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Thesis to obtain the Master of Science Degree in

Engineering Physics

Supervisors:

Doutora Isabel Antunes Mendes Gordo

Prof. Doutor Rui Manuel Agostinho Dilão

Examination Committee
Chairperson: Ilı́dio Pereira Lopes

Supervisor: Prof. Doutor Rui Manuel Agostinho Dilão

Member of the Committee: Doutor Paulo Jorge Rêgo Durão
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Resumo analı́tico

Existem diversos modelos que descrevem a dinâmica de uma população na presença
de recursos. Atualmente, os modelos desenvolvidos têm bases empı́ricas, sendo a
mais comum o modelo do Monod, e não incluem a descrição de alguns fenómenos
importantes.

Motivados pela falta de bases nos modelos existentes, apresentamos alternativas
de complexidade sucessiva, com base nos processos biológicos conhecidos e que
reproduzem os comportamentos observados, tentando establecer uma conexão entre
a teoria e observações experimentais.

Analisámos dados retirados de diferentes experiências e também de experiências
desenhadas e executadas por nós no Instituto Gulbenkian de Ciência, usando culturas
de E. coli para observar o crescimento bacteriano sob diferentes condições e avaliar
o ajuste dos modelos.

As simulações que apresentamos, feitas com os nossos modelos, apontam para o
facto de que a função Monod pode servir de boa aproximação a algumas experiências
mas não é o modelo correcto, embora sejam necessários mais testes para podermos
validar ou discartar totalmente os nossos modelos.

Propomos uma experiência em que o crescimento bacteriano e a concentração
de nutrientes sejam medidos em separado, com a intenção de os calibrar usando os
modelos matemáticos aqui desenvolvidos, e relacionar tal como foi feito com os dados
experimentais do Mostovenko.

Palavras-chave:
E. coli, mitose, diauxias, densidade óptica, estratégias metabólicas, trade-off.



Abstract

There are several models describing the dynamics of a population in the presence
of resources. Currently, these models are based on empirical foundations, most com-
monly the Monod’s model, and fail to include some core phenomena.

Motivated by the lack of foundation on the existent models, we present alternatives
with increasing complexity and basis on the known biological processes that do repro-
duce the observed behaviors, aiming to establish a connection between the theory and
empirical observations.

We analyze data collected from different experiments and also from experiments
designed and executed by us at Instituto Gulbenkian de Ciência using cultures of E.
coli to observe the bacterial growth in different conditions and to find the fitting of the
models. The simulations we present, done with our models, point to the fact that the
Monod function may be a good approximation to some experiments but not the correct
model, although further tests need to be done in order to fully validate or discard our
models.

We propose an experiment where the bacterial growth and nutrient concentrations
are measured separately, with the intention of calibrating them using the models here
developed, and relating the two as done with the Mostovenko’s experimental data.

Key-words:
E. coli, mitosis, diauxies, optical density, metabolic strategies, trade-off.
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Chapter 1

Introduction and State of the art

It is currently estimated that there are more than 10 million different species on our
planet, [1]. This incredible biodiversity has been captivating scientists since the 20th

century.
Living beings interact with other beings of the same species and of different species

in order to feed themselves (predation), cooperate (mutualism) or fight for the same
resources (competition). These interactions give rise to a highly complex network that
governs the population dynamics and determine whether they lead to the species’
coexistence or extinction. It is therefore a great challenge to understand how it is
possible for such a vast number of species to coexist in equilibrium and how stable this
equilibrium is.

We know that species have the ability to adapt to changes in the environment, [2],
but the connection between this phenomenon and the existing populational models is
still missing. Biologically and mathematically we are still far from fully understanding
on how adaptative evolution works.

In order to find the answers to all these questions, biologists, physicists and mathe-
maticians have been studying smaller ecosystems and creating mathematical models
to describe the dynamics of species, [3] [4] [5]. Although they are deterministic, these
models can not be implemented with basic analytical tools given their large number of
variables and dependencies, which requires employing methods of dynamical systems
theory.

The bacteria Escherichia coli, abreviated as E. coli, are often chosen in experiments
for their simplicity, fast growth, easy access and familiarity. These organisms were first
discovered by Theodor Escherich, [6], in 1885, and nowadays hundreds of strains are
known, [7]. They have a size of the order of 1 µm and can divide every 20 minutes ,
[8]. They are also found in the intestines of endotherms (commonly known as warm-
blooded animals) and are able to grow in the presence of oxygen, which makes them
easy and inexpensive to cultivate in a laboratory, [8].

In this thesis we show the modeling of populations consuming one or multiple types
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of resources, reproducing and dying, using the law of mass action, [9], as well as with
the Monod model, [3]. We also show the simulations resulting of these models and
compare them to data obtained from our experiments or collected from other sources,
[10], on E. coli growing in the presence of nutrients.

1.1 The first important growth models

The Malthusian and logistic models are still seen as the basis of many populational
models today.

In 1798, the economist and demographer T. R. Malthus wrote a book on the popula-
tion dynamics and in it described the first most important population growth model, [11].
Malthus stated that in the case where resources are unlimited, the population would
grow indefinitely and its rate of growth would be proportional to the existing number of
individuals of that population.

The Malthusian model can be deduced from the kinetic equations assuming that
the number of individuals N of a population reproduce in the presence of a resource
R, at a positive rate k (note that the resource is not wasted in the process)

R +N
k→ R + 2N . (1.1)

Using the law of mass action, [12][9], the time equation describing the growth of
the population N , in the presence of a constant resource R , can be obtained from the
kinetic equations (1.1), 

dN

dt
= k RN(t)

dR

dt
= 0

. (1.2)

The solutions of this system of equations are{
N(t) = N(0) ek R t

R(t) = R(0)
. (1.3)

In this Malthusian model, resources are always available, which implies that the
population will explode exponentially over time.

The mathematician P. F. Verhulst studied the census population numbers of the
United States between 1790 and 1840, and in 1845 proposed a modification to the
Malthusian model, where he included the consumption of resources, [13]. Opposed to
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the model (1.1), the resource R is now expended as the reproduction happens,

R +N
k→ 2N. (1.4)

The time equations for the population growth and resource consumption can be
derived from equation (1.4) in the same way as before, using the mass action law, [9]:

dN

dt
= k RN

dR

dt
= −k RN

. (1.5)

From the sum of these two equations we have

R(t) +N(t) = C = R(0) +N(0) (1.6)

which is a conservation law defining the carrying capacity constant C, that prevents the
population from growing perpetually.

The system (1.5) can be written in a different form
dN

dt
= k N (C −N)

dR

dt
= −k R (C −R)

, (1.7)

which shows that these equations are logistic, and have the solutions
N(t) =

C ekCt

C/N(0)− 1 + ekCt

R(t) =
CR(0)

R(0) + [C −R(0)]ekCt

. (1.8)

From the first equation in (1.5), we get

1

N

dN

dt
= k R , (1.9)

which is a linear relation between the normalized growth rate of the population and the
amount of resources.

In 1969, the ecologist Robert MacArthur proposed the first mathematical consumer-
resource model describing a group of B different species, each represented by the
index β with Nβ individuals, competing for J different types of common resources, each
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represented by the index j, and introduced different timescales for the rates of supply
and consumption, [14].

MacArthur assumed the rate of growth of a population, N ′β, to be proportional to the
already existing population, Nβ, the number of resources of each type, Rj, their relative
importance measured by the weight parameter wj, and the probability of an individual
of that population to consume the different nutrients, pβj. The number of resources of
type j varies according to their current amount, the carrying capacity associated with
the resource j, Cj, and to the probability of being eaten by any of the species and their
population size. This model is assumed to be described by the logistic type equations

N ′β
Nβ

= Mβ

(∑
j

pβjwjRj −RT
β

)
R′j
Rj

= rj

(
1− Rj

Cj

)
−
∑
β

pβjNβ

(1.10)

where the ’ represents time derivative. The constant RT
β is the threshold mass of re-

source necessary to maintain the population, Mβ is the proportion between the mass
of resource and of the population it originates, and rj is the maximum rate of resource
variation. All these constants are non negative.

1.2 Observations and conceptual models

In 1934, the ecologist Georgy Gause enounced that in processes of competition for
limited resources, one species would drive the others to extinction, [15] — the Gause’s
Law — based on observations of a culture with two species of single-celled eukaryotes
(Paramecium aurelia and Paramecium caudatum) competing for the consumption of
bacteria in an Osterhout’s medium1.

The Gause’s Law was later reformulated by Garrett Hardin in 1960 and became
known by the name Competitive Exclusion Principle, [16], stating that the number of
species coexisting cannot exceed the number of resources. However, one year later,
George Hutchinson noticed that Plankton could grow in situations of limited resources,
[17], known as the Paradox of the Plankton, as we know today that happens in many
other ecosystems, in violation of the Competitive Exclusion Principle. So a question
arised: in what circumstances do competitive exclusion and sustainable coexistence
take place?

1An Osterhout’s medium is a salt solution composed by 104 mg of NaCl, 8.5 mg of MgCl2, 4 mg of MgSO4, 2.3
mg of KCl, and 1 mg of CaCl2 per liter of water.
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In 1941, Monod studied a culture of E. coli in a medium containing glucose and
proposed a sigmoidal relation between the culture’s normalized growth rate and its
nutrient concentration R, [3]:

1

N(t)

dN(t)

dt
= gmax

R(t)

R1/2 +R(t)
(1.11)

where R1/2 is the concentration for which the growth is half the maximum, gmax.
Although revolutionary, this empirical model described a single species in the pres-

ence of a single nutrient which is too simplistic, since species depend on different
nutrients for growth and are never isolated. Moreover it could only produce accurate
results for short-term evolution.

Monod also discovered the diauxic growth. When bacteria are in the presence of
different nutrients, they ”evaluate” the energy cost of metabolizing each one versus the
growth rate they will provide (how valuable the resource is), and choose the preferred
nutrient. In this way, bacteria consume the nutrients sequentially by order of the most to
the least favorable, generating different growth rate phases over time, named diauxies.
This adaptative mechanism ensures an optimization strategy: it allows the species to
have the biggest growth rate when the population is small (and thus, more fragile) and
provides a smaller growth rate when the population becomes bigger (and the risk of
extinction is smaller).

”Diauxie — This phenomenon is characterized by a double growth cycle con-
sisting of two exponential phases separated by a phase during which the
growth rate passes through a minimum even becoming negative in some
cases.”

—Monod

Figure 1.1: E. coli density over time in a medium composed by glucose and sorbitol in different
proportions: A: Glucose 50 µ g/ml; sorbitol 150 µ g/ml. B: Glucose 100 µ g/ml; sorbitol 100
µ g/ml. C: Glucose 150 µ g/ml; sorbitol 50 µ g/ml. Adapted from [3].
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Figure 1.1 shows the result of an experiment done by Monod in which he studied
the growth of a culture of E. coli in a medium with two nutrients – Glucose (C6H12O6)
and Sorbitol (C6H14O6). When varying the concentrations of each nutrient, the growth
phases are proportional to the nutrient concentrations, showing that bacteria con-
sumed the nutrients separately by order.

However, Monod’s growth model (1.11) could not explain the diauxic growth he ob-
served.

Inspired by previous works of MacArthur and Edward Wilson, [18] [19], in 2001, the
ecologist Stephen Hubbell examined the biodiversity in ecological communities looking
at the abundance distribution of species in different locations (fig. 1.2).

Figure 1.2: Relative population sizes of 5 ecological communities ranked from the largest to
the smallest. 1: Tropical wet forest in Amazonia. 2: Tropical dry deciduous forest in Costa Rica.
3: Marine planktonic copepod community from the North Pacific gyre. 4: Terrestrical breeding
birds of Britian. 5: Tropical bat community from Panama. Adapted from [20].

Hubbell noticed that the curves had similar shapes, which lead him to wonder if
there would exist a theory behind it and, if so, whether the curves were possible to
predict. To explain this pattern, he created the Unified Neutral Theory of Biodiversity
[20] in which species were grouped by ecological communities. The theory stated that
species that occupied the same geographic area and level in a food chain were seen
as equally strong. In a neutral setup, the individuals were considered identical in terms
of average probabilities of birth, death, migration and speciation. Only small random
deviations in this quantities were responsible for changes in population which meant
that biodiversity arised from stochastic processes, that is, random fluctuations of exter-
nal variables.

In 2010, Matthew Scott, Carl Gunderson, Eduard Mateescu, Zhongge Zhang and
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Terence Hwa designed and conducted a series of experiments which showed that the
growth rate of E. coli is proportional to the ratio between the cells RNA and protein
[21].

In 2014, Guillaume Lambert and Edo Kussell did a series of experiments with cul-
tures of E. coli feeding off glucose and lactose alternately [22]. They noticed that when
consuming the same nutrient as before, the lag phases of the transitions between nu-
trients shortened, even if the daughter cells had never consumed the nutrients. They
concluded that this phenomenon was associated with a non-genetic memory. Four
years later, Cerelus et al., [23], discovered different molecular mechanisms related to
this history-dependent behavior and observed that the duration of the lag phase was
proportional to the amount of time the cells were feeding off the other nutrient.

1.3 Recent models

Based on the MacArthur’s model (1.10), Posfai, Taillefumier and Wingreen presented
a resource-competition model in 2016, [4], that accounted for the fact that organisms
work with a limited amount of energy and therefore, need to choose how to allocate
different fractions in order to favor the traits that maximize the species’ probability of
survival. This sometimes means reducing certain performances in order to enhance
others (trade-offs). This model predicted that coexistence of species could occur in
cases where, according to the Competitive Exclusion Principle, could not, reproducing
what happens in many ecosystems, [17].

Similarly to the MacArthur’ model, the population growth rates (N ′β) vary according
to the current number of individuals (Nβ) of each population (β), the death rates (δβ),
the nutritional values (vj) and nutrients availability (Aj), and the consumption rates (αβj)
of every resource j by each species β, called ”metabolic strategies”. The variations of
resources concentrations (R′j) are proportional to their supply rates (sj) and decrease
with the rates of consumption (αβj) and degradation (dj):

N ′β = Nβ

[
J∑
j=1

vjαβjAj(Rj)− δβ

]

R′j = sj −
B∑
β=1

NβαβjAj(Rj)− djRj

, (1.12)

where
Aj(Rj) =

Rj

Kj +Rj

(1.13)

is a Monod type of function with Kj being the concentration for which Aj is half the
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maximum. The metabolic strategies are constrained by the maximum uptake rate Uβ

they are capable of,
J∑
j=1

wjαβj = Uβ. (1.14)

Posfai et al. tested the possibility of coexistence of a system consisting of three
species in the presence of three nutrients with different supply rates. In this case, by
equation (1.14), given two metabolic strategies for a certain species, the third one is
automatically determined. Thus, a triangular plot, where the axes go from 0 to 1, i.e.,
a simplex plot, is the perfect way to visualize the distribution of metabolic strategies.
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Figure 1.3: Left: simplex plots with metabolic strategies of 3 species (B = 3) relative to 3
different resources (J = 3) represented by colored dots: α1j = (0.30, 0.20, 0.50) in blue, α2j =

(0.20, 0.65, 0.15) in green, α3j = (0.60, 0.20, 0.20) in red, the convex-hull of metabolic strategies
in yellow triangles, and the supply rates a1) s = (0.10, 0.20, 0.70), b1) s = (0.10, 0.35, 0.55) and
c1) s = (0.40, 0.30, 0.30) in black stars. Right: simulations obtained with model equations (1.12),
(1.13) and (1.14) for the evolution of the 3 population densities, Nβ(t)/Nβ(0), with parameters
d = 0.1, δ = 0.1, R = 1, v = 1, K = 1, w = 1, Uβ = 1 and the chosen constants for the
corresponding simplexes, for times between 0 and 300/δ. Note that we have taken the same
parameters for all three species.

Figure 1.3 shows our simulations reproducing the Posfai et al. work. The three
simplex plots contain the initial metabolic strategies of each species, represented by
dots, and the nutrients’ supply rates, by a star. Next to it, are the respective evolutions
of the population densities, Nβ(t)/Nβ(0), over time.

The results indicate, from top to bottom, that as the supply rates fall into the area
delimited by the metabolic strategies — the convex-hull — the coexistence becomes
possible. This, of course, discloses the importance of having certain species in an
ecosystem. The addition of a species whose metabolic strategies allow to enclose the

16



supply rates is determinant to the future of all the other species.
In the first system of figure 1.4, composed by 14 species, it can be seen that most

go to extinction. However, if a new determinant species is inserted in the system, this
no longer happens and all species can coexist.

Figure 1.4: Left: simplex plots with metabolic strategies of 15 species (B = 15) relative to 3
different resources (J = 3) represented by blue (14) and red (1) dots, convex-hull of metabolic
strategies in yellow polygons, and supply rates s = (0.15, 0.19, 0.66) in a black star. The
metabolic strategies in blue were chosen randomly between 0 and 1 such that their convex-
hull would not include the supply rates. The metabolic strategies in red were chosen such that
the new convex-hull formed by the 15 species would include the supply rates. Right: simula-
tions obtained with model equations (1.12) for the evolution of the same 14 and 15 population
densities, Nβ(t)/Nβ(0), with parameters d = 0.1, δ = 0.1, R = 1, v = 1, K = 1, w = 1, Uσ = 1

for times between 0 and 500/δ.
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Motivated by the Unified Neutral Theory of Biodiversity of Hubbell, [20], Posfai et al.
decided to incorporate demographic stochasticity in their model.

They assumed that the growth rate (N ′β) of the population of the species β is pro-
portional to its existing population (Nβ), amount of resources (Rj) of each type (j), their
consumption by the species β, and death rates (δβ). The consumption rates consist
in a constant metabolic strategy (αβi) and a random variable (ξβj) with Gaussian distri-
bution N (0, σ2). Similarly, the death rates (δβ) are given by the sum of a constant, 1,
and the random variable (ξβ) with the same distribution. The amount of resource (Rj)
of each type (j) are proportional to their supply rates (sj) and inversely proportional to
the rates of consumption and number of individuals (Nβ).

N ′β =

[
J∑
j=1

(αβj + ξβj)Rj − δβ

]
Nβ

Rj =
sj∑B

β=1Nβ (αβj + ξβi)

δβ = 1 + ξβ

(1.15)

The metabolic strategies (αβj) and supply rates (sj) are normalized such that

J∑
j=1

αβj = 1 and
J∑
j=1

sj =
B∑
β=1

Nβ(0). (1.16)

Implementing the previous model they obtained the results shown in figure 1.5. The
model was able to reproduce the curves identified by Hubbell.

Figure 1.5: Simulation of rank-abundance curves obtained with model equations (1.15) and
(1.16) for a total population of 100 individuals competing for 3 resources equally supplied. The
solid, dashed and dotted curves correspond to immigration probabilities of 0.001, 0.01 and 0.1
respectively. Adapted from [4].

In December 2018, Pacciani-Mori, Suweis and Maritan constructed a model that
assumed the same equations as Posfai et al., (1.12), (1.13) and (1.14), but dynamic
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metabolic strategies instead of fixed ones, [5]. Doing so, they introduced the fact that
species have the ability to adapt to changes in the environment by regulating gene
expression, in this case, nutrients’ concentrations (Rj). To achieve that, Pacciani-Mori
et al. required species to adapt in a favorable way, i.e., so that they would evolve in
order to maximize their growth rate:

α′βj ∝
∂

∂αβj

(
J∑
j=1

vjαβjAj − δβ

)
. (1.17)

Since δβ is the death rate of species β, 1/δβ is a natural choice for the characteristic
time scale of the evolution of population β. Therefore, the characteristic time scale of
evolution of the metabolic strategies can be written as a multiple of 1/δβ, given by a
parameter ρ.

Now that the metabolic strategies are dynamic, there is a maximum uptake rate
(U∗β ) for each species:

∑
j wjαβj(t) = Uβ(t) ≤ U∗β . Similarly, the nutrient uptake rates

U∗β can be written as Qδβ. Therefore, the evolution of metabolic strategies is described
by the equation

α′βj = αβj ρ δβ

[
vjAj −Θ

(
J∑
j=1

wjαβj −Qδβ

)
wj∑J

k=1w
2
kαβk

J∑
l=1

vlAlwlαβl

]
. (1.18)

The full calculation of equation (1.18) is rather lengthy and can be found on page 4
of the supplemental material of [5]. The Heaviside-theta function prevents the metabolic
strategies from taking negative values.

Pacciani-Mori et al. tested the model of equations (1.12), (1.13) and (1.14) with the
addition of equation (1.18), for the growth of one species only in the presence of two
different nutrients in order to reproduce the observations of Monod. The results are
shown in figure 1.6.

The individuals consume the first resource until it ends at t ≈ 0.11, [see figure
1.6b) in orange]. When this happens, the metabolic strategy corresponding to this
resource changes, [see figure 1.6c) in orange], and the population suffers a diauxic
shift, [see figure 1.6a)]. Then, the individuals consume the second resource until it
ends at t ≈ 0.30 [see figure 1.6b) in blue]. When this happens, the metabolic strategy
corresponding to this resource changes [see figure 1.6c) in blue] and the population
starts having a negative growth [see figure 1.6a)].
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Figure 1.6: Simulations obtained with model equations (1.12), (1.13), (1.14) and (1.18) for 1
population of individuals of the same species with access to 2 resources of different properties.
Results of the simulation for a) the population density, b) nutrient concentrations and c) respec-
tive metabolic strategies, with parameters ~v = (2, 25), ~w = (1, 4), ~K = (1, 3), Q = 25, δ = 1 and
ρ for times between 0 and 500/δ.

We’ve already seen that with the model constructed by Posfai et al., when the supply
rates fall outside of the convex-hull of metabolic strategies, the coexistence of the initial
set of species becomes impossible. However, they did not consider the adaptability
of species. Pacciani-Mori et al. repeated the same simulations as Posfai et al. did,
adding this detail and compared the results.

Figure 1.7 shows the results of the simulations obtained with model equations
(1.12), (1.13), (1.14) and (1.18). Observing the simplex plot, it is possible to under-
stand that, over time, the metabolic strategies evolved in a way such that their convex-
hull would include the supply rates. By doing this, species become more fit to survive,
as the consumption rates of each resource become compatible with their supply rates.
Analyzing the plots that display this evolution, fig. 1.7 c1) and c2), we can identify that
adaptation period (0 < t . 100) following by the stabilization of the populations and
metabolic strategies (t & 100), in contrary of what is obtained in the fixed metabolic
strategies model of Posfai et al., figure 1.7 b). These results exhibit that adaptation is
crucial to the survival of species when in a sub-ideal initial setting.

20



Figure 1.7: Simulation obtained with model equations (1.12), (1.13), (1.14) and (1.18) for the
evolution of 10 population densities (B = 10) competing for 3 different resources (J = 3) during
200 time steps. a) simplex plot with initial and final metabolic strategies (and respective convex-
hulls) represented in blue and red respectively and supply rates in a black star; b) evolution of
the population densities in the case where the metabolic strategies are fixed; c1) evolution of
the population densities in the case where the metabolic strategies are adaptative; c2) evolution
of the metabolic strategies in the adaptative case; The parameters used were Q = 2, d = 0,
δβ ∈ U [1, 1.5] (U being the uniform distribution), Uσ ∈ U [0, Qδσ], vj ∈ U [1, 2], wj ∈ U [0, vjQ],
Nβ(0) ∈ U [0, 1], Rj(0) ∈ U [0, 1], Kj ∈ U [1, 5], sj ∈ U [0, 5], αβj(0) :

∑
j wjαβj(0) = Uβ(0).

Of course, as species have a certain dynamic, so do their surroundings. In nature,
resources are subject to large fluctuations over time, with many factors, for example the
seasons. Pacciani-Mori et al. tested the robustness of an ecosystem subject to these
fluctuations and the importance of having adaptative mechanisms to react to them.
They considered variable supply rates with some periodicity where their values would
lie inside the convex-hull of metabolic strategies (sin) for a time τin and then change to
another outside (sout) for a time τout.
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Figure 1.8: Simulation obtained with model equations (1.12), (1.13), (1.14) and (1.18) for the
evolution of 20 population densities (B = 20) competing for 3 different resources (J = 3) during
500 time steps. Q = 2, d = 0; a1) Simplex plot with initial and final metabolic strategies (and
respective convex-hulls) represented in blue and red respectively for τin = τout = 10; In a black
star and diamond are represented respectively the supply rates that lie inside and outside the
convex-hull of metabolic strategies; b1) same as previous but with τin = 10 and τout = 1; a2)
adaptative metabolic strategies, τin = τout = 10; a3) fixed metabolic strategies, τin = τout = 10;
b2) adaptative metabolic strategies, τin = 10 and τout = 1; b3) fixed metabolic strategies,
τin = 10 and τout = 1.

In the cases where the species had the ability to adapt to the fluctuations of nu-
trient supplies, using equation (1.18), we can see that they all survived, fig. 1.8 a2)
and b2), only varying the population with the same periodicity as the supply rates did.
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However, when removing the adaptation system, by fixing the metabolic strategies in
time, this behavior changes, fig. 1.8 b1). If the supply rates lie outside the convex-hull
of metabolic strategies for too long, the coexistence becomes compromised, fig. 1.8
b1). Species can only coexist as long as the time outside the convex-hull, τout is small
compared to τin, fig. 1.8 b3). We can also observe that the metabolic strategies evolve
in a way that they include the supply rates sout when they spend enough time outside
the convex-hull, fig. 1.8 a1), thus violating the Competitive Exclusion Principle, and that
it does not happen when that time interval is small, fig. 1.8 a3), impeding sustainable
coexistence.

The populational models developed until now allow us to describe the growth rate of
populations in terms of parameters but they lack an explanation for what mechanisms
originate variations on the rate of growth. Also, they do not take into account the
necessity of more than one nutrient for growth or explain the process of cells developing
the metabolic strategies.
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Chapter 2

Another approach to populational
biology

As we have seen before, the models in use for the study of bacterial growth are empiri-
cal, i.e. without biological foundations. Because of this, we decided to focus on creating
a model based on the known and measurable biological mechanisms of reproduction.

There are two alternative constructions: the more traditional, where the species-
resource, species-species and species-genetics interactions are included, and the
phenomenological, successfully used in Tetrahymena, [24], mouse, and human pop-
ulations, [25]. This model was develop by the epidemiologist Anderson McKendrick
(also known as the McKendrick-von Foerster equation). Nevertheless, the produced
results should be the same regardless of the modeling techniques.

We start with a phenomenological model in which the reproduction is only con-
trolled by a time interval with a memory effect, in section 2.2, leading to the Malthusian
function. In section 2.3 we add nutrient consumption with stochastic fluctuations to
the model, and the reproduction is controlled by the synthesized protein. The resulting
microscopical function is sigmoidal, as in the Verhulst case. To backup our models, we
prepared a series of experiments, shown in section 2.4, which were carried out at the
Instituto Gulbenkian de Ciência, and then analyzed the results using Mathematica’s
integrated functions, developed feedback fitting methods and statistics tools. We also
analyze existing data from another experiment, [10], in section 2.5.

In section 2.6 we develop a model in which reproduction and death are controlled
by species-resource interactions. From this model, there arises the toxicity effect ex-
plained by Lambert and Cerelus, [22] [23], not present in the previous models. Section
2.7 contains a generalization of the previous model including two nutrients. The model
presents a toxicity effect and diauxies. To test the models of sections 2.6 and 2.7 we
design an experiment plan, shown in section 2.8.
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2.1 Statistical analysis and Fitting methods

Note: All the indices and variables used in this section are arbitrary and have no cor-
relation to the rest of the variables used in other sections.

Let E be a set containing some experimental data, T the set of corresponding the-
oretical points, and N the number of data points, i.e. the cardinality of those sets. We
can consider two vectors with components Ei and Ti (0 < i ≤ N ) constructed from the
sets. Then,

1) the Pearson’s chi-squared [27],

χ2 =
N∑
i=1

(Ei − Ti)2

Ti
(2.1)

is a normalized quantity between 0 and∞, geometrically interpreted as the radius of a
(N − 1)–dimensional ellipse composed of the N normalized deviations obtained from
the pairs of the two vectors, that indicates how close (the radius) the analogous com-
ponents of the two vectors are.

2) the Pearson’s correlation coefficient [26] is a quantity between −1 and 1 that mea-
sures the linear correlation between the pairs of the vectors, 1 being the total correla-
tion between the two (E and T follow the same growth), 0 no correlation, and −1 total
inverse correlation. It is defined by the following mathematical function

ρ(E, T ) =
cov(E, T )

σE σT
(2.2)

in which the co-variance cov(E, T ) is given by

cov(E, T ) =
1

N − 1

N∑
i=1

(Ei − Ē)(Ti − T̄ ), (2.3)

and the standard deviation σX and mean value X̄ of a variable X are given by

σX =

√√√√ 1

N − 1

N∑
i=1

(Xi − X̄)2, X̄ =
1

N

N∑
i=1

Xi . (2.4)
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Inserting the definitions (2.3) and (2.4) in (2.2) we obtain

ρ(E, T ) =
(N − 1)−1

∑N
i=1(Ei − Ē)(Ti − T̄ )√

(N − 1)−1
∑N

i=1(Ei − Ē)2
√

(N − 1)−1
∑N

i=1(Ti − T̄ )2

=

∑N
i=1(Ei − Ē)(Ti − T̄ )√∑N

i=1(Ei − Ē)2
√∑N

i=1(Ti − T̄ )2

(2.5)

3) the Spearman’s rank correlation coefficient [28]

ρr(E, T ) =

∑N
i=1(rEi

− rE)(rTi − rT )√∑N
i=1(rEi

− rE)2
√∑N

i=1(rTi − rT )2
(2.6)

in which rXi
is the ranking of the element Xi in the set X, has the same mathematical

form as the Pearson correlation coefficient. However, it focuses on the ranking of the
variables, i.e., it responds to the similarities of the monotonic tendencies of the data.

Mathematical models to fit data and test the goodness of a fit:

• The FindFit function of the software Mathematica is a statistical test used to fit non
linear models. It defines the sum of the squares of the residuals, s, in terms of the
fitting parameters ak, in which k is the number of parameters, and solves the partial
differential equations (2.7) to find the values of ak that give the minimum of s,

∂aks = 0. (2.7)

• In the method of random variables developed by us, we attribute random values to
the set of variables we want to fit. We start by finding the range of the orders of
magnitude of those variables, by plotting the data and the function for fit, using the
Manipulate function of Mathematica. This allows us to search visually for that range.
Then we design a loop where in each iteration, the variables take a random value
within the ranges we found, and use one of the statistic analysis methods above (we
use the Pearson’s χ2 and the Spearman’s correlation) to test how appropriate the
values are, that is the goodness of fit of the function to the data.
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2.2 First model: Mitosis with memory

The first model we consider is overly simplistic, consisting in a single population of
cells in the presence of an inexhaustible nutrient supply. However, in general, mitosis
time, i.e., the time cells take to divide into two, depends on the pressure, temperature
and availability of resources in a complex manner and for that reason we opted by a
stochastic model.

We assume that, initially, every cell (i) from the population divides itself after 3
hours, the first generation time (τ1i). All cells are considered to have memory, such that
the generation time of the daughter cells (τ2i) will be given by

τγi = τγ−1,d i
2e + ε (2.8)

in which ε is a random variable obeying the normal distribution centered at zero and
with some standard deviation σ, i.e. N (0, σ2).

Figure 2.1: Scheme of generation times from the reproduction of two bacteria in the first
generation and giving birth to 4 bacteria of the second generation.

In figure 2.2 we show the result of the simulation of a population over 40 hours,
obtained using the model equation (2.8), starting with a single cell. As a result of ε,
the mitosis lose their initial synchronization gradually and produce a macroscopic trend
curve consistent with the Malthusian model, as observed by the biologist D. M. Prescott
in 1959, [30] (see figure 2.3). The distribution of the mitosis ages is Gaussian, as
expected since the desynchronization comes from the the stochasticity of the variable
ε. Rubinow [24] arrived to the same distributions using the experimental data from the
work of Prescott [30].
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Figure 2.2: a) Growth curve of a population for 20 hours starting with 1 cell with mitosis
time of 3h; ε is randomly chosen from a normal distribution with mean value 0.0 and standard
deviation 0.1; b) Growth curve of a population for 40 hours with the same conditions as in a); c)
distribution of all the ages of mitosis occurred during the 40 hours population growth.

Figure 2.3: a) Growth curve of a population of Tetrahymena pyriformis over two generations,
with mitosis moments initially synchronized, [30]. b) Distribution of the mitosis ages taken from
the data in a), [24].
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By doing a fit of the simulation the population density, N , over time for the case
where ε = 0, we discover that the curve a is power function (see figure 2.4) of the form
N ≈ 1.213t (figure 2.5) in agreement with [9].

Figure 2.4: Power function f(t) = 1.213t

Figure 2.5: a) Growth curve of a population for 65 hours starting with 1 cell and all mitosis times
of 3.5 hours; b) The fit of the data gives N ≈ 1.213t — fit executed with the FindFit function of
the software Mathematica and validated by the Spearsman’s rank coefficient ρr = 0.999.

2.3 Second model: Mitosis controlled by the consump-

tion of a single nutrient

In the second model, we assume that the nutrients available are limited. In reality,
cells uptake the nutrient from the medium and then use it to produce essential proteins
and energy, a process called metabolization. Once the cell has metabolized enough
resources, a threshold P ∗, it begins mitosis, [30].
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Figure 2.6: Image taken from Prescott, [30], illustrating the process necessary for the repro-
duction of a cell.

Consider that we have an initial number of cells N(0) in a medium where there is
a starting amount of nutrient R(0). We assume that the probability of a cell, i, finding
a nutrient is proportional to the quantity of existing nutrient at that time t, R(t), and
the duration of the search, ∆t. Also, we consider that the uptake of nutrients in a true
environment is subject to stochastic fluctuations, for which we add the parameter λ,
randomly chosen from the distribution N (1.5× 10−4, 2× 10−4) in each time step.

Therefore, during a time interval ∆t, the cell i metabolized protein Pi(∆t) is given
by λiR(t)∆t and thus, the total amount of protein produced at an instant can be written
as a recursion relation:

Pi(t+ ∆t) = Pi(t) + λiR(t)∆t, (2.9)

that can be rearranged as

Pi(t+ ∆t)− Pi(t)
∆t

= λiR(t). (2.10)

Taking the previous equation in the limit t→ 0 we obtain

dPi
dt

= λiR(t). (2.11)

In the same way, the amount of nutrient still available at an instant t+ ∆t is equal to
the amount of nutrient there was in the previous moment minus the amount of nutrient
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that was consumed by all the cells in that time interval,

R(t+ ∆t) = R(t)−
N∑
i=1

λiR(t)∆t, (2.12)

that can be rearranged as

R(t+ ∆t)−R(t)

∆t
= −

N∑
i=1

λiR(t). (2.13)

Taking the previous equation in the limit t→ 0 we obtain

dR

dt
= −

N∑
i=1

λiR(t). (2.14)

We implemented the model equations (2.9) and (2.12) to simulate the growth of a
population starting with one cell during 168 hours and found a sigmoidal function that
best fitted the curve (a simplified program code is presented in appendix A2). Figure
2.7 shows the resultant growth curve and fit.

Figure 2.7: In blue: simulation obtained with model equations (2.9) and (2.12) for the evolution
of a population starting with 1 cell, feeding off 1 nutrient and with threshold protein P ∗ = 1

during 168 hours. The parameter λ varied according to the normal distribution with parameters
µ = 1.5 × 10−4 and σ = 2 × 10−4) truncated between 0 and 2µ and normalized; In red: the
correspondent logistic function 1.8 with parameters c = 679 and k ≈ 0.0003 obtained with the
FindFit function of the software Mathematica, corresponding to a Spearsman’ rank coefficient
ρr = 0.927.

To study the influence of the stochasticity in the evolutions of the population and
nutrient, we tested different distributions for the parameter λ (see figures 2.8 and 2.9).

Observing figure 2.8 from top to bottom we can see that when the mean value,
µ, increases, the bacteria eat in average more resources in each time step, so the
population curve shifts left and becomes steeper, which translates to a faster growth
that starts sooner. The histogram of the mitosis ages takes the same shape, but be-
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comes less scattered, since the bacteria take less time to reach the protein threshold
necessary for reproducing.

In figure 2.9 when the standard deviation σ increases, the desynchronization in-
creases, i.e., the population curve becomes smoother, and macroscopically it takes a
logistic shape; The histograms become more scattered since the nutrient uptakes are
also more disparate.

Plotting the relation between the normalized growth rate and nutrient obtained from
the same simulated data, we discover a linear curve, shown in figure 2.10.

Figure 2.8: Simulations obtained with model equations (2.9) and (2.12) for the evolution of
a population of cells feeding off 1 nutrient during 168 hours (in blue) and for the nutrient (in
orange). The parameter λ varied according to the normal distribution N (µ, 2 × 10−4); Top:
µ = 1.5× 10−4; Center: µ = 3× 10−4; Bottom: µ = 6× 10−4.
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Figure 2.9: Simulations with model equations (2.9) and (2.12) for the evolution of a population
of cells feeding off 1 nutrient during 168 hours (in blue) and for the nutrient (in orange). The
parameter λ varied according to the normal distributionN (1.5×10−4, σ); Top: σ = 10−5; Center:
σ = 10−4; Bottom: σ = 10−3.

Figure 2.10: 1
N
dN
dt vs R(t) from the simulated data for the evolution of a nutrient concentration

and the population of cells starting with 1 cell feeding off that nutrient, during 168 hours; The
parameter λ varied according to the normal distribution with parameters µ = 1.5 × 10−4 and
σ = 2× 10−4. The fit of the curve gives a linear relation y = 10−4x with χ2 = 0.0004.
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In the case of synchronized cultures it is still possible to identify a linear relation
between the population growth and the amount of resource (see figure 2.11).

Figure 2.11: a) Evolution of a nutrient concentration and the population of cells feeding off
that nutrient, during 168 hours and λ = 2 × 10−4; b) The curve shows the relation between
the population growth 1

N
dN
dt and the resource R(t) from the simulated data; The fit of the curve

gives a linear relation y = 6× 10−5x with χ2 = 0.08.

From the previous analysis of the logistic and the Monod models we arrive to differ-
ent relations between the normalized population growth and the amount of resource,
equations (1.9) and (1.11). Figure 2.12 demonstrates that the relation between the
normalized population growth and the resource concentration is linear when using the
Mass action law approach, and non-linear with the Monod function. Thus, under our
assumptions, we obtain linear relation 2.11 and the correct model is the logistic.

However, to test our hypothesis, and understand the relation between the Mass Ac-
tion Law and the Monod model, it is necessary to perform empirical measurements and
see how they relate to the corresponding growth curves obtained from these models.

Figure 2.12: Comparison of the relation between the normalized growth rate of a population
and the amount of resource still available, in the case of a logistic function (in orange) and of
the Monod function (in blue).
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2.4 First Experiment and calibration

In this experiment, we grow a culture of E. coli in a liquid medium containing glucose
(C6H12O6) and measure the density over time using a spectrometer. As the bacteria
multiply, there will be an increase in the density of the solution that contains them.
Using this technique, the light that travels through the solution will be partially absorbed
by it, and the emitted and transmitted intensities are measured at the wavelength of
600nm to compute a transmittance ratio.

We gather all the data of the time and correspondent optical densities taken during
the growth, and then try to test how the empirical Monod model (1.11) and the logis-
tic model obtained from first principles using mass action law approach (1.8) compare
with the real growth curves constructed from the data.

Materials:

• Incubator

• Temperature controlled shaker

• Multiskan spectrophotometer

• Bioscreen spectrophotometer

• Scale

• Bunsen burner

• Petri-dishes
(approximate dimensions:
diameter 8.8 cm, height 1.5 cm)

• 200 µL pipette and pipette tips

• 96-well plates

• Eppendorf tubes

• E. coli M61655

• Agar

• Minimal media

• Pure glycerol

• Pure glucose

Procedure:

For the calibration of the model in 2.3, mitosis controlled by consumption of a nutri-
ent and enzymes, we grew a culture of the bacteria E. coli MG16551.

The E. coli were previously storaged in a freezer at -80◦C. We transferred a sample
of E. coli to a previously prepared petri-dish containing approximately 20 ml of solid
minimal media2 with 0.4% glycerol and took them to an incubator at 37◦C to stay over
night (∼12 h).

On the second day we prepared a 96-well plate with 200 µL of minimal media with
0.20% glycerol in 9 wells. We chose 3 colonies of the E. coli petri dish and placed

1MG1655 is a strain of E. coli that carries few mutations comparatively to the others and thus guarantees a
certain consistency in the population behavior.

2Minimal media is a solution containing 11.28g of M9 salts, 2mL of MgSO4 1M, 100µL of CaCl2 1M and 20mL
of a 20% carbon source (0.4% final) per liter of Mili-Q (ultra pure) water; M9 is a mix of 33.9g/L Na2HPO4, 15g/L
KH2PO4, 5g/L NH4Cl and 2.5g/L NaCl.
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3 samples of each culture into the previous wells. The 96-well plate was put in a
temperature controlled shaker at low speed (∼ 102 rpm) and 37◦C for the cultures to
grow over night (∼12h).

On the third day, the 96-well plate was taken out of the shaker and placed in a
multiskan to read the optical densities. This was done to guarantee that the optical
densities of the biological (from the different cultures) and technical (from the same
culture) copies were all similar and in the appropriate range to start the main growth.
All measurements can be consulted in appendix A3.

After the reading, we transferred the cultures to separate eppendorf tubes and pre-
pared a glucose medium of minima media with glucose with concentrations 0.400%,
0.200%, 0.100%, 0.050%, 0.025% and 0.001% for the actual growth in study. We
distributed the solutions and cultures according to the configuration in figure 2.13.

We inserted the 96-well plate in a bioscreen for the population to grow for 36 hours
while monitoring the Optical Densities every 20 minutes and collected all the data.

Figure 2.13: Configuration of the bioscreen plate; Each colored set has 20.0 µL of culture 1 in
the 1st row, of culture 2 in the 2nd and of the culture 3 in the 3rd mixed with 180.0 µL of minimal
media and glucose in concentrations A: 0.400%, B: 0.200%, C: 0.100%, D: 0.050%, E: 0.025%
and F: 0.010%.

Results and analysis:

Figure 2.14 shows the Optical Densities obtained during the growth of culture 2
in 0.400% glucose (all the other growth curves, using different cultures and glucose
concentrations are present in the Appendix A3). To compare the compatibility of the
logistic and Monod models with the data, we took the Optical Densities of the first 750
minutes of the growth, and tested the goodness of fit of equations (1.8) and (1.11)
using the Pearson’s χ2 and the Spearman’s rank correlation tests. An example of the
methods used can be found in the Appendices A4 and A5.
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Figure 2.14: Growth curve of E. coli population from culture 2 in the presence of minimal
media with 0.400% glucose. The initial region in orange will be used for fitting.

However, since we only have data from the Optical Densities, proportional to N(t),
and have no information of R(t), we need to write equation (1.11) explicitly.

By Monod’s idea of conversion of nutrient into biomass, [3], we have

dN

dt
= −kdR

dt
, (2.15)

from which
N(t)−N(0) = −k[R(t)−R(0)]. (2.16)

Rearranging equation (2.16) we get that

R(t) = R(0)− N(t)−N(0)

k
. (2.17)

Combining equation (1.11) with (2.17) we obtain

1

N

dN

dt
= gmax

R(0)− [N(t)−N(0)]/k

R1/2 +R(0)− [N(t)−N(0)]/k
. (2.18)

We can write the proportionality between the optical density and the number of
bacteria as

OD(t) = qN(t) (2.19)

in which q is a positive real constant.
Substituting this relation in the model equation of (2.18), we obtain

q

OD

d(OD/q)

dt
= gmax

R(0)− [OD(t)/q −OD(0)/q]/k

R1/2 +R(0)− [OD(t)/q −OD(0)/q]/k
.

⇐⇒ 1

OD

d(OD)

dt
= gmax

R(0)− k̃[OD(t)−OD(0)]

R1/2 +R(0)− k̃[OD(t)−OD(0)]

(2.20)
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where k̃ = 1/(kq).
The same can be done with the first model equation of (1.8),

N(t) =
C ekCt

C
N(0)
− 1 + ekCt

⇐⇒ OD(t)

q
=

C ekCt

C
OD(0)/q

− 1 + ekCt

⇐⇒ OD(t) =
qC ekCt

qC
OD(0)

− 1 + ekCt
=

(qC) e
k
q
(qC)t

(qC)
OD(0)

− 1 + e
k
q
(qC)t

⇐⇒ OD(t) =
m ebm t

m
OD(0)

− 1 + ebm t

(2.21)

in which b = qC and m = k/C.
In both cases we see that OD(t) and N(t) take the same form.

Figure 2.15 shows the comparison between the fitting of the model equations (2.21)
and (2.20).

Figure 2.15: a) Initial data from figure 2.14 and respective fit using the Monod function. The
fitted parameters for the equation (2.20) have results R(0) = 0.210, R1/2 = 0.126, gmax =

0.007min−1, k̃ = 0.357 and OD(0) = 0.124 with a χ2 = 0.016 and ρr = 0.996; b) Initial data from
figure 2.14 and respective fit using the Mass action law approach. The fitted parameters for
the equation (2.21) have results b = 0.007, m = 0.808, OD(0) = 0.116, with a χ2 = 0.279 and
ρr = 0.996.

The fits were done by first establishing the parameters visually and then by setting
increasingly closer randomly generated values in order to lower the χ2 parameter for
104 iterations (see appendices A4 and A5).

Although both models provide very good approximations to the data (χ2 � 1 and
ρr ≈ 1), as expected, the model with the most parameters will be easier to fit and have
the smaller χ2. Therefore, it is impossible to distinguish between the two outcomes
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and say which model is the valid one by this analysis. The only way to present a
solid justification for either of the models is to make independent measurements of
the Optical Densities of the bacteria and the nutrient concentrations and do the test
presented in figure 2.12.

2.5 Analysis of existing data

In 2011 [10], Mostovenko and his colleagues designed an experiment consisting in a
culture of E. coli supplied by a medium containing both glucose and lactose to study
the production of proteins involved in the adaptation of bacteria when consuming a
different nutrient than before, during a diauxic growth.

In figure 2.16 we have the graph from [10] containing the E. coli growth rate, show-
ing diauxic shift, against the glucose consumption curve.

Figure 2.16: Measured optical densities in red and glucose concentrations decreasing in blue.
The optical density is proportional to the number of bacteria present in the media.

We collected the data from his work and used it to make a primary analysis of the
relation between the population growth and the nutrient evolution curves. We obtained
the data of the Optical Densities and glucose concentrations up until the 420 minutes,
where the diauxie transition begins.

It is possible to identify a quasi-linear region in the initial growth of figure 2.17,
until 100 mg/mL, that contrasts with the Monod model. In fact, the curve has the
opposite concavity. Still, the precision of the measured optical densities and sugar
concentrations does not seem sufficient to make this analysis conclusive. Therefore,
it would be necessary to elaborate an experiment where the E. coli grow in a single
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sugar medium and take measurements of the population and sugar Optical Densities
with a great level of precision and then repeat this same study.

The first region in figure 2.17 precedes another quasi-linear section with negative
normalized growth, which is an indication that bacteria suffer a toxicity effect in the
presence of high concentrations of nutrient. In fact, this effect has been used to explain
the lag phases in diauxic shifts, [23].

Figure 2.17: Curve of the OD’/OD vs glucose concentration calculated from the first 420
minutes of data in figure 2.16 from the Mostovenko work [10].

2.6 Third model: Mitosis controlled by the consump-

tion of one nutrient and including toxicity

In this next model, we consider that a carbon source (glucose) G is transformed by an
enzyme, E, at a constant rate k1, creating an enzyme-carbon complex, X, (the inverse
reaction also occurs, at a rate k−1), that is then transformed into an absorbable energy
resource R at rate k2, and the enzyme is released — this enzymatic mechanism is
represented by the Michaelis-Menten kinetic diagram (2.22). The resource R will then
be absorbed by N bacteria at a constant rate k3, and the bacteria will reproduce (2.23).
When there is too much glucose in the medium it becomes toxic to the E. coli, [22],
repressing their growth (represented by Ø) in (2.24).


G+ E

k1
�
k−1

X
k2→ E +R,

R +N
k3→ 2N,

G+N
k4→ Ø.

(2.22)

(2.23)

(2.24)
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According to the mass action law, the time evolution equations become

G′ = k−1X − k1GE − k4GN,

E ′ = k−1X − k1GE + k2X,

X ′ = −k−1X + k1GE − k2X,

R′ = k2X − k3RN,

N ′ = k3RN − k4GN,

(2.25)

from which we can obtain the conservation laws{
G′ − E ′ +R′ +N ′ = 0

E ′ +X ′ = 0

=⇒

{
G− E +R +N = c1

E +X = c2
.

(2.26)

where c1 and c2 are positive constants.
As initially there are no enzyme-nutrient complexes yet formed, X(0) = 0. More-

over, there is no transformed nutrient in the beginning, R(0) = 0. Thus,

c1 = G(0)− E(0) +N(0) (2.27)

and the previous equations can be written as{
G− E +R +N = G(0)− E(0) +N(0)

E +X = E(0)

=⇒

{
E = G+R +N − [G(0)− E(0) +N(0)]

X = E(0)− E

=⇒

{
E = [G−G(0)] +R + [N −N(0)] + E(0)

X = [G(0)−G]−R + [N(0)−N ]
. (2.28)

41



Substituting the above equations (2.28) in (2.25), we obtain the system of equations

G′ = k−1

{
[G(0)−G]−R + [N(0)−N ]

}
+k1G

{
[G(0)−G]−R + [N(0)−N ]− E(0)

}
− k4GN,

R′ = k2

{
[G(0)−G]−R + [N(0)−N ]

}
− k3RN,

N ′ = k3RN − k4GN,

(2.29)

A steady state solution of the system of equations (2.29) can be solved numerically
by setting the initial conditions 

G(0) = G0

E(0) = E0

N(0) = N0

, (2.30)

where G0, E0 and N0 are chosen constants.

Figure 2.18: Simulations obtained with the steady state model equations (2.29) and (2.30),
as a function of t, for tmax = 5h, G0 = 5.0, E0 = 2.0, N0 = 1.0, k−1 = 0.1, k1 = 1.0, k2 = 3.0,
k3 = 1.0 and a) k4 = 0.5 b) k4 = 0.0.

Figure 2.18 shows a simulation of a population of cells feeding off one type of nutri-
ent (which we called glucose for identification purposes only), and the corresponding
nutrient concentration over time, along with the amount of processed resource by the
cells. In a) it is possible to identify a region in the beginning of the growth where the
population density drops while the nutrient concentration is the highest and the re-
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source is being processed very quickly. Based on the studies of G. Lambert and E.
Kussell, [22], and B. Cerulus et al., [23], this behavior is expected whenever the nutri-
ent concentration exceeds a certain threshold. As a consequence of this initial toxicity
effect, the final population density reached is lower.

2.7 Forth model: Mitosis controlled by the consump-

tion of two nutrients and including toxicity

In this model we include a possible mechanism behind the occurrence of diauxies.
This model describes the consumption of two different carbon sources (G and S) by
a population of cells (N ), with the same enzymatic process as before, the enzymes
(E1 and E2) help to transform the nutrients into the corresponding complexes (X1 and
X2) and successively into metabolizable resource R, in addition to the reproduction of
individuals in the presence of resource and two different toxicities associated with each
carbon source. 

G+ E1

k1
�
k−1

X1
k3→ E1 +R,

S + E2

k2
�
k−2

X2
k4→ E2 +R,

R +N
k5→ 2N,

G+N
k6→ Ø,

S +N
k7→ Ø

(2.31)

By the mass action law, the time evolution equations are

G′ = k−1X1 − k1GE1 − k6GN

S ′ = k−2X2 − k2SE2 − k7SN

E ′1 = (k−1 + k3)X1 − k1GE1

E ′2 = (k−2 + k4)X2 − k2SE2

R′ = k3X1 + k4X2 − k5RN

N ′ = k5RN − k6GN − k7SN

, (2.32)
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from which we can obtain the conservation laws
G′ + S ′ − E ′1 − E ′2 +R′ +N ′ = 0

E ′1 +X ′1 = 0

E ′2 +X ′2 = 0

=⇒


G+ S − E1 − E2 +R +N = c1

E1 +X1 = c2

E2 +X2 = c3

. (2.33)

where c1, c2 and c3 are positive constants.
As initially there are no enzyme-nutrient complexes yet formed, X1(0) = X2(0) = 0.

Moreover, there is no transformed nutrient in the beginning, R(0) = 0. Thus,

c1 = G(0) + S(0)− E1(0)− E2(0) +N(0) (2.34)

and the previous equations can be written as
G+ S − E1 − E2 +R +N = G(0) + S(0)− E1(0)− E2(0) +N(0)

E1 +X1 = E1(0)

E2 +X2 = E2(0)

=⇒


E2 = G+ S − E1 +R +N − [G(0) + S(0)− E1(0)− E2(0) +N(0)]

X1 = E1(0)− E1

X2 = E2(0)− E2

=⇒


E2 = [G−G(0)] + [S − S(0)] +R + [N −N(0)]− [E1 − E1(0)] + E2(0)

X1 = E1(0)− E1

X2 = [G(0)−G] + [S(0)− S]−R + [N(0)−N ]− [E1(0)− E1]

(2.35)
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Substituting the above equations (2.35) in (2.32), we obtain the system of equations

G′ = k−1 [E1(0)− E1]− k1GE1 − k6GN

S ′ = k−2

{
[G(0)−G] + [S(0)− S]−R + [N(0)−N ]− [E1(0)− E1]

}
+k2 S

{
[G(0)−G] + [S(0)− S]−R + [N(0)−N ]− [E1(0)− E1]− E2(0)

}
−k7 SN

E ′1 = (k−1 + k3) [E1(0)− E1]− k1GE1

R′ = k3 [E1(0)− E1]

+k4

{
[G(0)−G] + [S(0)− S]−R + [N(0)−N ]− [E1(0)− E1]

}
− k5RN

N ′ = k5RN − k6GN − k7SN

,

(2.36)
Equations (2.36) can be solved numerically provided initial conditions

G(0) = G0

S(0) = S0

E1(0) = E10

E2(0) = E20

N(0) = N0

(2.37)

where G0, S0, E10, E20 and N0 are chosen constants.

Figure 2.19 shows two simulations of a population of cells feeding off two differ-
ent types of nutrient (which we called glucose and Sorbitol for identification purposes
only), and the corresponding nutrient concentrations over time. As in figure 2.18a),
it is possible to identify a region in the beginning of the growth where the population
density drops while the nutrient concentrations are at the highest. After that transition,
the population grows and reaches a plateau before continuing to grow.

Note that within this setup, the diauxie appears before the extinction of the first
nutrient, the glucose, opposed to what Monod previously believed.
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Figure 2.19: Simulations obtained with the steady state model equations (2.36) and (2.37) as
a function of t for tmax = 25h, G0 = 5, α0 = 5 E10 = 1, E20 = 1, N0 = 1.0, k−1 = 0.1, k1 = 20,
k−2 = 0.01, k2 = 0.1, k3 = 0.2, k4 = 0.2, k5 = 2 and a) k6 = 0.3 and k7 = 0.2 b) k6 = 0.1 and
k7 = 0.1.

2.8 Second experiment proposal

Bacteria take time to adapt in order to eat a sugar that they have no memory of. When
bacteria eat a sugar that they already know, their starting growth happens sooner and
faster. However, to process some nutrients bacteria can transform the carbon source
into another though enzymatic processes. Since we want to search for glucose-sorbitol
diauxies, we should use a different sugar for the pre-culture, that is not connected
through natural enzymatic processes, for example mannose, in order to avoid favoring
one of the growths.

It is important to first obtain the growth curves of the bacteria consuming the sugars
separately, in the same setup as the experiment that will be done with both sugars,
to know the duration of the initial lag phases, the population maximum and the time
necessary to reach it.

Materials:

• Multiskan spectrophotometer

• Incubator

• Centrifuge

• Scale

• Timer or clock

• Flasks

• 5mL and 10mL pipettes and pump

• 20µL, 200µL and 1000µL pipettes and
pipette tips

• Normal and deep 96-well plates
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• Glass beads

• E. coli M61655

• Lysogeny broth3 agar plates

• Minimal media

• PBS buffer4

• Pure mannose

• Pure glucose

• Pure sorbitol

• Glucose and sorbitol Sigma-Aldrich
assay kits (MAK263 and MAK010)

Part 1 procedure:
Grow an E. coli sample from the freezer in an Lysogeny broth agar plate for 24

hours in an incubator. Prepare flasks with a 50mL solution of minimal media with 0.2%
mannose and 100mL solutions of minimal media with 0.1% glucose and of minimal
media with 0.1% sorbitol.

The next day, put 15ml of a 0.2% mannose solution in three 25 mL tubes using the
10mL and 5mL pipettes. Select two E. coli cultures from the Lysogeny broth agar plate
and transfer them separately (with a small pipette) into two of the tubes containing the
mannose solution using a small pipette. The third tube is a negative control, used to
make sure that the system is not contaminated with any other organisms. Label the
tubes with the respective contents and place them in the shaker at 37◦C for 24 hours.

On the following day, take the tubes out from the shaker and use them to prepare
10-fold dilutions to determine the Optical Densities and number of cells.

To know the starting number of cells after the pre-culture growth we need to relate
the Optical Densities of some samples with the number of cultures in the same amount.
By platting a small quantity of cells in an agar plate and letting them multiply in the
incubator, it is possible to see scattered cultures, each originated from a single cell.

Start by distributing 200µL of each solution in the first row (or column) of a 96-well
plate and 180µL of minimal media to the next 7. Create the dilutions by successively
adding and mixing 20µL of the previous well to the next using a pipette, leaving the last
well with only minimal media for the blank. Read the 96-well plate in the multiskan and
follow the optical density over time.

Similarly, prepare six 10-fold dilutions in a deep 96-well plate using 50µL of the
solution to 450µL of PBS. Plate 100µL of each 10−4, 10−5 and 10−6 solutions spreading
the liquid with the glass beads. Put the agar plates in the incubator for the cultures to
grow until they are sizable enough to be seen. When possible, count the number of
cultures in each plate and plot them against the corresponding Optical Densities with
the blank subtracted; the graph should be a linear tendency.

To start the culture on the single sugars, wash the cells by centrifuging, removing
the supernatant and re-suspending them in minimal media. Then transfer 15mL of the
0.1% glucose solution into four 25mL tubes and add 150µL of the washed cells to three

3Solution containing 10 g/L peptone, 5 g/L yeast extract, 10 g/L NaCl (and 15 g/L agar for solid medium).
4PBS is a Phosphate-buffered saline solution used to stabilize the reactions by maintaining a constant pH.
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of them, leaving the last as a control; do the same with the sorbitol solution. Repeat
dilutions, Optical density readings and plating to double check the starting number of
cells. Finally, label all the tubes and start the timer for 1 hours before taking them to
the shaker at 37◦C.

Prepare the Sigma-Aldrich assay kits solutions to measure the sugar concentra-
tions, following the manual instructions. Every next hour remove the tubes from the
shaker, take 100µL samples of all the tubes to a 96-well plate and read the Optical
Densities with the multiskan. Then, following the assay kits instructions, centrifuge
another sample to take a portion of the supernatant and mix the assay kits prepared
solutions. Finally, read the sugar concentrations in the multiskan. Plot the Optical Den-
sities vs time as the experiment goes to see the growth curve and detect its ending.

Part 2 procedure:
For the second part of this experiment we propose to repeat the experiment above

but using both sugars at the same time instead of just one and take measurements of
the culture and sugars Optical Densities to obtain the diauxic curve and the nutrient
consumption curves.
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Chapter 3

Conclusions

The Monod function is an empirical model describing the relation between the growth
of a population of cells and the expense of nutrient it is feeding of. Many modern mod-
els are based on the Monod’s function. However none has depicted the most essen-
tial phenomena — the diauxic growth and toxicity effects — completely or accurately
enough.

We presented alternative models starting with a simple construction, in section 2.2,
where the only dependency is on time. There, we simulate the reproduction of cells,
in which the mitosis duration is regulated by a stochastic parameter accounting for the
memory dependent behavior observed in the experiments of Lambert and Cerelus,
[22] [23], yielding a Malthusian curve.

In section 2.3 we consider a real setup, where bacteria have access to a limited
amount of nutrient. In this case, the mitosis is triggered by a threshold amount of pro-
tein, obtained from the metabolized nutrient, a phenomenon documented by Prescott
in 1959, [30]. The construction introduced reproduces sigmoidal curves for the nor-
malized population growth and nutrient concentration. The relation between the two is
shown to be linear, in contradiction to the Monod’s function. Moreover, it agrees with
Verhulst’s equation, derived from the Mass action law. The experiment developed at
the Instituto Gulbenkian de Ciência, detailed in section 2.4, leaves the possibility open
for the fact that a Logistic can be the correct model in this setting. In addition, the nor-
malized growth rate and nutrient concentration from Mostovenko’s data, [10], exhibit a
similar quasi-linear relation in the section where bacteria are feeding only of glucose,
the first nutrient, before the diauxic shift occurs.

To take into account the toxicity phenomenon observed by Lambert, [22], and Cere-
lus, [23], we created a simple model describing a population feeding off a nutrient, in
three parts: nutrient metabolization, cells reproduction and growth inhibition through
direct or indirect nutrient interaction. We used the same Mass Action Law method as
before to transform the kinetic equations into time dependent differential equations,
and solved for the chosen initial conditions. The results indicate that the initial cur-
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vature in the evolution of population growth observed and identified as a lag-phase,
which can become negative is some circumstances, can be explained by this known
toxicity effect and modeled using the law of mass action and only the basic interactions
of consumption reproduction and death.

The diauxic shifts, observed when bacteria are presented to two nutrients with dif-
ferent metabolization costs, and consequently rates, translate into a decrease of the
population growth regulated by the nutrients expense. Because of this, it is expected
that the phenomenon is related to the same toxicity effect. The model of section 2.7
was obtained by a generalization of the previous one, where this time we introduced the
enzymatic process of metabolization, reproduction and death for both nutrients. The
implementation of the equations achieved with the mass action law method suggest
that the diauxic growth arises naturally without the need for an added interaction.
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A1 Mitosis controlled by age memory

Simulation of a growth curve and distribution of the mitosis ages of cells feeding off
unlimited resource, using the model equation 2.8.

σ = 0.1;(* standard deviation of the normal distribution *)

tMax = 40; (* duration of the experiment *)

n0 = 1; (* number of initial cells *)

δ[n_, σ_, dt_] := Round[RandomVariate[

TruncatedDistribution[{-2 σ, 2 σ}, NormalDistribution[0, σ]], n], dt] ;

(* variation of the times until for n cells,

chosen with gaussian probabilities of standard

deviation σ and rounded to the smallest time step dt*)

dt = 0.01; (* time steps *)

T = 3; (* time of reference until mitosis *)

t = 0;

data = {{0, n0}}; (* the simulation starts at t=0, when there are n0 cells *)

a = ConstantArray[0, n0] ; (* age of the first cells *)

A = {}; (* mitosis age *)

Δt = T + δ[n0, σ, dt]; (* first time until mitosis *)

While[t < tMax,

{Do[

If[a[[k]] ⩵ Δt[[k]], (* if the cell's age reaches the mitosis time *)

{A = Append[A, a[[k]]];

(* 'A' saves the time at which mitosis happened *)

a = Flatten[ReplacePart[a, k → {0, 0}]];

(* two new ages substitute the age before *)

Δt = Flatten[ReplacePart[Δt, k → Δt[[k]] + δ[2, σ, dt]]];}

(* two new mitosis times substitute the one before *)

],

{k, Length[a]}]; (* do it for all the cells *)

data = Append[data, {t, Length[a]}];

(* 'data' saves the number of cells in that moment *)

a = a + dt;}; (* age increases *)

t = t + dt]; (* next time step *)

Printed by Wolfram Mathematica Student Edition
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In[95]:= evl1 = ListPlot[Take[data, 2002],

AxesLabel → {"Time\n(h)", "Population density"}, LabelStyle → Directive[15]]

Out[95]=
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In[94]:= evl2 = ListPlot[data,

AxesLabel → {"Time\n(h)", "Population density"}, LabelStyle → Directive[15]]

Out[94]=
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In[93]:= hst = Histogram[A, 100, AxesLabel → {"Mitosis age\n(h)", "Population density"},

LabelStyle → Directive[15]]

Out[93]=
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2     3.1 - Without nutrient, with memory, save mitosis time, manipulate.nb

Printed by Wolfram Mathematica Student Edition
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Fitting of the simulation of a growth curve of cells feeding off unlimited resource,
using the model equation 2.8, to a power function.

Data simulation

In[21]:= Clear[t, k, c, f]

T = 3.51; (* time until mitosis *)

tMax = 78; (* duration of the experiment *)

n0 = 1; (* initial number of bacteria *)

dt = 0.01; (* time steps *)

t = 0; (* begining of the experiment *)

data = {};

kMax = Floor
tMax

T
; (* number of generated data points *)

n = n0; (* initial number of bacteria *)

k = 0; (* for counting the number of data points *)

Whilet < tMax,

Ifk T ≤ t < k + 1 T, n = 2k n0; data = Append[data, {t, n}], k = k + 1;
(* reproduction *)

t = t + dt;

ListPlot[data, AxesLabel → {"Time", "Number of bacteria"},

LabelStyle → Directive[15]]

Out[32]=
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In[33]:= Clear[t, k, c, f]

fit = FindFitdata, cx, c, x(* data fit *)

Out[34]= {c → 1.21336}

Printed by Wolfram Mathematica Student Edition
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Data simulation

In[21]:= Clear[t, k, c, f]

T = 3.51; (* time until mitosis *)

tMax = 78; (* duration of the experiment *)

n0 = 1; (* initial number of bacteria *)

dt = 0.01; (* time steps *)

t = 0; (* begining of the experiment *)

data = {};

kMax = Floor
tMax

T
; (* number of generated data points *)

n = n0; (* initial number of bacteria *)

k = 0; (* for counting the number of data points *)

Whilet < tMax,

Ifk T ≤ t < k + 1 T, n = 2k n0; data = Append[data, {t, n}], k = k + 1;
(* reproduction *)

t = t + dt;

ListPlot[data, AxesLabel → {"Time", "Number of bacteria"},

LabelStyle → Directive[15]]

Out[32]=
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In[33]:= Clear[t, k, c, f]

fit = FindFitdata, cx, c, x(* data fit *)

Out[34]= {c → 1.21336}

Printed by Wolfram Mathematica Student Edition

In[35]:= f[t_] = ct /. fit;

datafun = Interpolation[data];(* data vector into a function form *)

In[37]:= S = Table[datafun[t] , {t, 0, tMax - 1}]; (* simulated *)

T = Table[f[t], {t, 0, tMax - 1}]; (* theoretical *)

ρr = SpearmanRankTest[S, T, "TestStatistic"] (* Spearsman rank coefficient *)

Out[39]= 0.998988

In[40]:= fit1 = ShowListPlot[data, AxesLabel → {"Time", "Number of bacteria"},

LabelStyle → Directive[15]], Plotct /. fit, {t, 0, tMax}, PlotStyle → Pink,

PlotLegends → ToString[NumberForm[c /. fit, 4]]"t" (* plot *)

Out[40]=
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2     MitosisWithoutNutrient.nb

Printed by Wolfram Mathematica Student Edition
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A2 Mitosis controlled by the consumption of a single

nutrient

Simulation of a growth curve and distribution of the mitosis ages of cells feeding off a
limited amount of resource, using the model equations 2.9 and 2.12.

In[]:= tMax = 168; (* duration of the experiment *)

n0 = 1; (* initial number of cells *)

μ = 1.5 * 10-4;(* mean value for λ *)

σ = 2 * 10-4; (* stardard deviation *)

P = 1;(* protein each cell needs to metabolize to reproduce *)

r = 103;(* initial available resources *)

Δt = 0.1;(* time steps *)

p = ConstantArray[0, n0];(* protein metabolized by each cell so far *)

a = ConstantArray[0, n0];(* age of each cell *)

n[p_] := Length[p];(* number of cells *)

A = {};(* duration of mitosis for each cell *)

t = 0;(* start experiment *)

data = {{t, n[p]}}; (* starting time and number of cells *)

nutr = {{t, r}};

While[t < tMax,

{t = t + Δt;

a = a + Δt;

λ =

RandomVariate[TruncatedDistribution[{0, 2 μ}, NormalDistribution[μ, σ]], n[p]]

(* fraction of nutrients eaten by each cell during a time step *);

p = p + λ r Δt; (* protein metabolized *)

r = r - Total[λ] r Δt; (* nutrient still available *)

Do[

If[p[[k]] ≥ P, (* condition for division *)

{p = Flatten[ReplacePart[p, k → {0, 0}]],

(* divide and reset protein consumption *)

A = Append[A, a[[k]]], (* save age of mitosis *)

a = Flatten[ReplacePart[a, k → {0, 0}]](* divide and reset cell ages *)}

], {k, n[p]}];

data = Append[data, {t, n[p]}];

(* save number of cells in each time step *)

nutr = Append[nutr, {t, r}](* save amount of nutrient in each time step *)

}

];

Printed by Wolfram Mathematica Student Edition
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A3 Data from the first experiment

Growth curves of the cultures of E. coli grown in the IGC lab on different concentrations
of glucose. The Optical Densities of the E.coli cultures in minimal media and glucose,
measured in the bioscreen can be consulted in the following link: https://drive.

google.com/file/d/1Iq95hOOiOPm3JJ-YNLbbqnGVOpqIC_Hq/view?usp=sharing&export=

download.

Culture 1 Culture 2 Culture 3

Sample 1 0.615 0.628 0.753

Sample 2 0.799 1.029 0.891

Sample 3 0.723 0.809 0.773

Average 0.665 0.906 0.768

Table 1: Optical Densities of the
pre-cuture read in the multiskan
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A4 Fitting the data from the first experiment with the

Monod function

Fitting with the Monod function, of the Optical Densities of one of the E. coli cultures
grown in minimal media and 0.100% glucose, measured in the bioscreen.

Experimental data

In[1]:= OD = {0.104, 0.132, 0.145, 0.149, 0.175, 0.172, 0.169, 0.201, 0.221,

0.250, 0.268, 0.293, 0.326, 0.343, 0.366, 0.389, 0.400, 0.414, 0.443,

0.446, 0.454, 0.478, 0.466, 0.479, 0.479, 0.481, 0.477, 0.475, 0.476,

0.483, 0.480, 0.485, 0.476, 0.509, 0.478, 0.472, 0.491, 0.490, 0.486,

0.479, 0.471, 0.470, 0.463, 0.477, 0.470, 0.464, 0.464, 0.479, 0.470,

0.469, 0.453, 0.462, 0.469, 0.465, 0.462, 0.472, 0.459, 0.458, 0.460,

0.466, 0.456, 0.462, 0.460, 0.462, 0.475, 0.480, 0.463, 0.469, 0.476,

0.474, 0.466, 0.477, 0.468, 0.444, 0.459, 0.465, 0.485, 0.491, 0.483,

0.460, 0.490, 0.488, 0.466, 0.486, 0.476, 0.479, 0.460, 0.482, 0.503,

0.484, 0.495, 0.474, 0.496, 0.485, 0.480, 0.462, 0.449, 0.458, 0.452,

0.450, 0.449, 0.462, 0.449, 0.468, 0.460, 0.450, 0.427, 0.461, 0.435};

tMax = 2160;

time = {0};

Dotime = Append[time, 20 i], i, 1,
tMax

20
;

data = {};

Do[data = Append[data, {time[[i]], OD[[i]]}], {i, 1, Length[OD]}]

T = 600;

DataForFit = {};

For[i = 1, time[[i]] < T, i++,

DataForFit = Append[DataForFit, data[[i]]]]

ListPlot[{data, DataForFit}, PlotRange → All, GridLines → {{T}},

TicksStyle → Directive[FontSize → 15], ImageSize → Medium,

AxesLabel → {Style["t (min)", 15], Style["OD", 15]}]

Out[10]=
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Printed by Wolfram Mathematica Student Edition
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Manual fit

In[11]:= Manipulate
Clear[n];

n[t_] = n[t] /.

NDSolve
n'[t]

n[t]
⩵ g0

R0 + k n0 - n[t]

R12 + R0 + k n0 - n[t]
, n[0] ⩵ n0, n, {t, 0, T}[[1, 1]];

χ2 = Sum
OD[[i]] - n[time[[i]]]2

n[time[[i]]]
, i,

T

20
+ 0.5;

Show[Plot[n[t], {t, 0, T}, PlotStyle → Pink,

AxesLabel → {Style["t", 15], Style["OD", 15]},

TicksStyle → Directive[FontSize → 15], PlotRange → {0, Max[OD]}],

ListPlot[DataForFit]],

{{n0, 0.11}, 0.08, 0.15},

{{R0, 0.37}, 0.1, 1},

{{R12, 0.140}, 0.001, 1},

{{g0, 0.0067}, 0.0001, 0.01},

{{k, 0.99}, 0.1, 3},

TrackedSymbols :> True

2     Fit Culture 2 Glucose 0.100%.nb

Printed by Wolfram Mathematica Student Edition
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Fit using the method of random variables

In[]:= Forj = 1, j < 104, j++,

n0rand = RandomReal[{0.08, 0.15}];

R0rand = RandomReal[{0.1, 1}];

R12rand = RandomReal[{0.01, 1}];

g0rand = RandomReal[{0.0001, 0.1}];

krand = RandomReal[{0.1, 5}];

Clear[nRand];

nRand[t_] = nRand[t] /.

NDSolve
nRand'[t]

nRand[t]
⩵ g0rand

R0rand + krand n0rand - nRand[t]

R12rand + R0rand + krand n0rand - nRand[t]
,

nRand[0] ⩵ n0rand, nRand, {t, 0, T}[[1, 1]];

Newχ2 = Sum
OD[[i]] - nRand[time[[i]]]2

nRand[time[[i]]]
, i,

T

20
+ 0.5;

If[0 < Newχ2 < χ2, χ2 = Newχ2;
n[t_] = nRand[t]; n0 = n0rand; R0 = R0rand; R12 = R12rand; g0 = g0rand; k = krand;

Abort[]];

;

datafun = Interpolation[DataForFit];

exp = Table[datafun[t] , {t, 0, 580}];

teor = Table[n[t], {t, 0, 580}];

ρr = SpearmanRankTest[exp, teor, "TestStatistic"];

Show[Plot[n[t], {t, 0, T}, PlotStyle → Pink,

AxesLabel → {Style["t (min)", 15], Style["OD", 15]},

TicksStyle → Directive[FontSize → 15], PlotRange → {{0, T - 10}, {0, 0.59}}],

ListPlot[DataForFit, ImageSize → Medium, PlotRange → All]]

Print["χ2 = ", χ2, "\nρr = ", ρr, "\n OD0 = ", n0, "\n R0 = ",

R0, "\n R1/2 = ", R12, "\n g0 = ", g0, "\n k = ", k, "\n"]

4     Fit Culture 2 Glucose 0.100%.nb

Printed by Wolfram Mathematica Student Edition
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Out[]=
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g0 = 0.0081962

k = 1.42897

Fit Culture 2 Glucose 0.100%.nb     5

Printed by Wolfram Mathematica Student Edition

Results of another 5 fits done with the Monod function:

Culture 3, 0.100% Glucose
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Culture 2, 0.200% Glucose Culture 3, 0.200% Glucose

Culture 2, 0.400% Glucose Culture 3, 0.400% Glucose
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A5 Fitting the data from the first experiment with the

logistic function obtained with the Mass Action Law

Fitting with the logistic function obtained with the Mass Action Law, of the Optical Den-
sities of one of the E. coli cultures grown in minimal media and 0.100% glucose, mea-
sured in the bioscreen.

Experimental data

In[1]:= OD = {0.104, 0.132, 0.145, 0.149, 0.175, 0.172, 0.169, 0.201, 0.221,

0.250, 0.268, 0.293, 0.326, 0.343, 0.366, 0.389, 0.400, 0.414, 0.443,

0.446, 0.454, 0.478, 0.466, 0.479, 0.479, 0.481, 0.477, 0.475, 0.476,

0.483, 0.480, 0.485, 0.476, 0.509, 0.478, 0.472, 0.491, 0.490, 0.486,

0.479, 0.471, 0.470, 0.463, 0.477, 0.470, 0.464, 0.464, 0.479, 0.470,

0.469, 0.453, 0.462, 0.469, 0.465, 0.462, 0.472, 0.459, 0.458, 0.460,

0.466, 0.456, 0.462, 0.460, 0.462, 0.475, 0.480, 0.463, 0.469, 0.476,

0.474, 0.466, 0.477, 0.468, 0.444, 0.459, 0.465, 0.485, 0.491, 0.483,

0.460, 0.490, 0.488, 0.466, 0.486, 0.476, 0.479, 0.460, 0.482, 0.503,

0.484, 0.495, 0.474, 0.496, 0.485, 0.480, 0.462, 0.449, 0.458, 0.452,

0.450, 0.449, 0.462, 0.449, 0.468, 0.460, 0.450, 0.427, 0.461, 0.435};

tMax = 2160;

Δt = 20;

time = {0};

Dotime = Append[time, 20 i], i, 1,
tMax

Δt
;

data = {};

Do[data = Append[data, {time[[i]], OD[[i]]}], {i, 1, Length[OD]}]

T = 600;

DataForFit = {};

For[i = 1, time[[i]] < T, i++,

DataForFit = Append[DataForFit, data[[i]]]]

ListPlot[{data, DataForFit}, PlotRange → All,

GridLines → {{T}}, AxesLabel → {Style["t (min)", 15], Style["OD", 15]},

TicksStyle → Directive[FontSize → 15], ImageSize → Medium]

Out[11]=
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FindFit

In[12]:= Clear[f0, b, m, t]

f[t_] =
m Eb m t

m

f0
- 1 + Eb m t

fit = FindFit[DataForFit, f[t], {f0, b, m}, t]

χ2 = Sum
datafun[t] - f[t] /. fit2

f[t] /. fit
, {t, 580};

datafun = Interpolation[DataForFit];(* data vector into a function form *)

exp = Table[datafun[t] , {t, 0, 580}];(* simulated *)

teor = Table[f[t] /. fit, {t, 0, 580}];(* theoretical *)

ρr = SpearmanRankTest[exp, teor, "TestStatistic"];

(* Spearsman rank coefficient *)

Print["χ2 = ", χ2, "\nρr = ", ρr, "\n"]

Show[ListPlot[DataForFit,

AxesLabel → {"t (min)", "OD"}, LabelStyle → Directive[15]],

Plot[f[t] /. fit, {t, 0, T}, PlotStyle → Pink]]

Out[13]=

ⅇb m t m

-1 + ⅇb m t + m

f0

Out[14]= {f0 → 0.0941713, b → 0.0165668, m → 0.512274}

χ2 = 0.491217

ρr = 0.981368

2     Fit Culture 2 Glucose 0.100%.nb

Printed by Wolfram Mathematica Student Edition
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Manual fit

In[22]:= Clear[f, f0, b, m, t]

Manipulate

f[t_] =
m Eb m t

m

f0
- 1 + Eb m t

;

χ2 = Sum
datafun[i] - f[i]2

f[i]
, {i, 580};

Show[Plot[f[t], {t, 0, 580},

AxesLabel → {Style["t", 15], Style["OD", 15]}, PlotStyle → Pink,

TicksStyle → Directive[FontSize → 15], PlotRange → {0, f[580] + 0.1}],

ListPlot[DataForFit]],

{{f0, 0.1}, 0.01, 1},

{{b, 0.0161}, 0.001, 0.1},

{{m, 0.513}, 0.01, 1},

TrackedSymbols :> True

Out[23]=
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In[24]:= χ2

Out[24]= 0.452875

4     Fit Culture 2 Glucose 0.100%.nb

Printed by Wolfram Mathematica Student Edition
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Random variables method

In[49]:= Clear[f]

Forj = 1, j < 104, j++,

f0Rand = RandomReal[{0.08, 0.15}];

bRand = RandomReal[{0.009, 0.02}];

mRand = RandomReal[{0.4, 0.65}];

f[t_] =
mRand EbRand mRand t

mRand

f0Rand
- 1 + EbRand mRand t

;

Newχ2 = Sum
datafun[t] - f[t]2

f[t]
, {t, 580};

teor = Table[f[t] /. fit, {t, 0, 580}]; (* theoretical *)

newρr = SpearmanRankTest[exp, teor, "TestStatistic"];

(* Spearsman rank coefficient *)

If[0 < Newχ2 < χ2, χ2 = Newχ2;
ρr = newρr;
f0 = f0Rand; b = bRand;

m = mRand;

Abort[]];



Show[ListPlot[DataForFit,

AxesLabel → {"t (min)", "OD"}, LabelStyle → Directive[15]],

Plot[f[t] /. fit, {t, 0, T}, PlotStyle → Pink]]

Print["χ2 = ", χ2, "\nρr = ", ρr, "\n f0 = ", f0, "\n b = ", b, "\n m = ", m, "\n"]

Out[47]=
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Results of another 5 fits done with the Monod function:

Culture 3, 0.100% Glucose

Culture 2, 0.200% Glucose Culture 3, 0.200% Glucose

73



Culture 2, 0.400% Glucose Culture 3, 0.400% Glucose
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