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Abstract

Nowadays, with the increasing use of Computer-Aided Design and Building Information Modeling
applications in architecture, more complex digital architectural projects can be developed. This complexity,
however, has been increasing to the point where the aforementioned applications no longer suffice. In
order to better assist the demanding workflow of the architectural design process, Algorithmic Design, a
programming approach to design, comes into play.

Nevertheless, Algorithmic Design constitutes a learning challenge for many practitioners. To overcome
this issue, the industry relies on the introduction of immediate visual feedback into the programming work-
flow, allowing designers to quickly visualize the impact of changes made to their programs, considerably
smoothing the learning curve. However, previous solutions for visualization do not offer the satisfactory
performance required by the Algorithmic Design workflow. Hence, we propose to develop a fast interac-
tive visualizer that can be used during the design process. To this end, we developed a visualizer based
on a Game Engine. Game Engines are capable of handling complex scenes with high performance, and
are thus suitable for the fast generation of the complex models that result from Algorithmic Design.

Moreover, we propose an integration with current state-of-the-art visualization technology, namely Vir-
tual Reality. With it, we can immerse the architects in their design creations, enhancing decision-making
and design communication even further.
Keywords: Algorithmic Design; 3D Graphics; Real-Time Visualization; Game Engine; Virtual Reality

1. Introduction
The digital era has greatly influenced Architecture
and its design process. A number of digital tools,
namely Computer-Aided Design (CAD) and Build-
ing Information Modeling (BIM) tools, are used
nowadays to design buildings, increasing produc-
tivity, and the production of technical documenta-
tion. This evolution to the digital medium has also
led to advancements in the complexity of the de-
signs [1].

Currently, the creation of digital designs depends
on the execution of several tasks, such as 3D mod-
eling, analysis, and rendering, which require differ-
ent tools [2]. Among those tools, CAD and BIM
applications are the most prominent ones for 3D
modeling and rendering, as they provide a digi-
tal way to model a 2D or 3D representation of a
building. However, usage of these multiple tools to
construct an architectural project often imposes an
inefficient, repetitive, and tiresome workflow. Fur-
thermore, as the project grows, changes become
costlier.

1.1. Algorithmic Design
Algorithmic Design (AD) is the development of ar-
chitectural designs through the use of algorithmic

and mathematical descriptions. The end result is
a program that generates a model of the design
for either visualization tools, such as CAD or BIM
tools, or, inclusively, a model for analysis tools.
This algorithmic and mathematical nature of the
program brings advantages to the architectural de-
sign process, such as: (1) the ability to create an
abstract description of a building that can be repre-
sented in different tools, (2) the ability to automate
and generate complex geometry, (3) the ability to
parameterize the model’s description, bringing flex-
ibility to the design, illustrated in Figure 1, and (4)
the ability to adapt the parametric data along with
the results of an analysis tool to find the optimal
design according to a given design criteria [2].

Pursuing the AD approach for designing requires
that the architect, instead of modeling a design di-
rectly in CAD and BIM applications, creates a para-
metric program that generates a design model.
However, writing such a program is not a trivial
task. Coding complex designs demands additional
effort from the architect, who might not be very pro-
ficient at programming. This leads not only to ad-
ditional errors, such as coding mistakes along with
design mistakes, but also to a disconnection be-
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Figure 1: The Market Hall, in Rotterdam, designed using the
AD approach, in a parametric fashion. Depicted on the left, is
the original design, and, on the right, two design variations, gen-
erated by applying simple changes to the parameters’ values.
Source: [3]

tween what is being written and what effectively is
going to be generated as a result. The latter aspect
is particularly important because of how crucial vi-
sualization is for architecture. Only by visualizing
their designs can architects make a subjective aes-
thetics evaluation. Additionally, injecting algorith-
mic logic can hinder the creativity of an architect
when designing a building [2].

Typically, architects following the AD methodol-
ogy resort to CAD or BIM applications to serve
as visualizers for the results of their AD programs.
However, these applications were designed for in-
teractive use and often become a liability in terms
of performance with the considerable amount of
data generated by an AD program. These appli-
cations prove to be insufficient when dealing with
large scale AD descriptions because their perfor-
mance problems delay the visualization of the gen-
erated design, thus making AD harder than neces-
sary.

To mitigate these effects, the architect needs to
have immediate visual feedback of the design gen-
erated by the AD program, throughout the different
phases of the project development. The immediate
visual feedback allows them to freely experiment
with the design, thus expressing their ideas and
concepts, but also to promptly correct mistakes in
the AD program as they arise and fine tune the
design’s parameters with ease [4]. This reduces
the distance between the architect’s idealized de-
sign and the design program’s results, increasing
program comprehension [5], and thus making pro-
gramming a less daunting task. To this end, the
development of a fast and interactive visualizer is
required. Additionally, this visualizer needs to have
good visual quality to compete against CAD and
BIM tools, while still providing better performance.

2. Related Visualizers
Although the area of visualization is broad, this re-
search focuses on the visualizers aimed for archi-
tectural designs and also those related to AD. Con-

sidering that the AD process is recent, only a few
visualizers were specifically made for it. For this
reason, we also investigate solutions that fall out-
side the architectural context. This way, we can as-
similate a broader spectrum of ideas into our fast
and interactive visualizer for AD.

2.1. CAD and BIM
The two main paradigms for production and visual-
ization of 3D models in architecture, CAD and BIM,
both consist in the creation and modification of a
design by means of a computer.

BIM is a more specialized type of CAD, encom-
passing construction logic and collaboration infor-
mation into the design primitives. BIM covers not
only the geometry, but also the spatial relationship
of elements, geographic information, and the build-
ing components’ quantities and properties. This
brings us to the concept of BIM families, which are
a group of parametric building components com-
monly used. Inside a component’s family there can
be several variations of that said component, for in-
stance, a wall family encompasses wall variations
of different sizes, shapes, colors, materials, etc. By
using BIM applications, such as Revit and Archi-
CAD, an architect can save a lot of time during the
modeling of the design, since these applications al-
ready provide built-in libraries with detailed family
elements to choose from.

CAD, on the other hand, relinquishes seman-
tics, thus allowing its designs to take any shape
the architect desires without being constrained by
the construction details and various other BIM re-
quirements. As such, creating and manipulating
designs in CAD applications, such as AutoCAD,
Rhinoceros, and Sketchup, is a contrastingly eas-
ier and faster process, hence architects typically
tend to opt for said applications in the early design
stages.

On both CAD and BIM application’s interface,
the user is presented with multiple views of the
design model along with all the tools to modify it.
Additionally, both kinds of applications are capa-
ble of offering visually appealing rendered results,
but, despite serving their purpose by modernizing
the current architectural design process, they have
their performance limitations when paired with the
AD process. Natively, both CAD and BIM tools
have two main views: one with a simplified view
of the model of the design, with simplified mate-
rials, shadows and lighting; and another view for
the generation of high quality static renders. Only
the former supports a form of free-fly navigation,
where the user can fly anywhere and pass through
solid objects, but not only is this hard to use, but it
also only displays a low fidelity view of the scene.
If an architect wants to see that view in high qual-
ity, they must wait for the rendered result. A visual-
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izer for AD should provide good navigation capabil-
ities alongside a good visual representation of the
model.

2.2. Luna Moth
Luna Moth is a web-based Integrated Development
Environment (IDE) for AD [6, 7] that aimed to re-
duce the architect’s waiting time for visual feedback
of the changes, and provide a visual way to help
them with the programming task.

It integrates with and improves the AD workflow
by adding the following benefits: (1) portability, by
taking advantage of the predominance of web tech-
nologies, it provides a cloud-based IDE that can be
accessed anywhere, (2) interactivity, by providing
an immediate feedback visualizer that displays the
design model as it is being written and on every
change to its parameters, and (3) usability, by pro-
viding an IDE that is simple, easy to use, capable of
manual interactions with the program parameters,
using sliders, and with the visualizer, by having the
ability to trace from which instructions the design
model elements came from and vice-versa. All of
these qualities aim to aid the programming task,
especially the latter. We consider traceability to be
the strongest point of this application as it greatly
increases program comprehension [5], particularly,
the relation between what the user writes in the de-
sign code and the expected rendered result.

Although a performance study of how this tool
fares with complex models was not performed, its
visualizer implementation lacks acceleration tech-
niques. Additionally, it only provides limited naviga-
tion capabilities, and lacks the ability to add assets,
such as materials, to the design. Nevertheless, it
is an important object to study as it is one of a few
fast visualizers developed primarily for AD.

2.3. Twinmotion
Twinmotion is an Unreal Engine real-time visualizer
capable of rendering CAD and BIM models in high
quality. The Unreal Engine, despite being a Game
Engine (GE), i.e., a tool for game development, in
Twinmotion’s case, it was repurposed to create a
performant visualizer tailored for the architectural
context.

Twinmotion features a plethora of Physically
Based Rendering (PBR) materials, real-time ra-
diosity, and a library containing not only static as-
sets, like furniture and rocks, but also animated
assets to provide realistic renders. The user can
choose to either visualize the design model only
partially, by toggling a button to hide model ele-
ments, or in various different static views, namely
an overview or a side view of the model. This is
presented in a simple and clear interface, where
most operations can be performed by a drag and
drop operation. With respect to navigation, it fea-

tures a walking mode, where the user is grounded
by gravity, and a free-fly mode. Additionally, if the
user intends, navigating on the design model in Vir-
tual Reality (VR) is also possible.

In order to visualize a CAD or BIM model, the
user must first export their model from the design
tool and later import it in Twinmotion. This solution
is not fit for our purpose since we aim at visualizing
the geometry quickly as it is being encoded by the
user. Additionally, it only features a limited control
over the quality level of the visualizer, such as ma-
terial detail level, meaning it may not scale properly
with large and complex projects.

2.4. Lumion
Similarly to Twinmotion, Lumion is a real-time ren-
dering engine capable of generating high quality
results from CAD and BIM models. Other similari-
ties include an interactive interface, a weather sys-
tem, and a resourceful library of PBR materials and
assets, along with the possibility to import custom
ones. Lumion can only provide static VR capabil-
ities, i.e., it can only pre-render a still panorama
view of a design, as opposed to a dynamic view
with navigation. Regarding the navigation, it only
features a free-fly mode, outside its VR mode.

Lumion also uses an export-import mechanism
to communicate with CAD and BIM applications,
deeming it inadequate for an AD workflow, as this
kind of mechanism is slow to process. Additionally,
the usage of Lumion may not scale well with large
projects since it focuses primarily on high quality
renders.

2.5. Unity Reflect
Unity Reflect is a novel real time visualizer created
by the developers of Unity, another popular GE, in
collabration with Autodesk, the creators of Auto-
CAD, a CAD application. This collaboration brings
the architecture community and the gaming indus-
try even closer together.

Unity Reflect features a one-click connection
with Revit, a BIM application, to visualize an archi-
tectural design model in a GE based visualizer. As
such, aside from the possibility to visualize a BIM
model in real time, it enables: (1) real time analysis,
for instance acoustic analysis, (2) portable experi-
ences, either in a desktop or mobile device, and
even allows for (3) VR and Augmented Reality (AR)
integration. As an example, one could project a de-
sign model, stored in a smartphone or tablet, to the
yet unbuilt designated construction site using AR
to get a more accurate grasp on the looks of the
building, as if it was already constructed there.

Unity Reflect is meant to be extensible and cus-
tomizable, even allowing a connection to Unity’s
editor to further modify the model in various ways,
such as the use of assets, props, and materials,
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to adorn it. However, as an interactive extension
of Revit, this still lacks the appeals needed for a
tool to be used for AD. Nonetheless, at this point,
we are sure that GE sets a good foundation for the
development of a powerful visualizer.

3. Acceleration Algorithms
In this section, we explore some acceleration algo-
rithms used for real-time rendering. The acceler-
ation work to achieve real-time and interactive vi-
sualization has been an on-going effort for many
years. We can describe at least four performance
goals for a visualizer: (1) large number of Frames
per Second (FPS), (2) high resolution, (3) realis-
tic materials and lighting, and (4) high geometry
complexity. The first three goals, i.e., frame rate,
resolution, and shading, can always be more de-
manding, but, past certain optimal values, there is
a sense of diminishing returns to increasing any of
these [8], i.e., even though a higher frame rate is
better, there is no reason for increasing it any fur-
ther than the monitor refresh rate. However, for the
last goal, it is important to note that there is no real
upper limit to a scene’s complexity, especially with
the usual scale of architectural projects, hence the
necessity for acceleration algorithms.

3.1. Visibility Culling
Visibility determination has been a persistent prob-
lem in computer graphics. Algorithms for de-
termining visible portions of a scene’s primitives
have been developed ever since 1970, when they
were coined as hidden surface removal algorithms.
Many implementations exist nowadays, but the
most used one for interactive applications is the Z-
buffer algorithm [9], which is hardware-supported.
However, this is a brute force method that solves
the visibility problem at a computational cost. On
complex scenes, Z-buffer often suffers from over-
draw problems, that is, when it draws several oc-
cluding objects, depending on the drawing order, it
can draw, in the worst case scenario, every object
without actually rejecting any of them. Ideally, we
would like to perform a rejection of invisible geom-
etry before the actual hidden surface removal algo-
rithm, in order to reduce the geometry load. To this
end, Visibility Culling algorithms should be applied
beforehand.

Visibility Culling is responsible for the removal
of portions of the scene that do not contribute to
the final image, leading to less processing, since
we no longer need to fetch, transform, rasterize,
or shade invisible objects. If applied correctly,
we can gain great performance benefits at no vi-
sual cost, even on large detailed scenes. This
can be categorized mainly in three distinct types:
(1) Back-Face Culling, which eliminates surfaces
facing away from the camera, (2) View-Frustum

Culling, which eliminates geometry outside the
camera’s view frustum, and (3) Occlusion Culling,
which eliminates objects fully obstructed by other
objects.

Back-Face Culling and View-Frustum Culling
have fairly simple solutions. Architectural designs
will greatly benefit from this, given that in indoor
scenarios, only a minor part of the scene will be in-
side the viewer’s view frustum. On the other hand,
Occlusion Culling is a far more complex technique,
in comparison with the previously described tech-
niques, since it is a global technique that involves
interrelationship among objects. It is also the one
that provides the most performance benefits, spe-
cially in architectural designs, as they normally
comprise of multiple large connected opaque el-
ements, such as walls, which will occlude a great
part of the scene [10].

3.2. Level of Detail
Typically, architectural projects are products of
great detail, although creating large detailed
scenes further hinders interactivity. For this order
of detail to be mostly kept and to allow a real-time
rendering, we can apply Level of Detail (LOD) tech-
niques.

The core idea of LOD, introduced by Clark [11],
is to use simpler versions of an object depending
on how far it is from the viewer, as details will be
less visible as distance grows. LOD will boost per-
formance by reducing the amount of vertices to
process, also including less pixel shading process-
ing, on distant objects. This technique is best ap-
plied after culling, in order to reduce the amount of
processing. LOD algorithms consist of three major
steps: (1) generation, (2) selection, and (3) switch-
ing [8].

LOD generation is the step characterized by the
generation of different representations of an object
with varying degrees of detail. These degrees of
detail can range from changes in the model itself,
due to the application of simplification algorithms,
to changes in the resolution of textures and shad-
ing.

LOD selection step is where we choose an ap-
propriate LOD for an object based on a metric. The
most common metrics used are ranged based or
projected area based. On ranged based metrics,
we associate the LOD based on the distance be-
tween the object and the camera. On the other
hand, for the projected area based metrics, we use
the bounding volume’s projected area, or an esti-
mation of it, as a metric to select the appropriate
LOD.

LOD switching is the step where we change the
LOD of an object to another. However, this switch-
ing will cause noticeably abrupt changes, an effect
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called popping. To alleviate this effect, there are
several techniques, such as blend LOD, where, at
the point of switching, a linear blend is done be-
tween the two LODs, which consists in adding a
transparency on both LODs that changes inversely
as one LOD switches to another.

4. Solution Implementation
Given the results of our study on existing visualiz-
ers, we conclude that by using GEs, such as Unity
and Unreal Engine, we can achieve both high vi-
sual quality and interactivity in real-time. GEs are
highly optimized for providing realism even in large
scale projects and are thus a good candidate for
our needs.

For our implementation, we choose Unity, not
only because of our previous experience with it but
also because, as it is free to use, it is one of the
most popular GEs. With its large and active com-
munity we can expect Unity to be constantly sup-
ported and improved throughout the years and we
can rely on its extensive documentation to guide us
during the development.

In regard to the integration with the AD method-
ology, we will couple the proposed Unity-based vi-
sualizer with an existing AD tool, Khepri. Khepri
is a novel AD tool capable of providing: (1) good
performance, (2) a smooth learning curve for ar-
chitects, (3) traceability between the AD model and
the AD program, (4) backend portability, integrating
several visualization and analysis backends [12],
among other features.

In the context of Khepri, the term backend refers
to the mediating software between Khepri and its
supported visualization or analysis tools. Khepri
users who intend to visualize and explore AD mod-
els already have various visualization backends at
their disposal. However, those backends are based
on CAD or BIM applications and, as mentioned in
section 2.1, these do not fare well in performance
with the complex models that the AD methodology
is able to generate. As illustrated in Figure 2, the
proposed solution intends to play this missing role
as another visualization backend for Khepri.

Figure 2: A simplified overview of Khepri’s architecture, its sup-
ported backends and related tools.

Unity already provides a good foundation for
achieving visualization performance. Additionally,
we will complement that with two other sets of fea-

tures to develop our own Unity backend, namely
standard and advanced features.

4.1. Standard Features
The standard features include the core function-
alities that must be present in our solution to de-
velop a visualization backend that is compatible
with Khepri. These include: a communication
channel, support for operations to build a design,
assets to adorn a design, a navigation system, and
a user interface.

Regarding the communication between Khepri
and our backend, Khepri uses a client-server ar-
chitecture with RPC to communicate with its back-
ends. A backend, acting as a server, receives op-
erations to generate a design from a Khepri client,
used by architects. The Julia programming lan-
guage is the core language used for Khepri’s imple-
mentation. On the other end, Unity uses C# as its
scripting language, so an extra step is required in
order to make the communication between the two
interoperable. Using RPC, Khepri is able to mar-
shal its own data and send it for the Unity Backend
to unmarshal it into the data structures it uses.

With an established communication channel be-
tween our backend and Khepri, we must use this
channel to process operations from the client,
which will be responsible for the generation of the
user’s coded design. As Khepri supports a large
variety of operations, we will only focus on the
implementation of those that are most commonly
used. The supported operations can be split into
four different categories: (1) construction primi-
tives operations, (2) basic geometric operations,
(3) boolean operations, and (4) camera operations.

The construction primitives operations (1) repre-
sent all the operations that can create or delete
building elements in a design. These range from
the creation of simple objects such as spheres,
cuboids, cylinders, pyramids, to the creation of
more complex objects with semantics, like win-
dows, walls, slabs, panels, surfaces, beams, etc.

The basic geometric operations (2) comprise
those that position and modify an object in space,
such as: scale, translate, and rotate. The boolean
operations (3) represent those described by Con-
structive Solid Geometry (CSG) to create complex
objects out of simple primitive objects, such as
cubes or spheres, using three operations: union,
subtraction, and intersection. Finally, the camera
operations (4) are those that programatically con-
trol the view of the Scene, save to disk a frame, and
modify the camera properties, such as the lens’
size. These operations are commonly used to cre-
ate frame sequences using pre-determined routes
throughout the design model.

Regarding the assets, these are the elements re-
sponsible for giving the design model a degree of
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realism. These comprise: materials, which adorn
the generated objects to give the user a better idea
of its physical composition, and 3D models, such
as tables, chairs, and trees, used to populate the
design model to give a better sense of scaling and
aesthetics. For materials, Unity supports scriptable
shaders and PBR materials. With those two fea-
tures it is possible to create a high-quality mate-
rial library. As Unity supports all sorts of external
formats for textures to be imported, ultimately, it is
up to the architects to create a material library that
fits their needs. Nonetheless, our backend pro-
vides commonly used materials, such as concrete,
wood, steel, aluminum, glass, and plaster. As for
the other type of assets, the 3D models, they are
used to decorate design models in various ways,
such as furniture, people, vegetation, etc. Since
Unity supports a variety of popular model format,
such as .obj, .fbx, and many others, an architect
can easily import 3D models either from Unity’s As-
set Store or from other external sources.

In regard to navigation, our solution supports the
following types of navigation: (1) free-fly mode,
(2) walk mode, and (3) static overview mode. On
(1) free-fly mode, the user can fly at high speeds
through the design model and pass-through any
object. The second navigation mode is the (2)
walk mode, in which the user can explore the de-
sign model in a more realistic manner. On static
overview mode (3), a user can define specific view-
points of the design model and easily switch be-
tween them.

Lastly, our backend’s User Interface (UI) is used
for two main purposes: (1) to initialize the commu-
nication with a Khepri client and start navigation of
the design model; (2) to allow users to configure
the rendering quality and the optimization features
of our backend. The latter is important to adapt our
backend’s performance to the user’s workstation.

4.2. Advanced Features

The advanced features include a set of additional
functionalities to provide a better backend perfor-
mance and improve the designing workflow either
by decreasing the required effort to code AD pro-
grams or by introducing better tools for architects to
inspect their designs. More concretely, the perfor-
mance increasing features encompass those men-
tioned in section 3: (1) visibility culling and (2) LOD,
and also (3) Design Merge. The utility features en-
compass: (4) day and night system, (5) traceability,
(6) layers, (7) scene manager, (8) standalone build,
(9) per project assets, and (10) VR.

For (1) visibility culling, Unity natively sup-
ports all three culling algorithms, back-face, view-
frustum and occlusion culling. However, the lat-
ter requires pre-processing to function since it is a

technique that involves the interrelationship among
all objects in a design. Users can use our UI to
compute the occlusion culling data only when their
design is completed.

Regarding the (2) LOD, this feature can also be
enabled in the UI. The selection metric used to cal-
culate which object representation should be cho-
sen is the screen relative size of such object. Using
this metric, instead of a distance metric, large ob-
jects that even at longer distances have good vis-
ibility, such as buildings, are not a target to apply
LOD techniques, whereas other smaller objects,
although closer, are chosen for it. The genera-
tion step involves mesh simplification algorithms to
automatically create a low polygon representation
of any generated objects, from simple to complex
free-form objects. Since this algorithm is perfor-
mant, we can apply it to the same object several
times, creating several levels of detail. The use
of this technique, however, impacts the generation
time for a design on our backend, which makes its
use more suitable for later stages where navigation
is more important that immediate visual feedback
on program changes.

The (3) Design Merge is a feature that takes into
consideration a performance flaw in designs made
by AD. These designs are mostly composed by
small objects that, in great number, make up more
complex structures. This is due to the parameter-
ization nature of AD, leading to a finer division of
a design. However, in complex designs, this may
cause a work imbalance between the CPU and the
GPU. To solve this issue, this functionality aims at
merging all these objects together to reduce the
amount drawcalls to process, thus improving per-
formance. This can also be enabled through the
UI.

The other type of features aim at improving the
AD workflow. The (4) day and night system allows
architects to visualize their designs during different
times of the day to inspect the interior’s natural il-
lumination or create render images. Using our UI
they can also configure the global illumination of
the design and direct illumination elements, such
as pointlights. The (5) traceability feature allows
users to query objects present on our backend for
the respective function responsible for its genera-
tion, and vice-versa. This improves their program
comprehension, making the task of programming
designs easier. If a user queries a construction
function on their code, the generated object will be
highlight on the backend using outline shaders.

Layers (6) allow users to organize their gen-
erated designs by separating the composing el-
ements into different logical groups, according to
their needs. These layers can then be used to
change the color of sets of objects, toggle their vis-
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ibility to evaluate a portion of a design or compare
differences between generated design variations.
A layer can be created through the user’s code to,
for instance, separate the objects related to differ-
ent floors of a building.

Scene manager (7) enable the users to save to
disk their generated designs, if they no longer need
to modify them using the AD approach, to save on
generation time. Additionally, by using (8) stan-
dalone build, they can create self-contained pro-
grams which carry the generated design that can
be used by project clients, without any prior instal-
lation of any software, including Unity itself. The (9)
per project assets feature can be used to organize
an architects personal assets on our backend, to
prevent it from getting bloated when those assets
are no longer being used.

Lastly (10), as many other fields currently explor-
ing the potentialities of VR, architecture can also
benefit from these technologies for visualization.
By using the SteamVR plugin, users can connect
any kind of VR hardware to our backend to navi-
gate and visualize their designs first-hand. To inte-
grate this novel technology with the current context,
we propose a new workflow named Live Coding
in Virtual Reality (LCVR), where VR complements
the AD workflow to transform the designing task
into a more interactive one, which may improve the
architect’s ideation process [13].

In this new workflow, architects, while immersed
in VR, work on their designs with a visual rep-
resentation of it and its respective code side by
side. This way, users are able to promptly apply
changes to their design’s description and witness
the materialization of those modifications around
them, boosting their creativity and judgment. To
accommodate the use of LCVR, we suggest the
use of a virtual keyboard in VR to program a de-
sign while immersed. However, during the appli-
cation of changes to a design, our backend may
become unresponsive which may cause nausea to
the immersed user. To solve this issue, we have
implemented a feature, named Interactive Mode,
that limits the processing of operations per frame
during LCVR. This reduces the generation speed
of a design but makes the process smoother, al-
lowing it to be experienced in VR.

5. Evaluation
To test our solution we have performed an evalua-
tion of our backend’s performance, and an analysis
over the practicality of the utility features, such as
layers, and VR.

5.1. Performance Benchmarks
Our benchmarks will consist of measuring the per-
formance of our backend under the load of a com-
plex case study design, an adaptation of the As-

tana National Library (ANL) modeled using AD [2],
over different scenarios. Figure 3 shows a ren-
der of the exterior of this design. The AD version

Figure 3: A render of the exterior facade of the ANL.

of ANL is composed by more than forty thousand
construction elements, including: (1) the facade,
composed by the facade glass, steel frame, and
the photovoltaic panels; (2) the interior structure,
composed by floor slabs, walls, glass curtain walls,
columns, beams, staircases and railings; (3) the in-
terior assets, composed by bookshelves filled with
books, tables, chairs, elevators and lights. The
complexity of this design model along with the fact
that it is a real architectural project makes it a solid
case study to benchmark our backend.

To ensure the reliability of the registered perfor-
mance values, all the evaluation tests will be per-
formed in reasonable navigation scenarios, by fol-
lowing pre-defined exterior and interior routes on
the generated design. For the exterior routes, route
a) will encompass an aerial tracking of the building.
On route b), although the camera is still outside the
building, it will only visualize a slice of the model at
each moment. As for the interior routes, route c)
will perform a walkthrough on an inner corridor of
one of ANL’s floors. Finally, route d) will perform a
walkthrough inside the libraries of a floor.

Previously, to create render images of this AD
description, the architects that created this often
used ArchiCAD’s render engine, CineRender. To
serve as a performance comparison to our back-
end, we performed an evaluation with CineRender
over the ANL AD model, to know how much time it
would take to complete each of the mentioned pre-
defined routes. Table 1 illustrates the results of this
evaluation, conducted on a workstation with the
following specifications: dual Intel Xeon CPU E5-
2670 @ 2.60GHz with 64GB RAM, and a NVIDIA
Quadro K5000.

Table 2 illustrates the results of the same evalu-
ation over our backend, without any performance
acceleration feature enabled, at a resolution of
1920x1080 and on a workstation with the following
specifications: Intel i7-7700HQ @ 2.80GHz with
16GB RAM, and a NVIDIA GTX 1060. In this ta-
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Table 1: CineRender benchmark of ANL over the four routes.

NUMBER
OF

FRAMES

TOTAL
RENDER TIME

HH:MM:SS

TIME PER
FRAME

HH:MM:SS
a) 371 470:15:00 01:16:03
b) 83 64:28:00 00:46:36
c) 53 30:41:00 00:34:44
d) 37 66:50:00 01:48:22

Table 2: Unity backend benchmark of ANL over the four routes.

AVERAGE
# TRIANGLES

AVERAGE
FPS

TIME PER
FRAME

ms
a) 179,650,848 1.86 538
b) 46,635,909 8.70 115
c) 109,746,991 4.59 218
d) 119,154,519 7.13 140

ble, the average number of triangles is displayed,
as this is one of the main factors contributing to
the backend’s performance. We can observe that
our backend has obtained results in several orders
of magnitude better than CineRender [14]. We do
note that the obtained frame rate with this eval-
uation is still not ideal for good interactivity, as a
frame rate bellow 30 FPS will still be regarded as
unresponsive. A major factor that deteriorated the
performance in this study is the abundant use of
pointlights on this design. This ANL representation
contains two hundred and eighty six pointlights, il-
luminating all libraries of each floor. However, by
using the performance acceleration features, de-
fined in section 4.2, such as Design Merge, we can
obtain up to six times the speed up in frame rate,
considerably improving the interactiveness.

One of the main differences that set these two
visualizers apart is the produced image quality, as
illustrated in Figure 4. However, we do not have a
good method to objectively measure the quality of
an image, so we did not conduct a formal evalua-
tion in this regard. Even with these image quality
differences, which we deem minor in comparison to
the performance gains, we conclude that we have
successfully developed a faster visualizer for the
architects to use with the AD methodology.

5.2. Practicability Analysis
To describe the practicability of the utility features,
such as Layers and VR, we will present another
case study, but where these features were used
in the AD workflow. Before our backend was de-
veloped, an architectural project was conducted in
Instituto Superior Técnico (IST) university to im-
prove the acoustics and the visuals of a certain
classroom [15]. This classroom is composed by
four large flat walls with only a small set of win-
dows on one of the walls. With little to no decora-

Figure 4: On the top, a render of ANL on CineRender and, on
the bottom, a render on our Unity backend.

tions, this classroom had a severe echoing prob-
lem which hindered lectures on it. The goal of
this project was to reduce the echo produced in
this classroom in an aesthetic way to improve the
teaching and learning conditions. To that end, first,
this classroom was modeled using Khepri to create
a digital prototype of the solution. The determined
solution was to apply a rough absorbent acous-
tic treatment in the ceiling’s surface, to reduce the
amount of echo produced, and create a wooden
structure composed by several curved panels to be
suspended on the classroom’s ceiling, hiding the
absorbent material and improving the classroom’s
aesthetics. Lastly, to confirm the effectiveness of
the proposed solution, both visually and acousti-
cally, analyses over the digital design were con-
ducted.

To test the effectiveness of the absorbent mate-
rial, an analysis tool paired with Khepri was used to
run an acoustical simulation over this digital model.
During the development of our Unity backend, it
was proposed to test the visuals of the wooden
structure with it. This wooden structure, also coded
using Khepri, was composed by a grid of panels
interlaced perpendicularly, with each panel curved
in such way to represent a ripple effect. This ef-
fect was mathematically modeled with Khepri and
its shape would be determined depending on the
position of attractor points. By coding the position
and the attractor strength of these points on the
design program of the classroom, architects could
create various design variations of the structure, as
illustrated in Figure 5.
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Figure 5: Our backends render of the case study’s classroom.

To evaluate the aesthetics of this structure, the
judgement of an architect is required. The best
way to do so with a digital prototype is to immerse
an architect in a virtual representation of the de-
sign model, by taking advantage of the VR capabil-
ities of our backend. While immersed, the architect
could directly observe the wooden structure in the
digital classroom in scale, as if it was already con-
structed in the real classroom. Since the shape of
ripple effect was dependent on the attractor points,
architects could add and remove those points to
observe the different shapes it would create. This
was done while inside VR, using the LCVR work-
flow, to avoid having to remove the headset each
time a modification was required, making this pro-
cess faster. In addition to that, layers were used
to help the architect’s judgment. Each time an at-
tractor point was to be modified, architects used
the Khepri client directly in VR, using Oculus Rift
virtual keyboard, to run a method that would take
their current position in the virtual design to cre-
ate or delete an attractor point. In turn, this cre-
ated a new variation of the design, generated in
a separate layer without deleting the original de-
sign. When the generation of the new variation was
completed, the original design was hidden to then
display the new variation. This way, the architect
could instantly swap between layers to view the
differences caused by the applied changes. The
architect can then continue to apply changes and
proceed to repeat the process to compare the dif-
ferences, as illustrated in Figure 6. In the end, the
layer containing the variation that better fits the ar-
chitect’s criteria could be chosen.

Regarding the method that would cause the
modification of an attractor point, causing the up-
per wooden structure to change in shape, it was
necessary to have the Interactive Mode enabled
only during its execution. The reason behind this is
because, although the design itself was generated
outside VR, hence we required the fastest gener-
ation possible, this method would be called during
LCVR, causing the design to modify while the ar-
chitect is still immersed. To prevent our backend of

Figure 6: Example use of LCVR to switch between three layers
using the see layer operation.

becoming unresponsive during this change, while
the architect is in VR, this method was declared in
the user’s code to run in Interactive Mode, making
its execution smoother as not to break the user’s
immersion.

6. Conclusions
Designing complex buildings requires the architect
to use several tools in order to accomplish various
tasks, such as 3D modeling, analysis, and render-
ing. The usage of all these tools leads to a tire-
some and error-prone process. Algorithmic Design
presents itself as a solution by automating this pro-
cess. However, it requires the architects to code
their design, which is not an easy task for most
practitioners. This further allows them to easily
build repetitive geometry and to generate the de-
sign in any visualization tool. The problem, never-
theless, lies in the fact that currently used visual-
izers hardly handle the amount of geometry gen-
erated by Algorithmic Design programs. This is
particularly concerning, since it is extremely dif-
ficult to infer the design result by simply observ-
ing a computer program. Thus, having a fast vi-
sualizer would reduce the existing program-design
disconnection, offering richer program comprehen-
sion mechanisms to the architectural design pro-
cess. This solutions allows the architect to receive
immediate visual feedback on the changes he ap-
plies to his program, hence understanding the im-
pact of said changes and accessing errors right
away.

Given the advanced state of the Game Engines
industry, more specifically the ability to provide high
quality results in near real-time with little effort, we
implemented a Unity-based visualizer for Algorith-
mic Design. This allowed us to attain various per-
formance benefits along with features capable of
improving the overall workflow of an Algorithmic
Design architect. Furthermore, with the integra-
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tion of Virtual Reality into the Algorithmic Design
methodology, we introduced a novel workflow for
programming while immersed in a virtual represen-
tation of the design model, called Live Coding in
Virtual Reality. This new workflow aims at improv-
ing the architects’ creativity and error detection by
allowing them to experience their designs at first
hand and directly observe the materialization of
code changes.
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