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Abstract

Reinforcement learning (RL) is an area within machine learning that studies how agents can learn
to perform their tasks without being explicitly told how to do so. An important concept in RL is
sample efficiency: an algorithm is sample-efficient if it requires a low amount of samples to learn its
task. Until recently, it was thought that model-based RL algorithms were more sample-efficient than
model-free ones. This changed with recent developments in provably efficient model-free algorithms.
One of the latest algorithms developed is adaptive Q-learning (AQL), an efficient model-free algorithm
that handles continuous state and action spaces by adaptively partitioning them in a data-driven
manner. By design, AQL learns time-variant policies. However, many problems (such as control
of time-invariant systems) can be solved satisfactorily using time-invariant policies. This thesis
introduces single-partition adaptive Q-learning (SPAQL), an improved version of AQL designed to
learn time-invariant policies. SPAQL is evaluated empirically on four different problems, out of
which two are control problems. SPAQL agents perform better than AQL ones, while at the same
time learning simpler policies. For the control problems, SPAQL with terminal state (SPAQL-TS)
is introduced, and, along with SPAQL, is compared to trust region policy optimization (TRPO), an
RL algorithm known to perform well in control problems. In one of the control problems (CartPole),
SPAQL and SPAQL-TS display a higher sample-efficiency than TRPO.

Keywords: reinforcement learning, Q-learning, sample efficiency, control

1. Introduction

Recently, some theoretical work has addressed the
sample complexity of model-free methods. Infor-
mally, sample complexity can be defined as the
number of samples that an algorithm requires in
order to learn. Sample-efficient algorithms require
fewer samples to learn, and thus are more desir-
able to develop and use. However, until recently, it
was not known whether model-free methods could
be proved to be sample-efficient. This changed
when Jin et al. (2018) proposed a Q-learning al-
gorithm with upper confidence bound (UCB) explo-
ration for discrete tabular MDPs, and showed that
it had a sample efficiency comparable to random-
ized least-squares value iteration (RLSVI), a model-
based method proposed by Osband et al. (2016).
Later, Song and Sun (2019) extended that algo-
rithm to continuous state-action spaces. Their algo-
rithm, net-based Q-learning (NBQL), requires dis-
cretizing the state-action space with a network of
fixed step size. This creates a trade-off between
memory requirements and algorithm performance.
To address this trade-off, Sinclair et al. (2019) pro-

posed adaptive Q-learning (AQL). AQL introduces
adaptive discretization into NBQL, starting with a
single ball covering the entire state-action space,
and then adaptively discretizing it in a data-driven
manner. This adaptivity ensures that the relevant
parts of the state-action space are adequately par-
titioned, while keeping coarse discretizations in re-
gions that are not so relevant. All approaches men-
tioned so far consider time-variant value functions
and learn time-variant policies. However, for many
practical purposes, time-invariant policies are suffi-
cient to solve the problem satisfactorily (albeit not
optimally). This is particularly true in problems
with time-invariant dynamics, such as the classical
Pendulum problem.

With this motivation, this thesis proposes single-
partition adaptive Q-learning (SPAQL), an im-
proved version of AQL specifically tailored to learn
time-invariant policies. SPAQL is evaluated on two
simple example problems, as proof of concept. It
is then evaluated in two classical control problems,
the Pendulum and the CartPole, which are harder
due to their more complex state and action spaces.
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This thesis also introduces single-partition adap-
tive Q-learning with terminal state (SPAQL-TS),
an improved version of SPAQL, which uses concepts
from control theory to achieve a better performance
in the problems under study. Both SPAQL and
SPAQL-TS perform better than AQL on both prob-
lems. Furthermore, SPAQL-TS manages to solve
the CartPole problem, thus earning a place in the
OpenAI Gym Leaderboard, alongside other state-of-
the-art methods.

2. Background
For background in RL, the reader is referred to the
classic book by Sutton and Barto (2018) (or the
notes by Szepesvári (2010)). This section recalls
some basic concepts of RL and metric spaces, rele-
vant for the subsequent presentation.

2.1. Notation
Although they work essentially on the same prob-
lems, the RL and control communities use differ-
ent notations. For consistency with previous RL
work, the RL notation is used in Sections 2 (Back-
ground), 3 (Single-partition adaptive Q-learning),
and 4.1 and 4.2 (oil discovery and ambulance
routing problems). Since its main audience is
the control community, Sections 4.3.2 and 4.4.2
(Pendulum and CartPole problems) use the con-
trol notation. Table 1 lists the symbols used to de-
note the problem variables in the following sections,
along with their usual control counterparts.

2.2. Markov decision processes
This thesis adopts the Markov decision process
(MDP) framework for modeling problems. All
MDPs considered have finite horizon, meaning that
episodes (a simulation of the MDP for a certain
number of steps) terminate after a fixed number of
discrete time steps. Formally, an MDP is a 5-tuple
(S,A, H,P, r), where S denotes the set of system
states, A is the set of actions of the agent inter-
acting with the system, H is the number of steps
in each episode (also called the horizon), P is the
transition kernel, and r : S × A → R ⊆ R is the
reward function. The transition kernel P assigns to
each triple (x, a, x′) the probability of reaching state
x′ ∈ S, given that action a ∈ A was chosen while
in state x ∈ S. This is denoted as x′ ∼ P(· | x, a)
(unless otherwise stated, x′ represents the state to
which the system transitions when action a is cho-
sen while in state x under transition kernel P). The
reward function r assigns a reward (or a cost) to
each state-action pair.

In this thesis, the only limitation imposed on the
state and action spaces is that they are bounded.
Furthermore, it is assumed that the MDP has time-
invariant dynamics.

The system starts at the initial state x1. At each

time step h ∈ {1, ...,H} of the MDP, the agent re-
ceives an observation xh ∈ S, chooses an action
ah ∈ A, receives a reward rh = r(xh, ah), and tran-
sitions to state xh+1 ∼ P(· | xh, ah). The objec-
tive of the agent is to maximize the cumulative re-
ward

∑H
h=1 rh received throughout the H steps of

the MDP. This is achieved by learning a function
π : S → A (called a policy) that maps states to
actions in a way that maximizes the accumulated
rewards. If the policy is independent of the time
step, it is said to be time-invariant.

2.3. Q-learning
One possible approach for learning a good (even-
tually optimal) policy is Q-learning. For each time
step h, a value is associated with each state. This
value is encoded by the value function, defined as

V πh (x) := E

[
H∑
i=h

r(xi, π(xi))
∣∣∣ xh = x

]
. (1)

This function only takes states into account. The
Q function,

Qπh(x, a) := r(x, a) + E
[
V πh (x′)

∣∣∣ x, a], (2)

also considers actions. It allows the agent to rank
all possible actions at state x according to the corre-
sponding values of Q at time step h, and then pick
an action. Notice that the expectation in Equa-
tion 2 is with respect to x′ ∼ P(· | x, a).

The functions V ?h (x) = supπ V
π
h (x) and

Q?h(x, a) = supπ Q
π
h(x, a) are called the optimal

value function and the optimal Q function, respec-
tively. The policies π?V and π?Q associated with
V ?h (x) and Q?h(x, a) are one and the same, π?V =
π?Q = π?; this policy is called the optimal policy
(Sutton and Barto, 2018). These functions satisfy
the so-called Bellman equation

Q?h(x, a) = r(x, a) + E[V ?h (x′) | x, a]. (3)

Q-learning is an algorithm for computing esti-
mates Qh and Vh of the Q function and the value
function, respectively. The updates to the estimates
at each time step are based on Equation 3, accord-
ing to

Qh(x, a)← (1− α)Qh(x, a)+

+ α(r(x, a) +Vh(x
′)), (4)

where α ∈ [0, 1] is the learning rate. Actions are
chosen greedily according to the argmax policy

π(x) = argmaxaQh(x, a). (5)
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RL Control
Sections 2, 3, Sections 4.3 Definition
4.1, and 4.2 and 4.4

x x State vector of the system / Linear position (when
ambiguous, a distinction will be made)

o Observation vector of the system (simulates the sensors
available). In the RL sections, it is assumed that o := x

xref xref Reference state being tracked in a control problem
a u Control action∑

h rh(x, a) −J Cumulative reward (in control, it is more common to
refer to cost J)

v NC Number of times a ball has been visited
u NC Temperature increase factor in SPAQL
d NC Temperature doubling period factor in SPAQL
h t Discrete time instant

Table 1: Correspondence between the notation used in the following sections. “NC” (No Correspondence)
means that the respective symbols only appear in Sections 2, 3, 4.1, and 4.2 (RL).

The greediness of the argmax policy may lead
the agent to become trapped in local optima. To
escape from these local optima, stochastic policies
such as ε-greedy or Boltzmann exploration can be
used. Boltzmann exploration transforms the Qh es-
timates into a probability distribution (using soft-
max), and then draws an action at random. It is
parametrized by a temperature parameter τ , such
that, when τ → 0, the policy tends to argmax,
whereas, for τ → +∞, the policy tends to one that
picks an action uniformly at random from the set
of all possible actions.

Another way to deal with local optima is to use
upper confidence bounds (UCB). Algorithms that
use UCB add an extra term b(x, a) to the update
rule

Qh(x, a)← (1− α)Qh(x, a)+

+ α(r(x, a) +Vh(x
′) + b(x, a)), (6)

which models the uncertainty of the Q function es-
timate.

2.4. Metric Spaces
A metric space is a pair (X,D) where X is a set
and D : X × X → R is a function (called the dis-
tance function) satisfying a set of properties (iden-
tity of indiscernibles, symmetry, triangle inequality,
and positivity).

A ball B with center x and radius r is the set
of all points in X which are at a distance strictly
lower than r from x, B(x, r) = {b ∈ X : D(x, b) <
r}. The diameter of a ball is defined as diam(B) =
supx,y∈B D(x, y). The diameter of the entire space
is denoted dmax = diam(X).

Definition 2.1 (Sinclair et al. (2019)). An r-
covering of X is a collection of subsets of X that
covers X (i.e., any element of X belongs to the
union of the collection of subsets) and such that
each subset has diameter strictly less than r.

Definition 2.2 (Sinclair et al. (2019)). A set of
points P ⊂ X is an r-packing if the distance between
any two points in P is at least r. An r-net of X is
an r-packing such that X ⊆ ∪x∈PB(x, r).

3. Single-partition adaptive Q-learning
The proposed SPAQL algorithm builds upon AQL
(Sinclair et al., 2019). The change proposed aims
at tailoring the algorithm to learn time-invariant
policies. The main difference is that only one state-
action space partition is kept, instead of one per
time step; i.e., Qk

h := Qk and Vk
h := Vk, where

k denotes the current training iteration. The su-
perscript k is used to distinguish between the esti-
mates being used in the update rules (denoted Qk

and Vk) and the updated estimates (denoted Qk+1

and Vk+1). In order to simplify the notation, the
superscript may be dropped when referring to the
current estimate (denoted Q and V).

3.1. Auxiliary functions
Algorithm 1 requires four auxiliary functions, whose
pseudocode is omitted for brevity. Function Roll-
out performs a full episode under the current pol-
icy, while recording the cumulative reward. Func-
tion Evaluate Agent runs several rollouts and
averages the cumulative rewards, returning a mea-
sure of the agent’s performance.

Function Boltzmann Sample implements
Boltzmann exploration. It has as arguments a list
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Algorithm 1 Single-partition adaptive Q-learning

1: procedure Single-partition adaptive Q-learning(S,A,D, H,K,N, ξ, τmin, u, d)
2: Initialize partitions P and P ′ containing a single ball with radius dmax and Q = H
3: Initialize τ to τmin
4: Calculate agent performance using Evaluate Agent(P,S,A, H,N)
5: for each episode k = 1, . . . ,K do
6: Receive initial state xk1
7: for each step h = 1, . . . ,H do
8: Get a list B with all the balls B ∈ P ′ which contain xkh
9: Sample the ball Bsel using Boltzmann Sample(B, τ)

10: Select action akh = a for some (xkh, a) ∈ dom (Bsel)
11: Play action akh, receive reward rkh, and transition to new state xkh+1

12: Update Parameters: v = n(Bsel)← n(Bsel) + 1
13:
14: Qk+1(Bsel)← (1− αv)Qk(Bsel) + αv

(
rkh +Vk(xkh+1) + bξ(v)

)
where

15:
16: Vk(xkh+1) = min(H, max

B∈RELEVANT(xkh+1)
Qk(B))

17: if n(Bsel) ≥
(

dmax
r(Bsel)

)2
then Split Ball(Bsel)

18: Evaluate the agent using Evaluate Agent(P ′,S,A, H,N)
19: if agent performance improved then
20: Copy P ′ to P (keep the best agent)
21: Reset τ to τmin
22: Decrease u using some function of d (for example, u← ud, assuming d < 1)
23: else
24: Increase τ using some function of u (for example, τ ← uτ)
25: if more than two splits occurred then
26: Copy P to P ′ (reset the agent)
27: Reset τ to τmin

B of balls which contain the given state x ∈ S, and
a temperature parameter τ . It then draws a ball
at random from B according to the distribution
induced by the values of Q and temperature τ .

Finally, function Split Ball outputs a 1
2r(B)-

packing of dom (Bsel) (the domain of a ball
dom (Bsel) is defined in the next section).

3.2. Main algorithm
The algorithm (Algorithm 1) keeps two copies of
the state-action space partition. One (P) is used to
store the best performing agent found so far (per-
formance is defined as the average cumulative re-
ward obtained by the agent). The other copy of
the partition (P ′) is modified during training. At
the end of each training iteration, the performance
of the agent with partition P ′ is evaluated. If it
is better than the performance of the previous best
agent (with partition P), the algorithm keeps the
new partition (P ← P ′) and continues training.
If the number of arms increases twice without im-
provements in performance, the agent resets P ′ to
P . This forces an increase in the number of arms
to correspond to an improvement in performance,
thus preventing over-partitioning of the state-action

space. Initially, both partitions contain a single ball
B with radius dmax (which ensures it covers the en-
tire state-action space). The value of Q(B) is opti-
mistically initialized to H, the episode length.

During each training iteration, a full episode
(consisting of H time steps) is played. The val-
ues of Q are updated in each time step, and split-
ting occurs every time the criterion is met. At the
end of the episode, the agent is evaluated over N
runs. The policy is modified based on the evolution
of agent performance. If the agent currently being
trained achieved a better performance than previ-
ous agents, the value of τ is reset to a user-defined
τmin (≈ 0), in order to ensure that the policy be-
comes greedy (argmax). If the agent performs worse
than the best agent, the value of τ is thus increased
to make the policy behave in a more exploratory
way.

Updates to Q are done according to

Qk+1(Bsel)← (1− αv)Qk(Bsel)+

+ αv
(
rkh +Vk(xkh+1) + bξ(v)

)
, (7)

where rkh is the reward obtained during training it-
eration k on time step h, αv is the learning rate,
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Vk(xkh+1) is the current estimate of the value of the
future state, bξ(v) is the bonus term related with the
upper confidence bound (confidence radius), and v
is the number of times ball Bsel has been visited.

The learning rate is set as done by Sinclair et al.
(2019), i.e., according to

αv =
H + 1

H + v
. (8)

Before defining Vk(xkh+1), it is necessary to recall
the definition of domain of a ball and the definition
of the set RELEVANT(x) from the work of Sinclair
et al. (2019). The domain of a ball B from a par-
tition P is a subset of B which excludes all balls
B′ ∈ P of a strictly smaller radius. In other words,
it is the set of all points b ∈ B which are not con-
tained inside any other ball of strictly smaller ra-
dius than r(B). A ball B is said to be relevant for
a point x ∈ S if (x, a) ∈ dom (B), for some a ∈ A.
The set of all relevant balls for a state x is denoted
by RELEVANT(x). The definition of Vk(xkh+1) uses
the expression proposed by Sinclair et al. (2019),

Vk(xkh+1) = min(H, max
B∈RELEVANT(xkh+1)

Qk(B)), (9)

with the difference that it also holds for the final
state, while Sinclair et al. (2019) set Vk(xkH+1) = 0,
for all x.

Finally, the term bξ(v) is defined as

bξ(v) =
ξ√
v
, (10)

where ξ is called the scaling parameter of the upper
confidence bounds, and is defined by the user.

3.3. Single-partition adaptive Q-learning with ter-
minal state

The main difference between SPAQL and SPAQL
with terminal state (SPAQL-TS) is the definition
of the value function,

Vk(xkh+1) = exp

(
−
(
D(xkh, xref )

λ

)2
)
Vk

Eq. 9(x
k
h+1),

(11)
where λ > 0 is a parameter that controls the weight
given to the error in tracking reference state xref
(both are user-defined).

4. Results
The code used to run the experiments, along
with the corresponding parameters, is available on
GitHub.1

1https://github.com/jaraujo98/
SinglePartitionAdaptiveQLearning

4.1. Oil discovery
4.1.1 Setup

In this problem, used as benchmark by Sinclair
et al. (2019), an agent surveys a 1D map in search
of hidden “oil deposits”. The state and action spaces
are the set of locations that the agent has ac-
cess to (S = A = [0, 1]). The transition kernel
is Ph(x′ | x, a) = 1[x′=a], where 1[A] is the in-
dicator function (evaluates to 1 if condition A is
true, and to 0 otherwise). The reward function is
rh(x, a) = max{0, f(a)−|x−a|}, where f(a) ∈ [0, 1]
is called the survey function. This survey func-
tion encodes the location of the deposits (f(a) = 1
means that the exact location has been found). The
same survey functions considered by Sinclair et al.
(2019) are considered in this thesis:

• quadratic survey function, f(x) = 1−λ(x−c)2,
with λ ∈ {1, 10, 50};

• Laplace survey function, f(x) = e−λ|x−c|, with
λ ∈ {1, 10, 50}.

The deposit is placed at approximately c ≈ 0.75
(the actual location is 0.7 + π/60).

4.1.2 Results

The scaling parameter ξ was tuned for both AQL
and SPAQL agents. After tuning, the best perform-
ing agents of each algorithm were compared. The
SPAQL agents match the AQL ones when using
the quadratic survey function with λ = 50 (Fig-
ure 1). On the other instances of the problem, the
relatively small difference in cumulative rewards at
the end of training is compensated by the lower
number of arms used by SPAQL policies. Figure 1
shows the average cumulative rewards obtained by
the SPAQL and the AQL agents for the oil problem
with quadratic survey function (λ = 50), along with
the partition learned by the best SPAQL agent.
Looking at this partition, it can be seen that the
neighborhoods of points (0, 0.75) and (0.75, 0.75),
which correspond to the optimal policy, have been
thoroughly partitioned.

4.2. Ambulance routing
4.2.1 Setup

This problem, also used by Sinclair et al. (2019), is
a stochastic variant of the previous one. The agent
controls an ambulance that, at every time step, has
to travel to where it is being requested. The agent
is also given the option to relocate after fulfilling the
request, paying a cost to do so. Sinclair et al. (2019)
use a transition kernel defined by Ph(x′|x, a) ∼ Fh,
where Fh denotes the request distribution for time
step h. The reward function is rh(x′|x, a) = 1 −
[c|x − a| + (1 − c)|x′ − a|], where c ∈ [0, 1] models
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Figure 1: Average cumulative rewards, number of arms, and best SPAQL agent partition for the agents
trained in the oil problem with reward function r(x, a) = max{0, 1− 50(x− c)2 − |x− a|}. Shaded areas
around the solid lines represent the 95% confidence interval.

the trade-offs between the cost of relocation and the
cost of traveling to serve the request.

The experimental setups considered are

• F = Uniform(0, 1), for c ∈ {0, 0.25, 1} (mod-
elling disperse request distributions);

• F = Beta(5, 2), for c ∈ {0, 0.25, 1} (where
Beta(a, b) is the Beta probability distribution,
modelling concentrated request distributions).

The optimal policy depends on the value of c.
Sinclair et al. (2019) suggest two heuristics for both
extreme cases (c ∈ {0, 1}). The “No Movement”
heuristic is optimal when c = 1. The “Mean” heuris-
tic is optimal when c = 0.

4.2.2 Results

After tuning ξ, the best agents were compared.
SPAQL agents perform better than AQL ones in
almost all instances of the problem, independently
of the value of ξ. The exception is the case c = 1,
where tuning of ξ allows the AQL agents to match
the cumulative rewards of SPAQL agents.

Figure 2 shows the cumulative rewards for an am-
bulance problem with a uniform arrival distribution
and c = 1 (only relocation is penalized). The opti-
mal policy is the “No Movement” one, which corre-
sponds to the line a = x. This line appears finely
partitioned, as would be expected. The SPAQL
agents reach higher cumulative rewards earlier in
training, and with fewer arms.

4.3. Pendulum
4.3.1 Setup

The objective is to drive a pendulum with length
l = 1m and mass m = 1kg to the upright position
by applying a torque on a joint at one of its ends.
The state of the system is the angular position of the

pendulum with the vertical axis, θ, and the angular
velocity θ̇ of the pendulum. This can be written
compactly as x = [θ, θ̇]T . The control action u is
the value of the torque applied (which can be posi-
tive or negative, to indicate direction). The obser-
vation o = [cθ, sθ, θ̇]

T is a 3D vector whose entries
are the cosine (cθ) and sine (sθ) of the pendulum’s
angle, and the angular velocity (Brockman et al.,
2016). This vector simulates the sensors available
to measure the state variables of the system, and is
part of the definition of the OpenAI Gym problem.
There is no distinction between state and observa-
tion spaces in (Sinclair et al., 2019) and Section 3,
but it is clear that Sinclair et al. (2019) have the
observation space in mind when they mention state
space. The angular velocity saturates at −8 and 8,
and the control action saturates at −2 and 2. The
cost to be minimized (which, from an RL point of
view, is equivalent to a negative reward) is given by
(Brockman et al., 2016)

J =

H∑
t=1

normalize(θt)2 + 0.1θ̇2t + 0.001(u2t ), (12)

where normalize(·) is a function that maps an angle
into its principal argument (i. e., a value in ]−π, π]).

AQL and SPAQL were designed with the assump-
tion that the rewards were in the interval [0, 1]
(which implies that Vk(o) ∈ [0, H], for all obser-
vations o). The effect of different cost structures is
assessed by training the algorithms on the original
problem (with rewards ranging from approximately
−16 to 0) and on a problem with rewards scaled to
be in the interval [0, 1].

The state-action space of this problem (as ob-
served by the agent) is

S×A = ([−1, 1]× [−1, 1]× [−8, 8])× [−2, 2]. (13)
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Figure 2: Average cumulative rewards, number of arms, and best SPAQL agent partition for the agents
trained in the ambulance problem with uniform arrival distribution and reward function r(x, a) =
max{0, 1− |x− a|}. Shaded areas around the solid lines represent the 95% confidence interval.

The∞ product metric (used by the agent) is writ-
ten as

D((x, u), (x′, u′)) = max
{
|cθ − cθ′ |,

|sθ − sθ′ |,
|θ̇ − θ̇′|

8
, |u− u′|

}
. (14)

For SPAQL-TS, the reference observation oref
(denoted xref in Section 3.3) is set to [1, 0, 0]T , cor-
responding to reference state [θref , θ̇ref ]

T = [0, 0]T .

4.3.2 Results

The experiments to tune the scaling parameter ξ
lead to the conclusion that reward scaling does
not impact learning significantly. The training
curves and number of arms for the agents trained in
the Pendulum problem without reward scaling are
shown in Figure 3. The average cumulative reward
at the end of training for each algorithm is recorded
in Table 2. Both AQL and SPAQL distance them-
selves from the random policy, with SPAQL and
SPAQL-TS performing better than AQL. The aver-
age number of arms of the AQL agents (1.95× 105)
is two orders of magnitude higher than the aver-
age number of arms of the SPAQL and SPAQL-TS
agents (1.28× 103 and 1.08× 103, respectively), de-
spite its lower performance. This exemplifies the
problem of using time-variant policies to deal with
time-invariant problems. Applying the Welch test
(Colas et al., 2018) to SPAQL and SPAQL-TS with
a significance level of 5%, there is not enough ev-
idence to support the claim that SPAQL is better
than SPAQL-TS, and vice versa.

4.4. CartPole
4.4.1 Setup

The cartpole system consists of a pole with length
l = 1m and mass m = 0.1kg attached to a cart of

mass m = 1kg (Barto et al., 1983). The state vec-
tor considered is the cart’s position x and velocity
ẋ, and the pole’s angular position with the vertical
axis θ and angular velocity θ̇. In order to distinguish
the position x from the state vector, in this section
the state vector is denoted as x = [x, ẋ, θ, θ̇]T . The
agent has direct access to the state variables. A
simulation of the problem is termed an episode. An
episode terminates when one of the following con-
ditions is met (Brockman et al., 2016): the episode
length (200) is reached; the cart position leaves the
interval [−2.4, 2.4] meters; the pole angle leaves the
interval [−12, 12] degrees.

The goal is to keep the simulation running for
as long as possible (the 200 time steps). Only two
actions are allowed (“push left” and “push right”,
with a force of 10N). The cost J is −

∑T
t=1 1, where

T ≤ H is the terminal time step (Brockman et al.,
2016). This is equivalent to a reward of 1 for each
time step, including the terminal one T . According
to the OpenAI Gym documentation, the problem is
considered solved when the average cost is lower
than or equal to −195 (or the cumulative reward is
greater than or equal to 195) over 100 consecutive
trials.

The state-action space of this problem (as ob-
served by the agent) is (Brockman et al., 2016)

S ×A =(
[−4.8, 4.8]× R×

[
−24π

180
,
24π

180

]
× R

)
× {0, 1}.

(15)

This space is mapped to a standard [−1, 1]4×{0, 1}
space. For the cart position x and pole angle θ
(first and third state variables, respectively), the
mapping is done in a similar way as was done with
the angular velocity of the Pendulum (divide by the
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Figure 3: Average cumulative rewards and number of arms for the agents trained in the Pendulum system
without reward scaling. Shaded areas around the solid lines represent the 95% confidence interval.

maximum value). Cart and pole velocities are al-
lowed to assume any real value. To bound them,
the sigmoid function (shifted and rescaled) is used

φm(y) =
2

1 + exp(−2my)
− 1. (16)

Parameter m controls the slope at the origin, and
can be used to include some domain knowledge. For
the linear and angular velocity it was set to mẋ =
1/240 and mθ̇ = 1/21, respectively.

The∞ product as metric for the CartPole prob-
lem is written as

D((x, u), (x′, u′)) =

= max
{ |x− x′|

4.8
, |φmẋ(ẋ)− φmẋ(ẋ′)|,

|θ − θ′|
24π/180

, |φmθ̇ (θ̇)− φmθ̇ (θ̇′)|, 2× 1[u 6=u′]

}
, (17)

For SPAQL-TS, the reference state xref is set to
[0, 0, 0, 0]T .

4.4.2 Results

The training curves for the three algorithms (af-
ter choosing the best value of ξ) are shown in Fig-
ure 4. The average cumulative rewards are recorded
in Table 3. While in the Pendulum system the
AQL agents were able to distinguish themselves
from the random policy, for the CartPole system
this does not happen. There are fluctuations in the
performance of AQL, although no improvement is
permanent. On the other hand, the SPAQL and
SPAQL-TS agents quickly achieve average cumu-
lative rewards of approximately 193 and 199, re-
spectively (out of 200.00). Considering that these
agents were evaluated 100 times, the system is

solved by SPAQL-TS. Manually inspecting the per-
formances of the twenty individual agents stored at
the end of training, it is seen that only one SPAQL
agent solved the system (average cumulative reward
higher than 195). On the other hand, seventeen
SPAQL-TS agents solved it (out of which fourteen
scored the maximum average performance of 200).
The Welch test concludes that SPAQL-TS is bet-
ter than SPAQL at significance level of 5% with
a p-value of the order of 10−6. SPAQL-TS agents
end the training with around twice the number of
arms of SPAQL ones (1.29 × 103 and 5.58 × 102,
respectively). The AQL agents finish training with
25 times more arms (3.30× 104).

4.5. Comparing AQL, SPAQL, and TRPO

Pendulum (avg. cum. reward)
AQL −1287.31± 5.79

SPAQL −835.99± 26.91

SPAQL-TS −873.40± 39.94

Random −1340.43± 6.24

TRPO −176.76± 15.79

Table 2: Average cumulative rewards (±95% confi-
dence interval) for the different agents at the end of
training in the Pendulum system. The best perfor-
mance is shown in bold.

Trust region policy optimization (TRPO) is an
RL algorithm that is known to perform well in con-
trol problems (Schulman et al., 2015; Duan et al.,
2016). Instead of learning a value function and then
choosing actions greedily, it learns a policy directly
using neural networks. While this allows TRPO to
perform well, and to generalize to unseen situations,
the policies that it learns are not interpretable, un-
like the ones learned by SPAQL (which are tables of
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Figure 4: Average cumulative rewards and number of arms for the agents trained in the CartPole system.
Shaded areas around the solid lines represent the 95% confidence interval.

CartPole (avg. cum. reward)
AQL 22.40± 0.60

SPAQL 192.57± 0.94

SPAQL-TS 198.53± 1.55

Random 22.15± 0.64

TRPO 197.27± 3.17

Table 3: Average cumulative rewards (±95% confi-
dence interval) for the different agents at the end of
training in the CartPole system. The best perfor-
mance is shown in bold.

actions associated with states). This trade-off be-
tween performance and interpretability justifies the
comparison between these two algorithms.

The implementation of TRPO provided by
Garage (The garage contributors, 2019) was used.
The parameters used in the examples provided with
the source were kept. Average cumulative reward
estimates were computed over 20 different random
seeds, with policies trained for 100 iterations, us-
ing 4000 samples per iteration. Figures 5 and 6
show the learning curves for random, AQL, SPAQL,
SPAQL-TS, and TRPO agents, as a function of the
number of samples used (in batches of 200 samples).

For the Pendulum system (Figure 5, Table 2) the
SPAQL variants take the lead in cumulative reward
increase, but are outrun by TRPO after 200 batches
(the number of samples exceeds 40 thousand). The
TRPO agents continue learning until stabilizing the
cumulative reward around −200.

In the CartPole system (Figure 6, Table 3), both
SPAQL variants use the initial batches more effi-
ciently. TRPO catches up around batch 200 (40
thousand samples). In the end, TRPO agents per-
form as well as SPAQL-TS agents (the Welch test
does not find enough evidence to prove that one is

better than the other).

Figure 5: Average cumulative rewards and number
of arms for the agents trained in the Pendulum sys-
tem without reward scaling. Shaded areas around
the solid lines represent the 95% confidence interval.

Figure 6: Average cumulative rewards and number
of arms for the agents trained in the CartPole sys-
tem. Shaded areas around the solid lines represent
the 95% confidence interval.
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5. Conclusions
This thesis introduces single-partition adaptive Q-
learning (SPAQL), an improved version of adap-
tive Q-learning (AQL) tailored for learning time-
invariant policies in reinforcement learning (RL)
problems, and SPAQL with terminal state (SPAQL-
TS), an improved version of SPAQL that borrows
concepts from control theory. In order to balance
exploration and exploitation, SPAQL uses Boltz-
mann exploration with a cyclic temperature sched-
ule in addition to upper confidence bounds (UCB).

Experiments show that, with very little param-
eter tuning, SPAQL performs satisfactorily in the
oil discovery and ambulance routing problems, re-
sulting in partitions with a lower number of arms,
and requiring fewer training iterations than AQL to
converge.

In the Pendulum and the CartPole prob-
lems, both SPAQL and SPAQL-TS outperform
AQL. Moreover, SPAQL-TS manages to solve
the CartPole problem, showing higher sample-
efficiency than trust region policy optimization
(TRPO, a standard RL method for solving control
problems) when processing the first batches of sam-
ples.

There are several possible directions for further
work. Both AQL and SPAQL can be further mod-
ified in several ways. For example, several episodes
could be run during each training iteration, in-
stead of only one. Furthermore, the parameters
of SPAQL are highly conjugate with the episode
length. It would be interesting to study automatic
ways of setting u and d given H. Similarly to what
was done in this paper for ξ, an empirical study re-
garding the effect of tuning parameters u and d on
SPAQL performance could be done.

Another possible direction is to do a formal anal-
ysis to the complexity of SPAQL. This would allow
a rigorous comparison in terms of sample efficiency
to AQL or similar algorithms.

Finally, although it is straightforward to con-
vert the partitions learned by SPAQL into tables,
it would be interesting to implement an automatic
translator from partition to decision tree, which
would enable a clear and simplified setting to an-
alyze the policies.
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