
Automatic Detection of Railway Track Obstacles using a

Monocular Camera

Guilherme Kaname Reis Kano
guilherme.kano@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

June 2020

Abstract

Railway tracks are one of the most important factors for the social-economical development of a
nation. Due to its unquestionable impact, railway monitorization should be defined as a high priority
task. In this work two solutions are developed and tested, based on computer vision and deep learning
for the automatic obstacle detection in railway tracks, such as fallen trees or large dimension rocks
resulting from rockslides. The computer vision-based algorithm employs image processing techniques
such as edge detection and image segmentation using superpixels. The deep learning approach uses
a pretrained network (transfer learning) which is modified and retrained over the target dataset. In
this dissertation two types of obstacles are considered: direct and indirect obstacles. The first refers
to elements directly obstructing the railway rails. The second refers to large obstacles located in the
vicinity of the rails, susceptible of colliding with a passing train. Both algorithms perform upon RGB
images of railway tracks, captured by a single monocular camera. Since no data set depicting railway
track obstacles is known to exist, it was required to artificially create one to develop and test both
methods developed. In a final phase, both algorithms were tested on the scale model composed of a
webcam and railway tracks models. It was verified that the best results were obtained with the deep
learning algorithm.
Keywords: Railway Tracks, Obstacles, Automatic Detection, Computer Vision, Convolutional Neural
Networks

1. Introduction
From public transportation, to international trade
of goods, rail transportation industry has an unde-
niable impact on a nation’s social and economic de-
velopment. To illustrate this, its impact on United
States’ gross domestic product (GDP) was a total
amount of $74.2 billion to the U.S GDP in 2017
(approximately 0.4 percent of the total U.S. econ-
omy)1.

While being a proven essential asset for a nation’s
development, rail transportation accidents have se-
rious and social impacts. The derailment and colli-
sion of a freight train can incur high expenses and
losses, while accidents involving human passenger
vehicles may lead in injuries and casualties2. Rail-
way companies have been continuously aiming to
the improvement of safety and maintenance mea-
sures. These efforts are reflected in official reports,
such as the one issued by UIC, a worldwide asso-
ciation composed by several European railway in-

1Oxford Economics. The economic impact of railway sup-
pliers in the U.S.- Technical report,2018

2E. Beswick. Around 40 injured in Austria train accident,
say police. Euronews, 2018. Accessed: 2019-08-27

stitutions, which reported that 81.50% of the acci-
dents registered in 2017 were due to third parties
and weather and environmental causes 3

Preventive measures to minimize rock slide based
collision often lay on the installation of protective
barriers and signal fences. However, this approach
can be expensive if the area under monitorization is
extensive, as if the case for the Norwegian rail lines,
located in mountainous areas that extended over
4000km. Alternative solutions such as automatic
inspection using autonomous vehicles could play a
vital role in railway monitoring.

1.1. Railway Maintenance and Inspection
One of the fields in railway track maintenance con-
sists on the rail’s surface inspection. Due to the
multiple cyclical loads that rails are subjected to,
their surface is prone to the effects of fatigue. Re-
garding this topic, many researchers have been de-
veloping deep learning base solutions [1, 2].

The detection of obstacles in railway tracks is a
different field, that is still focused on railway track

3Significant accidents 2017 public report. Retrieved April
10, 2019.

1

monitorization. Obstacle detection solutions often
rely the use of LiDAR systems, which are used for
monitoring level crossing, one of the location where
those incidents are most prone to occur.

To avoid the use of high cost sensors, often lim-
ited by an effective range, solutions often drift to
imaging sensors and imaging processing techniques.
maire2010obstacle

Many researchers [3, 4, 5] have focused on the use
of computer vision techniques, such as edge detec-
tors, to extract the rail edges, as the starting point
for the detection of obstacles. In [5], authors, use a
window slider technique that encompass a portion
of the detected rail edges. At each window, the ori-
entation and average intensity gradient of the rail
edge is computed. If both the angle and intensity
between two edges of adjacent windows do not lay
under a similarity threshold, the rail is said to be
obstructed.

Other approaches, such as the one explored by
Ukai et al. in [6], combine the information re-
trieved from different sensors. Authors developed
an on-board monitorization device that employs
both image recognition and high resolution radar
techniques to detect obstacles in the railway tracks.

Contrary to the available research of surface and
railway track components maintenance using deep
learning algorithms, it appears that no significant
search is being conducted in obstacle detection task
using the same methods. While the rail surface in-
spection allows for the collection of a vast amount of
data, subsequently provided to the research commu-
nity, the same do not extends to the obstacle detec-
tion field, as there is a significantly smaller number
of registered observations, as mention by Nakhaee
et al. in[7].

1.2. Objectives and Contributions

This thesis aims to develop, evaluate and com-
pare computer vision and deep learning approaches
for the automatic detection of obstacles in railway
tracks, while being limited to the analysis of RGB
railway tracks images captured by a single monoc-
ular camera.

The proposed detection algorithm operates upon
images of railway tracks taken by an inspection
vehicle mounted camera whose orientation is kept
approximately constant over the inspection course.
This constraint dictates the normal operation con-
ditions on which the detection algorithm operates
upon: the railway tracks’ relative position and ori-
entation within the captured image, with the image
vertical bisector being approximately aligned with
the middle of the railway rails.

Two types of obstacles are considered: direct
obstacles and indirect obstacles. Direct obstacles
refers to objects obstructing the raiway rails. Indi-

rect obstacles are objects that, despite not being ob-
structing the rails, are located in the vicinity of the
rails, susceptible of colliding with a passing train.

The main contributions achieved by this work are
the creation and collection of a novel dataset of rail-
way track images with and with no obstacles, that
can be used by the academic community. Secondly,
the algorithm developed and addressed in section
5 proposes an alternative to railway rails segmenta-
tion based on the detection of straight lines with the
Hough transform. This topic is further addressed
by Kano et al. in [8].

Finally, this work addresses main advantages and
drawbacks when adopting vision and deep learning
in the topic of automatic detection in railway tracks.

2. Theoretical Background: Computer Vi-
sion

2.1. Linear Image Filtering
Linear image filtering consists of modifying an im-
age and it can be used for feature detection, such as
finding edges, and for noise suppression. The tar-
get pixel in the image I at location (u, v) is updated
according to

g(u, v) =
∑
k,l

w(k, l)I(u+ k, v + l) (1)

with (u; v) and (k; l) being the image and the mask
indices, respectively.

Sobel operator is one common edge detector,
which can be defined by its horizontal and vertical
components Gx and Gy, defined as:

Gx =
1

4

1 0 −1
2 0 −2
1 0 −1

Gy =
1

4

 1 2 1
0 0 0
−1 −2 −1

 (2)

Alternatively, noise reduction can be achieved us-
ing a discrete approximation of the 2-D Gaussian
function, defined by a N ×N matrix and the stan-
dard deviation of the Gaussian function, σ, which
measures the filter intensity.

2.2. Image Segmentation
Image segmentation can be performed based on dis-
continuity, with the use of edge detection algorithms
such as the Sobel operator and the Canny edge de-
tector, and similarity of intensity values, such as the
image oversegmentation using superpixels.

Superpixels are cluster of pixels that share per-
ceptually similar features such as color or grayscale
intensity levels. SLIC decomposes the image into
several clustering using a 5-D distance definition,
that accounts for both the color similarity in the
L∗a∗b∗ color space and the 2-D euclidean distance.

2.3. Region-Based Descriptors
Region-based descriptors translate shape properties
of a given region into a numeric feature. Major and

2

minor axis, correspond the maximum and minimum
distances between the utmost pixels in a given re-
gion. These descriptors can be derived from other
shapes, such as ellipses, that share the same second
central moment as the considered binary object.
Additionally, the orientation of the shape, given by
the angle between the major axis and the horizontal
axis can also be computed using this ellipses (Fig.
1).

Figure 1: Major and minor axis and orientation
descriptors of the region (left) can be obtained from
the ellipses with the same second central moment
(right).

The Euler number (E) of a binary image is the
difference between the number of the connected (C)
elements and the number of holes (H):

E = C −H (3)

3. Theoretical Background: Deep Learning
3.1. Learning and Computer Vision
Deep learning has been a popular strategy among
many scientific applications such as medical imag-
ing diagnosis [9].

Being verified as an effective tool to solve many
computer vision tasks, deep learning requires a large
data set of examples to train the models. Regarding
this matter, one of the most important contribu-
tors is the ImageNet, an image database containing
over 14 million images, where many state of the
art visual recognition models have been trained on.
Many of these models have been used for transfer
learning (TL) which consists in using a pretrained
model that has already been trained over a large-
scale dataset, and retrained in a different domain.

3.2. Convolutional Neural Networks
Convolutional neural networks (CNN) are a type
of deep learning models that have been extensively
used in many visual recognition tasks such as image
classification and object detection. These models
can be divided into two sets: a feature extraction
and a classification set. The feature extraction set is
composed by sets of convolutional, activation func-
tion and pooling layers, which ultimately extract a
the feature vector from the input image. This fea-
ture vector is then used by the classification set to
obtain the model’s estimation.

One example of a CNN is the GoogLeNet, a
model which is composed by several inception mod-
ules.

4. Railway Dataset
The railway dataset is composed by railway track
images with and without obstacles.

The No Obstacle dataset was assembled from two
sources. The first source is a compilation of several
images obtained from Google TrainView, and re-
trieved by Pinho and Santos in [10]. The second
source was compiled from a collection of Youtube
videos where the frames were collected.

Since there is no large dataset of railway tracks
images with obstacles, the Obstacle dataset had to
be artificially generated.

The obstacle dataset images were generated fol-
lowing two different approaches. The first approach
uses the algorithm developed by Pinho and San-
tos in [10] that automatically generates obstacle in-
stances by placing the obstacle images (.png images
of trees and rocks) in the original image.

Alternatively, in the second method, the obstacle
instances were manually generated using image ma-
nipulation software (GIMP), by outlining specific
contours in the target image, that could represent
obstacles in a real scenario. The obstacle instances
were generated by placing the contours in such a
manner to simulate rock slides or landslides (Fig.
2).

(a) Target image. (b) Contour out-
lining

(c) Obstacle in-
stances.

Figure 2: Process of obtaining an obstacle instance
with GIMP.

Table 1 describes the number of images in the
complete dataset (no obstacles and obstacles).

Table 1: Data set dimension
Dataset Dimension

No Obstacle Obstacle Total:
1572 747 2319

5. Obstacle Detection - Computer Vision Al-
gorithm (DetectCV)

The obstacle detection based computer vision al-
gorithm can be divided into the 3 main phases: a
preprocessing, a segmentation and an obstacle de-
tection phase.

5.1. Preprocessing Phase
First, the input image is subject to an histogram
equalization to enhance the overall image contrast,

3

followed by a Gaussian filter is applied to diminish
the presence of high frequency details that can later
be detected during the edge detection phase. Then,
a Region of Interest (ROI) is defined to limit the
search area where the edge detection are performed
upon.

The ROI is obtained by defining a binary mask,
with the desired region represented by foreground
pixels and it is obtained by first considering a sub-
region A whose frontiers are defined by:

y < 0.6 · heightImage

x < 0.5 · widthImage

y < 2x

(4)

where y = 2x is the equation of the line de-
fined by the points p1 = (0, 0) and p2 = (0, 3 ·
widhtImage, widthImage, 0.6 · heightImage) (Fig.
3). Then, it is mirrored around the image’s vertical
bissector to obtain the ROI.

Figure 3: Subregion A defined by equations (4)
(left), ROI (middle) and resulting image (right).

5.2. Segmentation Phase
In this phase, the rail edges are extracted from the
image obtained after the ROI extraction (Fig. 3
(right)). Two edge detection algorithms are tested:
the Sobel operator and the Canny edge detector,
with the Sobel’s horizontal component (2), leading
to an edge map with fewer unwanted details and an
accurate representation of the rail edges.

This edge map is then subject to a 3 phase recon-
struction process. First, the edge map is subject to
closing operation using a square 10 × 10 SE, with
the intent of partially reconstructing every BLOB
(rail or non rail). Then, the selection of the true
rail BLOBs from the remaining ones are done using
a orientation threshold, defined by computing the
orientation of each rail (left and right) over 10 ex-
amples. The left and right rail’s orientation thresh-
old’s, θleft and θright, lower and upper limits are
the lowest and highest orientations, obtained over
the 10 examples:

θleft rail = [61.1, 79.2] deg

θright rail = [−82.9,−64.1] deg
(5)

which can be used to obtained the global orientation
threshold:

θglobal = θleft rail ∪ |θright rail| = [61, 83] deg (6)

Therefore, a BLOB is classified as true rail BLOB
if |θBLOB | ∈ θglobal.

Having obtained the partially reconstructed rail
BLOBs, a closing operation using a square 50× 50
SE, is perform upon each individual rail BLOB to
obtained the final binary representation of the rails.

5.3. Obstacle Detection Phase
The obstacle detection phase is divided into two
modules: the first is responsible for detecting the
presence of direct obstacles obstructing the rails and
second is only concern to detect large obstacles in
the vicinity of the railway tracks.

Direct obstacles can be detected by computing
the vertical distance V ertDist of each rail. Af-
ter considering two possible definitions for this
measurement, by either evaluating the major axis
length and orientation of each rail (Fig. 4 mid-
dle) or by accessing the height of the corresponding
bounding box (Fig. 4 right).

Figure 4: Binary representation of the rails (left)
and V ertDist definition using major axis and ori-
entation(middle) and bounding box height (right).

A rail is classified as being obstructed if
V ertDist<Threshold · heightROI . The value of
Threshold is defined by selecting 10 examples of
images representing with and without obstructions,
and for each rail, the corresponding value for the
ratio V ertDist

heightROI
. For the cases with no obstruction,

the ratio had a minimum value of 0.85, and maxi-
mum value of 0.79 over the obstructed cases. Con-
sidering that, a Threshold = 0, 8 is accepted. Fig.
5 (left) shows a case where no obstructions are de-
tected and Fig. 5 (right) a case where the left rail is
obstructed, according to V ertDist<0.8 ·heightROI .
Both cases were not used in for the estimation of the
Threshold.

If no obstruction is found, the algorithm must
look for the surrounding areas of the rails.

To obtain a binary image for each area (left,
middle and right), the ROI image is subject to a
superpixel over segmentation using the SLIC algo-
rithm. Then, a clustering k-means algorithm, k=3,
is used to decompose the image into 3 colored re-
gions. Since the background pixels (represented by

4

Figure 5: No obstruction detected (left) right rail
obstructed (right).

the black group) occupy the majority of the im-
age’s area (this can be proven by computing the
background area in Fig. 3 (middle)), the binary
representation of the surrounding areas can be iso-
lated by selecting the colored group with the second
highest pixel count (Fig. 6).

Figure 6: Process of obtaining the surrounding re-
gions’ binary representation.

With the binary representation of the surround-
ing region in a single image, the next step consists
of separating it into 3 separate binary images, cor-
responding to the left, middle and right regions.
Using the orientation θ and centroid coordinates
[xCent, yCent] of both rail BLOBs, it is possible to
obtain the parametric equation of two lines, yleft
and yright, that separate the three regions. The left
line is defined as:

yleft = mleftx+ bleft (7)

where besq = yCentleft
−mleftxCentleft

and mleft =
tan(θleft).

The same reasoning is applied to the right line.
The left region (Fig. 7 third image) is composed

by the foreground pixels with coordinates (x, y) that
satisfy:

y > mleft x+ bleft (8)

the middle region (Fig. 7 fourth image) by pixel
such that satisfy

y < mleft x+ bleft

y < mright x+ bright
(9)

and the right region (Fig. 7 fifth image) by pixels
that satisfy

y > mright x+ bright (10)

Each individual binary image is subject to a clos-
ing and opening operation. The decision whether an

Figure 7: Separation of the surrounding area (sec-
ond column) into the three regions (third to last
column) using the lines yleft and yright (red lines).

obstacle is identified is made by computing the eu-
ler number of each binary region image (after clos-
ing and opening). To illustrate this, an example is
shown in Fig. 8.

Figure 8: Middle region’s euler number different of
0, an obstacle is detected.

Large objects are seen as threats one represented
in the binary mask as large holes or gaps, which,
and due to their threatening dimensions, are not
fully closed during the closing operation and are
later expanded after the opening operation. The
decision of criteria of the detection is based on the
euler number of each region’s binary representation.
If one region is split into two regions (caused by
a large object) the corresponding euler number is
equal to 2. If there is a hole in one of the regions
(caused by large rock that does not divide one re-
gion, however, it is large enough to be considered as
a threat), the corresponding euler number is equal
to 0. If a region is clear of any indirect obstacle, it
is represented by a single foreground with no holes
and the corresponding euler number is equal to 1.
Therefore, the algorithm detects the presence of an
indirect obstacle if there is at least one region with
an euler number different from 1.

Finally, the detection algorithm only predicts the
complete safety of the railway if, and only if, both
detection modules do not detect any obstacle in the
railway track.

6. Obstacle Detection - Deep Learning Algo-
rithm (DetectDL)

6.1. Data Augmentation and Dataset Spliting
In order to have two classification classes with an
equal number of images, the Obstacle class images
are subject to data augmentation techniques to gen-
erate more cases.

5

The used data augmentation routine produces 3
new images from an already existing one. The first
image (Fig. 9 b) is obtained by flipping the orig-
inal image (Fig. 9 a) around the vertical bisector
axis. The second and the third (Fig. 9 c and d) are
obtained by decreasing and increasing the image’s
contrast up to of 30%. Then one of these two images
is randomly selected to be flipped around the ver-
tical bisector axis, similarly to the first augmented
image (Fig. 9 b).

Figure 9: Data augmentation routine. (a) Original
Image, (b) flipped image, (c) image with increased
contrast and (d) flipped image with decreased con-
trast.

From the total 1572 No Obstacle images, a pro-
portion of 70%-15%-15% is selected for the train-
ing,validation and test sets, corresponding to an
amount of 1100, 236 and 236 No Obstacle images,
respectively. From the 747 distinct Obstacle im-
ages, 236 are selected for the test set. To avoid
having images in the validation set generated by
data augmentation techniques from training exam-
ples, from the remaining 511, 236 are randomly se-
lected as a validation set. The remaining 275 are
subject to data augmentation techniques, account-
ing for a total of 1100 Obstacle images to be used
as training set.

6.2. Hyperparameter Selection
In order to estimate the best model configuration,
several hyperparameters combinations were tested
using a grid search algorithm by (1) varying the
number of frozen Inception modules, (2) the ini-
tial learning rate (ILR), and respective learning
schedule and (3) dropout probability (p). Re-
garding the number of frozen Inception modules,
the terminology adopted is the following: base-
line GoogLeNet refers to the model with no frozen
modules, GoogLeNet freeze1 has 1 frozen Inception
module frozen, and so forth.

Each hyperparameter combination is assessed by
training and validating using a hold-out set. In each
training phase, both training and validation sets are
randomly selected from the remaining images apart
from the testing images.

The baseline parameter combination tested was:
zero Inception modules frozen, constant LR =
0.001 and dropout value p = 0.4. After accessing
all the hyperparameter combination, the one that
led to the best performance curves was: zero Incep-
tion modules, an ILR = 0.0025 with a decay factor

of 0.1 ever 2 training epochs and a dropout value
p = 0.4. The corresponding performance curves for
the accuracy (%) and loss (cross-entropy) for both
training and validation are shown in Fig. 10.

0 100 200 300 400 500 600 700

iterations

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Baseline Hyperparameter configuration vs.
Best Hyperparameter configuration

0 100 200 300 400 500 600 700

iterations

0

0.2

0.4

0.6

0.8

Lo
ss

 (
C

ro
ss

-E
nt

ro
py

)

Baseline Hyperparameter configuration vs.
Best Hyperparameter configuration

Baseline Hyperparameter (Train)
Best Hyperparameter (Train)
Baseline Hyperparameter (Valid.)
Best Hyperparameter (Valid.)

Figure 10: Performance curves obtained from the
baseline hyperparameter combination (blue) and
best hyperparameter combination estimation (or-
ange).

7. Results
7.1. DetectCV

The confusion matrix for the DetectCV algorithm
in the test set is represented by table 2. DetectCV
has a reasonable capacity in correctly detecting
obstacles(Sensitivity= 95.3%) and about 68.0% of
the images of railway tracks classified as having
an obstacle are correctly classified. DetectCV cor-
rectly identifies 130 of the total of 236 images as
free of any obstacle (Specificity= 55.1%). Overall,
the algorithm assigns the correct label (Obstacle or
No Obstacle) in 75.2% of the cases.

Table 2: Confusion Matrix for the DetectCV algo-
rithm applied to a 472 images test set.

Ground truth
Positive Negative

P
re

d
.

Positive 225 106
Negative 11 130

The respective classification metrics
are Sensitivity = 95.3%, Specificity =
55.1%, P recision = 68.0% NPV =
92.2%and Accuracy = 75.2%.

7.1.1 Railway Tracks with Obstacles

DetectCV has a reasonable capacity in correctly de-
tecting obstacles (Sensitivity = 95.3%), with only
11 false negative incidences. Fig. 11 shows some
cases of the prediction of DetectCV.

6

Figure 11: True positive examples (left) and (mid-
dle) and a false negative example (right).

While Fig. 11 (left) and (middle) are correctly
classified (true positive), Fig. 11 (right) represents
one the false negative incidences. The cause of false
positives is related to the threshold defined for the
vertical distance (V ertDist). For a higher thresh-
old, Fig. 11 (right) would require a higher V ertDist
so that the rails would be classified as obstructed.
Therefore, with a larger threshold, the rails would
be correctly classified as being obstructed.

7.1.2 Railway Tracks without Obstacles

Fig. 12 shows two examples where DetectCV cor-
rectly classifies the railway track image with no ob-
stacle: railway rails have the necessary V ertDist to
be classified as unobstructed and the euler number
of each region is 1. The algorithm is also able to
ignore the square electrical boxes found in between
the rails (Fig. 12 bottom row) after the closing and
opening operations perform upon the second image
in the bottom row.

Figure 12: Ground truth: No Obstacle. Output:
No Obstacle.

Situations where no obstructions (detected by the
first module) can be found near the rails, the clus-
tering algorithm is forced to segment the image into
3 different colored groups, even when the difference
in the surrounding’s color are perceptually irrele-
vant. Consequently, in some cases, the surrounding
regions are represented by a non uniform binary
mask, making the respective Euler number differ-
ent from 1 (indicating the presence of an obstacle)
(Fig. 13 (a)). Another source of error can be traced
to the slightly worse quality (high blurring) of some
images tested, which makes the edge detection un-

able to detect the rail edges accurately (Fig. 13
(b)).

(a) Output: Obstacle. Eulermiddle 6= 1,
leading to the miss detection of an obstacle
in between the rails.

(b) Output: Obstacle. Miss detection of
edges due to poor image quality.

Figure 13: Ground truth: No Obstacle. Predicted:
Obstacle.

7.2. DetectDL
The confusion matrix for the DetectDL algorithm
in the test set is represented by table 3. DetectDL
has a reasonable capacity in correctly detecting ob-
stacles (Sensitivity= 97.0%) and about 94.6% of the
images of railway tracks classified as having an ob-
stacle are correctly classified. DetectDL correctly
identifies 223 of the total of 236 images as free of
any obstacle (Specificity= 94.5%). Overall, the de-
tection algorithm assigns the correct label (Obsta-
cle or No Obstacle) in 95.8% of the cases. Futher-
more, the DetectDL algorithm achieved an AUROC
of 98.3% over the same test set.

Table 3: Confusion Matrix for the DetectDL algo-
rithm.

Ground truth
Positive Negative

P
re

d
.

Positive 229 13
Negative 7 223

The respective classification metrics
are Sensitivity = 97.0%, Specificity =
94.5,% Precision = 94.6%, NPV =
97.0% andAccuracy = 95.8%

7.2.1 Railway Tracks with Obstacles

Fig. 14 shows some images with ground truth Ob-
stacle. The class activation map (CAM), repre-
sented by the heat map, for the predicted class and
the classification scores are represented on the left,
while the model prediction is presented on the top
of the right image.

Inspecting the true positive cases represented in
the top row of Fig. 14, it is possible to conclude that

7

Obstacle, 1

No obstacle, 7.2976e-12

DetectDL prediction:

Obstacle

(a) Predicted: Obstacle.

Obstacle, 1

No obstacle, 1.4727e-14

DetectDL prediction:

Obstacle

(b) Predicted: Obstacle.

No obstacle, 0.61295
Obstacle, 0.38705

DetectDL prediction:
No obstacle

(c) Predicted: No Obstacle.

No obstacle, 0.86207
Obstacle, 0.13793

DetectDL prediction:
No obstacle

(d) Predicted: No Obstacle.

Figure 14: Ground truth: Obstacle. Top row - true
positive. Bottom row - false negative.

the discriminative regions, given by the CAM, with
the most relevancy to the model’s prediction are the
portions of the image containing rail discontinuities.
In the bottom row examples, representing the false
negative examples, the CAM for the misclassified
No Obstacle class has a tendency of avoiding the
image portion region containing the true obstacle.

7.2.2 Railway Tracks without Obstacles

Fig. 15 shows some images with no obstacles.

No obstacle, 0.96019

Obstacle, 0.039814

DetectDL prediction:

No obstacle

(a) Predicted: No Obstacle.

No obstacle, 0.99458

Obstacle, 0.0054182

DetectDL prediction:

No obstacle

(b) Predicted: No Obstacle.

Obstacle, 0.61796

No obstacle, 0.38204

DetectDL prediction:

Obstacle

(c) Predicted: Obstacle.

Obstacle, 0.9985

No obstacle, 0.0015029

DetectDL prediction:

Obstacle

(d) Predicted: Obstacle.

Figure 15: Ground truth: Obstacle. Top row - true
positive. Bottom row - false negative.

The top row images represented in Fig. 15 depict
some cases where the detection algorithm correctly
classifies the image as a No Obstacle situation (true
positives). The CAM for the classification label No
Obstacle encompasses a wider discriminative region
of theimage, referring to the railway rails and the
sleepers between them.

The bottom row images represent situations
where the detection algorithm wrongly detects the
presence of an obstacle (false negatives). While the
reason behind the misclassification of the image in

Fig. 15 (c), might not be clear, a more coherent jus-
tification can be given for the case depicted in Fig.
15 (d). The level crossing platform creates an illu-
sion of a rail discontinuity, misleading the model’s
prediction. From the total of 13 false positives in-
cidences, 5 are related to these infrastructures.

7.3. DetectCV vs DetectDL - Specific cases
Comparing both detection algorithms on low qual-
ity images (high blurring effect), DetectDL has a
better performance than DetectCV, whose perfor-
mance depends on how well the rail edges are de-
tected, which can be hard when subject to low qual-
ity images.

Fig. 16 shows two examples of low quality rail-
way track images and the respective output of the
computer vision and the deep learning algorithms.

Figure 16: Comparison of both DetectCV (left) and
DetectDL (right) when subject to low quality im-
ages. DetectCV failed in the classification, while
DetectDL succeeded.

Both algorithms’ performance were also tested
using images with shadows projections onto the rail-
way tracks. Fig. 17 shows two examples of railway
track images with a shadow projected into the rails.

Figure 17: Images with shadows where all the cases
are ground truth No Obstacle. First column refers
to the DetectCV algorithm and the second to the
DetectDL algorithm.

8

DetectCV fails when the shadow causes a discon-
tinuity in the rail edges (Fig. 17 top row). How-
ever, the algorithm performs well when facing cases
where the shadow only changes the rail’s surface
color, keeping the rail edges unbroken (Fig. 17 mid-
dle and bottom row).

Regarding DetectDL, it wrongly detects an ob-
stacle in Fig. 17 (middle) where the shadow projec-
tion leads to a drastic change in the rail’s surface
color (Fig. 17 middle). In the other images (Fig.17
top and bottom), the rails retain an uniform sur-
face color even after being covered by the shadow,
therefore, not misleading the detection algorithm.

7.4. Scale Model
Both algorithms were tested using a scale model,
comprised of 1/87 scale track model and a comercial
webcam HP 2300HD (Fig. 18).

Figure 18: Scale model.

The hardware used was a laptop with built-in
2.50 GHz Intel Core i7-4710HQ, 64 bits Windows 10
operating system and an AMD Radeon R9 M265X.
The Software used was MATLAB 2018b.

Fig. 19 shows some processed frames by the com-
puter vision algorithm (DetectCV) using the scale
model.

In the first and second frame (Fig. 19 (a) and
(b)) the webcam was situated in the same position.
In these situations, the obstacle (white rocks) are
not encompassed inside the ROI. The detection al-
gorithm correctly classifies the first frame without
obstacles (true negative) (Fig. 19 (a)). However,
frame 2 represents a false positive example, where
the right rail is not fully detected by the algorithm,
therefore being classified as obstructed (Fig. 19
(b)). As the model approaches the obstacle mak-
ing it enclosed by the ROI, the algorithm correctly
detects it (Fig. 19 (c)).

(a) Frame 1. (b) Frame 2. (c) Frame 3.

Figure 19: Frames processed by DetectionCV using
the scale model.

In 600 captured frames, the algorithm took on
average 0.35 seconds to process a single frame. The

detection range achieved was 23, 0 cm, measured in
the model.

Fig. 20 shows some processed frames by the com-
puter vision algorithm (DetectDL) using the scale
model. In the first frame (Fig. 20 (a)), the model
does not yet detect the obstacle. In frames 2 and
3 (Fig. 20(b) and (c)), the model was located in
the same position. At this location, the model’s
prediction oscillated from No Obstacle and Obsta-
cle. For the No Obstacle class, the respective CAM
completely ignores (by representing with a darker
shade in the heat map) the discriminative location
within the image where the obstacle stands. Con-
trary, the CAM for the Obstacle class, fully encloses
the obstacle once ignored by the CAM represented
in Fig. 20 (c).

Finally, in the fourth frame, the model correctly
detects the obstacle (white rock) (Fig. 20 (d)).

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure 20: Frames processed by DetectionDL using
the scale model.

In 600 captured frames, it took the algorithm an
average of 0.20 seconds to analyze a single frame.
The detection range achieved was 32, 0 cm, mea-
sured in the model.

Assuming that the vehicle is traveling at a con-
stant speed, its acceleration is constant during the
breaking and it stops from a safety distance of 2
meters from the obstacle, in a situation where the
obstacle is detected at its maximum distance from
the vehicle, an estimation of the vehicle’s speed can
be obtained. Having obtained the processing rate
for each frame and the respective ranges in real
world dimensions (using the 1/87 scale) the esti-
mated traveling speed is 24.6 and 30.1km/h for De-
tectCV and DetectDL, respectively.

8. Conclusions and Future Work
The main objectives of this work were the develop-
ment, evaluation and comparison of computer vi-
sion and deep learning approaches for the automatic
detection of obstacles in railway tracks, while lim-
ited to the analysis of RGB railway track images

9

captured by a single monocular camera.
To address this topic, for which no available

dataset of images of railway tracks containing ob-
stacles is known to exist, the first effort was focused
on the creation of a novel dataset from existing im-
ages of railway tracks without obstacles, retrieved
from multiple sources.

Regarding the computer vision algorithm De-
tectVC, some remarks can be drawn, which, funda-
mentally represent the paradigm of any computer
vision system: the importance of establishing con-
trolled working conditions for the algorithms to op-
erate. In this work, the working conditions were
defined from the beginning, by considering only im-
ages with similar orientation and by defining a ROI.
However, it was later verified that some blurred im-
ages were presented where the algorithm had diffi-
culties to achieve its task. Moreover, the selection
of parameters in many computer vision systems are
often based on heuristics, with no definitive guaran-
tee that one solution fits every case. Nevertheless,
the algorithm presented a good detection ability.

A deep learning approach was also explored.
Deep learning models are data driven models that
require minimal human supervision, with an asso-
ciated cost of requiring a significantly amount of
dataset to extract features from raw data. As such,
their performance is highly dependent of the avail-
able data used for training and less on human exper-
tise, contrary to computer vision algorithms. De-
spite the immense efforts dedicated to assemble the
dataset necessary for this task, the DetectDL algo-
rithm would benefit from more images. Neverthe-
less, with the use of transfer learning, the algorithm
was able to achieved even better results than the
computer vision-based detection algorithm.

On a finishing note, all the objectives defined in
this work were fulfilled. Nevertheless, some recom-
mendations are provided.

The first suggestion is the use of supervised ob-
ject detection algorithms, such as the Faster R-
CNN. Secondly, the deep learning network could be
trained with images with the ROI, instead of using
the whole image (railway tracks + background). If
saved in memory, the images must be saved in a
lossless format such as Portable Network Graphics
(.png) to avoid the presence of compression noise.
Finally, and since there is lack of sufficient data ded-
icated to the railway track inspection research, the
expansion of the dataset is a work worth exploring.

References

[1] D. Soukup and R. Huber-Mörk, “Convolu-
tional neural networks for steel surface defect
detection from photometric stereo images,” in
International Symposium on Visual Comput-
ing, pp. 668–677, Springer, 2014.

[2] Y. Santur, M. Karaköse, and E. Akin,
“An adaptive fault diagnosis approach us-
ing pipeline implementation for railway in-
spection,” Turkish Journal of Electrical Engi-
neering & Computer Sciences, vol. 26, no. 2,
pp. 987–998, 2018.

[3] F. Maire and A. Bigdeli, “Obstacle-free range
determination for rail track maintenance ve-
hicles,” in 2010 11th International Confer-
ence on Control Automation Robotics & Vi-
sion, pp. 2172–2178, IEEE, 2010.

[4] L. F. Rodriguez, J. A. Uribe, and J. V. Bonilla,
“Obstacle detection over rails using hough
transform,” in 2012 XVII Symposium of Im-
age, Signal Processing, and Artificial Vision
(STSIVA), pp. 317–322, IEEE, 2012.

[5] H. Wang, X. Zhang, L. Damiani, P. Giribone,
R. Revetria, and G. Ronchetti, “Video analy-
sis for improving transportation safety: obsta-
cles and collision detection applied to railways
and roads,” in Proceedings of the International
MultiConference of Engineers and Computer
Scientists 2017, pp. 909–915, 2017.

[6] M. Ukai, B. Nassu, N. Nagamine, M. Watan-
abe, and T. Inaba, “Obstacle detection on rail-
way track by fusing radar and image sensor,”
in 9th World Congress on Railway Research
(WCRR-2011), Lille, France, 2011.

[7] M. C. Nakhaee, D. Hiemstra, M. Stoelinga,
and M. van Noort, “The recent applications of
machine learning in rail track maintenance: A
survey,” in International Conference on Relia-
bility, Safety, and Security of Railway Systems,
pp. 91–105, Springer, 2019.

[8] G. Kano, T. Andrade, and A. Moutinho, “Au-
tomatic detection of obstacles in railway tracks
using monocular camera.,” in Computer Vi-
sion Systems (D. Tzovaras, D. Giakoumis,
M. Vincze, and A. Argyros, eds.), 11754,
Springer International Publishing, 2019.

[9] S. Pereira, A. Pinto, V. Alves, and C. A.
Silva, “Brain tumor segmentation using convo-
lutional neural networks in mri images,” IEEE
transactions on medical imaging, vol. 35, no. 5,
pp. 1240–1251, 2016.

[10] J. Pinho and J. Santos, “Technical report.
automatic detection of anomalies in railway
tracks. instituto superior técnico. universidade
de lisboa.” Project developed in Computer Vi-
sion lecture.

10

