
Single-partition adaptive Q-learning: algorithm and
applications

João Pedro Estácio Gaspar Gonçalves de Araújo

Thesis to obtain the Master of Science Degree in

Mechanical Engineering

Supervisors: Prof. Miguel Afonso Dias de Ayala Botto
Prof. Mário Alexandre Teles de Figueiredo

Examination Committee

Chairperson: Prof. Paulo Jorge Coelho Ramalho Oliveira
Supervisor: Prof. Mário Alexandre Teles de Figueiredo

Member of the Committee: Prof. João Manuel Lage de Miranda Lemos

July 2020

ii

Dedicated to my mother and grandmother.

iii

iv

Acknowledgments

First and foremost, an acknowledgment is due to my supervisors, Professors Miguel Ayala Botto and

Mário Figueiredo, for their immense support and help over the past five months. This thesis would not

have been possible without their supervision.

I have a lot to thank my family for. First, to my mother, who spent countless hours studying with me

when I was little, laying the foundations of my success in College. Then, to my father, who fostered in me

the curiosity for investigation, and endured countless hours of non-sensical rambling (mainly composed

of half sentences) about this thesis. My brothers and sisters, in particular Francisco, who helped me

proofread this text several times, and for always being available for random questions about abstract

maths. Finally, my grandparents, for all their support.

Two persons who had a major impact on my life and to whom I owe much are Professors Yann Ollivier

and Isabelle Guyon, who were the first ones to introduce me to the field of Artificial Intelligence. A word

of appreciation is also due to the Calouste Gulbenkian Foundation, particularly to the members of the

scientific committee of the “Novos Talentos em Inteligência Artificial” Fellowship, who were among the

first to believe in me, and to my former supervisor, Professor Manuel Lopes, who guided my first steps

into Reinforcement Learning.

On an institutional level, I would like to thank CMA - Centro de Matemática e Aplicações, Faculdade

de Ciências e Tecnologia, Universidade Nova de Lisboa, for providing access to their computational

facilities, which were used to carry the scariest calculations presented in this thesis.

Last, but far from least, to my very good friends, who were always there to support me (without any

particular ordering; they know who they are): P.HS, ARS, P.CS, PGR, SJm, AdG, SJ, NS, ES, F, P, my

friends and colleagues from the University of Lisbon, from the volunteering camps, from the JdA, and

many others who made my university experience unforgettable. To all who inspired me to be who I am

today, thank you!

A special word of appreciation is also due to Miguel Rocha and Rafael Andrade, who in the middle

of a hard exam season helped me to revise this text.

v

vi

Resumo

A aprendizagem por reforço (AR) é uma área dentro da aprendizagem automática que estuda como

agentes podem aprender a levar a cabo uma tarefa sem serem explicitamente programados para o

fazer. Um conceito importante em AR é o de eficiência amostral: um algoritmo é eficiente se precisa

de poucas amostras para aprender uma determinada tarefa. Até há pouco tempo, admitia-se que

os algoritmos model-based eram mais eficientes que os model-free. Recentemente, foi demonstrado

que os algoritmos model-free também podem ser eficientes. Um dos últimos algoritmos desenvolvidos

é o adaptive Q-learning (AQL), o qual lida com espaços de estados e ações contínuos ao dividi-los

adaptativamente consoante as amostras recolhidas. O AQL é projectado para aprender políticas que

variam com o tempo. No entanto, muitos problemas (como o controlo de sistemas invariantes no tempo)

podem ser resolvidos satisfatoriamente com políticas invariantes no tempo. Esta dissertação introduz o

single-partition adaptive Q-learning (SPAQL), uma versão melhorada do AQL projetada para aprender

políticas invariantes no tempo. O SPAQL é avaliado empiricamente em quatro problemas, dois dos

quais da área do controlo. Os agentes SPAQL exibem melhor desempenho que os AQL, aprendendo

inclusive políticas mais simples. Para os problemas de controlo, o SPAQL com estado terminal (SPAQL-

TS, de terminal state) é introduzido e comparado juntamente com o SPAQL face ao método trust region

policy optimization (TRPO), um algoritmo de AR padrão para resolver problemas de controlo. Num

dos problemas (CartPole), o SPAQL e o SPAQL-TS demonstram uma maior eficiência amostral que o

TRPO.

Palavras-chave: aprendizagem por reforço, Q-learning, eficiência amostral, controlo

vii

viii

Abstract

Reinforcement learning (RL) is an area within machine learning that studies how agents can learn to

perform their tasks without being explicitly told how to do so. An important concept in RL is sample

efficiency: an algorithm is sample-efficient if it requires a low amount of samples to learn its task. Until

recently, it was thought that model-based RL algorithms were more sample-efficient than model-free

ones. This changed with recent developments in provably efficient model-free algorithms. One of the

latest algorithms developed is adaptive Q-learning (AQL), an efficient model-free algorithm that handles

continuous state and action spaces by adaptively partitioning them in a data-driven manner. By design,

AQL learns time-variant policies. However, many problems (such as control of time-invariant systems)

can be solved satisfactorily using time-invariant policies. This thesis introduces single-partition adaptive

Q-learning (SPAQL), an improved version of AQL designed to learn time-invariant policies. SPAQL is

evaluated empirically on four different problems, out of which two are control problems. SPAQL agents

perform better than AQL ones, while at the same time learning simpler policies. For the control problems,

SPAQL with terminal state (SPAQL-TS) is introduced, and, along with SPAQL, is compared to trust region

policy optimization (TRPO), an RL algorithm known to perform well in control problems. In one of the

control problems (CartPole), SPAQL and SPAQL-TS display a higher sample-efficiency than TRPO.

Keywords: reinforcement learning, Q-learning, sample efficiency, control

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xv

Nomenclature . xvii

Glossary . xix

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Objectives . 3

1.4 Thesis Outline . 3

1.5 Notation . 4

2 Background 5

2.1 Reinforcement Learning . 5

2.1.1 Markov Decision Processes . 5

2.1.2 Q-learning . 6

2.1.3 Reporting experiments . 8

2.2 Metric Spaces . 8

2.3 Literature Review . 9

3 Algorithms 11

3.1 Adaptive Q-learning . 11

3.2 Single partition adaptive Q-learning . 13

3.2.1 Auxiliary procedures . 15

3.2.2 Main algorithm . 15

3.3 Single partition adaptive Q-learning with terminal state . 17

4 Experiments 19

4.1 Proof of concept . 19

xi

4.1.1 Implementation . 19

4.1.2 Procedure and parameters . 20

4.1.3 Oil discovery . 20

4.1.4 Ambulance routing . 24

4.1.5 Discussion . 28

4.2 Control problems . 28

4.2.1 Implementation . 28

4.2.2 Procedure and parameters . 29

4.2.3 Pendulum . 30

4.2.4 CartPole . 32

4.2.5 Comparing AQL, SPAQL, and TRPO . 35

5 Conclusions 39

5.1 Achievements . 39

5.2 Future Work . 40

Bibliography 41

A Experimental results and figures for the oil and ambulance problems 47

A.1 Oil Problem with Quadratic Survey Function . 47

A.2 Oil Problem with Laplace Survey Function . 50

A.3 Ambulance Problem with Uniform Arrivals . 53

A.4 Ambulance Problem with Beta Arrivals . 55

B Illustration of the concept of domain 57

xii

List of Tables

1.1 Correspondence between RL and control notation used in this thesis. 4

4.1 Parameters for the scaling experiments in the oil and ambulance problems. 20

4.2 Average cumulative rewards and number of arms in the oil discovery problem. 23

4.3 Average cumulative rewards and number of arms in the ambulance problem. 26

4.4 Parameters for the scaling experiments in the Pendulum and CartPole problems. 29

4.5 Parameters for the Pendulum and CartPole experiments after choosing ξ. 29

4.6 Average cumulative rewards and number of arms in the Pendulum problem. 35

4.7 Average cumulative rewards and number of arms in the CartPole problem. 35

xiii

xiv

List of Figures

4.1 Effect of different scaling parameter values on the average cumulative reward for the oil

discovery problem. 22

4.2 Training curves, number of arms, and best single partition for the oil problem with quadratic

survey function (λ = 50). 22

4.3 Effect of different scaling parameter values on the average cumulative reward for the am-

bulance problem. 25

4.4 Training curves, number of arms, and best single partition for the ambulance problem with

uniform arrivals (c = 1). 26

4.5 Training curves, number of arms, and partitions for the best SPAQL and AQL agents

trained in the oil problem with Laplace survey function (λ = 1) and horizon H = 50. 27

4.6 Effect of different scaling parameter values on the average cumulative reward for the

Pendulum problem (with and without reward scaling). 31

4.7 Training curves and number of arms for the agents trained in the Pendulum system without

reward scaling. 32

4.8 Effect of different scaling parameter values on the average cumulative reward for the

CartPole problem. 34

4.9 Training curves and number of arms for the agents trained in the CartPole system. 35

4.10 Comparison between AQL, SPAQL, SPAQL-TS, and TRPO in the Pendulum system. . . . 36

4.11 Comparison between AQL, SPAQL, SPAQL-TS, and TRPO in the CartPole system. . . . 37

A.1 Comparison of the algorithms on the oil problem with quadratic survey function (λ = 1). . 48

A.2 Comparison of the algorithms on the oil problem with quadratic survey function (λ = 10). 49

A.3 Comparison of the algorithms on the oil problem with quadratic survey function (λ = 50). 49

A.4 Comparison of the algorithms on the oil problem with Laplace survey function (λ = 1). . . 51

A.5 Comparison of the algorithms on the oil problem with Laplace survey function (λ = 10). . 51

A.6 Comparison of the algorithms on the oil problem with Laplace survey function (λ = 50). . 52

A.7 Comparison of the algorithms on the ambulance problem with uniform arrival distribution

and only paying the cost to go (c = 0). 53

A.8 Comparison of the algorithms on the ambulance problem with uniform arrival distribution

and paying a mix between the cost to relocate and the cost to go (c = 0.25). 54

xv

A.9 Comparison of the algorithms on the ambulance problem with uniform arrival distribution

and paying only the cost to relocate (c = 1). 54

A.10 Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival distribution

and only paying the cost to go (c = 0). 55

A.11 Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival distribution

and paying a mix between the cost to relocate and the cost to go (c = 0.25). 56

A.12 Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival distribution

and paying only the cost to relocate (c = 1). 56

B.1 The initial ball (yellow ball on the left), and a blue covering of it (image on the right). . . . 58

B.2 A covering of a blue ball (red balls on the left), and the domains of the neighboring blue

balls (on the right). 58

B.3 The initial ball (on the left), and a covering of it (on the right). 58

xvi

Nomenclature

Greek symbols

α Learning rate.

λ Error tolerance (SPAQL-TS).

δ Probability of the regret bound failing.

π Policy

π?V , π
?
Q, π

? Optimal policy.

τ Temperature parameter for Boltzmann exploration.

τmin Temperature reset value (SPAQL).

ε Probability of picking an action at random in ε-greedy exploration.

ξ Scaling parameter of the upper confidence bounds.

Roman symbols

A Set of actions available to an agent interacting with a system.

D Distance function.

dom (B) Domain of ball B.

P Partition.

P Transition kernel.

Qh(x, a) Estimate of the Q-function value of pair (x, a) at time instant h.

S Set of system states.

Vh(x) Estimate of the value function of state x at time instant h.

a Action picked by the agent.

B Ball.

b, b(x, a) Bonus term of the upper confidence bound.

xvii

bξ(v) Bonus term of the upper confidence bound for AQL and SPAQL.

d Temperature doubling factor parameter (SPAQL).

dmax Maximum of all distances between all points in a given ball.

H Horizon (number of steps in one episode of a Markov decision process).

h Time step.

K Total number of training episodes.

N Number of evaluation rollouts.

n Number of times the parents of a ball have been split.

n(x,a) Number of times the state-action pair (x, a) has been visited.

Qπh(x, a) Q function (evaluated at pair (x, a)) at time instant h under policy π.

Q?h(x, a) Optimal Q function (evaluated at pair (x, a)) at time instant h under policy π.

R Reward function range.

r Reward.

r(B) Radius of ball B.

r(x, a) Reward function.

u Temperature increase parameter (SPAQL).

v, n(B) Number of times ball B has been visited.

V πh (x) Value function (evaluated at state x) at time instant h under policy π.

V ?h (x) Optimal value function (evaluated at state x) at time instant h under policy π.

x System state.

x′ State reached by choosing action a while at state x under transition kernel P.

x1 Initial state of an MDP.

xref Reference state to track.

RELEVANT(x) Set of relevant balls for state x.

Subscripts

h Time step.

v Number of times a ball has been visited.

Superscripts

k Training episode.

xviii

Acronyms

AQL Adaptive Q-learning

MDP Markov decision process

NBQL Net-based Q-learning

RL Reinforcement learning

RLSVI Randomized least-squares value iteration

SPAQL Single partition adaptive Q-learning

SPAQL-TS Single partition adaptive Q-learning with terminal state

TRPO Trust region policy optimization

UCB Upper confidence bound

xix

xx

Chapter 1

Introduction

Reinforcement learning (RL) is an area within machine learning that studies how agents (such as hu-

manoid robots, self-driving cars, or computer programs that play chess) can learn to perform their tasks

without being explicitly told how to do so. The problem can be posed as that of learning a mapping from

system states to agent actions. In order to do this, the agent observes and interacts with the system,

choosing which action to perform given its current state. By choosing a certain action, the system tran-

sitions to a new state, and the agent may receive a reward or a penalty. Based on these rewards and

penalties, the agent learns to assess the quality of actions. By setting the agent’s objective to be reward

maximization, it will learn to prefer good actions over bad ones. As an example, consider a robot that

stacks boxes. The system is the environment where the robot works, and the actions correspond to

moving, grabbing, and releasing the boxes. The robot may receive rewards for each box successfully

stacked, and may receive penalties for failing to stack a box, or knocking down the existing box stack.

The sum of all rewards and penalties received by the robot during its task is called the cumulative reward.

Maximizing this cumulative reward is the objective of RL [1]. This approach has led to many successful

applications of RL in areas such as control of autonomous vehicles [2], game playing [3, 4], healthcare

[5], and education [6], to name a few.

Existing RL methods can be divided into two main families: model-free and model-based. In model-

based methods, the agent either has access to or learns a model of the system, which it uses to plan

future actions. Although model-free methods are applicable to a wider array of problems, concerns

with the empirical performance of model-free methods have been raised in the past due to their sam-

ple complexity [7, 8]. Two additional problems, besides sample complexity, are: the trade-off between

exploration and exploitation, and dealing with Markov decision processes (MDP) with continuous state

and action spaces. Several solutions to deal with these two latter problems have been proposed. For

example, exploration and exploitation can be balanced using a stochastic policy, such as ε-greedy [1].

MDPs with continuous state and action spaces can be dealt with by using function approximators, such

as neural networks.

1

1.1 Motivation

Recently, some theoretical work has addressed the sample complexity of model-free methods. Infor-

mally, sample complexity can be defined as the number of samples that an algorithm requires in order

to learn. Sample-efficient algorithms require fewer samples to learn, and thus are more desirable to

develop and use. There are several approaches to sample-efficient RL [9]. However, until recently,

it was not known whether model-free methods could be proved to be sample-efficient. This changed

when Jin et al. [10] proposed a Q-learning algorithm with upper confidence bound (UCB) exploration

for discrete tabular MDPs, and showed that it had a sample efficiency comparable to randomized least-

squares value iteration (RLSVI), a model-based method proposed by Osband et al. [11]. Later, Song

and Sun [12] extended that algorithm to continuous state-action spaces. Their algorithm, net-based

Q-learning (NBQL), requires discretizing the state-action space with a grid of fixed step size. This cre-

ates a trade-off between memory requirements and algorithm performance. Coarser discretizations are

easier to store, but the algorithm may not have sufficient resolution to achieve satisfactory performance.

Finer discretizations yield better performance, but involve higher memory requirements. In order to ad-

dress this trade-off, Sinclair et al. [13] proposed adaptive Q-learning (AQL). AQL introduces adaptive

discretization into NBQL, starting with a single ball covering the entire state-action space, and then

adaptively discretizing it in a data-driven manner. This adaptivity ensures that the relevant parts of the

state-action space are adequately partitioned, while keeping coarse discretizations in regions that are

not so relevant.

The papers mentioned in the previous paragraph consider time-variant value functions and learn

time-variant policies. This means that a state-action space partition needs to be kept for each (discrete)

time step. However, for many practical purposes, time-invariant policies are sufficient to solve the prob-

lem satisfactorily (albeit not optimally). This is particularly true in problems with time-invariant dynamics,

such as the classical Pendulum problem.

1.2 Contributions

With this motivation, this thesis proposes single-partition adaptive Q-learning (SPAQL), an improved

version of AQL specifically tailored to learn time-invariant policies. SPAQL is evaluated on two sim-

ple example problems, as proof of concept. It is then evaluated in two classical control problems, the

Pendulum and the CartPole, which are harder due to their more complex state and action spaces. This

thesis also introduces single-partition adaptive Q-learning with terminal state (SPAQL-TS), an improved

version of SPAQL, which uses concepts from control theory to achieve a better performance in the prob-

lems under study. Both SPAQL and SPAQL-TS perform better than AQL on both problems. Furthermore,

SPAQL-TS manages to solve the CartPole problem, thus earning a place in the OpenAI Gym Leader-

board, alongside other state-of-the-art methods.

In the CartPole problem, both SPAQL and SPAQL-TS show higher sample efficiency than trust re-

gion policy optimization (TRPO), a standard RL algorithm known for satisfactorily solving a wide variety

2

of control tasks [14]. Furthermore, SPAQL policies are tables that map states to actions, thus being

clearly interpretable. TRPO uses neural networks, which means that the learned policy is a black box.

The difficulty in interpreting neural networks, as well as their large number of parameters, have stimu-

lated the scientific community to develop more interpretable and compact policy representations (see,

for example, recent work by Kubalík et al. [15]). The empirical results presented in this thesis show that

SPAQL and SPAQL-TS contribute to this effort of developing algorithms that efficiently learn interpretable

control policies.

To the best of the author’s knowledge, this is the first time that efficient Q-learning algorithms (i. e.,

those similar to the ones developed by Jin et al. [10], Song and Sun [12], and Sinclair et al. [13]) are

evaluated in classic control problems.

1.3 Objectives

The objectives of this thesis are

• to introduce single-partition adaptive Q-learning (SPAQL), an efficient model-free episodic RL al-

gorithm designed and tailored to learn time-invariant policies;

• to introduce SPAQL with terminal state (SPAQL-TS), an improved version of SPAQL that leverages

concepts from control theory in order to achieve a better performance in control tasks;

• to evaluate SPAQL by comparing it to existing baselines (random policy and AQL) in two example

problems (oil discovery and ambulance routing), as proof of concept;

• to evaluate SPAQL and SPAQL-TS by comparing it to existing baselines (random policy and TRPO)

in two control problems (Pendulum and CartPole);

• to provide a set of guidelines for reporting the results of RL experiments.

1.4 Thesis Outline

Chapter 2 provides the background for this thesis. It recalls some background concepts in RL (Markov

decision processes, Q-learning, and experiment reporting) and metric spaces, and closes with a litera-

ture review on recent advances in efficient model-free RL algorithms.

Chapter 3 contains descriptions of the algorithms studied and developed in this thesis. It starts by

briefly describing AQL, introducing concepts and definitions which are used to introduce SPAQL, the

main contribution of this thesis. The chapter closes with the description of SPAQL-TS.

Chapter 4 describes the experiments performed to empirically evaluate SPAQL and SPAQL-TS. It

is divided into two sections. In the first one, SPAQL is evaluated in two example problems, as proof

of concept. The second one regards the evaluation of SPAQL and SPAQL-TS in two control problems.

Each section contains a high-level description of the experiments’ implementation, the experimental

procedure followed, and the parameters used. Results are then presented and analyzed.

3

Finally, the main results are summarized and conclusions drawn in Chapter 5. Further work directions

are also proposed.

1.5 Notation

Although they work essentially on the same problems, the RL and control communities use different

notations [16]. This thesis builds upon RL work (particularly that by Sinclair et al. [13]), and therefore

the RL notation is kept for consistency in Chapters 2 (Background), 3 (Algorithms), and Section 4.1

(oil discovery and ambulance routing problems). However, since its main audience is the control com-

munity, Section 4.2 (Pendulum and CartPole problems) uses the control notation. Table 1.1 lists the

symbols used to denote the problem variables in the following sections, along with their usual control

counterparts.

RL Control Definition
Chapters 2 and 3, and Section 4.2

Section 4.1
x x State vector of the system / Linear position (when

ambiguous, a distinction will be made)
o Observation vector of the system (simulates the sensors

available). In the RL sections, it is assumed that o := x

xref xref Reference state being tracked in a control problem
a u Control action∑

h rh(x, a) −J Cumulative reward (in control, it is more common to
refer to cost J)

v NC Number of times a ball has been visited
u NC Temperature increase factor in SPAQL
d NC Temperature doubling period factor in SPAQL
h t Discrete time instant

Table 1.1: Correspondence between the notation used in the following sections. “NC” (No Correspon-
dence) means that the respective symbols only appear in Chapters 2 and 3, and Section 4.1 (RL).

4

Chapter 2

Background

This chapter recalls some basic concepts of RL and metric spaces, relevant for the subsequent presen-

tation. For a more detailed background in RL, the reader is referred to the classic book by Sutton and

Barto [1] (or the notes by Szepesvári [17]). The chapter closes with a literature review on sample-efficient

model-free RL algorithms.

2.1 Reinforcement Learning

2.1.1 Markov Decision Processes

This thesis adopts the Markov decision process (MDP) framework for modeling problems. All MDPs

considered have finite horizon, meaning that episodes (a simulation of the MDP for a certain number of

steps) terminate after a fixed number of discrete time steps.

Formally, an MDP is a 5-tuple (S,A, H,P, r), where:

• S denotes the set of system states;

• A is the set of actions of the agent interacting with the system;

• H is the number of steps in each episode (also called the horizon);

• P is the transition kernel, which assigns to each triple (x, a, x′) the probability of reaching state

x′ ∈ S, given that action a ∈ A was chosen while in state x ∈ S; this is denoted as x′ ∼ P(· | x, a)

(unless otherwise stated, x′ represents the state to which the system transitions when action a is

chosen while in state x under transition kernel P);

• r : S × A → R ⊆ R is the reward function, which assigns a reward (or a cost) to each state-action

pair (Sinclair et al. [13] use R = [0, 1]).

In this thesis, the only limitation imposed on the state and action spaces is that they are bounded.

Furthermore, it is assumed that the MDP has time-invariant dynamics, meaning that neither the transition

5

kernel nor the reward function vary with time. There is previous work, such as that by Lecarpentier and

Rachelson [18], that uses the term “stationary” when referring to time-invariant MDPs.

The system starts at the initial state x1. At each time step h ∈ {1, ...,H} of the MDP, the agent

receives an observation xh ∈ S, chooses an action ah ∈ A, receives a reward rh = r(xh, ah), and

transitions to state xh+1 ∼ P(· | xh, ah). The objective of the agent is to maximize the cumulative reward∑H
h=1 rh received throughout the H steps of the MDP. This is achieved by learning a function π : S → A

(called a policy) that maps states to actions in a way that maximizes the accumulated rewards. This

function is then used by the agent when interacting with the system. If the policy is independent of the

time step, it is said to be time-invariant.

2.1.2 Q-learning

One possible approach for learning a good (eventually optimal) policy is Q-learning. The idea is to

associate with each state-action pair (x, a) a number that expresses the quality (hence the name Q-

learning) of choosing action a given that the agent is in state x. The value of a state x at time step h is

defined as the expected cumulative reward that can be obtained from that state onward, under a given

policy π:

V πh (x) := E

[
H∑
i=h

r(xi, π(xi))
∣∣∣ xh = x

]
. (2.1)

This is equivalent to averaging all cumulative rewards that can be obtained under policy π until the

end of the MDP, given that at time step h the system is in state x. By taking into account all rewards

until the end of the MDP, the value function provides the agent with information regarding the rewards

in the long run. This is relevant, since the state-action pairs yielding the highest rewards in the short

run may not be those that yield the highest cumulative reward at the end of the MDP. However, if H is

large enough and there is a large number of state-action pairs, it may be impossible (or impractical) to

compute the actual value of V πh (x) for all 1 ≤ h ≤ H and x ∈ S, and some approximation has to be

used instead. For example, a possible estimator samples several paths at random, and averages the

cumulative rewards obtained [1].

The value function V πh : S → R provides information regarding which states are more desirable.

However, it does not take into account the actions that the agent might choose in a given state. The Q

function,

Qπh(x, a) := r(x, a) + E

[
H∑

i=h+1

r(xi, π(xi))
∣∣∣ xh = x, ah = a

]
= r(x, a) + E

[
V πh (x′)

∣∣∣ x, a], (2.2)

takes this information into account since its domain is the set of all possible state and action pairs. This

allows the agent to rank all possible actions at state x according to the corresponding values of Q at time

step h, and then make a decision regarding which action to choose. Notice that the second expectation

in the previous equation is with respect to x′ ∼ P(· | x, a).

6

The functions V ?h (x) = supπ V
π
h (x) and Q?h(x, a) = supπ Q

π
h(x, a) are called the optimal value function

and the optimal Q function, respectively. The policies π?V and π?Q associated with V ?h (x) and Q?h(x, a) are

one and the same, π?V = π?Q = π?; this policy is called the optimal policy [1]. There may be more than

one optimal policy, but they will always share the same optimal value and optimal Q function. These

functions satisfy the so-called Bellman equation

Q?h(x, a) = r(x, a) + E[V ?h (x′) | x, a]. (2.3)

Q-learning is an algorithm for computing estimates Qh and Vh of the Q function and the value

function, respectively. The updates to the estimates at each time step are based on Equation 2.3,

according to

Qh(x, a)← (1− α)Qh(x, a) + α(r(x, a) + Vh(x′)), (2.4)

where α ∈ [0, 1] is the learning rate. This update rule reaches a fixed point (stops updating) when

the Bellman equation is satisfied, meaning that the optimal functions were found. Actions are chosen

greedily according to the argmax policy

π(x) = argmaxaQh(x, a). (2.5)

The greediness of the argmax policy may lead the agent to become trapped in local optima. To

escape from these local optima, stochastic policies such as ε-greedy or Boltzmann exploration can

be used. The ε-greedy policy chooses the greedy action with probability 1 − ε (where ε is a small

positive number), and picks any action uniformly at random with probability ε [1]. Boltzmann exploration

transforms the Qh estimates into a probability distribution (using softmax), and then draws an action at

random. It is parametrized by a temperature parameter τ , such that, when τ → 0, the policy tends to

argmax, whereas, for τ → +∞, the policy tends to one that picks an action uniformly at random from the

set of all possible actions.

Finding and escaping from local optima is part of the exploration/exploitation trade-off. Another way

to deal with this trade-off is to use upper confidence bounds (UCB). Algorithms that use UCB add an

extra term b(x, a) to the update rule

Qh(x, a)← (1− α)Qh(x, a) + α(r(x, a) + Vh(x′) + b(x, a)), (2.6)

which models the uncertainty of the Q function estimate. An intuitive way of explaining UCB is to say

that the goal is to choose a value of b(x, a) such that, with high probability, the actual value of Q?h(x, a)

lies within the interval [Qh(x, a),Qh(x, a) + b(x, a)]. A very simple example is b(x, a) = 1/n(x,a), where

n(x,a) is the number of times action a was chosen while the agent was in state x. As training progresses

and n(x,a) increases, the uncertainty associated with the estimate of Qh(x, a) decreases. This decrease

affects the following training iterations since, eventually, actions that have been less explored will have

higher Qh(x, a) due to the influence of term b(x, a), and will be chosen by the greedy policy. This results

7

in exploration.

In the finite-horizon case (finite H), the optimal policy usually depends on the time step [19]. One

of the causes for this dependency is the constraint V πH+1(x) = 0 for all x ∈ S (as mentioned by Sinclair

et al. [13] and Sutton and Barto [1, Section 6.5]), since it forces the value function to be time-variant.

The SPAQL algorithm, which learns time-invariant policies, deals with this by ignoring this constraint.

For more information, refer to Section 3.2.

2.1.3 Reporting experiments

Recently, Henderson et al. [20] called for attention to the significance and reproducibility of results in RL.

In their paper, they comment on the lack of standardization in reporting Deep Reinforcement Learning

results, enumerate the sources of variance, and suggest guidelines for future research. Colas et al.

[21] suggest the use of statistical power analysis to compare two different RL algorithms, and also to

choose the number of different random seeds to use. This thesis follows the recommendations from

both papers, to the extent allowed by the available computational resources.

When presenting learning curves, the average cumulative reward is used as a measure of learning.

The 95% confidence interval is plotted around the average curve. A large number of tests is carried to

narrow the confidence intervals, and ensure statistical significance of the results. The same standard

applies when plotting the number of arms used by the agents.

When a relation of order is claimed between the performance of two individual algorithms, it is based

on the result of a Welch t-test with 5% significance level [14, 21].

2.2 Metric Spaces

A metric space is a pair (X,D) where X is a set and D : X ×X → R is a function (called the distance

function) satisfying the following properties:

(∀x, y ∈ X) D(x, y) = 0⇔ x = y,

(∀x, y ∈ X) D(x, y) = D(y, x),

(∀x, y, z ∈ X) D(x, z) ≤ D(x, y) +D(y, z),

(∀x, y ∈ X) D(x, y) ≥ 0.

(2.7)

A ball B with center x and radius r is the set of all points in X which are at a distance strictly lower

than r from x, B(x, r) = {b ∈ X : D(x, b) < r}. The diameter of a ball is defined as diam(B) =

supx,y∈B D(x, y). The diameter of the entire space is denoted dmax = diam(X). Next, the concepts of

covering, packing, and net are recalled.

Definition 2.2.1 (Sinclair et al. [13]). An r-covering of X is a collection of subsets of X that covers X

(i.e., any element of X belongs to the union of the collection of subsets) and such that each subset has

diameter strictly less than r.

8

Definition 2.2.2 (Sinclair et al. [13]). A set of points P ⊂ X is an r-packing if the distance between any

two points in P is at least r. An r-net of X is an r-packing such that X ⊆ ∪x∈PB(x, r).

2.3 Literature Review

There has been a considerable amount of work on sample-efficient model-free RL algorithms. For a

thorough list of references, the reader is referred to the introductory sections of the papers by Sinclair

et al. [13] and Touati et al. [22]. More recently, Neustroev and de Weerdt [23] introduced a unified

framework for studying sample-efficient UCB-based algorithms in the tabular setting, which includes

some of the previous algorithms as particular cases. With a few exceptions (notably the works of Sinclair

et al. [13] and Neustroev and de Weerdt [23]), this line of work has been mostly theoretical, with little to

no empirical validation.

An efficient Q-learning algorithm with UCB in the infinite-horizon setting has been proposed by Wang

et al. [24]. Their algorithm learns time-invariant policies, but only considers the tabular case, which

means that it does not work with continuous state-action spaces, unlike the algorithm proposed in this

thesis.

Previous works have used UCB to deal with exploration. However, early tests with SPAQL showed

that it was not enough, and Boltzmann exploration was introduced. This exploration technique is a

standard tool in RL [25], and it has been seen performing better than other strategies, such as UCB, in

selected problems [26, 27].

Boltzmann exploration has its drawbacks, namely the existence of multiple fixed points [28]. To deal

with this issue, alternative softmax-based operators have been proposed by Asadi and Littman [29]

and Pan et al. [30]. The approach followed in this thesis uses the classical softmax function, while

keeping track of the best policy found so far, therefore clipping the instability associated with Boltzmann

exploration.

The main challenge involved with the use of Boltzmann exploration is setting the temperature sched-

ule. A straightforward approach, used by Tijsma et al. [27], is to set a constant temperature, which can

be found using grid search or any other tuning method. Another approach is to decrease (anneal) the

temperature as some function of the training iteration [30]. The approach herein followed is the opposite

one: start with a low temperature, and gradually increase it if the performance is not improving. This

allows a gradual shift from exploitation to exploration. Once the policy improves, the temperature is re-

set to a low value, and the procedure is repeated. This is similar to cyclical annealing schedules, which

have already been used in supervised learning applications [31–36]. In all these methods, the cycle

length is controlled by at least one user-defined parameter. In the algorithm proposed in this thesis, the

cycle reset occurs automatically, when an increase in performance is detected. The user only has to

provide two parameters: one parameter controlling the rate at which the temperature heads towards the

maximum value; another that works similarly to a doubling period factor. It also makes more sense to

talk about cold restarts instead of warm restarts, since at each restart the temperature is set to the min-

imum value. Yamaguchi et al. [37] use a combination of UCB and Boltzmann exploration as exploration

9

strategy. Unlike the approach followed in this thesis, they use a monotonically decreasing schedule for

the temperature.

There exists abundant literature on the connections and applications of RL to control. For a collection

of references on the topic, the reader is referred to the surveys by Kaelbling et al. [38], Polydoros and

Nalpantidis [39], and Busoniu et al. [40].

The previously mentioned papers by Jin et al. [10], Song and Sun [12], Sinclair et al. [13], Touati et al.

[22], Neustroev and de Weerdt [23], and Wang et al. [24] either lack experimental validation or evaluate

their algorithms on other types of problems (such as finding the maximum of a function, or navigating

a grid world [13, 23]). As stated in Section 1.2, this thesis innovates by evaluating efficient Q-learning

algorithms in control problems.

10

Chapter 3

Algorithms

This chapter introduces single-partition adaptive Q-learning (SPAQL), the main contribution of this the-

sis. It starts with a brief description of adaptive Q-learning (AQL), the algorithm on which SPAQL is

based. For a detailed description, please refer to the original paper by Sinclair et al. [13].

SPAQL with terminal state (SPAQL-TS) is described at the end of the chapter.

3.1 Adaptive Q-learning

Adaptive Q-learning (AQL) is a Q-learning algorithm for finite-horizon MDPs with continuous state and

action spaces. It keeps a state-action space partition for each time step. While this is fundamental when

dealing with time-variant MDPs, for time-invariant ones it may result in an excessive use of memory

resources.

The pseudocode for AQL is shown in Algorithm 1. For each variable, superscripts denote the current

episode (training iteration) k, and subscripts denote the time step h. Intuitively, the algorithm partitions

a collection P1 = {P1
h : h = 1, . . . ,H} of initial balls (one per time step h), each containing the entire

state-action space, into smaller balls. For each ball B, it keeps an estimate of the value of the Q-function,

denoted by Qk
h(B) (estimate of Q at time step h of episode k).

A ball Bi is said to be relevant for the current state xkh (state at time step h of episode k) if there exists

at least one pair (xkh, a) ∈ S × A such that (xkh, a) ∈ dom (Bi), where dom (Bi) is the domain of ball Bi.

The domain of a ball is defined as

dom (B) = B \

 ⋃
B′∈P:r(B′)<r(B)

B′

. (3.1)

In other words, the domain of a ball B is the set of all points b ∈ B which are not contained inside any

other ball of strictly smaller radius than r(B). This concept is illustrated in Appendix B. In the examples

presented in this thesis, it is ensured that either dom (B) = B, or dom (B) = ∅. Each case corresponds

to before and after splitting ball B, respectively.

The set of all relevant balls at a given time step h of a given episode k is denoted by RELEVANTkh(xkh)

11

Algorithm 1 Adaptive Q-learning ([13])

1: procedure ADAPTIVE Q-LEARNING(S,A,D, H,K, δ)
2: Initiate H partitions P1

h for h = 1, . . . ,H each containing a single ball with radius dmax and Q1
h

estimate H
3: for each episode k ← 1, . . .K do
4: Receive initial state xk1
5: for each step h← 1, . . . ,H do
6: Select the ball Bsel by the selection rule Bsel = argmaxB∈RELEVANTkh(x

k
h)
Qk
h(B)

7: Select action akh = a for some (xkh, a) ∈ dom (Bsel)
8: Play action akh, receive reward rkh and transition to new state xkh+1

9: Update Parameters: v = nk+1
h (Bsel)← nkh(Bsel) + 1

10:
11: Qk+1

h (Bsel)← (1− αv)Qk
h(Bsel) + αv(r

k
h + Vk

h+1(xkh+1) + bξ(v)) where
12:
13: Vk

h+1(xkh+1) = min(H, max
B∈RELEVANTkh+1(x

k
h+1)

Qk
h+1(B)) (see Section 3.1, Equation 3.3)

14: if nk+1
h (Bsel) ≥

(
dmax
r(Bsel)

)2
then SPLIT BALL(Bsel, h, k)

15: procedure SPLIT BALL(B, h, k)
16: Set B1, . . . Bn to be an 1

2r(B)-packing of dom (B), and add each ball to the partition Pk+1
h (see

Definition 2.2.2)
17: Initialize parameters Qk+1

h (Bi) and nk+1
h (Bi) for each new ballBi to inherit values from the parent

ball B

(or simply RELEVANT(xkh)). Given the current state xkh, the algorithm selects the relevant ball with the

highest estimate of the Q-function, denoted by Bsel. It then picks an action uniformly at random from

within that ball. The number of times a ball has been visited at time step h is denoted nkh. This number

carries across training iterations, as per line 9 of Algorithm 1. If the number of times a ball has been

visited is above a certain threshold of times, it is then partitioned into smaller balls, thus refining the

state-action space partition in the regions where most visits have occurred. This threshold is defined as

(dmax/r(Bsel))
2, where dmax is the radius of the initial ball covering the entire state-action space, and

r(Bsel) is the radius of the currently selected ball. If each child ball has half the radius of its parent, then

r(B) = dmax/2
n, where n is the number of times that ball B’s parents have been split. Substituting in

the threshold formula, the equivalent expression 4n is obtained [13].

The update rule for the estimates of Qk
h is given by

Qk+1
h (Bsel)← (1− αv)Qk

h(Bsel) + αv(r
k
h + Vk

h+1(xkh+1) + bξ(v)), (3.2)

where bξ(v) is the UCB bonus term, v is a simpler way to denote the number of times that the currently

selected ball Bsel has been visited, and αv is the learning rate. Both bξ(v) and αv are defined below.

The k + 1 superscript in Qk+1
h means that the update to the estimate carries to the next episode, not

having any effect on the current one (similar to what was previously explained for nkh).

The value function is defined as

Vk
h+1(xkh+1) =

min(H, max

B∈RELEVANTkh+1(x
k
h+1)

Qk
h+1(B)) 1 ≤ h < H

0 h = H

. (3.3)

12

The value of the terminal state, Vk
H+1(x) (where H is the horizon), is defined to be 0 for all states x ∈ S.

The trade-off between exploration and exploitation is handled using an upper confidence bound

(UCB) of the estimate of the Q-function, bξ(v), defined as

bξ(v) =
ξ√
v
, (3.4)

where ξ is called the scaling parameter of the upper confidence bounds, and is a user-defined parame-

ter. Sinclair et al. [13] provide an expression for the value of ξ,

ξ = 2

√
H3 log

(
4HK

δ

)
+ 4Ldmax, (3.5)

where K is the number of training iterations, δ is a parameter related to the high-probability regret bound

[13], L is the Lipschitz constant of the Q-function, and dmax is the radius of the initial ball covering the

entire state-action space.

The learning rate αv is set according to

αv =
H + 1

H + v
. (3.6)

The previous description of the algorithm can be summed up as the application of three rules:

• Selection rule: given the current state xkh, select the ball with the highest value of Qk
h (out of the

ones which are relevant), and from within that ball pick an action akh uniformly at random.

• Update parameters: increment nh(B), the number of times ball B has been visited (the training

iteration k is not relevant and can be dropped), and update Qk+1
h (B) according to Equation 3.2

(k + 1 is notation for carrying the Q-function estimate over to the next episode).

• Re-partition the space: when a ball B has been visited more than (dmax/r(B))
2 times, cover it

with a 1
2r(B)-Net of B; each new ball inherits the number of visits and the Q-function estimate from

its parent ball.

3.2 Single partition adaptive Q-learning

The proposed SPAQL algorithm builds upon AQL [13]. The change proposed aims at tailoring the

algorithm to learn time-invariant policies. The main difference is that only one state-action space partition

is kept, instead of one per time step; i.e., Qk
h := Qk and Vk

h := Vk, where k denotes the current training

iteration. The superscript k is used to distinguish between the estimates being used in the update rules

(denoted Qk and Vk) and the updated estimates (denoted Qk+1 and Vk+1). In order to simplify the

notation, the superscript may be dropped when referring to the current estimate (denoted Q and V).

13

Algorithm 2 Auxiliary functions for SPAQL

1: procedure EVALUATE AGENT(P,S,A, H,N)
2: Collect N cumulative rewards from ROLLOUT(P,S,A, H)
3: Return the average cumulative reward
4: procedure ROLLOUT(P,S,A, H)
5: Receive initial state x1
6: for each step h← 1, . . . ,H do
7: Pick the ball Bsel ∈ P by the selection rule Bsel = argmaxB∈RELEVANT(xh)Q(B)
8: Select action ah = a for some (xh, a) ∈ dom (Bsel)
9: Play action ah, record reward rh, and transition to new state xh+1

10: Return cumulative reward
∑
h

rh

11: procedure SPLIT BALL(B)
12: Set B1, . . . Bn to be an 1

2r(B)-packing of dom (B), and add each ball to the partition P (see
Definition 2.2.2)

13: Initialize parameters Q(Bi) and n(Bi) for each new ball Bi to inherit values from the parent ball
B

14: procedure BOLTZMANN SAMPLE(B, τ)
15: Normalize values in B by dividing by max(B) (this helps to prevent overflows)
16: Sample a ball B from B by drawing a ball at random with probabilities following the distribution

P (B = Bi) ∼ exp(Q(Bi)/τ)

Algorithm 3 Single-partition adaptive Q-learning

1: procedure SINGLE-PARTITION ADAPTIVE Q-LEARNING(S,A,D, H,K,N, ξ, τmin, u, d)
2: Initialize partitions P and P ′ containing a single ball with radius dmax and Q = H
3: Initialize τ to τmin
4: Calculate agent performance using EVALUATE AGENT(P,S,A, H,N) (Algorithm 2)
5: for each episode k = 1, . . . ,K do
6: Receive initial state xk1
7: for each step h = 1, . . . ,H do
8: Get a list B with all the balls B ∈ P ′ that contain xkh
9: Sample the ball Bsel using BOLTZMANN SAMPLE(B, τ) (Algorithm 2)

10: Select action akh = a for some (xkh, a) ∈ dom (Bsel)
11: Play action akh, receive reward rkh, and transition to new state xkh+1

12: Update Parameters: v = n(Bsel)← n(Bsel) + 1
13:
14: Q(Bsel)← (1− αv)Q(Bsel) + αv(r

k
h + V(xkh+1) + bξ(v)) where

15:
16: V(xkh+1) = min(H, max

B∈RELEVANT(xkh+1)
Q(B)) (see Section 3.2)

17: if n(Bsel) ≥
(

dmax
r(Bsel)

)2
then SPLIT BALL(Bsel) (Algorithm 2)

18: Evaluate the agent using EVALUATE AGENT(P ′,S,A, H,N) (Algorithm 2)
19: if agent performance improved then
20: Copy P ′ to P (keep the best agent)
21: Reset τ to τmin
22: Decrease u using some function of d (for example, u← ud, assuming d < 1)
23: else
24: Increase τ using some function of u (for example, τ ← uτ)
25: if more than two splits occurred then
26: Copy P to P ′ (reset the agent)
27: Reset τ to τmin

14

3.2.1 Auxiliary procedures

Before describing the algorithm, it is necessary to define some auxiliary functions (Algorithm 2). A

measure of an agent’s performance is obtained by performing a full episode under the current policy,

and recording the cumulative reward. This is called a rollout, and is performed using function ROLLOUT.

The arguments that are given as input to this function are the ones describing the problem (state and

action spaces S and A, and horizon H) and the agent (partition P, with estimates Q). Since there

might be random elements in the environment (stochastic transitions, for example) and in the agent

(stochastic policies), it is necessary to estimate the average performance of the agent by doing several

rollouts and averaging the cumulative rewards. This estimation is done by function EVALUATE AGENT.

Besides the input arguments required for the ROLLOUT function, EVALUATE AGENT also requires the

number of rollouts N to perform.

Functions BOLTZMANN SAMPLE and SPLIT BALL are used during training for action selection and

ball splitting, respectively. Function BOLTZMANN SAMPLE implements Boltzmann exploration. It has as

arguments a list B of balls which contain the given state x ∈ S, and a temperature parameter τ . It then

draws a ball at random from B according to the distribution induced by the values of Q and temperature

τ . Function SPLIT BALL receives as input a ball B and covers it with smaller balls of radius r(B)/2,

where r(B) is the radius of the ball being split.

3.2.2 Main algorithm

The algorithm (Algorithm 3) keeps two copies of the state-action space partition. One (P) is used to

store the best performing agent found so far (performance is defined as the average cumulative reward

obtained by the agent). The other copy of the partition (P ′) is modified during training. At the end of

each training iteration, the performance of the agent with partition P ′ is evaluated. If it is better than the

performance of the previous best agent (with partition P), the algorithm keeps the new partition (P ← P ′)

and continues training. However, if performance decreases, then, at any moment, it is able to restart the

agent and retrain from the previously found best one. In this way, the algorithm ensures that at the end

of training the best agent which was found is returned. Another advantage of keeping only the partition

associated with the best performance is that it forces an increase in the number of arms to correspond

to an improvement in performance, thus preventing over-partitioning of the state-action space. At first,

both partitions contain a single ball B with radius dmax (which ensures it covers the entire state-action

space). The value of Q(B) is optimistically initialized to H, the episode length.

Each training iteration is divided into two parts. In the first one, a full episode (consisting of H

time steps) is played. The values of Q are updated in each time step, and splitting occurs every time

the criterion is met. At the end of the episode, the agent is evaluated over N runs, and the average

cumulative reward computed. The second part of the training iteration modifies the policy according to

the performance of the agent after training for an episode. To balance exploration with exploitation, a

Boltzmann exploration scheme with an adaptive schedule is used. A temperature parameter τ allows

varying the policy between a deterministic argmax policy (for τ → 0) and a purely random one (for

15

τ → +∞). If the agent currently being trained achieved a better performance than previous agents, it

may be somewhere worth exploiting. The value of τ is reset to a user-defined τmin (≈ 0) in order to

ensure that the policy becomes greedy (argmax). If the agent performs worse than the best agent, it

may be because it is stuck in a local optimum, or simply in an uninteresting region. The value of τ is thus

increased to make the policy behave in a more exploratory way. Empirical tests show that increasing

τ by multiplying it by a factor u > 1 works well, although other schemes may also yield good results.

The same tests also show that it is recommendable to normalize the values of Q before generating

the probability distribution (see the definition of function BOLTZMANN SAMPLE in Algorithm 2), and vary

τ between a minimum of τmin = 0.01 (greedy) and a maximum of 10 (random), at which updates to τ

saturate.

Updates to the Q-function estimate Q are done according to

Qk+1(Bsel)← (1− αv)Qk(Bsel) + αv
(
rkh + Vk(xkh+1) + bξ(v)

)
. (3.7)

The main difference between Equation 3.7 and Equation 3.2 is that the estimates of the value function

Vk(xkh+1) and Q-function Qk+1(Bsel) are time-invariant in Equation 3.7. The remaining terms retain their

meaning from Equation 3.2: rkh is the reward obtained during training iteration k on time step h, αv is the

learning rate (Equation 3.6), bξ(v) is the bonus term related with the upper confidence bound (defined

according to Equation 3.4, with the value of ξ set by the user), and v is the number of times ball Bsel has

been visited.

The value function is defined according to

Vk(xkh+1) = min(H, max
B∈RELEVANT(xkh+1)

Qk(B)). (3.8)

To simplify the notation, the subscript and superscript in RELEVANTkh were omitted in Equation 3.8 and in

Algorithm 3. There are two differences from Equation 3.3 to Equation 3.8. The first one is that the value

function in Equation 3.8 is time-invariant. The second one is that this definition also holds for the value

of the final state, while Equation 3.3 sets Vk
H+1(x) = 0, for all x. The reason for this second difference is

that this boundary condition in Equation 3.3 generates a dependency of the value function on the time

step, that should be avoided when learning a time-invariant policy.

Summarizing, the SPAQL algorithm includes the three rules used by the original AQL algorithm:

• Selection rule: select a relevant ball B for xkh by drawing a sample from a distribution induced

by the values of Q(B) and τ (breaking ties arbitrarily). Select any action akh to play such that

(xkh, a
k
h) ∈ dom (B).

• Update parameters: increment n(B) and update Q(B) according to Equation 3.7 (with the differ-

ence that the same Q function is considered at all time steps).

• Re-partition the space: if n(B) ≥ (dmax/r(B))
2, cover dom (B) with a 1

2r(B)-Net of dom (B). Each

new ball Bi in the net inherits the Q(Bi) and n(Bi) values from its parent ball B. This rule is kept

equal to the original one proposed by Sinclair et al. [13].

16

Two new rules are introduced in SPAQL to balance exploration and exploitation:

• Adapt the temperature: if the agent’s performance did not improve, the temperature τ is in-

creased. If the performance improved, the policy is reset to greedy. As training progresses, and

more visits are required to split existing balls, the temperature increase rate factor u is decreased.

This keeps the policy greedy for a longer time, and allows more splits to occur.

• Reset the agent: as training progresses, existing balls will be split. If a ball contains an optimum,

further splits of that ball are required in order for the agent to get closer to it. If the agent perfor-

mance has not increased after two splits (either in the same ball or on two different balls), then the

agent and the policy are reset (P ′ ← P, and τ is set to the minimum).

3.3 Single partition adaptive Q-learning with terminal state

When designing a controller, the goal is to have the final state of the system to be as close as possible

to a user-defined state (reference). Denoting this reference state by xref , it is possible to modify the

value function used in SPAQL (Equation 3.8) to take this information into account. The intuition behind

this idea is to decrease the value of the states based on their distance to the reference state. There

are several possible ways to do this, depending on the properties sought for the new value function.

One such possibility is to weight the value function with a Gaussian with mean xref and user-defined

standard deviation λ. The resulting value function,

Vk(xkh+1) = exp

(
−
(
D(xkh, xref)

λ

)2
)

min

(
H, max

B∈RELEVANT(xkh+1)
Q(B)

)
, (3.9)

weights the SPAQL value function according to the distance D(xkh, xref) to the reference state (error).

The weight given to the error is controlled by the parameter λ > 0. Setting λ to a low value forces the

algorithm to search for policies that minimize the error as much as possible, while setting λ to a large

value allows the algorithm to search for more tolerant policies.

This modified version of SPAQL is referred to as SPAQL with terminal state (SPAQL-TS).

This very simple idea allows the introduction of some domain knowledge into the concept of quality.

Instead of defining quality solely as a blind search for high cumulative rewards, this modified value func-

tion introduces the notion of error, and correlates high-quality states with low error values. In principle,

this should allow for more efficient training.

17

18

Chapter 4

Experiments

In this chapter, SPAQL is tested in the oil and ambulance example problems (used by Sinclair et al. [13])

as proof of concept. Along with SPAQL-TS, it is then tested in two control problems. A random policy

and AQL agents are used as baseline for comparison in all problems. In the control problems, trust

region policy optimization (TRPO) is also used as baseline.

The code associated with all the experiments presented in this thesis is available at https://github.

com/jaraujo98/SinglePartitionAdaptiveQLearning

4.1 Proof of concept

In this section SPAQL is compared to AQL in the Oil Discovery and Ambulance Relocation problems,

used by Sinclair et al. [13]. The state and action space in both problems is S = A = [0, 1]. The metric

used is the∞ product metric D((x, a), (x′, a′)) = max{|x− x′|, |a− a′|}.

A paper describing SPAQL, along with this experimental evaluation, is available on the arXiv [41].

4.1.1 Implementation

For SPAQL agents, the implementation of the algorithm uses the tree data structure used by Sinclair

et al. [13] to implement partition Pkh , but only keeps one tree per agent, instead of one per time step.

The initial ball has center (0.5, 0.5) and radius1 0.5 (a square of side 1 centered at (0.5, 0.5)), allowing it

to cover tightly the entire state-action space. Each split divides each ball into four equal balls, each with

half of the radius of the parent ball (i. e., each square is split into four equal smaller squares).

Ball selection is done using a recursive algorithm. Since AQL uses argmax as policy, it only needs

to check whether the state is contained in the ball, while keeping track of the ball which has the highest

Q value. SPAQL uses a stochastic policy, and therefore it needs to check if the state-action pair is

contained in the ball.

1Although the algorithm specifies that the initial radius should be dmax = 1, this would end up covering a lot of space outside
the state-action space. Experiments show that initializing the radius to the tighter 0.5 value results in faster learning.

19

https://github.com/jaraujo98/SinglePartitionAdaptiveQLearning
https://github.com/jaraujo98/SinglePartitionAdaptiveQLearning

The temperature parameter τ schedule is controlled by parameters u and d. The temperature is

increased by multiplying by u (a real number greater than 1), and clipped at 10 to avoid numerical

problems. When a better agent is found, u is updated to be ud (where d is slightly smaller than 1). In this

way, more iterations are required before the policy becomes random, allowing for more exploitation and

splitting.

4.1.2 Procedure and parameters

The parameters that are common to both algorithms are the number of training iterations (episodes)

K, the episode length H, and the scaling value of the confidence bounds ξ. For each environment,

the number of agents trained (to estimate average cumulative rewards) was the one found in the code

provided with [13] (25 agents in the oil problem, and 50 in the ambulance one).

The SPAQL algorithm has two additional parameters, u and d, which control the temperature sched-

ule. These were set to be 2 and 0.8, respectively, since they are seen to be acceptable over a wide range

of experiments. The value of τmin was set to 0.01. For a value of u = 2, this means that 10 iterations

are enough to turn this policy into a random one (since 0.01× 210 ≈ 10, value at which the temperature

saturates).

In order to compare both algorithms, the impact of the scaling parameter ξ is studied. A fixed set of

13 scaling values

ξ ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5}, (4.1)

is used for both scenarios. Table 4.1 contains the parameters used in the experiments whose results are

reported in Figures 4.1 and 4.3. The average cumulative reward at the end of training was calculated

over the several agents for each algorithm, along with the 95% confidence intervals. The trials that

resulted in higher average cumulative rewards are used for the remaining analysis.

Parameter Value
Episode length H 5
Number of Oil episodes (training iterations) K 5000
Number of Oil agents 25
Number of Ambulance episodes (training iterations) K 2000
Number of Ambulance agents 50
Number of evaluation Rollouts N 20

Table 4.1: Parameters for the scaling experiments in the oil and ambulance problems.

4.1.3 Oil discovery

Setup

In this problem, described by Mason and Watts [42], an agent surveys a 1D map in search of hidden

“oil deposits”. It is similar to a function maximization problem, where a cost is incurred every time a

20

new estimate is made. This cost is proportional to the distance travelled. The state space is the set

of locations that the agent has access to (S = [0, 1]). Since each action corresponds to the position of

the agent in the next time step, the state space will match the action space (A = [0, 1]). The transition

kernel is Ph(x′ | x, a) = 1[x′=a], where 1[A] is the indicator function (evaluates to 1 if condition A is true,

and to 0 otherwise). The reward function is rh(x, a) = max{0, f(a) − |x − a|}, where f(a) ∈ [0, 1] is

called the survey function. This survey function encodes the location of the deposits (f(a) = 1 means

that the exact location has been found). The same survey functions considered by Sinclair et al. [13] are

considered in this thesis:

• quadratic survey function, f(x) = 1− λ(x− c)2, with λ ∈ {1, 10, 50};

• Laplace survey function, f(x) = e−λ|x−c|, with λ ∈ {1, 10, 50}.

The deposit is placed at approximately c ≈ 0.75 (the actual location is 0.7 + π/60). It is clear that the

optimal policy is to choose the location of the deposit at every time step. Following this policy, an initial

penalty is paid when moving from 0 to c, but in the remaining steps the maximum reward is always

obtained. Using this optimal policy, the cumulative reward can be bounded by

1− |0− c|+ (H − 1)× 1 = H − c. (4.2)

Applying this formula to the case under study (with H = 5 and c ≈ 0.75), the maximum reward is found

to be approximately 4.25.

Results

The effect of the scaling parameter ξ on both AQL and SPAQL agents trained in the oil problem is shown

in Figure 4.1.

The Laplace survey function results in more concentrated rewards. As the value of λ is increased,

the rewards become even more concentrated. This makes it harder for both types of agents to approach

the maximum cumulative reward estimated previously (4.25). The AQL agents outperform the SPAQL

agents for every value of ξ when λ ∈ [10, 50]. When λ = 1, half of the ξ values result in higher rewards

for the AQL agents, while the other half results in higher rewards for the SPAQL agents.

The quadratic survey function can also concentrate rewards, but does so in a more relaxed way than

the Laplace survey function. This allows both types of agents to approach the maximum cumulative

reward, even when λ = 50. On average, SPAQL agents perform better than the AQL ones (higher

average cumulative rewards and lower standard deviations). However, there always exists at least one

scaling value for which the AQL agents achieve higher cumulative rewards than the SPAQL ones.

Two main conclusions can be drawn from Figure 4.1. The first one is that, for both types of agents,

the value of ξ should be picked from the interval [0, H/3]. The second one is that SPAQL agents are

less sensitive to changes in ξ than AQL agents (as seen by the size of the shaded regions). This is

not surprising, since AQL agents rely solely on UCB for exploration, while SPAQL agents use UCB plus

Boltzmann exploration.

21

Figure 4.1: Comparison of the effect of different scaling parameter values on the average cumulative
reward for the oil discovery problem with survey functions described in Section 4.1.3. Each dot cor-
responds to the average of the rewards obtained by the 25 agents after 5000 training iterations, and
the error bars display the corresponding 95% confidence interval. Dashed lines represent the average
cumulative reward calculated over the 13 scaling values listed in Section 4.1.2, and the shaded areas
represent the corresponding standard deviation.

Figure 4.2: Average cumulative rewards, number of arms, and best SPAQL agent partition for the agents
trained in the oil problem with reward function r(x, a) = max{0, 1− 50(x− c)2 − |x− a|}. Shaded areas
around the solid lines represent the 95% confidence interval.

Shifting the focus from the scaling parameter to the learning process, Figure 4.2 shows the average

cumulative rewards obtained by the SPAQL and the AQL agents for the oil problem with quadratic survey

function (λ = 50), along with the partition learned by the best SPAQL agent. Looking at this partition, it

can be seen that the neighborhoods of points (0, 0.75) and (0.75, 0.75), which correspond to the optimal

policy, have been thoroughly partitioned, meaning that the agent located and exploited the location of

22

λ (Quadratic)
1 10 50

Average cumulative
reward

Random 2.50± 0.06 0.99± 0.06 0.44± 0.04

AQL 4.26± 0.01 4.22± 0.01 4.19± 0.04

SPAQL 4.17± 0.00 4.21± 0.00 4.18± 0.03

Average number
of arms

AQL 155.72± 4.47 140.60± 2.86 167.84± 2.09

SPAQL 42.04± 1.90 35.08± 1.10 59.08± 4.52

λ (Laplace)
1 10 50

Average cumulative
reward

Random 1.95± 0.05 0.33± 0.03 0.08± 0.02

AQL 4.21± 0.01 4.07± 0.04 3.29± 0.11

SPAQL 3.90± 0.00 3.61± 0.07 1.81± 0.26

Average number
of arms

AQL 158.36± 2.83 195.08± 2.70 357.08± 7.12

SPAQL 39.28± 1.89 67.12± 4.89 57.28± 7.55

Table 4.2: Average cumulative rewards and number of arms (±95% confidence interval) in the oil dis-
covery problem. The best performing agent for each value of λ is shown in bold. When the Welch t-test
does not find a significant statistical difference between two performances, both are shown in bold.

the oil deposit. In the first training iterations, the SPAQL agents increase the cumulative rewards faster

than the AQL agents. Both types of agents stabilize at the same level of cumulative reward, with the

difference that the SPAQL agents use around one third of the arms of the AQL agents. The results of

the other tests in the oil problem are presented in Table 4.2, and the respective figures are shown in

Appendix A. The SPAQL agents always increase their cumulative rewards faster than the AQL agents

during the initial training iterations. However, in most cases (especially for the Laplace survey function,

Figures A.4, A.5, and A.6), they are eventually surpassed by the AQL agents. Looking at the associated

partitions, it is clear that this happens due to a lack of exploitation by the SPAQL agents, especially when

the value of λ is low (meaning that the rewards are high over a wide area). Tuning the values of u and

d may be a way to increase the cumulative rewards in SPAQL. However, it is clear in every case that

the SPAQL agents find the location of the oil deposit. The difference between AQL cumulative rewards

and SPAQL cumulative rewards at the end of training is due to the coarseness of the SPAQL partition

and the structure of the reward function, which may greatly amplify very small differences in actions. For

example, when using the Laplace survey function with λ = 50, choosing action c results in reward 1,

while choosing action 0.99c (an error of 1%) results in a reward of ≈ 0.61, a decrease of almost 40%.

With the quadratic survey function, the same relative error of 1% in the action leads to a 0.5% reduction

in reward. This explains why SPAQL agents perform as well as AQL agents when using the quadratic

survey function with λ = 50, but only achieve half of the average cumulative reward when using the

Laplace survey function. These relatively small differences in rewards, however, are compensated by

the lower number of arms.

23

4.1.4 Ambulance routing

Setup

This problem, described by Brotcorne et al. [43], is a stochastic variant of the previous one. The agent

controls an ambulance that, at every time step, has to travel to where it is being requested. The agent is

also given the option to relocate after fulfilling the request, paying a cost to do so. Sinclair et al. [13] use

a transition kernel defined by Ph(x′|x, a) ∼ Fh, where Fh denotes the request distribution for time step

h. The reward function is rh(x′|x, a) = 1− [c|x− a|+ (1− c)|x′− a|], where c ∈ [0, 1] models the trade-off

between the cost of relocation and the cost of traveling to serve the request.

It is not mandatory that Fh varies with the time step. However, if that is so, then in principle a time-

invariant policy would not be a good choice for solving the problem. In this thesis only time-invariant

scenarios (Fh := F) are considered. The experimental setups considered are

• F = Uniform(0, 1), for c ∈ {0, 0.25, 1} (modelling disperse request distributions);

• F = Beta(5, 2), for c ∈ {0, 0.25, 1} (where Beta(a, b) is the Beta probability distribution, modelling

concentrated request distributions).

The optimal policy depends on the value of c. Sinclair et al. [13] suggest two heuristics for both

extreme cases (c ∈ {0, 1}). The “No Movement” heuristic is optimal when c = 1. In this case, the

cost paid is only the cost to relocate, and therefore if the agent does not relocate it does not incur on

any cost. This policy corresponds to the line x = a in the state-action space. The “Mean”2 heuristic is

optimal when c = 0. In this case, the cost paid is only the cost of traveling to meet a request. Therefore,

the agent should relocate to where the next request is most likely to appear. The empirical mean µ̂ of

distribution F is a good estimator of this location. This policy corresponds to the horizontal line a = µ̂ in

the state-action space.

Intuitively, the optimal policies for the values of c in between 0 and 1 will be a mix of these two optimal

policies.

Results

The effect of the scaling parameter ξ in the ambulance problem is seen in Figure 4.3. Unlike the oil

problem (Figure 4.1), SPAQL agents perform better than AQL ones, independently of the value of ξ.

The exception is the case c = 1, where tuning of ξ allows the AQL agents to match the cumulative

rewards of SPAQL agents. The average cumulative reward over the scaling values is always higher for

the SPAQL agents, and the corresponding standard deviations are negligible when compared to those

of AQL agents, meaning that in this problem the SPAQL agents have a very low sensitivity to the value

of ξ.

The full experimental results are presented in Table 4.3, and the respective images in Appendix A.

Unlike the oil problem, in the ambulance problem the SPAQL agents are clearly and consistently better

than the AQL ones, reaching higher cumulative rewards earlier in training, with much fewer arms (in
2The original authors probably meant “Mean” instead of “Median”.

24

Figure 4.3: Comparison of the effect of different scaling parameter values on the average cumulative
reward for the ambulance problem with arrival distributions described in Section 4.1.4. Each dot cor-
responds to the average of the rewards obtained by the 50 agents after 2000 training iterations, and
the error bars display the corresponding 95% confidence interval. Dashed lines represent the average
cumulative reward calculated over the 13 scaling values listed in Section 4.1.2, and the shaded areas
represent the corresponding standard deviation.

some cases with only one fifth of the arms). This is consistent with the results in [27], who observed

that Boltzmann exploration outperforms other exploration strategies in stochastic problems with rewards

in the range [0, 1]. Figure 4.4 shows the cumulative rewards for an ambulance problem with a uniform

arrival distribution and c = 1 (only relocation is penalized). Recall that the optimal policy is the “No

Movement” one, which corresponds to the line a = x. This line appears finely partitioned, as would be

expected. Keeping c = 1, but changing to a Beta(5, 2) distribution (Figure A.12), it can be seen that the

partition is now focused on the top right quadrant, where new arrivals are most likely to appear.

For this heuristic, the objective is to zero in on the diagonal as precisely as possible. As was already

seen in the oil problem, AQL agents are better than SPAQL ones at this zeroing in. This is particularly

seen in Figure A.12, where the SPAQL partition is coarser than the AQL partitions in time steps 3 and 5.

It is this difference that allows AQL agents to catch up to SPAQL agents. However, despite both types

of agents stabilizing at the same cumulative reward level, SPAQL agents use much fewer arms, which

gives them a competitive advantage over AQL agents.

For c = 0, the action under the “Mean” heuristic would be a = 0.5 for the uniform arrival case, and

a ≈ 0.7 for the Beta(5, 2) arrivals. These two policies correspond to horizontal lines, which could have

been expected to be seen in the partitions in Figures A.7 and A.10, respectively. The neighborhoods

25

Figure 4.4: Average cumulative rewards, number of arms, and best SPAQL agent partition for the
agents trained in the ambulance problem with uniform arrival distribution and reward function r(x, a) =
max{0, 1− |x− a|} (c = 1). Shaded areas around the solid lines represent the 95% confidence interval.

c (Uniform)
0 0.25 1

Average cumulative
reward

Random 3.41± 0.03 3.40± 0.03 3.46± 0.03

AQL 4.33± 0.01 4.33± 0.02 4.90± 0.02

SPAQL 4.46± 0.00 4.47± 0.00 4.91± 0.00

Average number
of arms

AQL 244.10± 2.51 248.24± 2.18 238.40± 1.84

SPAQL 32.26± 2.11 29.44± 2.03 50.32± 2.76

c (Beta)
0 0.25 1

Average cumulative
reward

Random 3.38± 0.03 3.41± 0.03 3.48± 0.03

AQL 4.32± 0.02 4.32± 0.02 4.92± 0.01

SPAQL 4.47± 0.01 4.47± 0.00 4.91± 0.00

Average number
of arms

AQL 244.04± 3.14 250.1± 2.30 239.54± 1.95

SPAQL 31.96± 2.21 29.56± 1.97 50.02± 1.28

Table 4.3: Average cumulative rewards and number of arms (±95% confidence interval) in the ambulance
problem. The best performing agent for each value of c is shown in bold. When the Welch t-test does
not find a significant statistical difference between two performances, both are shown in bold.

of those lines are more partitioned than other areas of the state-action space, but not as much as

the diagonal line in Figure 4.4. Even though the partitions shown are coarser than the corresponding

ones shown in [13], the SPAQL agents reach higher rewards. This means that further partitions of the

state-action space do not increase the average cumulative reward, and AQL agents may be needlessly

over-partitioning the state-action space. This illustrates the remark made in Section 3.2.2 regarding

prevention of over-partitioning.

Increasing the episode length

With an episode length of H = 5, it is easy for small differences in actions to yield noticeable differences

in cumulative reward, as noted previously in the oil problem with Laplace survey function. Therefore, two

agents of each algorithm were trained in an oil experiment with Laplace survey function with λ = 1, but

26

Figure 4.5: Average cumulative rewards, number of arms, and partitions for the best SPAQL and AQL
agents trained in the oil problem with Laplace survey function (λ = 1) and horizon H = 50. Shaded
areas around the solid lines represent the 95% confidence interval.

with H = 50 time steps. This means that the maximum cumulative reward scales from 4.25 to 49.25, and

that the SPAQL policy will be greedy for more time steps, allowing for existing balls to split further. The

result is shown in Figure 4.5. Both SPAQL agents stabilize at a maximum before 2000 training iterations.

The AQL agents, on the other hand, have a much fuzzier training curve, take longer to reach the best

rewards, and use almost ten times more arms. Furthermore, looking at the partition for the first time step,

it is clear that the action therein taken is not the optimal one. Even so, it should also be noticed that,

given enough training iterations, the information about the global optimum (which is already available at

time step 25) would eventually propagate all way until time step 1, thus yielding the optimal policy. This

is a clear advantage of AQL over SPAQL. Given a time-invariant problem, if one of the time steps finds

the optimal actions, the update rule will eventually propagate this information to all other time steps.

However, this comes at a high cost in terms of memory (number of arms) and time (training iterations).

It is important to highlight that, in the first 1000 training iterations, the cumulative reward for the AQL

agents decreases steadily, while the number of arms is increasing. Even if given enough training itera-

tions to allow the cumulative rewards to reach the maximum level, the arms associated with suboptimal

policies will remain inside the partition, wasting memory and computational resources. This shows that,

even for medium-sized episodes, AQL agents may not be a good choice for time-invariant problems,

as growth in the number of arms is not necessarily followed by an increase in cumulative reward, and

suboptimal arms remain in the policy even after a better one has been found.

27

4.1.5 Discussion

In almost all experiments, the SPAQL agents are less sensitive to the scaling parameter ξ (the exception

being the oil problem with Laplace survey function). Recalling that the scaling parameter controls the

value of the bonus term, which is introduced to deal with the exploitation/exploration trade-off, this lower

sensitivity to the scaling parameter is probably due to SPAQL using Boltzmann exploration to deal with

the same trade-off. The lower sensitivity to this parameter, along with the fact that most environments

shown tend to favor lower scaling values, suggest that the scaling term could probably be removed from

SPAQL (by setting it to 0). However, this would reduce SPAQL to Q-learning with Boltzmann exploration,

which has not been proved to be sample-efficient. Therefore, the final recommendation of this section

with regards to the choice of the scaling value ξ is to choose a non-zero value lower than H/3.

As a final note on the scaling parameter, recall Equation 3.5 for the expression of ξ in terms of the

other training variables. Neglecting the term proportional to the Lipschitz constant L, setting H = 5, K =

1000, and considering a low value of δ (for example 0.1), the value obtained for the scaling parameter

is larger than 80. This goes against the experimental evidence presented, which points towards smaller

values of the scaling parameter being preferable over large ones, even in the AQL agents. It also

exceeds H, which is the maximum value that Q(x, a) is allowed to have. A bonus term of 80 in an

environment where the episode length is 5 would have no effect other than saturating the updates to

the value function. In future work, it would be interesting to understand why this happens, and if the

expression of the bonus term can be modified in order for it to be bounded by H.

4.2 Control problems

In this section, AQL, SPAQL, and SPAQL-TS are tested and compared on the Pendulum and CartPole

problems of OpenAI Gym [44]. To close the section, these three algorithms are compared against TRPO

[8], an RL algorithm known to perform well on these two problems [14].

Throughout this section, the control notation is adopted. Refer to Table 1.1 in Section 1.5 for the

correspondence between the notation used in the previous sections and the notation used in the ones

that follow.

4.2.1 Implementation

The state-action spaces for the Pendulum and CartPole problems are described in Sections 4.2.3

and 4.2.4, respectively. The data structures implemented to store the partitions used by the agents

assume that the state-action pairs would be converted into a standard space (namely [−1, 1]3 × [−1, 1]

for the Pendulum, and [−1, 1]4 × {0, 1} for the CartPole). The reason for using these standard spaces is

that both the state-action space of the Pendulum and the state space of the CartPole problems can be

tightly covered by a ball with radius 1 centered at the origin. The finite action set of the CartPole prob-

lem, {0, 1}, has to be dealt with separately. After checking if the state is within the selected ball, the

implementation asserts that the action chosen is contained within the action set associated with the

28

same ball. If the ball only has one possible action (the action set is a singleton), the state-action pair can

only be contained within that ball if the action is the one associated with that ball. As in Section 4.1.1, a

tree data structure is used to store the partitions, and ball selection is done using a recursive algorithm.

4.2.2 Procedure and parameters

Similarly to what was done in for the oil discovery and ambulance routing problems, the effect of the

scaling parameter ξ on AQL and SPAQL is studied for the Pendulum and CartPole problems. For each

algorithm and scaling value, 20 agents were trained for 100 iterations. By definition, the episode length

on both systems is 200 [44]. The number of rollouts N used to evaluate each agent was set to 20. The

scaling values used are based on the ones used in Section 4.1.2, scaled according to the change in

horizon length (from H = 5 to H = 200),

ξ ∈ {0.4, 4, 10, 20, 30, 40, 50, 60, 70, 80, 120, 160}. (4.3)

As a baseline, the effect of setting the scaling parameter ξ to 0 is also studied. This disables the upper

confidence bounds, turning both algorithms into AQL algorithms with Boltzmann exploration.

For SPAQL and SPAQL-TS, the values of τmin, u (SPAQL parameter, not to be confused with the

control action), and d are set to 0.01, 2, and 0.8, respectively. For SPAQL-TS, the value of λ is set to

1.2. Table 4.4 contains the parameters used in the experiments reported in Figures 4.6 and 4.8. The

average cumulative reward at the end of training was calculated over the several agents, along with the

95% confidence intervals.

After the values of ξ which resulted on higher average cumulative rewards were identified, a respec-

tive number of 20 agents were trained for 2000 iterations. In order to check for problem resolution (refer

to Section 4.2.4), the CartPole agents were evaluated 100 times instead of 20. A summary of these

parameters is listed in Table 4.5.

Parameter Value
Episode length H 200
Number of scaling episodes (training iterations) K 100
Number of agents 20
Number of evaluation rollouts N 20

Table 4.4: Parameters for the scaling experiments in the Pendulum and CartPole problems.

Parameter Value
Episode length H 200
Number of episodes (training iterations) K 2000
Number of agents 20
Number of evaluation rollouts N (Pendulum) 20
Number of evaluation rollouts N (CartPole) 100

Table 4.5: Parameters for the Pendulum and CartPole experiments after choosing ξ.

29

4.2.3 Pendulum

Setup

The objective is to drive a pendulum with length l = 1m and mass m = 1kg to the upright position

by applying a torque on a joint at one of its ends. The state of the system is the angular position of

the pendulum with the vertical axis, θ, and the angular velocity θ̇ of the pendulum. This can be written

compactly as x = [θ, θ̇]T . The control action u is the value of the torque applied (which can be positive

or negative, to indicate direction). The observation o = [cθ, sθ, θ̇]
T is a 3D vector whose entries are the

cosine (cθ) and sine (sθ) of the pendulum’s angle, and the angular velocity [44]. The observation vector

simulates the sensors available to measure the state variables of the system, and is part of the definition

of the OpenAI Gym problem. There is no distinction between state and observation spaces in Chapter 3,

but it is clear that Sinclair et al. [13] have the observation space in mind when they mention state space

(since the samples used by the algorithms must necessarily come from the observation space). The

angular velocity saturates at −8 and 8, and the control action saturates at −2 and 2. The cost to be

minimized (which, from an RL point of view, is equivalent to a negative reward) is given by [44]

J =

H∑
t=1

normalize(θt)
2 + 0.1θ̇2t + 0.001(u2t), (4.4)

where normalize(·) is a function that maps an angle into its principal argument (i. e., a value in]− π, π]).

AQL and SPAQL were designed with the assumption that the rewards were in the interval [0, 1] (which

implies that Vk(o) ∈ [0, H], for all observations o). The effect of different cost structures is assessed

by training the algorithms on the actual system (with rewards ranging from approximately −16 to 0) and

on a system with rewards scaled to be in the interval [0, 1]. The UCB bonus term (Equation 3.4) can be

expected to play an important part in the original problem, since it may balance the negative reward by

making the term rkt + bξ(v) in Equations 3.2 and 3.7 always positive during training.

The state-action space of this problem (as observed by the agent) is

S ×A = ([−1, 1]× [−1, 1]× [−8, 8])× [−2, 2]. (4.5)

In order to simplify the implementation (Section 4.2.1), this space is mapped to a standard space

([−1, 1]4). The angular velocity (θ̇ ∈ [−8, 8]) is divided by 8, and then passed to the agent. The agent

then picks a control action u ∈ [−1, 1]. Before this action is sent to the simulation, it is multiplied by 2.

The∞ product metric (used by the agent) is written as

D((x, u), (x′, u′)) = max
{
|cθ − cθ′ |, |sθ − sθ′ |,

|θ̇ − θ̇′|
8

, |u− u′|
}
. (4.6)

Since the agent only sees the state-action pairs in the standard space [−1, 1]4, the control action it picks

is already contained in the interval [−1, 1]. It is the interface’s task to scale this control action back to

the action space of the problem. Since the control action is already correctly scaled, the component

associated with the control action u in Equation 4.6 does not have to be divided by 2.

30

Figure 4.6: Comparison of different scaling parameter values on the average cumulative reward for the
Pendulum system (with and without reward scaling). Each dot corresponds to the average of the rewards
obtained by the 20 agents after 100 training iterations, and the error bars display the corresponding 95%
confidence interval. Dashed lines represent the average cumulative reward calculated over the scaling
values listed in Section 4.2.2, and the shaded areas represent the corresponding standard deviation.

For SPAQL-TS, the reference observation oref (denoted xref in Section 3.3) is set to [1, 0, 0]T , corre-

sponding to reference state [θref , θ̇ref]T = [0, 0]T .

Results

The results in Figure 4.6 show that the scaling parameter has little impact on the three algorithms.

Setting the scaling values ξ to 0 seems to be beneficial to both SPAQL and SPAQL-TS, meaning that

Boltzmann exploration suffices to handle this problem. Although 100 iterations is a small number, it is

already clear that both algorithms are learning (i. e., the policies perform better than random ones), with

SPAQL learning more than AQL. There is no difference between the two variants of SPAQL. Reward

scaling does not greatly impact the results. Despite the difference in cumulative reward axes scales, the

relative positions of the different algorithms in the plots with and without reward scaling remain the same.

A possible explanation for the similarity between the learning curves with and without reward scaling is

that the optimistic initialization of the Q-function manages to absorb the effect of the negative rewards.

The result of training for 2000 iterations without reward scaling is shown in Figure 4.7. The average

performance and number of arms at the end of training are recorded in Table 4.6. Both AQL and SPAQL

distance themselves from the random policy, with SPAQL and SPAQL-TS performing better than AQL.

The average number of arms of the AQL agents (1.95× 105) is two orders of magnitude higher than the

average number of arms of the SPAQL and SPAQL-TS agents (1.28× 103 and 1.08× 103, respectively),

despite its lower performance. This exemplifies the problem of using time-variant policies to deal with

time-invariant problems. Applying the Welch test [21] to SPAQL and SPAQL-TS with a significance level

of 5%, there is not enough evidence to support the claim that SPAQL is better than SPAQL-TS, and vice

versa.

31

Figure 4.7: Average cumulative rewards and number of arms for the agents trained in the Pendulum sys-
tem without reward scaling. Shaded areas around the solid lines represent the 95% confidence interval.

4.2.4 CartPole

Setup

The cartpole system consists of a pole with length l = 1m and massm = 0.1kg attached to a cart of mass

m = 1kg [45]. The state vector considered is the cart’s position x and velocity ẋ, and the pole’s angular

position with the vertical axis θ and angular velocity θ̇. In order to distinguish the position x from the

state vector, in this section the state vector is denoted as x = [x, ẋ, θ, θ̇]T . Unlike the Pendulum system,

in the CartPole system, the agent has direct access to the state variables. A simulation of the problem is

termed an episode. An episode terminates when one of the following conditions is met [44]: the episode

length (200) is reached; the cart position leaves the interval [−2.4, 2.4] meters; the pole angle leaves the

interval [−12, 12] degrees.

The goal is to keep the simulation running for as long as possible (the 200 time steps). Only two

actions are allowed (“push left” and “push right”, with a force of 10N). The cost J is −
∑T
t=1 1, where

T ≤ H is the terminal time step [44]. This is equivalent to a reward of 1 for each time step, including the

terminal one (T). According to the OpenAI Gym documentation, the problem is considered solved when

the average cost is lower than or equal to −195 (or the cumulative reward is greater than or equal to

195) over 100 consecutive trials. The concept of “solved” is used as an entry requirement for the OpenAI

Gym Leaderboard, which serves as a tool for comparing RL algorithms [44].

The state-action space of this problem (as observed by the agent) is [44]

S ×A =

(
[−4.8, 4.8]× R×

[
−24π

180
,

24π

180

]
× R

)
× {0, 1}. (4.7)

This space is mapped to a standard [−1, 1]4 × {0, 1} space. For the cart position x and pole angle θ

(first and third state variables, respectively), the mapping is done in a similar way as was done with the

angular velocity of the Pendulum (divide by the maximum value). Their range is twice the one mentioned

in the termination conditions ([−2.4, 2.4] meters and [−12π/180, 12π/180] radians, respectively), in order

to capture the terminal observation [44]. Cart and pole velocities are allowed to assume any real value.

32

To bound them, the sigmoid function (shifted and rescaled) is used

φm(y) =
2

1 + exp(−2my)
− 1. (4.8)

Parameter m controls the slope at the origin, and can be used to include some domain knowledge.

For example, the largest linear distance that the cart can travel without terminating an episode is 2.4 −

(−2.4) = 4.8m, and the time discretization step for this system is 0.02. Therefore, the maximum absolute

velocity which is reasonable to expect the cart to have is 4.8/0.02 = 240m/s. This leads to mẋ = 1/240 as

a reasonable value for m when bounding the cart velocity. Following a similar reasoning, a reasonable

value for m when bounding the pole’s angular velocity is mθ̇ = 1/21.

The∞ product as metric for the CartPole problem is written as

D((x, u), (x′, u′)) =

= max

{
|x− x′|

4.8
, |φmẋ(ẋ)− φmẋ(ẋ′)|, |θ − θ

′|
24π/180

, |φmθ̇ (θ̇)− φmθ̇ (θ̇′)|, 2× 1[u 6=u′]

}
, (4.9)

where 1[A] is the indicator function (defined previously in Section 4.1.3). For SPAQL-TS, the reference

state xref is set to [0, 0, 0, 0]T .

This problem differs from the previous one in two important aspects. First, the rewards are already

normalized. Second, while in the Pendulum problem the set of possible actions is a real interval ([−2, 2]),

in this problem the set of possible actions is finite (there are only two possible actions). In a certain sense,

the Pendulum problem is akin to a regression problem, while the CartPole is akin to a classification one.

While in regression problems the objective is to learn a continuous mapping from inputs to outputs, in

classification problems the objective is to learn a partition of an input space. Given the nature of AQL

and SPAQL, it would be reasonable to assume that they would perform better in the CartPole problem

than in the Pendulum one. However, the CartPole problem also has a higher dimensional state-action

space, which poses an additional challenge.

Results

The effect of the scaling parameter ξ on the CartPole problem is shown in Figure 4.8, and leads to two

observations. The first one is that disabling the upper confidence bounds (setting ξ = 0) results in a

great decrease in SPAQL performance, highlighted by the wide orange area. This negative effect is also

seen in AQL. When ξ = 0, AQL performs worse than a random policy, and SPAQL performs as well as a

random policy. Setting the scaling parameter to a relatively low value (such as 0.4) immediately solves

this problem. SPAQL-TS is not affected by this. Besides this first outlier (ξ = 0) in AQL and SPAQL,

the effect of the scaling parameter on the three algorithms is not significant. The experimental evidence

presented here supports the suggestion from Section 4.1.5 of using non-zero scaling values lower than

H/3.

The second observation regarding Figure 4.8 is that the AQL policies are barely distinguishable from

33

Figure 4.8: Comparison of different scaling parameter values on the average cumulative reward for the
CartPole system. Each dot corresponds to the average of the rewards obtained by the 20 agents after
100 training iterations, and the error bars display the corresponding 95% confidence interval. Dashed
lines represent the average cumulative reward calculated over the scaling values listed in Section 4.2.2,
and the shaded areas represent the corresponding standard deviation.

random ones, independently of ξ. This may be due to the curse of dimensionality. With a 5D state-action

space, every time a split occurs, 32 new balls are created3. The updates to the values of the Q-function

of these balls become independent. Updating one of those 32 balls will lead to learning something

related to that state. However, the remaining 31 balls will remain random (equally likely to pick one of

the two actions). This problem can be considered as a variant of the Coupon Collector Problem [46].

Assuming that the state-action space is visited uniformly at random, we wish to know how many visits

are needed in order to be sure that each ball was visited at least once. This number is bounded4 by

Θ(n log(n)), where n is the number of balls in the partition. Given that n grows exponentially with the

dimension of the state-action space, the number of visits required will also grow exponentially. In AQL,

we need to multiply this number of visits by H, since a different partition is kept for each time step, and

they are updated independently. This argument seems to indicate that the practical sample efficiency of

AQL does not scale well with the dimension of state-action space.

The training curves for the three algorithms are shown in Figure 4.9. The average performance and

number of arms at the end of training are recorded in Table 4.7. While in the Pendulum system the AQL

agents were able to distinguish themselves from the random policy, for the CartPole system, this does

not happen. There are fluctuations in the performance of AQL, although no improvement is permanent.

On the other hand, the SPAQL and SPAQL-TS agents quickly achieve average cumulative rewards of

approximately 193 and 199, respectively (out of 200.00). Considering that these agents were evaluated

100 times, the system is solved by SPAQL-TS. Manually inspecting the performances of the twenty

individual agents stored at the end of training, it is seen that only one SPAQL agent solved the system

(average cumulative reward higher than 195). On the other hand, seventeen SPAQL-TS agents solved

it (out of which fourteen scored the maximum average performance of 200). The Welch test concludes

3In fact, since there are only two possible actions, after the first split, the child balls will only be split into 16 new ones.
4f(n) = Θ(g(n)) means that f is asymptotically bounded above and below by g.

34

that SPAQL-TS is better than SPAQL at a significance level of 5% with a p-value of the order of 10−6.

SPAQL-TS agents end the training with around twice the number of arms of SPAQL (1.29 × 103 and

5.58× 102, respectively). The AQL agents finish training with 25 times more arms (3.30× 104).

Figure 4.9: Average cumulative rewards and number of arms for the agents trained in the CartPole sys-
tem. At the end of each iteration the agents were evaluated 100 times. Shaded areas around the solid
lines represent the 95% confidence interval.

4.2.5 Comparing AQL, SPAQL, and TRPO

Pendulum
Average cumulative reward at

the end of training
Number of arms at
the end of training

AQL −1287.31± 5.79 195032.75± 575.81

SPAQL −835.99± 26.91 1277.50± 168.74

SPAQL-TS −873.40± 39.94 1082.50± 91.42

Random −1340.43± 6.24

TRPO −176.76± 15.79

Table 4.6: Average cumulative rewards and number of arms (±95% confidence interval) for the different
agents at the end of training in the Pendulum system. The best performance is shown in bold.

CartPole
Average cumulative reward at

the end of training
Number of arms at
the end of training

AQL 22.40± 0.60 32988.9± 186.61

SPAQL 192.57± 0.94 557.75± 55.10

SPAQL-TS 198.53± 1.55 1289.75± 151.22

Random 22.15± 0.64

TRPO 197.27± 3.17

Table 4.7: Average cumulative rewards and number of arms (±95% confidence interval) for the different
agents at the end of training in the CartPole system. The best performance is shown in bold. When the
Welch t-test does not find a significant statistical difference between two performances, both are shown
in bold.

35

Figure 4.10: Average cumulative rewards and number of arms for the agents trained in the Pendulum sys-
tem without reward scaling. Shaded areas around the solid lines represent the 95% confidence interval.

Trust region policy optimization (TRPO) is an RL algorithm that is known to perform well in control

problems [8, 14]. Instead of learning a value function and then choosing actions greedily, it learns a

policy directly using neural networks. While this allows TRPO to perform well, and to generalize to un-

seen situations, the policies that it learns are not interpretable, unlike the ones learned by SPAQL (which

are tables of actions associated with states). This trade-off between performance and interpretability

justifies the comparison between these two algorithms.

The implementation of TRPO provided by Garage [47] was used. The parameters used in the exam-

ples provided with the source were kept. Average cumulative reward estimates were computed over 20

different random seeds, with policies trained for 100 iterations, using 4000 samples per iteration. This

gives a total of 400 thousand training samples, the same amount used when training AQL and SPAQL

agents (2000 training iterations, with 200 samples collected in each). Figures 4.10 and 4.11 show the

learning curves for random, AQL, SPAQL, SPAQL-TS, and TRPO agents, as a function of the number of

samples used (in batches of 200 samples).

For the Pendulum system (Figure 4.10, Table 4.6) the SPAQL variants take the lead in cumulative re-

ward increase, but are outrun by TRPO after 200 batches (the number of samples exceeds 40 thousand).

The TRPO agents continue learning until stabilizing the cumulative reward around −200.

In the CartPole system (Figure 4.11, Table 4.7), both SPAQL variants use the initial batches more

efficiently. TRPO catches up around batch 200 (40 thousand samples). In the end, TRPO agents perform

as well as SPAQL-TS agents (the Welch test does not find enough evidence to prove that one is better

than the other).

TRPO uses a neural network to approximate the policy. Since neural networks are universal function

approximators, it was expectable to see them perform better than AQL and SPAQL in the Pendulum prob-

lem, which is similar to a regression problem. Trying to solve the Pendulum using AQL or SPAQL is similar

to solving a regression problem using a decision tree. Although possible, the resulting tree may be very

large.

For the CartPole problem, which is similar to a classification problem, the neural network requires

36

Figure 4.11: Average cumulative rewards and number of arms for the agents trained in the CartPole sys-
tem. Shaded areas around the solid lines represent the 95% confidence interval.

more samples than SPAQL to learn an adequate state-action space partition. However, even though it

manages to learn this partition, it is not straightforward to convert the neural network to an interpretable

representation such as a table. SPAQL policies are tables, and therefore the policy obtained at the end

of training is already interpretable, should it be required.

37

38

Chapter 5

Conclusions

This thesis introduces single-partition adaptive Q-learning (SPAQL), an improved version of adaptive

Q-learning (AQL) tailored for learning time-invariant policies in reinforcement learning (RL) problems.

In order to balance exploration and exploitation, SPAQL uses Boltzmann exploration with a cyclic tem-

perature schedule in addition to upper confidence bounds (UCB). As proof of concept, SPAQL is first

evaluated in two example problems: oil discovery and ambulance routing.

SPAQL with terminal state (SPAQL-TS), an improved version of SPAQL that borrows concepts from

control theory, is also introduced. Both SPAQL and SPAQL-TS are evaluated in two control problems:

the Pendulum and the CartPole.

5.1 Achievements

Experiments show that, with very little parameter tuning, SPAQL performs satisfactorily in the problems

where AQL was originally tested (oil discovery and ambulance routing), resulting in partitions with a

lower number of arms, and requiring fewer training iterations to converge. The two problems studied can

be seen as a deterministic and a stochastic variant of the same problem, with SPAQL performing as well

as or better than AQL on half of the problems.

AQL and SPAQL are also tested on two classical control problems: the Pendulum and the CartPole.

Both SPAQL and SPAQL-TS outperform AQL in the control problems. Moreover, SPAQL-TS manages

to solve the CartPole problem, showing higher sample-efficiency than trust region policy optimization

(TRPO, a standard RL method for solving control problems) when processing the first batches of sam-

ples.

Combining the empirical evidence presented, it can be claimed that SPAQL and SPAQL-TS have a

higher sample-efficiency than AQL in time-invariant problems, and thus are a relevant contribution to the

field of sample efficient model-free RL algorithms.

39

5.2 Future Work

There are several possible directions for further work. Both AQL and SPAQL can be further modified

in several ways. The next natural modification would be to run several episodes during each training

iteration, instead of only one. In SPAQL, this would increase the exploitatory behavior of the algorithm,

possibly solving the cumulative reward difference seen in the oil problem with Laplace survey function.

However, this would introduce another parameter (the number of episodes to run during each training

iteration) into the algorithm, thus increasing the effort required for tuning. Currently, the parameters of

SPAQL are highly conjugate with the episode length. It would also be interesting to study automatic ways

of setting u and d given H. Similarly to what was done in this thesis for ξ, an empirical study regarding

the effect of tuning parameters u and d on SPAQL performance could be done.

Another parameter that may have a relevant impact is the number of evaluation rollouts, N . If this

number is too low, the performance estimates may be inaccurate, and lead SPAQL to bad decisions

when updating the stored partition. However, a larger N also means more training time. On the other

hand, as the state-action space is partitioned and the radius of the balls decreases, lower values of N

are required to obtain accurate estimates. Therefore, it would also be interesting to see if it is possible

to set N automatically based on the rollouts themselves.

Finally (from an algorithm design perspective), a formal analysis of the complexity of SPAQL would

allow a rigorous comparison in terms of sample efficiency to AQL or similar algorithms.

Regarding experimental further work, the empirical evaluation in this thesis is not exhaustive. The

OpenAI Gym implements many more control problems, with more challenging state-action spaces. A

possible direction for further work is to test SPAQL and SPAQL-TS on more problems. This would

result in more interpretable policies for these problems, that could provide insights for future research in

control. Another possible direction is to study the causes behind the higher sample-efficiency of SPAQL

and SPAQL-TS when processing the first training batches, compared to TRPO (refer to Figures 4.10

and 4.11). This may help pave the road for more sample-efficient control algorithms.

The Pendulum system has a continuous action space, while the CartPole system has a finite one.

The results in the Pendulum show that, given their current status, neither SPAQL nor SPAQL-TS are

good choices when controlling systems with a continuous action space. It is preferable to use them in

control problems where there is a finite set of control actions, such as the CartPole. One of the reasons

for this is that updates to a ball do not affect its neighbors. Propagating updates to the neighboring balls

could be a way to improve generalization of SPAQL policies. Another possible approach to get SPAQL

to work on continuous action spaces is to partition only the state space, and for each state space part

learn a linear mapping from states to actions. Another possible line of work is to combine the adaptive

partitioning of SPAQL with other approaches that use interpretable nonlinear function approximators,

like the symbolic regression methodology proposed by Kubalík et al. [15].

Finally, although it is straightforward to convert the partitions learned by SPAQL into tables, it would

be interesting to implement an automatic translator from partition to decision tree, which would enable a

clear and simplified setting to analyze the policies.

40

Bibliography

[1] R. Sutton and A. Barto. Reinforcement learning: an introduction. The MIT Press, Cambridge,

Massachusetts, 2nd edition, 2018. ISBN 978-0262039246.

[2] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah. A survey of deep learning applications to

autonomous vehicle control. IEEE Transactions on Intelligent Transportation Systems, pages 1–22,

2020. doi: 10.1109/TITS.2019.2962338. URL https://doi.org/10.1109/TITS.2019.2962338.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Ku-

maran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general reinforcement learning

algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144,

2018. doi: 10.1126/science.aar6404. URL https://doi.org/10.1126/science.aar6404.

[4] OpenAI, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fis-

cher, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P.

de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,

J. Tang, F. Wolski, and S. Zhang. Dota 2 with large scale deep reinforcement learning. CoRR,

abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

[5] S. M. Shortreed, E. B. Laber, D. J. Lizotte, T. S. Stroup, J. Pineau, and S. A. Murphy. Inform-

ing sequential clinical decision-making through reinforcement learning: an empirical study. Mach.

Learn., 84(1-2):109–136, 2011. doi: 10.1007/s10994-010-5229-0. URL https://doi.org/10.

1007/s10994-010-5229-0.

[6] T. Mu, S. Wang, E. Andersen, and E. Brunskill. Combining adaptivity with progression ordering

for intelligent tutoring systems. In R. Luckin, S. Klemmer, and K. R. Koedinger, editors, Proceed-

ings of the Fifth Annual ACM Conference on Learning at Scale, London, UK, June 26-28, 2018,

pages 15:1–15:4. ACM, 2018. doi: 10.1145/3231644.3231672. URL https://doi.org/10.1145/

3231644.3231672.

[7] M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach to

policy search. In L. Getoor and T. Scheffer, editors, Proceedings of the 28th International Confer-

ence on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages

465–472. Omnipress, 2011. URL https://icml.cc/2011/papers/323_icmlpaper.pdf.

41

https://doi.org/10.1109/TITS.2019.2962338
https://doi.org/10.1126/science.aar6404
http://arxiv.org/abs/1912.06680
https://doi.org/10.1007/s10994-010-5229-0
https://doi.org/10.1007/s10994-010-5229-0
https://doi.org/10.1145/3231644.3231672
https://doi.org/10.1145/3231644.3231672
https://icml.cc/2011/papers/323_icmlpaper.pdf

[8] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz. Trust region policy optimization. In

F. R. Bach and D. M. Blei, editors, Proceedings of the 32nd International Conference on Machine

Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference

Proceedings, pages 1889–1897. JMLR.org, 2015. URL http://proceedings.mlr.press/v37/

schulman15.html.

[9] Y. Yu. Towards sample efficient reinforcement learning. In J. Lang, editor, Proceedings of the

Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,

2018, Stockholm, Sweden, pages 5739–5743. ijcai.org, 2018. doi: 10.24963/ijcai.2018/820. URL

https://doi.org/10.24963/ijcai.2018/820.

[10] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably efficient? In S. Bengio,

H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in

Neural Information Processing Systems 31: Annual Conference on Neural Information Processing

Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 4868–4878, 2018.

URL http://papers.nips.cc/paper/7735-is-q-learning-provably-efficient.

[11] I. Osband, B. V. Roy, and Z. Wen. Generalization and exploration via randomized value func-

tions. In M. Balcan and K. Q. Weinberger, editors, Proceedings of the 33nd International Confer-

ence on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48

of JMLR Workshop and Conference Proceedings, pages 2377–2386. JMLR.org, 2016. URL

http://proceedings.mlr.press/v48/osband16.html.

[12] Z. Song and W. Sun. Efficient model-free reinforcement learning in metric spaces. CoRR,

abs/1905.00475, 2019. URL http://arxiv.org/abs/1905.00475.

[13] S. R. Sinclair, S. Banerjee, and C. L. Yu. Adaptive discretization for episodic reinforcement learning

in metric spaces. Proc. ACM Meas. Anal. Comput. Syst., 3(3):55:1–55:44, 2019. doi: 10.1145/

3366703. URL https://doi.org/10.1145/3366703.

[14] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforce-

ment learning for continuous control. In M. Balcan and K. Q. Weinberger, editors, Proceedings

of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA,

June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 1329–1338.

JMLR.org, 2016. URL http://proceedings.mlr.press/v48/duan16.html.

[15] J. Kubalík, J. Zegklitz, E. Derner, and R. Babuska. Symbolic regression methods for reinforcement

learning. CoRR, abs/1903.09688, 2019. URL http://arxiv.org/abs/1903.09688.

[16] W. B. Powell. AI, OR and Control Theory: A Rosetta Stone for Stochastic Optimization. Technical

report, Princeton University, 2012.

[17] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Ar-

tificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

42

http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
https://doi.org/10.24963/ijcai.2018/820
http://papers.nips.cc/paper/7735-is-q-learning-provably-efficient
http://proceedings.mlr.press/v48/osband16.html
http://arxiv.org/abs/1905.00475
https://doi.org/10.1145/3366703
http://proceedings.mlr.press/v48/duan16.html
http://arxiv.org/abs/1903.09688

doi: 10.2200/S00268ED1V01Y201005AIM009. URL https://doi.org/10.2200/

S00268ED1V01Y201005AIM009.

[18] E. Lecarpentier and E. Rachelson. Non-stationary markov decision processes, a worst-

case approach using model-based reinforcement learning. In H. M. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems 32: Annual Conference on Neural Information Processing Sys-

tems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 7214–

7223, 2019. URL http://papers.nips.cc/paper/8942-non-stationary-markov-decision-

processes-a-worst-case-approach-using-model-based-reinforcement-learning.

[19] L. Busoniu, R. Babuska, D. Schutter, and D. Ernst. Reinforcement Learning and Dynamic Program-

ming Using Function Approximators. Automation and Control Engineering. CRC Press, 2010. ISBN

9781439821091.

[20] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement

learning that matters. In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the Thirty-

Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of

Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial

Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 3207–3214. AAAI

Press, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669.

[21] C. Colas, O. Sigaud, and P. Oudeyer. How many random seeds? Statistical power analysis in deep

reinforcement learning experiments. CoRR, abs/1806.08295, 2018. URL http://arxiv.org/abs/

1806.08295.

[22] A. Touati, A. A. Taïga, and M. G. Bellemare. Zooming for efficient model-free reinforcement learning

in metric spaces. CoRR, abs/2003.04069, 2020. URL https://arxiv.org/abs/2003.04069.

[23] G. Neustroev and M. M. de Weerdt. Generalized optimistic Q-learning with provable efficiency. In

A. E. F. Seghrouchni, G. Sukthankar, B. An, and N. Yorke-Smith, editors, Proceedings of the 19th

International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’20, Auckland,

New Zealand, May 9-13, 2020, pages 913–921. International Foundation for Autonomous Agents

and Multiagent Systems, 2020. URL https://dl.acm.org/doi/abs/10.5555/3398761.3398868.

[24] Y. Wang, K. Dong, X. Chen, and L. Wang. Q-learning with UCB exploration is sample efficient for

infinite-horizon MDP. In 8th International Conference on Learning Representations, ICLR 2020,

Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/

forum?id=BkglSTNFDB.

[25] N. Cesa-Bianchi, C. Gentile, G. Neu, and G. Lugosi. Boltzmann exploration done right. In I. Guyon,

U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett,

editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural

43

https://doi.org/10.2200/S00268ED1V01Y201005AIM009
https://doi.org/10.2200/S00268ED1V01Y201005AIM009
http://papers.nips.cc/paper/8942-non-stationary-markov-decision-processes-a-worst-case-approach-using-model-based-reinforcement-learning
http://papers.nips.cc/paper/8942-non-stationary-markov-decision-processes-a-worst-case-approach-using-model-based-reinforcement-learning
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669
http://arxiv.org/abs/1806.08295
http://arxiv.org/abs/1806.08295
https://arxiv.org/abs/2003.04069
https://dl.acm.org/doi/abs/10.5555/3398761.3398868
https://openreview.net/forum?id=BkglSTNFDB
https://openreview.net/forum?id=BkglSTNFDB

Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 6284–

6293, 2017. URL http://papers.nips.cc/paper/7208-boltzmann-exploration-done-right.

[26] V. Kuleshov and D. Precup. Algorithms for multi-armed bandit problems. CoRR, abs/1402.6028,

2014. URL http://arxiv.org/abs/1402.6028.

[27] A. D. Tijsma, M. M. Drugan, and M. A. Wiering. Comparing exploration strategies for Q-learning in

random stochastic mazes. In 2016 IEEE Symposium Series on Computational Intelligence, SSCI

2016, Athens, Greece, December 6-9, 2016, pages 1–8. IEEE, 2016. doi: 10.1109/SSCI.2016.

7849366. URL https://doi.org/10.1109/SSCI.2016.7849366.

[28] M. L. Littman. Algorithms for Sequential Decision-Making. PhD thesis, Brown University, USA,

1996. AAI9709069.

[29] K. Asadi and M. L. Littman. An alternative softmax operator for reinforcement learning. In D. Precup

and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning,

ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine

Learning Research, pages 243–252. PMLR, 2017. URL http://proceedings.mlr.press/v70/

asadi17a.html.

[30] L. Pan, Q. Cai, Q. Meng, W. Chen, and L. Huang. Reinforcement learning with dynamic boltzmann

softmax updates. In C. Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Confer-

ence on Artificial Intelligence, IJCAI 2020 [scheduled for July 2020, Yokohama, Japan, postponed

due to the Corona pandemic], pages 1992–1998. ijcai.org, 2020. doi: 10.24963/ijcai.2020/276.

URL https://doi.org/10.24963/ijcai.2020/276.

[31] L. N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference on

Applications of Computer Vision, WACV 2017, Santa Rosa, CA, USA, March 24-31, 2017, pages

464–472. IEEE Computer Society, 2017. doi: 10.1109/WACV.2017.58. URL https://doi.org/

10.1109/WACV.2017.58.

[32] L. N. Smith and N. Topin. Super-convergence: Very fast training of residual networks using large

learning rates. CoRR, abs/1708.07120, 2017. URL http://arxiv.org/abs/1708.07120.

[33] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger. Snapshot ensembles:

Train 1, get M for free. In 5th International Conference on Learning Representations, ICLR 2017,

Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL

https://openreview.net/forum?id=BJYwwY9ll.

[34] H. Fu, C. Li, X. Liu, J. Gao, A. Çelikyilmaz, and L. Carin. Cyclical annealing schedule: A simple ap-

proach to mitigating KL vanishing. In J. Burstein, C. Doran, and T. Solorio, editors, Proceedings of

the 2019 Conference of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,

Volume 1 (Long and Short Papers), pages 240–250. Association for Computational Linguistics,

2019. doi: 10.18653/v1/n19-1021. URL https://doi.org/10.18653/v1/n19-1021.

44

http://papers.nips.cc/paper/7208-boltzmann-exploration-done-right
http://arxiv.org/abs/1402.6028
https://doi.org/10.1109/SSCI.2016.7849366
http://proceedings.mlr.press/v70/asadi17a.html
http://proceedings.mlr.press/v70/asadi17a.html
https://doi.org/10.24963/ijcai.2020/276
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
http://arxiv.org/abs/1708.07120
https://openreview.net/forum?id=BJYwwY9ll
https://doi.org/10.18653/v1/n19-1021

[35] N. Mu, Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney. Parameter re-initialization through

cyclical batch size schedules. CoRR, abs/1812.01216, 2018. URL http://arxiv.org/abs/1812.

01216.

[36] I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th Inter-

national Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?

id=Skq89Scxx.

[37] A. Yamaguchi, J. Takamatsu, and T. Ogasawara. Learning strategy fusion to acquire dynamic

motion. In 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2011),

Bled, Slovenia, October 26-28, 2011, pages 247–254. IEEE, 2011. doi: 10.1109/Humanoids.2011.

6100853. URL https://doi.org/10.1109/Humanoids.2011.6100853.

[38] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. J. Artif. Intell.

Res., 4:237–285, 1996. doi: 10.1613/jair.301. URL https://doi.org/10.1613/jair.301.

[39] A. S. Polydoros and L. Nalpantidis. Survey of model-based reinforcement learning: Applications

on robotics. J. Intell. Robotic Syst., 86(2):153–173, 2017. doi: 10.1007/s10846-017-0468-y. URL

https://doi.org/10.1007/s10846-017-0468-y.

[40] L. Busoniu, T. de Bruin, D. Tolic, J. Kober, and I. Palunko. Reinforcement learning for control:

Performance, stability, and deep approximators. Annu. Rev. Control., 46:8–28, 2018. doi: 10.1016/

j.arcontrol.2018.09.005. URL https://doi.org/10.1016/j.arcontrol.2018.09.005.

[41] J. P. Araújo, M. Figueiredo, and M. A. Botto. Single-partition adaptive Q-learning. CoRR,

abs/2007.06741, 2020. URL https://arxiv.org/abs/2007.06741.

[42] W. Mason and D. J. Watts. Collaborative learning in networks. Proceedings of the National Academy

of Sciences, 109(3):764–769, 2011. doi: 10.1073/pnas.1110069108. URL https://doi.org/10.

1073/pnas.1110069108.

[43] L. Brotcorne, G. Laporte, and F. Semet. Ambulance location and relocation models. Eur. J. Oper.

Res., 147(3):451–463, 2003. doi: 10.1016/S0377-2217(02)00364-8. URL https://doi.org/10.

1016/S0377-2217(02)00364-8.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.

OpenAI Gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/abs/1606.01540.

[45] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve

difficult learning control problems. IEEE Trans. Syst. Man Cybern., 13(5):834–846, 1983. doi:

10.1109/TSMC.1983.6313077. URL https://doi.org/10.1109/TSMC.1983.6313077.

[46] P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon collectors, caching algorithms and

self-organizing search. Discret. Appl. Math., 39(3):207–229, 1992. doi: 10.1016/0166-218X(92)

90177-C. URL https://doi.org/10.1016/0166-218X(92)90177-C.

45

http://arxiv.org/abs/1812.01216
http://arxiv.org/abs/1812.01216
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://doi.org/10.1109/Humanoids.2011.6100853
https://doi.org/10.1613/jair.301
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1016/j.arcontrol.2018.09.005
https://arxiv.org/abs/2007.06741
https://doi.org/10.1073/pnas.1110069108
https://doi.org/10.1073/pnas.1110069108
https://doi.org/10.1016/S0377-2217(02)00364-8
https://doi.org/10.1016/S0377-2217(02)00364-8
http://arxiv.org/abs/1606.01540
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1016/0166-218X(92)90177-C

[47] The garage contributors. Garage: A toolkit for reproducible reinforcement learning research. https:

//github.com/rlworkgroup/garage, 2019.

46

https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage

Appendix A

Experimental results and figures for

the oil and ambulance problems

In this section, the learning curves for the best agents found during the scaling experiments are shown.

Each curve shows the average cumulative reward and the 95% confidence interval. The scaling values

are identified in the respective legend. The average number of arms is also shown, along with the state-

action space partition for the best SPAQL agent at the end of training. Finally, the AQL agent partition at

time steps 1, 3, and 5 is also shown.

Each section contains some brief comments to the images, which complement the analysis in Sec-

tions 4.1.3 and 4.1.4.

A.1 Oil Problem with Quadratic Survey Function

Starting with λ = 1 (Figure A.1), it is clear that the best SPAQL agent did not exploit the optimal point

of 0.75, and over partitioned uninteresting regions of the space. Even so, the SPAQL agents managed

to reach a cumulative reward similar to that of AQL, with one third of the number of arms of the AQL

agents. The high rewards over a large area are probably a cause for this lack of exploitation, since,

when the value of λ is increased (concentrating the rewards), SPAQL agents partition the neighborhood

of the optimal point more finely. Another possible cause is that the best performance currently stored

happened by chance to be unexpectedly high. A way to prevent this from happening is to increase the

number of evaluation rollouts N . In this experiment, N = 20 rollouts were used to evaluate the agents,

but a higher number would lead to better estimates. The AQL agent learned that the optimal action given

initial state x = 0 is a = 0.75, and then learned to hold the action a = 0.75. The partitions at time instants

3 and 5 are very similar, as would be expected given that this is a stationary problem. It is this sort of

partition duplication that is avoided by keeping only one partition.

Moving to the case when λ = 10 (Figure A.2), the average cumulative rewards at the end of train-

ing for both algorithms are barely distinguishable. The SPAQL agents converge earlier than the AQL

agents, and with fewer arms. The best SPAQL partition shows a better exploitation of the optimal point,

47

compared with the case when λ = 1. Once again very similar partitions are seen at time steps 3 and

5 in the best AQL agent. The increase in the number of AQL arms around training iteration 4100 might

seem to indicate that AQL agents have still not converged. However, the training curves indicate that

both agents are very close to the maximum, meaning that the extra arms in the AQL agent correspond

to new splits which are approximating the location of the optimal point to an accuracy of millimeters. The

number of arms can grow indefinitely in order to approximate all of the decimal places in the floating

point representation of 0.7+π/60, and therefore should not be considered when assessing convergence

of the algorithm.

Finally, Figure A.3 shows the results when λ = 50. These results are similar to the case of λ = 10.

The concentrated rewards have lead to an even better exploitation of the optimal point by the SPAQL

agent.

Figure A.1: Comparison of the algorithms on the oil problem with quadratic survey function (λ = 1).

48

Figure A.2: Comparison of the algorithms on the oil problem with quadratic survey function (λ = 10).

Figure A.3: Comparison of the algorithms on the oil problem with quadratic survey function (λ = 50).

49

A.2 Oil Problem with Laplace Survey Function

When using the Laplace survey function rewards become more concentrated than when using the

quadratic survey function. This is the main reason behind the differences in cumulative reward at the

end of training. Considering the case with λ = 1 (Figure A.4), although the SPAQL agents stabilize at

slightly lower rewards, they still manage to achieve them with a much smaller number of arms. The

partition for the best SPAQL agent shows a lack of exploitation of the optimal point, as was the case with

the quadratic survey function with λ = 1 (Figure A.1). The partitions for time steps 3 and 5 in the AQL

agent are once again barely distinguishable.

Moving to λ = 10 (Figure A.5), training has become more difficult for both types of agents, when

compared with the case when λ = 1. The partition of the SPAQL agent indicates a lot of exploration

from the initial state (x = 0), along with a fine partition around the optimal point, meaning that, once

found, it was exploited. Since the rewards are more concentrated, and the AQL agent partitions the

neighborhood of the optimal point more finely, it ends up collecting higher rewards than the SPAQL

agent, which keeps a coarser partition around the optimal point. However, it should be noted that, for

all practical purposes, the SPAQL agent managed to find the approximate location of the optimal point,

using fewer arms than the AQL agent.

Finally, Figure A.6 shows the results when λ = 50. This is the hardest problem, with the most

concentrated rewards. Both algorithms locate the optimal point, but the AQL agents exploit it much

more, leading to higher rewards. However, in the process, it partitioned a lot the individual partitions,

leading to an average number of arms six times higher than the ones in the SPAQL partition, which has

implications regarding the amount of resources required to store all the partitions of the agent.

In the two latter cases (λ ∈ {10, 50}), the 5000 iterations are clearly not enough for the AQL and

SPAQL agents to converge. However, if finding the approximate location of the oil deposit is considered

as the objective of this problem, then the 5000 iterations were enough. The cumulative rewards are lower

when compared to other episodes due to the high concentration of rewards around the optimal point,

and the lack of reward signal in the remaining state-action space.

50

Figure A.4: Comparison of the algorithms on the oil problem with Laplace survey function (λ = 1).

Figure A.5: Comparison of the algorithms on the oil problem with Laplace survey function (λ = 10).

51

Figure A.6: Comparison of the algorithms on the oil problem with Laplace survey function (λ = 50).

52

A.3 Ambulance Problem with Uniform Arrivals

For the case when c = 0, shown in Figure A.7, the heuristic solution to this problem is the “Mean”

heuristic, which corresponds to the line a = 0.5. The SPAQL agents managed to achieve higher rewards

with a coarser partition and about one fifth of the arms of the AQL agents.

Moving to Figure A.8, corresponding to c = 0.25, the optimal policy would be a mix of the “Mean” (hor-

izontal line) and the “No Movement” (diagonal line) heuristic. The SPAQL agents managed to achieve

higher rewards with a coarser partition and less than one fifth of the arms of the AQL agents, a reduction

even greater than the one in the case c = 0.

Finally, Figure A.9 shows the results when c = 1. The optimal policy would be the “No Movement”

(diagonal line) heuristic. The diagonal line appears finely partitioned in both types of agents. However,

there was clearly a shortage of samples of states within [0, 0.25] in time steps 3 and 5, which may bring

a problem in deployment. The SPAQL agents managed to achieve higher rewards with around one fifth

of the arms of the AQL agents.

Figure A.7: Comparison of the algorithms on the ambulance problem with uniform arrival distribution
and only paying the cost to go (c = 0).

53

Figure A.8: Comparison of the algorithms on the ambulance problem with uniform arrival distribution
and paying a mix between the cost to relocate and the cost to go (c = 0.25).

Figure A.9: Comparison of the algorithms on the ambulance problem with uniform arrival distribution
and paying only the cost to relocate (c = 1).

54

A.4 Ambulance Problem with Beta Arrivals

For the case when c = 0, shown in Figure A.10, the heuristic solution to this problem is the “Mean”

heuristic, which corresponds to the line a ≈ 0.7. The SPAQL agent managed to achieve higher rewards

with a coarser partition and less than one fifth of the arms of the AQL agents.

Moving to Figure A.11, corresponding to c = 0.25, the optimal policy would be a mix of the “Mean”

(horizontal line) and the “No Movement” (diagonal line) heuristic. The SPAQL agents managed to

achieve higher rewards with a coarser partition and less than one fifth of the arms of the AQL agents.

Finally, Figure A.12 shows the results when c = 1. The optimal policy would be the “No Movement”

(diagonal line) heuristic. Since arrivals are now concentrated around 0.7 (the mean of the distribution),

the diagonal appears more partitioned for states within [0.5, 1] than for states within [0, 0.5]. The AQL

agents do a finer partition of the diagonal, but this still does not prevent the SPAQL agents from con-

verging to better rewards earlier, and with around one fifth of the number of arms of the AQL agents.

Figure A.10: Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival distribution
and only paying the cost to go (c = 0).

55

Figure A.11: Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival distribution
and paying a mix between the cost to relocate and the cost to go (c = 0.25).

Figure A.12: Comparison of the algorithms on the ambulance problem with Beta(5, 2) arrival distribution
and paying only the cost to relocate (c = 1).

56

Appendix B

Illustration of the concept of domain

Consider the yellow ball in Figure B.1 as the initial ball covering the entire state-action space. The blue

balls on the right form a covering of the yellow ball. Since the radius of the blue balls is half of the

radius of the yellow ball, and the blue balls cover the yellow ball completely, the domain of the yellow

ball is the empty set. In Figure B.2, the red balls on the left image form a covering of the rightmost blue

ball. Following a line of reasoning equal to the one used for the yellow ball, the domain of the blue ball

covered by the red balls is the empty set. For the neighboring blue balls, that are not covered by the

smaller red balls but intersect some of them, the domain is the set of points which are not contained

inside any red ball. The domains are highlighted by the blue regions with full opacity seen on the image

on the right. The points in the blue balls occluded by the red balls do not belong to the domain of the

respective blue ball.

Figure B.3 illustrates a case where a disjoint covering can be found for every ball. The domain for

each ball is either the ball itself (if it has never been split), or the empty set ∅ (if it has been split once).

57

Figure B.1: The initial ball (yellow ball on the left), and a blue covering of it (image on the right).

Figure B.2: A covering of a blue ball (red balls on the left), and the domains of the neighboring blue balls
(on the right).

Figure B.3: The initial ball (on the left), and a covering of it (on the right).

58

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Objectives
	1.4 Thesis Outline
	1.5 Notation

	2 Background
	2.1 Reinforcement Learning
	2.1.1 Markov Decision Processes
	2.1.2 Q-learning
	2.1.3 Reporting experiments

	2.2 Metric Spaces
	2.3 Literature Review

	3 Algorithms
	3.1 Adaptive Q-learning
	3.2 Single partition adaptive Q-learning
	3.2.1 Auxiliary procedures
	3.2.2 Main algorithm

	3.3 Single partition adaptive Q-learning with terminal state

	4 Experiments
	4.1 Proof of concept
	4.1.1 Implementation
	4.1.2 Procedure and parameters
	4.1.3 Oil discovery
	4.1.4 Ambulance routing
	4.1.5 Discussion

	4.2 Control problems
	4.2.1 Implementation
	4.2.2 Procedure and parameters
	4.2.3 Pendulum
	4.2.4 CartPole
	4.2.5 Comparing AQL, SPAQL, and TRPO

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography
	A Experimental results and figures for the oil and ambulance problems
	A.1 Oil Problem with Quadratic Survey Function
	A.2 Oil Problem with Laplace Survey Function
	A.3 Ambulance Problem with Uniform Arrivals
	A.4 Ambulance Problem with Beta Arrivals

	B Illustration of the concept of domain

