4.99 44.27 46.76 1.22 0.35 0.03 1.85 0.29 0.03 0.19 100%
other % 13.28 28.04 37.55 2.35 6.57 3.82 6.04 1.05 1.01 0.28 100%

Table 3. Effect of different image scalings on the region proposal stage. This table presents network details using five possible scalings of
CityCam frames, from 1x to 3x. The feature map size is 16x smaller than the image size. Using a sliding window, anchors are applied to
each feature map location. The location’s size and area are shown relative to the original image size. The number of anchors is calculated
assuming nine anchors per window location.

Scale 1x (original) 1.5x 2x 2.5x 3x
Input img size 352x240 528x360 704x480 880x600 1056x720

Feature map size 22x15 33x22.5 44x30 55x37.5 66x45
Num window locations 330 726 1320 2035 2970

Location size 16x16 10.7x10.7 8x8 6.4x6.4 5.3x5.3
Location area 256 114 64 41 28

Num anchors (k=9) 2970 6534 11880 18315 26730

During the RPN training, IoU thresholds are applied. IoU over-
lap is the main metric to assess how appropriate a box proposal is
to a ground-truth bounding box. In RPN, these thresholds which
determine whether a box proposal is positive or negative, i.e., if it
contains an object or not. To do this, two thresholds are used, and
upper and a lower one. The following are the criteria used by the
network:

• Positive proposal:
– highest IoU score with a GT box
– IoU > upper threshold with any GT box

• Negative proposal:
– IoU < lower threshold with all GT boxes

All other boxes are irrelevant during training and are thus elimi-
nated. An analysis performed on a sample of the dataset (around
10%), showed that, using the anchor dimensions previously defined
in this section, the average IoU is of around 0.55. As such, it is more
appropriate for this data to use small thresholds. Such as 0.5 and
0.1, for the upper and lower threshold respectively. At the end of
the RPN module, non-maximum suppression is applied using

another IoU threshold, set at 0.7. If two proposals have an IoU over-
lap higher than this value, then only the one with the highest class
confidence score is kept.

5 Results
This section presents the results achieved by training and testing
our adapted Faster RCNNmodel on the CityCam dataset and testing
on the Tallinn traffic data.

5.1 Training on CityCam
The training on CityCam was performed in two stages: initial pa-
rameter testing on a single camera and analysis of results on the
full dataset. We adopted this method to minimize the amount of
training time spent on the entire dataset.

Single Camera
The camera chosen for the initial parameter testing is the one

with the highest amount of annotations and it’s taken from a typical
urban intersection (Cam id = 398). Around 4000 frames from this
camera were used for training, the class distribution resembles the



Ana Schclar Leitão

total one (in Table 2) and the median dimensions of the annotations
are similar to the total average.

To test and perform parameter adaptation we trained several
models, introducing only one change in each new one. The base
model follows the initial parameters, the changes introduced in
each model are: (a) image input size to 240px and our anchor scales
and ratios, (b) adam optimizer, (c) our iou thresholds, (d) amsgrad,
(e) weight decay (f) 2000 regions of interest, (g) and image input size
to 480 px. The models were trained from an Imagenet pre-initialised
VGG16 and following the technique in Section 3.1 for 8 epochs per
phase. As preprocessing, the images are normalised and the mean
pixel per depth channel is subtracted. Table 4 contains the testing
results of each model in the detection and classification task. All
testing in this section was performed on the validation set.

The first model provided very poor results. As expected, barely
any correct detections were made due to the size and scale of the
anchor box proposals. These dimensions were specified for general
object detection, where the focus is on a few large objects. Unlike
traffic vehicle detection, where images contain a large number of
vehicles at different scales. This is the only model trained with an
input image height of 600px (shortest image side). The size of the
input affects tremendously the model’s training time, however, in
this architecture, it has a great positive effect on the results. As
explained in Section 4.2, the input image size dictates the number
of anchor box locations and sizes: a larger image implies more
and smaller locations. For the purpose of tuning the parameters,
we trained most models without resizing the images (height =
240px), only on the last model did we upscale them to twice the size
(height = 480px) to compare the results. As we expected, the greatest
improvement resulted with the upscaling of the input image in
model g. However, this increased the testing time, confirming the
obvious trade-off between detection accuracy and time. In this
trafficmonitoring application, a frame rate of two images per second
is entirely acceptable so it is preferable to have higher accuracy
and lower frame rate.

With this analysis on only one camera, we concluded that our
parameter definition in the previous chapter (Section 4.2) positively
affects the performance of Faster RCNN on the CityCam traffic
dataset. Having achieved these results, we proceeded to train a
model with the parameters equal to model g on the full CityCam
training set.

Full Training set
After optimizing and testing on a single camera, the network

was trained simultaneously on all 16 cameras using the parameters
of model g in Table 4. As before, the frame rate during testing is
around 2 frames per second. In Table 5, we show the detection
and classification results obtained on the full CityCam dataset. The
results are presented by scene type: urban, highway and other.

Observing the table, we note that, as expected, the best values
overall are obtained on urban scenes. This occurs because most of
our training data portrays this type of traffic scene, as such, the
model is more adapted to typical urban footage and performs better.

On the detection results, we can see that the mAP is slightly
better for the urban scene frames, 83.88% vs 80.56% for all cameras.
However, in terms of recall, all camera types show similar results at
the medium and easy difficult levels. The highway scenes obtained
worse recall levels only at the hardest difficulty. This is justifiable
by the smaller average size of annotations in this scene type, seen

in Table 1. On the classification results, we see that the mAP of
the main three classes is slightly higher than the total one, on all
scene types. Comparing the detection results to the classification
ones, there is a difference in the mean APs, this is however, much
less severe in the urban cameras. This indicates that vehicles in the
urban traffic footage are not commonly misclassified. The recall
values show the same as the mAP, for detection only, the value is
slightly higher than for both localization and classification.

Table 6 contains the per class Average Precision for the three
scene types, and the all over average. In bold font we highlight APs
above 80%. We can see that only urban cameras obtained results
above 80%. We can also observe that, when considering all the
cameras, the highest scores occur on two of the three main classes:
taxis and black sedans. These two classes form around 50% of the
dataset.

Figure 3 contains some examples of detections made on CityCam
by our model. The annotated bounding boxes are colour coded as:
green - true positive, red - false negative and blue - false positive.

To study the effect of weather conditions on the performance
of our implementation, we divided the test set into 5 subsets: (1) rain,
(2) heavy rain, (3) shadows, (4) whole set minus rain, (5) whole set
minus rain and shadows. Table 7 contains the obtained classification
results. These correspond accurately to what would be expected.
The worst results occur on the heavy rain set. As we can see, this
type of rain severely affects the detection, the medium difficulty
mAP is 25% lower than the mAP of the whole set. In the rain set,
the effect is less intense. The mAP is 6% lower. The presence of
shadows seems to have a minor effect, with a mAP difference of
less than 2%. Considering these three conditions had a negative
influence on the performance, the best results occur on the set
with no rain or shadows. Overall, the results on this set are only
slightly better than those achieved on the entire testing set. This
indicates that the unfavourable weather or illumination conditions
don’t occur frequently enough to have a high impact on the general
performance scores.

Due to the discrepancy in results between urban cameras and
highway cameras, we decided to train a model uniquely with the
three highway cameras. Table 8 shows the results obtained by this
highway model and compares them to the ones obtained by the gen-
eral one. From these results, we see that the general model behaves
better when taking into account the smaller annotations. However,
the highway model provides better results at the medium a easy dif-
ficulties. The results are very similar in both implementations, but,
we believe that with a larger and more extensive highway training
set, the highway only model would provide more satisfying results.

One of the challenges of vehicle detection is the lack of bench-
marks and systems to compare and evaluate models. Vehicle detec-
tion systems are very dependent on the application and most publi-
cations use private datasets. To sidestep this issue, we decided to
compare ourmodel to state-of-the-art object detectors: Mask
RCNN [22], Faster RCNN [1] and RetinaNet [23]. We are using the
pre-trained implementations available on Detectron2 [24], a de-
tector software from Facebook AI Research. All of these models
have ResNet50 [25] as the backbone network and are trained on
the MS COCO dataset, with over 200 thousand images. To do this
comparison we selected a random sample of 500 images from the
CityCam test set and evaluated the three Detectron2 models and



Vehicle Counting with Object Detection on Traffic Webcams

Table 4. Detection and classification results using different Faster RCNN parameters. The table shows, for the detection only task, the mean
Average Precisions (mAP) and mean Recall (mRec) at the three difficulty levels defined in 3.3. The next column contains the detection rate in
seconds per image. The final two columns contain the mAP and mRec for the classification task at medium difficulty.

mAP mRec rate
(sec/img)

classification (m+l)
model s+m+l m+l l s+m+l m+l l mAP mRec
base 15.19 22.25 43.47 19.31 28.28 55.25 0.7 8.51 23.91
a 13.64 18.81 37.98 25.34 34.95 70.57 0.4 15.77 26.82
b 34.82 45.07 68.11 45.97 59.5 89.93 0.2 43.69 54.83
c 42.29 54.04 73.5 54.2 69.26 94.2 0.2 53.63 66.32
d 43.31 55.38 76.42 53.55 68.48 94.5 0.2 53.65 65.42
e 43.25 55.34 76.47 53.17 68.02 94 0.2 53.34 64.94
f 44.07 56.15 74.05 56.62 72.15 95.15 0.2 54.7 69.35
g 79.96 88.32 90.87 87.73 96.9 99.7 0.5 86.62 94.67

Table 5. Detection and classification results on the full CityCam dataset by traffic scene type. The table shows, for the detection only task,
the mean Average Precisions (mAP) and mean Recall (mRec) at the three difficulty levels defined in 3.3. The final three columns contain the
mAP of all classes, the mAP of the main three classes and the mRec for the classification task at medium difficulty. The best values for each
metric are presented in bold.

mAP mRec classification (m+l)
scene type s+m+l m+l l s+m+l m+l l mAP mAP top 3 cls mRec
all cams 69.56 80.56 85.35 80.01 93.15 98.77 72.49 74.15 84.88
urban 74.54 83.88 88.57 83.22 93.74 99.01 79.64 80.87 88.8

highway 50.99 70.95 75.87 66.06 92.17 98.76 56.83 58.27 78.03
other 69.99 76.75 81.83 83.31 91.36 97.42 54.68 61 73.65

Table 6. Classification results on CityCam per traffic scene type and class.

scene
type taxi black

sedan
other
car

small
truck

medium
truck

big
truck van medium

bus
big
bus other

all cams 78.62 78.92 67.3 45.27 68.56 40.53 65.02 61.73 78.57 40.65
urban 84.1 83.84 74.11 59.82 83.66 45.13 77.8 74.09 88.13 45.09

highway 66.26 67.36 52.42 14.3 24.48 4.76 33.45 39.55 - 38.69
other 66.98 69.22 52.23 18.95 51.6 35.42 42.09 27.01 26.03 18.17

Figure 3. Detections made by our model on the CityCam dataset.

our implementation on the detection only task. Table 9 contains
the results obtained. Surprisingly, our model fared better on all
metrics. While the Detectron2 models have not been trained on
this data, they were submited to a much more extensive training
and all three are the newest and best implementations of each net-
work. The biggest difference in results occured in the mAP at the

medium difficulty, where medium and large vehicles are consid-
ered. As mentioned before, this is the metric we consider the most
relevant. Our implementation achieves a mAP close to 10% higher
than the second best model. All other results are fairly similar. As
expected, no network performs well when the smallest vehicles



Ana Schclar Leitão

Table 7. Results of weather conditions on detection.

mAP (%) mRec (%)
s+m+l m+l l s+m+l m+l

rain 59.96 71.81 79.41 71.05 85.38
heavy rain 41.14 51.97 62.34 58.88 75.41
shadows 59.28 76.16 81.83 69.99 90.54
no rain 63.91 81.33 85.69 72.36 92.37

no rain and
no shadows 64.41 81.86 86.07 72.61 92.57

all 61.82 77.7 83.5 70.79 89.41

Table 8. Comparison of an implementation trained on highway
only versus the general training.

mAP (%) mRec (%)
s+m+l m+l l s+m+l m+l

highway 38.7 62.43 69.51 51.4 83.43
general 40.15 60.26 68.72 53.52 80.67

are considered and all achieve acceptable results if only the largest
vehicles are contemplated.

5.2 Testing on Tallinn Traffic Data
We tested our fully-trained vehicle detection model on different
traffic data to better understand how it would behave on other
footage. For this, we are using the Tallinn Traffic dataset mentioned
in 3.2. This dataset was not created for object detection and has
no bounding box annotations. However, each frame is accompa-
nied by an estimated density score (number of vehicles in image)
and density map. The lack of detection annotations implies that
the assessment of our model’s performance was done by manual
observation and by comparison to the density scores.

We selected three cameras from the dataset: on a typical urban
scene, on a highway and on a parking lot. In figure 4, we compare
the detection counts we obtained with our model to the existing
density counts in the urban location. In the graph we can see that
both techniques provided similar results. This indicates that our
detection model is as effective as the density method in the task
of vehicle counting. Furthermore, detection can contribute with
additional information such as vehicle type, size and location.

As we saw previously when testing on CityCam, our model has a
slightly worse performance on highway scenes. The same occurs on
the Tallinn highway data tested. Figure 5.a) shows the comparison
between our detection counts and the data’s density vehicle counts.
Our model tends to detect less vehicles than the density method in
this type of scene.

As for the parking lot camera, this is a type of scene not previ-
ously seen by our model during training nor testing. As such, we
expect the results to be slightly less reliable. Figure 5.b) compares
the density vehicle counts and our detection counts. As we can see,
there is a discrepancy in the number of vehicles detected by each
method.

Figure 6 shows examples of images detected by our implementa-
tion on the Tallinn traffic dataset.

6 Conclusions
The aim of this project was to assess the use of object detection
to perform the task of vehicle counting on typical low resolution
traffic data. To accomplish this, we adapted and trained a Faster
RCNN model on the CityCam dataset and later tested it on this
same dataset and on traffic footage from the city of Tallinn. We
found that one of the main aspects that affects the results of our
model is the road type. Most of the training data used represents
urban streets and intersections. As such, the performance is much
better in this type of setting versus a highway road, as we saw in
both CityCam and the Tallinn data. Similarly, we also found that the
results are better at daytime and with mild weather conditions. We
are certain that all of these issues would be solved if more training
data for these situations were available. Besides this, we also found
that the size of the vehicles has a great influence on the outcome.
Smaller vehicles, as expected, are less frequently detected. However,
if we are using this method to count vehicles in a video sequence, it
is not necessary to find the smallest vehicles in each frame, as they
will be larger in the ones that follow. Finally, we found the counting
results on the Tallinn urban footage very comparable to the ones
obtained through density estimation. We thus conclude that both
techniques are equally effective for vehicle counting and detection
can provide additional information such as size, location and class.
With this, we conclude that vehicle counting can be performed
by a state-of-the-art object detector on low resolution traffic data.
However, this method is not advisable if there is a necessity in
detecting the smallest of vehicles. Due to the construction of object
detectors, extremely small objects are missed or ignored. Addition-
ally, this method requires some domain adaptation. Urban cameras
and highway cameras produce considerably different scenes, as
such, to perform well on both, the model has to be trained on both.
The same can be said for unusual roads such as roundabouts and
different illumination and weather conditions, within reason.

References
[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in neural information
processing systems, 2015, pp. 91–99.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779–788.

[3] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[4] Q. Fan, L. Brown, and J. Smith, “A closer look at faster r-cnn for vehicle detection,”
in 2016 IEEE intelligent vehicles symposium (IV). IEEE, 2016, pp. 124–129.

[5] A. Tourani, S. Soroori, A. Shahbahrami, S. Khazaee, and A. Akoushideh, “A
robust vehicle detection approach based on faster r-cnn algorithm,” in 2019 4th
International Conference on Pattern Recognition and Image Analysis (IPRIA). IEEE,
2019, pp. 119–123.

[6] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-
grained categorization,” in Proceedings of the IEEE international conference on
computer vision workshops, 2013, pp. 554–561.

[7] L. Huang, W. Xu, S. Liu, V. Pandey, and N. R. Juri, “Enabling versatile analysis
of large scale traffic video data with deep learning and hiveql,” in 2017 IEEE
International Conference on Big Data (Big Data). IEEE, 2017, pp. 1153–1162.

[8] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” arXiv preprint, 2017.
[9] H. Song, H. Liang, H. Li, Z. Dai, and X. Yun, “Vision-based vehicle detection and

counting system using deep learning in highway scenes,” European Transport
Research Review, vol. 11, no. 1, p. 51, 2019.

[10] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018.
[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative

to sift or surf,” in 2011 International conference on computer vision. Ieee, 2011,
pp. 2564–2571.

[12] R. Guerrero-Gómez-Olmedo, B. Torre-Jiménez, R. López-Sastre, S. Maldonado-
Bascón, and D. Onoro-Rubio, “Extremely overlapping vehicle counting,” in Iberian



Vehicle Counting with Object Detection on Traffic Webcams

Table 9. Comparison between our implementation and other object detectors. The highest values of each metric are in bold.

mAP Recall
s+m+l m+l l s+m+l m+l l

Detectron2
Mask RCNN 45.52 62.44 75.65 56.13 76.99 93.28
Faster RCNN 44.69 61.23 74.47 55.61 76.19 92.66
RetinaNet 38.88 52.98 62.88 58.72 80.02 94.87

our 48.54 70.09 78.36 58.78 84.88 94.89

Date

V
eh

ic
le

 C
ou

nt
s

0

50

100

150

1.
00

17
.0

0

33
.0

0

49
.0

0

65
.0

0

81
.0

0

97
.0

0

11
3.

00

12
9.

00

14
5.

00

16
1.

00

17
7.

00

19
3.

00

20
9.

00

22
5.

00

24
1.

00

25
7.

00

27
3.

00

28
9.

00

Density Detection

09-03 10-03 11-03 16-0315-0314-0313-03 19-0318-0317-03 20-03 22-0321-03 25-0324-0323-03 26-03 27-03

Date

Figure 4. Our detection counts versus the density counts of the Tallin dataset. Both density and detection counts are plotted per hour. Each
section in the horizontal axis corresponds to one day.

Figure 5. Detection vs density vehicle counts on a highway (left) and a parking lot (right) camera from the Tallinn traffic dataset.

Figure 6. Detections made by our model on the Tallinn traffic dataset.

Conference on Pattern Recognition and Image Analysis. Springer, 2015, pp. 423–
431.

[13] V. Lempitsky andA. Zisserman, “Learning to count objects in images,” inAdvances
in neural information processing systems, 2010, pp. 1324–1332.

[14] L. Fiaschi, U. Köthe, R. Nair, and F. A. Hamprecht, “Learning to count with
regression forest and structured labels,” in Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012). IEEE, 2012, pp. 2685–2688.

[15] S. Zhang, G. Wu, J. P. Costeira, and J. M. Moura, “Understanding traffic density
from large-scale web camera data,” arXiv preprint arXiv:1703.05868, 2017.

[16] K. Simonyan andA. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[17] “Keras-fasterrcnn.” [Online]. Available: https://github.com/you359/Keras-
FasterRCNN

[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks.” [Online]. Available:

https://github.com/you359/Keras-FasterRCNN
https://github.com/you359/Keras-FasterRCNN


Ana Schclar Leitão

https://github.com/ShaoqingRen/faster_rcnn
[19] Y. Jia, “Caffe: An open source convolutional architecture for fast feature

embedding.” [Online]. Available: http://caffe.berkeleyvision.org/
[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition
challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,
2015.

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in European conference on
computer vision. Springer, 2014, pp. 740–755.

[22] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR, vol.
abs/1703.06870, 2017. [Online]. Available: http://arxiv.org/abs/1703.06870

[23] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” CoRR, vol. abs/1708.02002, 2017. [Online]. Available:
http://arxiv.org/abs/1708.02002

[24] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,” https://github.
com/facebookresearch/detectron2, 2019.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

https://github.com/ShaoqingRen/faster_rcnn
http://caffe.berkeleyvision.org/
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1708.02002
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Abstract
	1 Introduction
	2 Background
	3 Vehicle Counting By Detection
	3.1 Faster RCNN Architecture
	3.2 Traffic Datasets
	3.3 Evaluation Metrics

	4 CityCam: Analysis and Training
	4.1 Analysis of CityCam Dataset
	4.2 Network Parameters for CityCam

	5 Results
	5.1 Training on CityCam
	5.2 Testing on Tallinn Traffic Data

	6 Conclusions
	References

