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Abstract

We present an articulated walking model based on the inverted pendulum, with massless rigid legs,
capable of walking on irregular surfaces. The step of the biped robot is composed by the pendular motion
of the leg that supports the robot (standing leg), and, an articulated motion associated to the knee and
the hip joints of the other leg, divided in 3 phases, that enables the robot to overcome obstacles (trailing
leg). The adaptation to irregular surfaces was possible by controlling the time of the step so that both
legs made always the same angle between them when the step starts. Additionally, we conserved the
mechanical energy of the robot in order to continue walking successfully with the same characteristics
as the step before. We formulated two failing criteria for the robot to walk on irregular surfaces, one
for the local maximums and other for the local minimums. The junction of both failing criteria allowed
to formulate a global sufficient condition in order for the robot to walk without failing the step due to
the standing leg. For the articulated leg the failure conditions were defined but no sufficient conditions
were formulated. We also establish a relationship between the energy needed to maintain a limit cycle
trajectory, the angle of the slope, and the aperture between the legs when the robot is walking down a
ramp without active control present to conserve the mechanical energy at the start of each step.
Keywords: standing leg, trailing leg, walking models, irregular surfaces, limit cycle

1. Introduction
One of the key factors that distinguish humans
from other primates is their capability of having a
bipedal walking/running gait. This aspect served
as an evolutionary mark regarding our movement
in the sense that we could access a much higher
mobility and a bigger vision range than before
against our preys and our predators. Since the way
we walk is unique and very complex [7] regard-
ing the rest the animal kingdom, an effort has been
made to reproduce the same type of walking and
running in robots and other types of machines.

One of the first robots to be implemented in the
context of the inverted pendulum model was de-
veloped by McGeer, in which the concept of pas-
sive dynamic walking was introduced [6]. When
a step transition occurs, the heel strike applies an
impulse which partially stops the motion from the
previous step, however, the larger is the velocity
from the step before, the bigger will be the velocity
of the next step. If we have a descending floor with
a fixed slope, the ending velocity when step ends
is bigger than in the case of a flat floor. Therefore,
an equilibrium is possible, and in this situation, the
gravitational energy added, is compensated by the
heel strike, thus providing a stable walking gait

with no external control. Passive dynamic walk-
ing corresponds to the case when the robot walks
continually, with no external control to maintain
the stability of its movement. With access to the
Poincaré map associated to a robot going down a
surface, i.e. by recording the velocity and the angle
at the start of each step for various initial condi-
tions, and by determining the eigenvalues, λ1, λ2,
of the Jacobian matrix associated to the Poincaré
section from step to step, the existence of a limit
cycle can be proven [5], which confirms that for a
given descending floor with constant slope, there
can be a walking stable gait powered by gravity.
Another passive dynamic walker with knees was
also implemented [2]. In this work, the step of the
robot was divided in two phases, one where the
knees were locked and another where the knees
were unlocked. Besides the walking model devel-
oped, the region associated to the initial conditions
of the attractor was determined, which is associ-
ated with the stable gaits of the passive dynamic
walker going down a slope. An active dynamic
walker [1] was also developed, meaning there is an
active control in each step, in which mechanical en-
ergy of the inverted pendulum model was fixed for
each step, allowing the robot, also in two phases,
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using the articulation of the knee, to successfully
walk along a straight line on a flat surface.

2. Movement Along a Flat Horizontal Surface
In this section we develop a walking model com-
posed of a robot with a mass m located in the hip,
and two massless rigid legs of length l. These two
legs have distinct functions. One of the legs sup-
ports the mass of the robot throughout the step
and propagates this mass forward. This leg will be
called the standing leg. The other leg, the trailing
leg, resets the orientation of the standing leg from
the previous step so that it has the proper initial
conditions for the next step. This reset motion is
composed of an articulated 2-link controlled move-
ment via the hip joint that rotates the thigh and the
knee joint that rotates the calf. This articulated mo-
tion allows the robot to overcome obstacles.

We consider that a step begins when the stand-
ing leg connects with the floor, and a step ends
when the standing leg leaves the floor. By tran-
sitioning to another step, the robot will instantly
swap between standing and trailing legs in order
to keep walking continually. An important charac-
teristic about this model is that when a new step
starts, the aperture between the standing and trail-
ing legs is always the same. This means that the
foot associated to the step before, the foot associ-
ated to the next step and the mass always create an
isosceles triangle with the inner angle associated
to the mass always being the same, when there is
a step transition. Figure (1) illustrates two impor-
tant angles, α and β, that express the aperture be-
tween the legs between step transitions. The angle
β will be a parameter of the model which expresses
how open the legs are when a step transition oc-
curs. The angle α which corresponds to the interior
angle of the triangle centered in one of the foots is
given by,

α =
π − β

2
. (1)

2.1. Standing Leg
The robot is transported by the inverted pendu-
lum associated to the foot, the standing leg and
the mass. The equation of motion associated to the
mass of the robot is given by,

mφ̈ + m
g
l

cos φ = 0, (2)

where g is the gravity acceleration. The angle φ
is the angle of the standing leg measured from
an horizontal line passing through the foot, to the
mass. The pendulum in the phase space (φ, φ̇) has
the Hamiltonian function,

H =
1
2

ml2φ̇2 + mgl sin φ. (3)

α

β

l

2 l cos(α)
(xoldf ,yoldf) (xnewf

,ynewf
)

m

Figure 1: Transition instant of the two legs between
steps. The mass m, the foot associated to the step before
and the foot associated to the next step always create an
isosceles triangle with the aperture between the legs cor-
responding to the angle β.

We are interested in the domain where 0 < φ < π
and φ̇ ∈ R0−, since the propagation of the mass m
is done in the positive direction of the xx axis. In
the open interval of φ considered, Eq. (2) has an
unique unstable fixed point at (φ, φ̇) = (π/2, 0).

Since the inverted pendulum is an Hamiltonian
system, the energy E is conserved for the step du-
ration, which implies,

φ̇ = −

√
2
(

E
ml2 −

g
l

sin φ

)
, (4)

where H = E, and the negative sign comes from
direction of motion of the mass. If E > mgl,
the phase curves are defined for φ ∈ [0, π]. If
0 < E ≤ mgl, the phase curves are defined for
φ ∈ [0, arcsin(E/mlg)] ∪ [π − arcsin(E/mlg), π].
We are not interested in the later situation since the
pendulum can fall before the step ends, colliding
with the floor. If the pendulum has enough energy
to achieve it’s vertical position, E > mgl, which is
where the potential energy is maximum, there will
be no constraints regarding the conclusion of the
next step. Taking into account Eq. (4), the sufficient
condition that assures the standing leg doesn’t fall
is

φ̇(ti) ≤ −
√

2
g
l
(1− sin φ(ti)), (5)

where ti corresponds to the initial time measured
for the respective step. By determining the phase
curves associated to the pendulum, a geometric
criteria can be set that filters the solutions that re-
spect the sufficient energy condition, E > mgl.
Modifying the energy changes the outcome of the
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Figure 2: Phase curves for the inverted pendulum in
Eq. (4) for, m = 80 Kg, l = 1 m g = 9.8 m/s2, and
for various values of energy H = E, namely, E = 500
J< mlg (blue), E = 784 J= mlg (orange) and E = 900
J> mlg (green). The level of energy of E = mlg = 784 J,
is the phase curve associated boundary of the energetic
sufficient condition E = mgl. Only solutions with φ̇ ≤ 0
are taken.

fall. Figure (2) is a representation of the phase
curves for the different energies.

Suppose the robot is on the step number n in a
set course. The initial instant associated to the step
n is designated by ti(n) , and the angle of the stand-

ing leg at this time, φ
(

t = ti(n)

)
, is called the an-

gle of attack associated to step n. Likewise, the fi-
nal instant associated to the step n is designated by
t f(n) , and the angle of the standing leg at this time,

φ
(

t = t f(n)

)
, is the exit angle associated to step n.

Three parameters can be associated to the stand-
ing leg, namely, φ0= φ

(
ti(1)

)
, the angle of attack

associated to the first step, which is also the initial
condition of the system. The second parameter is
the aperture angle between the legs measured at
the time there is a transition of steps, β. The third
parameter of the standing leg is the energy E asso-
ciated with the pendular movement of the step in
Eq. (3). In a flat surface, the angle α from Fig. (1)
and Eq. (1) is the same as the exit angle associated
to the first step since both measurement references
coincide with

φ
(

t f(1)

)
= α =

π − β

2
. (6)

Equation (2) can be integrated since the energy
of the system is constant and we obtain an implicit
expression for the time elapsed on the step n as a
function of the initial and final angle of the stand-

ing leg

T(n) =

√
2 ml2

E−mgl

[
F
(

1
4
(π − 2φ)

∣∣∣∣− 2 mgl
E−mgl

)]φ=φ f(n)

φ=φi(n)

,

(7)
where F(ϕ|k) is the elliptical integral of the first
kind [8], defined as

F(ϕ|k) =
∫ ϕ

0

1√
1− k sin2 ϑ

dϑ. (8)

2.2. Trailing Leg
The trailing leg has two types of possible rotations.
One of the rotations is associated to the hip joint,
which rotates the thigh, and therefore the knee of
this leg around the hip. The other rotation, associ-
ated to the knee joint, directly rotates the calf, and
therefore, the foot around the knee. The trailing
leg, trails the standing leg so that in the next step
it is properly reset and ready to connect with the
floor. The respective lengths of the thigh and calf,
l1 and l2, are controlled by λ∈ [0, 1] a parameter of
the trailing leg. The length of the thigh is

l1 = λl, (9)

and the length of the calf that is expressed as

l2 = (1− λ)l. (10)

Two angles describe the dynamics of the trail-
ing leg. The angle θ is the angle measured from the
standing leg to the thigh of the trailing leg in the in-
terval θ ∈]− π,+π[. The angle µ is the angle mea-
sured from the thigh of the trailing leg to the calf
in the interval µ ∈]0, 2π[. The positions of the knee
and the foot can be obtained by linked rotations as-
sociated to the angles µ and θ from the position of
the mass, which is supported by the standing leg.
Figure (3) is a representation of the angles of the
standing leg, φ, as well of the thigh, θ, and the calf,
µ of the trailing leg.
The positions of the foot of the standing leg have
coordinates (xSF(n) , ySF(n)), where n is nth step of
the robot. Given Fig. (3), the coordinates of the po-
sition of the hip, H, knee of the trailing leg, TK,
and foot of the trailing leg, TF, are expressed as ro-
tations applied by the angles θ, µ on respectively
the hip join and the knee joint.

2.2.1 Control of the Trailing Leg

The articulated movement of the trailing leg is di-
vided into 3 phases, phases a), b) and c). The start
of the step, ti(n) , corresponds to the start of phase
a), ta(n) . The start of phase b), tb(n) , is controlled
by an independent parameter, τb. This parameter
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Figure 3: Angles of the thigh (θ) and the calf (µ) of the
trailing leg. The thigh of the trailing leg is segmented by
two points, the hip, H, and the knee, TK, and its length
is l1. The calf of the trailing leg is segmented by the foot,
TF and the knee, TK, and its length is l2.

corresponds to the portion of the time elapsed in a
step until phase b) starts

tb(n) = ti(n) + τbT(n), (11)

where T(n) is the total time elapsed in step n de-
fined in Eq. (7). The time phase c) starts, tc(n) ,
is also controlled by an independent parameter,
τc. This parameter corresponds to a portion of the
time elapsed in a step until phase c) starts

tc(n) = ti(n) + τcT(n). (12)

The parameters τb and τc satisfy a precedence re-
quirement

0 < τb(n) < τc(n) < 1. (13)

Introducing ε as an independent parameter that
corresponds to an offset to the angle of the thigh on
the final instant of phase b) that is within in the in-
terval ε ∈ [0, π− β] and γ, also an independent pa-
rameter that corresponds to the minimum of µ(t)
in the step,

γ = min µ(t), if t ∈
[
ti(n) , t f(n)

]
, (14)

we can broadly define the control functions θ and
µ. Given Fig. (3), any continuous function, from
the start to the end of a step n, that is non-
decreasing [4] from ta(n) to tc(n) , respecting

θ
(

ta(n)

)
= −β, (15)

θ
(

tc(n)

)
= β + ε, (16)

and, is non-increasing [4] in the interval tc(n) to t f(n)
from β+ ε to β, is a suitable control law θ(t), the ro-
tation associated to the hip joint. Likewise, for any
continuous function µ(t), that is non-increasing
from ta(n) to tb(n) , goes in this interval from π to γ, is

non-decreasing from tb(n) to tc(n) so that µ
(

tc(n)

)
=

π, and, is kept constant until the step ends, is a
suitable control law for the rotation of the calf.

2.2.2 Linearized Control of the Trailing Leg

Defining a normalized time variable η(n, t),

η(n, t) = n +
t− ti(n)

T(n)
, if ti(n) ≤ t ≤ t f(n) , (17)

we see that this continuous variable easily refer-
ences the state of a given step and belongs in the
interval η ∈ [1, max (n) + 1[, where max (n) is the
maximum step number achieved by the robot. The
integer number corresponds to the step, and the
decimal number to the state of completion of the
current step. This way, if we say that the robot has
made to time η = 5.6, this means that the robot is
has completed 60% of the 5th step. The inversion
of this variable is given by the following

t(η) =
bηc−1

∑
j=0

T(j) + {η}T(bηc), (18)

where bηc and {η} are respectively the extraction
of the lowest integer and the fractional part [3] as-
sociated to η, and T(0) is the initial instant when the
first step starts, ti(1) .

Using the variable η and setting up linear con-
trols on the rotations associated to the hip and the
knee so that θ̇ and µ̇ are constant, the expressions
θ(η) and µ(η) become

θ(η) =


−β +

2β + ε

τc
{η}, if 0 ≤ {η} < τc,

β + ε− ε

1− τc
({η} − τc) , if τc ≤ {η} < 1,

(19)

µ(η) =


π +

γ− π

τb
{η}, if 0 ≤ {η} < τb,

γ +
π − γ

(τc − τb)
({η} − τb) , if τb ≤ {η} < τc,

π, if τc ≤ {η} < 1.
(20)

Attributing values to the parameters present in
Eqs. (19) and (20), the motion of the trailing leg in
the first step is known. The parameters chosen for
the standing leg were the following
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Figure 4: Control angles θ (red) and µ (blue) as a func-
tion of η ∈ [1, 2]. The parameters τb = 0.2 and τc = 0.6
have a direct relationship with the variable η and each
phase since on the first step, phase a) goes from 1 ≤ η <
1+ τb, phase b) goes from 1+ τb ≤ η < 1+ τc and phase
c) goes from 1 + τc ≤ η < 2.

η=1
η=1+τb

η=1+τc

η=2

Figure 5: Application of the control laws in Fig. (4). The
start of phase a) corresponds to η = 1, the start of phase
b) corresponds to η = 1 + τb the start of phase c) corre-
sponds to η = 1 + τc and the end of the step occurs at
η = 2. The red and blue dashed line corresponds respec-
tively to the trajectory of the knee and the trajectory of
the foot throughout the step. Three dynamic parameters,
β, E and φ0 are associated with the standing leg and for
the trailing leg five dynamic parameters are associated,
τb, γ, τc, ε, λ.

β = 1 rad, l = 1 m, φ0 = 2.071 rad,

E = 1019.2 J, m = 80 Kg, g = 9.8, m/s2, (21)

and for the trailing leg,

λ = 0.5, γ = 2π/3 rad, τb = 0.2,
τc = 0.6, ε = 0.2 rad. (22)

The plot of the control laws θ(η) and µ(η) accord-
ing to the parameters in Eqs. (21) and (22), are illus-
trated in Fig. (4). Figure (5) contains the different
snapshots of the robot in each phase transition and
also the trajectories of the knee and the foot for the
entire duration of the first step.

2.3. Energy lost and Control Mechanism in Step
Transitions

Throughout a step the energy of the system is con-
served. Upon reaching the end of the step, at t f(n) ,
an instantaneous transition to the next step occurs,
which can be described by swapping the standing
and the trailing leg. The standing leg has only the
polar component associated to the velocity vector
due to the pendular motion. When the standing
leg reaches the end of a step, the resulting velocity
vector of the mass, ~v, is not aligned with the ve-
locity at the beginning of the next step. Let us call
~v f(n) = ~v

(
t f(n)

)
the velocity of the mass at the fi-

nal instant of step n. Similarly, let us call ~vi(n) =

~v
(

ti(n)

)
the velocity of the mass at the initial in-

stant of step n. Following Figs. (6) and (7), there are
two important sub phases in this transition. As-
suming an elastic collision between the two legs
and an inelastic collision between the trailing leg
and the floor, still in the current step n, a projection
of the final velocity, v f(n) sin(β), is lost instantly
when proceeding to the new step, step n + 1. After
losing the radial velocity component associated to
the old step, the energy of the system is lowered in
the first sub phase of the step transition. To com-
pensate this effect, in the same instant that the en-
ergy is lost, a control mechanism is applied to raise
the velocity of the mass in the polar direction to
reset the energy of the system according to Eq. (3)
keeping the parameter E as the fixed energy asso-
ciated to the standing leg. Figure (7) illustrates the
second sub phase associated to step transition in
order for the energy of the system to remain con-
stant.

We can measure the effects of this control sys-
tem in two equivalent ways. One of the ways in-
volves adding instantly the amount of polar veloc-
ity needed, ~v′(n+1), defined as

~v′(n+1) = v′(n+1) · (−êpi(n+1)
)

= −lφ̇′(n+1) · (−êpi(n+1)
) (23)

along with the polar versor−êpi(n+1)
, in such a way

that

vi(n+1)
= v f(n) cos β + v′(n+1), (24)

This velocity can be determined by considering the
energy difference at the final instant of a step and
at the initial instant of the next step. In a flat hori-
zontal surface, the energy at the final instant of step
n can be expressed as

H = mgh +
1
2

m~v f(n) ·~v f(n) , (25)
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Figure 6: Step transition sub phase 1. The standing leg
in the next step loses the radial component associated to
the velocity ~v f(n) = ~v(t f(n) ), the velocity of the mass at
the final instant of step n.
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Figure 7: Step transition sub phase 2. A control mech-
anism is applied to reset the energy of the standing leg.
This is done by increasing the polar velocity of the mass
by v′(n+1).

with h being the height of the mass. In the begin-
ning of the step we want to conserve the energy of
the last step

H = mgh +
1
2

m~vi(n+1)
·~vi(n+1)

. (26)

In a flat surface, we can from Eqs. (25) and (26) de-
termine v′(n+1)

v′(n+1) = v f(n)(1− cos β)

=

√
2
m

√
E−mgl cos

β

2

(
1− cos β

)
. (27)

The alternative way to interpret the effects of the
control mechanism is to lower or raise the neces-
sary amount of energy to the system in order for it
to remain constant. In order to determine the en-
ergy increase by the control mechanism, E′(n+1), we
need to categorize into two situations, namely, one
where the collision of the trailing leg helps the con-
tinuation of the step and the one where it hinders.
For the case β > π/2, a control mechanism must
be implemented to stop the motion of the mass,
propagate it in such a way that φ̇i(n+1)

< 0 and the
energy is not lost on the next step. For the case
β < π/2 the robot can use the energy from the
step before so that the remaining amount is added.
We can write the energy E as

E =
1
2

mv2
f(n)

+ mgh =

=


+1/2m(v f(n) cos β)2 + mgh+

+E′(n+1) if 0 < β ≤ π/2,

−1/2m(v f (n) cos β)2 + mgh+
+E′(n+1) if π/2 < β ≤ π,

(28)

which results the following expression for, E′(n+1),
the energy added by the control system

E′(n+1) =



(
E−mgl cos β

2

)
sin2 β

if 0 < β ≤ π/2,(
E−mgl cos β

2

)
(1 + cos2 β)

if π/2 < β ≤ π.

(29)

3. Movement Along an Irregular Surface
We will introduce a dynamic control technique in
which the time elapsed in a step is appropriated
for the type of floor we are given. Consider that
we have a floor f that can be given as a function
of x, f = f (x), where the robot is walking upon. If
the robot can walk on an irregular surface, there ex-
ists a specific geometric display involving the two
legs because of the fixed aperture β in step tran-
sitions. Figure (8) displays the geometry of the
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Figure 8: Geometry associated to the final instant of the
first step in an irregular surface given as a function of x,
f (x). The segment that connects both feet is projected to
the respective axis given that the corresponding angle is
φ(t f(1) )− α.

robot in step transitions, on an irregular surface.
If (xSF(1) , ySF(1)) is the position of the foot of the
standing leg on the first step, and (xSF(2) , ySF(2)) is
the position of the foot of the standing leg on the
second step, given the geometry present in Fig. (8),
we can say that if there exists an angle φ(t∗) such
that the following relations are satisfied

xSF(2) − xSF(1) = 2l cos α cos (φ(t∗)− α), (30)

ySF(2) − ySF(1) = 2l cos α sin (φ(t∗)− α), (31)

then, φ(t∗) is the exit angle associated to the first
step and t∗ is the final time associated to step 1,
with step 2 beginning immediately after. However,
the system of Eqs. (30) and (31) has 3 unknowns,
therefore, it is required to add an equation in or-
der to determine an unique solution to the system.
This additional equation, comes from the fact that
both the feet have to be in contact with the floor
when a step transitions occurs,

ySF(2) = f
(

xSF(2)

)
, (32)

which results on the following condition that must
be satisfied for the robot to walk on irregular sur-
faces given the evolution in time of Eq. (2)

ySF(1) + 2l cos α sin (φ(t∗)− α) =

= f
(

xSF(1) + 2l cos α cos (φ(t∗)− α)
)

. (33)

3.1. Energy Reset and Control Mechanism in a
Non-Horizontal Surface

Upon reaching the transition instant between
steps, it is necessary to know which velocity v′(n+1)
to add in order for the system not lose any energy.
It’s possible to determine v′(n+1) as well as the ini-
tial velocity of the next step, vi(n+1)

= v f(n) cos β +

v′(n+1). In the case of an irregular surface, v′n+1
and E′(n+1) are expressed respectively in Eqs. (34)
and (35). The variable σ(n) is the angle that the seg-
ment which connects the two feet makes with an
horizontal floor on the final instant of step n. It
can be defined, taking into consideration Figs. (1)
and (8),

σ(n) = φ
(

t f(n)

)
− α. (36)

For floors with a fixed angle ψ, we have that σ(n) =
ψ and therefore we can relate the walking pattern
of the robot with the inclination of the floor.

Let us consider the robot walking downward an
inclined ramp with the slope making an angle ψ.
If the robot can pass its vertical position, i.e., if
E > mlg, Eq. (35) has non-trivial solutions in the
case 0 < β < π/2 and E′(n+1) = 0. The case where
E′(n+1) = 0 means that there is no active control on
step transitions to monitor the energy of the robot.
This also means that the robot enters a limit cycle
in this situation because the energy of the robot on
the next step converges to the value of energy in
Eq. (35). Figure (9) illustrates this effect where the
robot walks down a slope for 5 steps and the phase
space (φ, φ̇) was recorded. The robot enters a limit
cycle because the gravitational energy added due
to the height difference balances the lost radial pro-
jection of the final velocity from the step before.
Figure (10) is a density plot which relates the en-
ergy necessary to maintain a limit cycle trajectory
E/mlg with a given angle of the slope ψ, and an
aperture between the legs at the start of the step β.

3.2. Walking Failure Conditions
We will now also explore strategies and conditions
to determine a priori if the incrementation of a step
is possible given the floor conditions in accordance
with the parameters of the robot, and formulate the
general principles to stable walking for continuous
surfaces. Two failing criteria were elaborated for
the standing leg. One of the criteria involves the
local minimum of the floor the robot is walking on.
It is necessary that φ

(
t f(n)

)
< φ

(
ti(n)

)
, otherwise,

the robot is not walking forward but backwards.
One way to measure how far is the standing leg
from failing the step due to this limitation is to con-
sider the following failing condition.
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v′(n+1)√
lg

=
√

2

(√
E

mlg
− cos

(
σ(n) +

β

2

)
− cos β

√
E

mlg
− cos

(
σ(n) −

β

2

))
. (34)

E′(n+1)

mlg
=


E

mlg sin2 β−
(

cos
(

σ(n) +
β
2

)
− cos

(
σ(n) −

β
2

)
cos2 β

)
if 0 < β ≤ π/2,

E
mlg (1 + cos2 β)−

(
cos

(
σ(n) +

β
2

)
+ cos

(
σ(n) −

β
2

)
cos2 β

)
if π/2 < β ≤ π.

(35)

t[s]

0 1 2 3 4

Figure 9: Phase space (φ, φ̇) of the robot walking down a
slope for 5 steps with no control mechanism. We can see
that the energy associated to the movement, from step
to step, is converging since the differences between each
step become smaller. The parameters associated were
the following: ψ = −π/10 rad, β = 1.205 rad, l =
1 m, m = 80 Kg, g = 9.8 m/s2, E0 = 1123.5 J.

E

m l g

1.235

1.425

1.615

1.805

1.995

2.185

2.375

2.565

2.755

2.945

Figure 10: Regions of parameter space associated to
the existence of limit cycles. The colours correspond to
E/mlg and represent the energy necessary to maintain a
limit cycle trajectory with a given ψ and β. Highlighted
at red are the solutions in which E/mlg = 1.

Failure Condition 1. Given the standing leg at a start
of a step, if the foot of an imaginary trailing leg rotated
of an angle β in the counter-clockwise direction with the
current standing leg is below the floor, the mass of the
robot in this step will collide with the surface in study,
failing the step.

With the parameters β = 0.525 rad and l = 1 m,
Fig. (11) illustrates an example of a case where the
Failing Condition 1 is satisfied and the mass col-
lides with the floor, making it impossible to incre-
ment a step.

We are interested in developing robust relations
between the parameters of the robot and the prop-
erties of the floor. For this reason, we will use the
modulus function to study the limit case in which a
step can be incremented, since it allows us to study
the valleys or peaks in which the derivative of the
floor does not pass a certain value. The general
types of floor we are interested can be defined as,

f (x) = ± tan(ψ)|x|, (37)

where ψ is the angle of the of the floor with an hor-
izontal line in the interval ψ ∈ [0, π/2]. To give an
example of a valley in a critical situation regard-
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Step 1

Step 2

Step 3

f3(x)ϕi(3)

β

β

Figure 11: Step 3 unsuccessfully incremented, with β =
0.525 rad and l = 1 m and f3(x) = 0.3 cos (0.2 + 3x). The
foot of the imaginary trailing leg is below the floor, as in-
dicated by the red arrow, and therefore, the mass collides
with the floor making it impossible to increment a step.

β

2

α
ψ=

β

2

α

β

Figure 12: Initial and final states of the robot in the limit
which Failure Condition 1 provides a successful itera-
tion of the standing leg, with a floor f of type valley,
by taking the plus sign of Eq. (37), for β = π/3 and
ψ = π/6. In this case, the time elapsed in the step is null
since we are in the critical situation in which the step can
be incremented.

ing our Failure Condition 1, Fig. (12) is an illustra-
tion of the case when the standing leg is oriented
perpendicularly to the horizontal axis of reference.
A sufficient condition can be formulated in which
floors of the type valley should obey in order for a
step to successfully be incremented.

Sufficient Condition 1. Given a generic continuous
floor f , where in a limited region x ∈ [a, b] it has only
one local minimum, if,

max | f ′(x)| < tan β/2, (38)

then a solution for the next step can be successfully
found regarding the incrementation of the standing leg
in the interval considered.

The other failing criteria involves the local max-
imum of a surface function. Given a floor f we
know that the standing leg has a minimum angle
which it cannot exceed. This angle corresponds to

Figure 13: Unsuccessful iteration of the step consider-
ing Failure Condition 2 with β = 0.85 rad and f (x) =
sin (2.5(0.44 + x)). The blue circle in the standing leg at
the final instant of the step implies that an invalid colli-
sion with the floor occurred.

the amplitude the tangent line of the floor passing
through the foot. It can be given as

φMin(n)
= arctan f ′(xSF(n)). (39)

In case the standing leg goes below φMin(n)
, it will

collide internally with the floor, invaliding the step
of the robot. Figure (13) illustrates how the stand-
ing leg can hit the floor considering this limitation
of the robot. We can formulate the respective fail-
ing criteria to measure how far is the robot from
failing the step similarly to the case of local mini-
mums.

Failure Condition 2. Given the foot of an imagi-
nary trailing leg rotated of an angle β in the counter-
clockwise direction from the standing leg on its mini-
mum angle φ = φMin(n)

, according to Eq. (39). If the
foot of this trailing leg is above the floor, the standing leg
will collide internally with the surface in study, making
the robot fail the step.

The result of the least restrictive case regarding
Failure Condition 2, that enables a relationship be-
tween β and ψ is presented in Fig. (14). In this fig-
ure, there is freedom for the foot of the standing
leg to not be on the vertex of the peak, but it can
be shown that if that occurs, we are not maximiz-
ing the configurations in which Failure Condition
2 renders a valid step, and therefore, we are unable
to state a sufficient condition. The sufficient condi-
tion regarding Failure Condition 2 can be directly
extracted from Fig. (14).

Sufficient Condition 2. Given a generic continuous
floor f , where in a limited region x ∈ [a, b] it has only
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β

π-2ψ

α

ψ

Figure 14: Incrementation of the standing leg regard-
ing Failure Condition 2 with the critical slope ψ only
depending of β. The associated parameters are, ψ =
3π/16 rad, β = π/4 rad.

one local maximum, if,

max | f ′(x)| < tan
π − β

4
, (40)

then a solution for the next step can be successfully
found regarding the incrementation of the standing leg
in the interval considered.

We can state a more general condition for any
type of floor, whether it is composed by a max-
imum, minimum, or a mixture of both, with the
two sufficient conditions derived. The intersection
of both sufficient conditions maximizes the num-
ber of floors the robot can walk on at ψ = π/6 and
β = π/3.

Sufficient Condition 3. Given a generic continuous
floor f (x), if,

max | f ′(x)| < min
(

tan
π − β

4
, tan

β

2

)
(41)

then, the standing leg can be incremented successfully
and also for any surface function of the type f (x− x0)
with x0 ∈ R.

4. Conclusions
Even though this walking model is far from com-
plete, for in fact, it corresponds to a very mini-
malistic view on how we can parametrize bipedal
walking for robots, it still grasps the essential qual-
ities and characteristics of the motion associated
to walking, the main problems regarding irregular
surfaces and how we can tackle them. To increase
the level of adaptability of the robot, we can also
replace the point feet by a more realistic foot ca-
pable of imitating an human feet. Another subtle

change that can help the conservation of the en-
ergy lost is to add springs to the legs which with
the actuation of the feet can help bring more sta-
bility to the robot. By exploring the inverted pen-
dulum model we noticed some of the most basic
aspects of the human locomotion which can help
the understanding of more complex walking mod-
els and give us an insight on how to approach the
problems presented here and in other contexts.
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