
Real-Time Trajectory Planning for UAVs in Environments with

Moving Obstacles

António Ramalho
antonio.ramalho@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

April 2020

Abstract

In the present work a real-time trajectory planning algorithm for multi-rotor is developed. The
algorithm is capable of avoiding both static and moving unexpected obstacles, in real time. The
trajectory-planner is capable of generating optimal trajectories regarding operational costs, which
are given by a combination of the estimated energy consumption and total trajectory time. The
algorithm was integrated with a simplified TCAS system, showing the capability of the autonomous
path planner to follow protocols originally used in manned aircraft. The solution is based on a modified
RRT algorithm and a trajectory optimization algorithm. Multiple basic simulations were performed
to evaluate the real-time capabilities of the algorithms. A simulation in the physics engine Gazebo
was also analysed to validate the capability of a realistic multi-rotor to follow aggressive trajectories
generated by the proposed planner.
Keywords: multi-rotor, trajectory planning, RRT, trajectory-optimization, TCAS

1. Introduction

With the constant development of Unmanned Air
Vehicles (UAV) there has been an interest in using
their potential for diverse applications. This poten-
tial could be further explored if autonomous UAV
operation was possible, without the need for a hu-
man pilot.

Autonomous systems are however complex, re-
quiring a vast set of capabilities. This work will be
focused on only a portion of that: the generation of
collision free trajectories in real-time and the inte-
gration of the trajectory-planning algorithms with
existing collision avoidance protocols for manned
aircraft.

1.1. Outline of the approach

In this work it is proposed a real-time path-planning
algorithm for UAVs. The main goal is to make an
algorithm capable of planning aggressive trajecto-
ries (and for that the UAV dynamics must be con-
sidered) in partially unknown environments with
moving obstacles. The algorithms should be able
to quickly react to new detected obstacles (includ-
ing moving obstacles) and safely avoiding them by
quickly adjusting the trajectory without having the
need to stop the UAV for such.

In the field of trajectory planning it is also desir-
able to compute optimal trajectories. Optimality
will be defined in terms of mission costs (a combi-

nation between mission time and fuel/energy con-
sumption). The algorithm will have anytime ca-
pabilities: it is possible to quickly generate a sub-
optimal trajectory and then optimize it for a given
period of time. An locally-optimal trajectory is
computed if enough computation time is used. The
trajectory will also be optimized while the UAV flies
in order to improve the quality of the trajectories if
they aren’t locally-optimal to begin with.

To enable path planning in real time a simplified
dynamic model for multi-rotors will be used. In or-
der to validate that the computed trajectories are
suitable for aggressive multi-rotor maneuvering a
simulation will be performed and the position error
of the multi-rotor, relatively to the provided ref-
erences, will be stored through the simulation and
analysed afterwards.

Further on the algorithms will be upgraded with
other features, such as the capability of generating
leveled trajectories at desired altitudes and follow
desired climb rates.

The algorithms will finally be integrated with a
TCAS system. This integration proves the capabil-
ity of the proposed solution to respect this collision
avoidance protocol (TCAS) originally designed for
manned aircraft.

1

2. Background
2.1. Trajectory-Planning
A path for a robot can be described as a series of
configurations that the robot should assume to go
from a start to a goal configuration. The concept of
configuration is described in [1] as a set of indepen-
dent parameters that describe the position of every
point in a body.

The terms path and trajectory are often used in-
terchangeably. Formally, however, these terms are
distinct. Path refers to, as mentioned before, all
the consecutive configurations that a robot has to
assume in order to go from a start to a goal config-
uration. In a trajectory, however, there has to be
a timing law associated to the configurations that
define the trajectory, for example having an associ-
ated speed and acceleration or time instant to each
configuration in the trajectory [2].

2.2. Real time path planning - Literature review
Online path planning in unknown environments for
UAVs was accomplished before in [3], but it would
ignore the vehicle dynamics, therefore the UAV
would have to fly slowly in order to perform the
computed trajectories. The most commonly used
methods for real time path planning are, arguably,
sample based methods. Basic RRTs for example
allow a fast search for a trajectory, however the so-
lution is very sub-optimal.

For accomplishing a proper path-planning it is
desirable that the algorithm considers the kinody-
namics of the problem. Attempts have been made
to apply RRT*, an asymptotically optimal version
of the RRT, for this problem. In [4] a kinody-
namic RRT* was proposed, however, in this work,
the times required to compute a trajectory were of-
ten greater than 10 seconds and sometimes greater
than 100 seconds, making it unsuitable for using on
online path-planning problems.

On-board path planning for small UAVs have
been proposed in [5] using a field programmable
gate array (FPGA) chip. In this work a solution
was created in which genetic algorithms are used
to compute a path plan (offline however) based on
a provided environment and set of start and goal
configuration. In [6], an online path planning al-
gorithm for cooperative aircraft is developed and
implemented in relatively powerful on-board com-
puters. In [7] and [8] an evolutionary algorithm
is developed to allow online path planning in an
unknown environment, this work considered static
environments and it was never implemented in an
aircraft.

An interesting approach for path-planning prob-
lems is trajectory optimization. It has been used for
many years with diverse applications, for example
to define missions of orbit transfer and also launch-
ing space vehicles, like it is referred in [9]. In recent

years there have been a great amount of work re-
garding applying these algorithms to robotics. One
of the most influential works was done by Matt
Zucker et al. [10], in this work motion-planning
for articulated robots was performed using opti-
mization techniques. It discretized the trajectory
as a series of configurations, and then the algo-
rithm would minimize the distance to obstacles and
maximize the smoothness of the trajectory, the tra-
jectory time would, however, have to be predeter-
mined. In prior work, by A. Richards et al. [11],
motion planning for UAVs was addressed, however
with clear limitations. More recently, in 2016, He-
len Oleynikova et al. [12] developed an algorithm
for UAV path planning in unknown static environ-
ments.

Generally trajectory optimization algorithms re-
quire a first iteration. This can be computed in
many different ways, for example it is possible to
use a straight line as a first trajectory, even if this
one is not obstacle free [13]. In the present work
however it is presented a first iteration given by
a modified RRT algorithm which not only guaran-
tees that the local-minimum is feasible as it also
provides a trajectory close to satisfying the kinody-
namic constraints of the problem.

Two different works [14, 15] are of particular in-
terest for the current research.

In the work by Pavone et al. [15] the authors
developed an algorithm which they claim to be the
first successful real-time path planner for UAVs in
unknown dynamic environments physically tested.
This work is very recent (very end of 2018). The
processing, however, was made on a ground sta-
tion and communicated with the UAV. The authors
claim that the algorithms can run in real-time in an
on-board computer if their code is converted (code
is in MATLAB) to C++. This work combines a
series of interesting features such as the use of ma-
chine learning to allow an online performance of a
kinodynamic, asymptotically optimal sample based
planner, in this case the Fast Marching Tree star
(FMT*).

In ”Itomp: Incremental trajectory optimization
for real-time replanning in dynamic environments”
([14]) the authors explore the fact that trajectory
optimization techniques allow the computed trajec-
tory to be continuously improved while the robot
executes it.

2.3. Traffic Collision Avoidance System
The Traffic Alert and Collision Avoidance System
(TCAS) is an on-board conflict detection and reso-
lution system which alerts pilots to the presence of
nearby aircraft that pose a mid-air collision threat
and issues conflict resolution advisories [16]. TCAS
is a complex safety-critical system in the area of air
traffic management. TCAS is able to operate in-

2

dependently of the ground-based air traffic control
(ATC) system. All TCAS systems provide a spe-
cific degree of collision threat alerting and a traffic
display by making use of radar beacon transpon-
ders.

TCAS systems provide different degrees of alert-
ing regarding air-born collision. To do so these sys-
tems rely on the communication between the bea-
con transponders on-board of the aircrafts.

The TCAS system provides two types of alerts to
the pilot: Traffic Advisories (TA) and Resolution
Advisories (RA). A traffic advisory (TA) is a sound
message that alerts the pilot for proximate cooper-
ative traffic, with possible risk of collision. Reso-
lution advisories (RAs) are sound messages stating
actions for pilots to take in order to avoid collision
by assuring a vertical separation between aircrafts
(climb, descend, level...).

In case of resolution advisory the TCAS systems
on board of the conflicting aircraft coordinate the
computed resolutions to avoid collision (for example
avoiding that both aircrafts start climbing towards
a new collision point). The TCAS systems will then
select complementary resolutions.

3. Proposed Solution

The proposed solution consists in an incremental
optimization approach. The core idea consists in
continuously optimizing the trajectory while the
UAV executes it. This however requires some addi-
tional logistics:

• It is required to define at each time which part
of the trajectory should be optimized

• It is required to have a first iteration for the
trajectory optimizer

• It is required to have a tool that prevents the
optimizer to get trapped in unfeasible local
minima

3.1. Example

A series of figures (Fig 1 - 7) will now be presented
to exemplify this concept.

The selection of part of the trajectory that should
be optimized at a given time will now be described.
If UAV is following the trajectory reference corre-
sponding to the current time tC , and the time used
for an optimization increment is ti, than the op-
timization is performed for the trajectory portion
between tC + ti and tC + ti + tn where tn is a cho-
sen parameter for a normal optimization scenario.
The trajectory between tC and tC + ti is fixed (will
not be changed) once the optimization increment
result will only be available at tC + ti. Once the
optimization increment is finished the current time
tC is updated and the process restarts (Fig 1 - 3).

Figure 1: Part of the trajectory fixed (orange) in
an initial trajectory computed by an RRT

Figure 2: Trajectory is optimized while UAV flies

Figure 3: New part of the trajectory is fixed and
process re-starts

In the case that there is some non-feasible portion
in the trajectory (a part of the trajectory exceeds
the maximum allowed speed or acceleration or there
are collisions with obstacles) the trajectory is only
optimized around the unfeasible portion (Fig 4 - 5).

Figure 4: Unknown obstacle detected in the trajec-
tory

Figure 5: Trajectory optimizer adjusts the trajec-
tory avoiding the obstacle

If the optimizer can’t make the trajectory feasi-
ble in a chosen, limited, number of increments (in
this work it will be called the maximum number of
failures MAXf) the RRT algorithm regrows a tra-
jectory around the unfeasible portion (Fig 6 - 7).
This might happen if the trajectory falls into an
unfeasible local minima.

Figure 6: Unknown complex obstacle detected in
the trajectory

3

Figure 7: The maximum number of failures is
reached and a trajectory is regrown around the ob-
stacle

Finally, in the case that the non-feasible part of
the trajectory corresponds to a time interval that
is very close to the current time tC a different ap-
proach should be taken. In this scenario the op-
timization increment might not be performed fast
enough to avoid a collision. If this is the case the
UAV enters an ”emergency mode” which consists
in stopping to follow the previous trajectory and
recomputing the trajectory from scratch.

Concerning the first iteration given to the opti-
mizer it will be used a modified RRT. This RRT
will also be used to regrow critical parts of the tra-
jectory whenever it gets trapped in unfeasible local
minima. The trajectory is computed from the UAV
to the goal in the beginning of the mission and ev-
ery time the robot discards the old trajectory when
entering the ”emergency mode”.

4. Proposed RRT algorithm
Rapidly exploring Random Trees (RRTs) where
first introduced by Lavalle as a family of random-
ized planners ([17], chapter 5) in 1998. These al-
gorithms are sample based planners. An RRT al-
gorithm grows a tree in the configuration space by
randomly sampling configurations and then adding
them to the tree. In path planning applications
when the algorithm starts the tree contains only
the start configuration, the tree is then grown un-
til it contains also the goal configuration. There is
a vast set of RRT variations in the literature, an
overview won’t, however, be presented in this work.

An RRT which computes paths with a maximum
curvature limit is presented. This algorithm was
also empowered with the capability to plan in time-
dependent environments. In this work, unlike it is
done in most of the literature, the sequence of way-
points that describe the trajectory is not defined
by the vertices of the tree. The waypoints are
represented by the edges in the trajectory.
The middle point of the edge represents the posi-
tion, while the alignment of the edge represents the
direction of the speed. It is

4.1. Acceptable angle between edges
It will now be defined the maximum allowed an-
gle between consecutive edges as a function of the
robot minimum curvature radius. Let d be the edge
length, Rmin be the robot minimum curvature ra-

Figure 8: The green points and arrows represent the
robot’s position and speed respectively. The black
points represent the vertices of the RRT.

dius and α be the angle (maximum angle) between
consecutive edges. The angle α will be given in rad
as:

α = π − 2 ∗ arctan
(
Rmin

d/2

)
(1)

It is obvious that the angle α can only take values
between 0 and π, in this range the function cos(α)
is always decreasing, therefore limiting a maximum
angle between two edges is the same as limiting a
minimum cos(α). Let now e1 represent one edge
(position of vertex k minus position of vertex k-1)
and e2 represent its consecutive edge (position of
vertex k+1 minus position of vertex k). We can
state that an edge e2 is acceptable after an edge e1

if and only if:

e1 · e2

‖e1‖ ∗ ‖e2‖
≥ cos(αMAX) (2)

4.2. Maximum curvature expansion
Sometimes a new vertex is created in such a position
that it is not possible to create an edge from the
previous vertex that is aligned with the new vertex
(when the condition in equation 2 is not respected),
such as in Figure 9.

Figure 9: The new vertex is in such a position that
it is not possible to expand the tree directly towards
it, the tree is expanded than using a maximum cur-
vature expansion.

In those cases an expansion is made in which the
angle between the newly added edge and the edge
that leads to that same edge is the maximum al-
lowed angle αMAX . In this work this sort of ex-
pansion of the tree is called maximum curvature
expansion.

For creating paths that respect the minimum cur-
vature radius constraint the presented algorithm

4

expands the tree towards the random configura-
tions using successive maximum curvature expan-
sions until it is possible to expand the tree directly
towards the random configuration.

4.3. Enhancement step
As it is known trajectories computed by the RRTs
might be very sub-optimal. Optimal RRT related
algorithms require often great computational times
like it was mentioned before. An enhancement step
is now proposed. This enhancement step allows the
solution computed by the smooth RRT to be en-
hanced in a very significant way without requiring
much computational time.

The enhancement step consists in trying, from
each vertex in the RRT, to reach directly another
vertex as further in the trajectory as possible. A
scheme is now presented in order to demonstrate
this concept in Figure 10:

Figure 10: Consecutive steps in the enhancement
algorithm.

Figures 11 and 12 show some examples of the
computed trajectories before and after the enhance-
ment step.

Figure 11: Example of the trajectory before (on the
left) and after (on the right) the trajectory enhance-
ment

Figure 12: Example of the trajectory before (on the
left) and after (on the right) the trajectory enhance-
ment

5. Trajectory Optimization
It is important to state all the approximations and
assumptions made for this problem.

• The multi-rotor is approximated to a point

• The attitude is, at this point, ignored

• It can move in any direction

• It has limited acceleration

• It has limited speed

• The multi-rotor state σ is defined by the posi-
tion and speed of it’s center of mass.

5.1. Nomenclature
It will be now introduced some nomenclature that
will be used in this section. [σ0, ..., σN−1] is the
vector with all the N robot states along the tra-
jectory, excluding the start and the goal states. σs
and σg are the start and goal states respectively and
these will not be subjected to optimization. Also
σi = [pi,vi], where pi and vi corresponds to the
position and speed vector of the robot in a given mo-
ment. This means that σ ∈ R4 for a bi-dimensional
environment and σ ∈ R6 for three-dimensional envi-
ronment (e.g. UAV). Let also pi,j represent the jth
component of the robot position in the ith state and
vi,j represent the j component of the robot speed in
the ith state. For example pi,z represents the z com-
ponent of the robot position in the ith state and vi,y
the presents the y component of the robot speed in
the ith state. l, as j, will also be used as a subscript
to refer to components of position/speed. Basically:
σi = [pi,vi] = [pi,x, pi,y, pi,z, vi,x, vi,y, vi,z] (in 3 di-
mensional space).

It will be assumed that the robot acceleration a
between two consecutive states is constant. Each
state σi represents the state of the robot at the time
t = ts + (i + 1) ∗ ∆t where ts is the start time.
Therefore, the total trajectory time is given simply
by ttotal = (N + 1) ∗ ∆t (one time step from start
to σ0, N-1 time steps between the N states and one
time step between σN−1 and the goal).

Considering this, the variables subjected to op-
timization will be x = [∆t, σ0, ..., σN−1]. If it is
written in the form of a vector of scalars (in 3 di-
mensional space):

x = [∆t, p0,x, p0,y, p0,z, v0,x, v0,y, v0,z, ...

..., pN−1,x, pN−1,y, pN−1,z, vN−1,x, vN−1,y, vN−1,z]

This will be the design variables of the problem,
it is essential for the good comprehension of the fol-
lowing topics. The formulation of the optimization
problem will be described in the following sections.

5.2. Cost function
The cost function chosen was a linear combination
between the trajectory time and energy consump-
tion. The scalar weights kT and kF allow to tune
the relevance given to each of these costs. Such cost

5

functions are suitable, for example, for minimizing
the mission related costs. The cost function is then:

f(x) = kT ∗ fT (x) + kF ∗ fF (x) (3)

The time component is the total trajectory time,
which is given as (N + 1) ∗∆t where N represents
the number of states subjected to optimization.

To model the energy consumption for the multi-
rotor it was used closed form expressions from the
work by Marins et al. [18].

5.3. Kinematics
The algorithm must respect the kinematics of the
problem. It is assumed that the acceleration be-
tween to consecutive states σi and σi+1 is constant.
It is also assumed that the time elapsed for the
robot to move from one state to another is ∆t.
With these assumptions, the position pi+1 should
be given by:

pi+1 = pi +
vi+1 + vi+1

2
∆t (4)

To write Equation 4 in the form c(x) = 0 the
right side of Equation 4 is subtracted in both sides
of the equation.

5.4. Maximum speed and maximum acceleration
The maximum speed constraint can be written as:

‖vi‖ < vMAX (5)

Where vMAX is the maximum allowed speed.
The maximum acceleration constraint can be intu-
itively stated as:

‖ai‖ < aMAX ⇔
‖vi+1 − vi‖

∆t
< aMAX (6)

Where aMAX is the maximum allowed acceleration.
To keep the derivatives simple, the form chosen for
this inequity to be written was:

‖vi+1 − vi‖ < aMAX∆t (7)

In order to create a constraint in the form d(x) <
0 the right side of the inequality stated in Eq. 7 is
subtracted to both sides of the inequation.

5.5. Obstacle clearance
It is now required to define the signed distance of a
point to a convex obstacle. Let this signed distance
s(Ok,pi) represent the distance from a point pi to
the closest point on the surface of a convex obstacle
Ok , this distance is negative if the point pi is inside
the obstacle OK.

The inequity that assures that the UAV is at least
dsafe away from any obstacle is

s(Ok,pi) > dsafe (8)

This formulation for the obstacle clearance con-
straints was formulated based on [13]. The signed
distance is however, at the moment of writing, only
available for spheres and cuboids in 3 dimensional
environments and circles and rectangles in 2 dimen-
sional environment. The algorithm also supports
moving spheres (and circles).

To enable the usage of bigger trajectory seg-
ments, which reduce the number of way-points
and increases the algorithm performance, new con-
straints were imposed. These new constraints as-
sure that a number of intermediate points (equally
spaced points in each trajectory segment between
way-points) are not in collision with any obstacle.

After multiple simulations it is possible to observe
that the computational time is smaller if some way-
points are replaced for these intermediate collision
checking points.

5.6. Problem formulation
The problem formulation can finally be stated:

min kT ∗ fT (x) + kF ∗ fF (x)

s.t. pi+1 = pi + vi+1+vi+1

2 ∆t
‖vi‖ < vMAX

‖vi+1 − vi‖ < aMAX∆t
s(Ok,pi) > dsafe
s(Ok,pinter(i,m)) > dsafe

(9)

In Equation 9 pinter(i,m) represents the mth in-
termediate collision checking point for the trajec-
tory segment that joins two consecutive way-points
(σi to σi+1).

5.7. Biasing the algorithm behaviour
By introducing terms in the cost function and
changing its constants it is possible to control the
algorithm behaviour. This property was used to al-
low the computation of leveled trajectories (track
a desired altitude), avoidance trajectories (track a
certain climb rate in part of the trajectory and for
tuning the energy efficiency. For following a desired
altitude the method the error between the desired
altitude zref and the altitude at each state was con-
sidered as a cost, the modified cost function is:

fnew(x) = f(x) + kh ∗
N−1∑
i=0

‖pi,z − zref‖ (10)

Where f(x) is the old cost function and kh the
constant that allows to tune the ”strength” of the
altitude suggestion.

The TCAS system, as it was discussed in Sec-
tion 2.3, indicates climb rates for the pilot to follow,
in order to avoid conflict. The term added to the
cost function penalizes errors between the climbing
speed and the desired climbing speed vzref for the
first half of the way-points. If this penalization

6

considers all the way-points than it won’t change
the trajectory because the average climbing speed
is only defined by the start and goal altitudes and
the trajectory time. The modified cost function is:

fnew(x) = f(x) + kc ∗
round((N−1)/2)∑

i=0

‖vi,z − vzref‖

(11)
Where f(x) is the old cost function and kc the

constant that allows to tune the ”strength” of the
climb rate suggestion.

6. Simulation
A simplified simulation was performed to validate
the real time performance of the algorithms. A sim-
plified model of a UAV was created, this model
consisted of a point with a given mass to which
the control inputs were applied as forces. A simple
controller was developed to transform the reference
acceleration, speed and position into force inputs
for the model.

6.1. Real-time avoidance
The following figures (Fig. 13-21) show the results
for a real time testing of the algorithms in a com-
plex indoor environments with unexpected obsta-
cles appearing in the map as the model follows the
trajectory.

The algorithm was also tested against moving in-
truders. When the moving intruders have a known
trajectory the algorithm was no problem avoiding
them. When the moving intruders move in smooth
trajectories the algorithm is also able to avoid them,
by assuming constant speed of those same intruders.
The simulated scenario that presented the greatest
challenge involves a zig-zagging intruder that moves
in the opposite direction to the aircraft that follows
the algorithm computed trajectory. Once the al-
gorithm assumes a constant speed for the intruder,
and the intruder speed is constantly changing di-
rection, the algorithm fails in computing a collision
free path in approximately half of the runs.

6.2. Simulating an unknown environment
To simulate an unknown environment the algorithm
was used to compute the trajectories in a 2 dimen-
sional environment, without knowing the position
or number of obstacles in that environment. It was
then assumed that the algorithm would acquire in-
formation on the obstacle when the aircraft was at
a distance to the obstacle smaller than a certain de-
tection range. The results of these simulations are
now demonstrated:

To have some statistical data on the performance
of the algorithm several simulations were run in ran-
dom maps, Figure 22 shows one of these random
maps.

run regrow count time (s)
1 0 34
2 0 32
3 0 36
4 1 62
5 1 46
6 0 32
7 3 -
8 0 39
9 0 47
10 1 49

Table 1: Results of the runs in random maps.

Each map has 20 randomly generated circles,
with a radius between 10 and 40 (display units).
The distance from start to goal was 370 display
units and the maximum speed chosen for the air-
craft was 15 display units per second. Table 1 shows
the time taken to reach the goal and the number of
times the trajectory was fully or partially regrown
using the RRT algorithm. The algorithm wasn’t
able to compute a trajectory once, in that case the
aircraft stopped at a distance smaller than the safe
distance, relatively to an obstacle. For that rea-
son the RRT algorithm could not output any safe
trajectory.

6.3. Physics simulation

To validate that a real multi-rotor is capable of fol-
lowing the computed trajectories it will be used the
physics engine Gazebo [19] and the Robotic Op-
erative System (ROS) [20]. A plugin for Gazebo,
RotorS, was developed in the Autonomous Systems
Lab of ETH Zurich university [21], this plugin al-
lows to perform physical simulations of multi-rotors.
The controller used was adapted from the one de-
scribed in the work by Lee et al. [22]. It was chosen
a simple map for validation of the algorithm. The
map consisted of a gazebo model of a fast-food chain
restaurant. The multi-rotor had to go from one of
the sides of the building to the other. An altitude
constraint was created force the multi-rotor not

Four runs were performed. The runs differ in
maximum acceleration allowed and the side of the
building taken to arrive to the goal position. In
all the runs the minimum distance allowed between
the UAV and an obstacle was set to 3 meters and
the maximum speed allowed for the UAV to travel
was 15 m/s (54 km/h). For two of the runs the
maximum acceleration allowed was 6m/s2 and for
the other two 10m/s2.

The norm of the difference between the aircraft
position and the reference position provided by the
algorithm was stored over time for every time an
update was received on the aircraft position. The
evolution of the position error along the time for

7

Figure 13: RRT is grown Figure 14: Initial trajectory is
computed

Figure 15: The algorithm op-
timizes part of the trajectory
ahead of the aircraft.

Figure 16: Obstacle is detected Figure 17: Trajectory optimizer
adjusts the trajectory avoiding
the obstacle

Figure 18: Obstacle is detected

Figure 19: Trajectory optimizer
gets trapped in an unfeasible lo-
cal minima

Figure 20: RRT algorithm re-
grows the critical part of the
trajectory

Figure 21: A feasible trajectory
is found

Figure 22: Random unknown map.

run number 4 is now presented in Figure 23.

It is possible to observe in Figure 23 that the po-
sition error is low and stabilized while the UAV is
hovering, before and after executing the trajectory.
The error doesn’t tend to zero because the con-
troller expression doesn’t contain an integral term.
During the trajectory execution the position error
rises but it is never greater than one meter. As
expected the error is greater when the maximum
acceleration allowed is greater.

6.4. TCAS system testing

A simulation was performed to validate the correct
function of the TCAS system and its proper integra-
tion with the remaining solution. This simulation
was performed using Gazebo.

8

Figure 23: Position error along the simulation time
(Max. acceleration = 10m/s2).

Several measures were stored along the time to
allow an analysis of the simulation. Figure 24
presents the altitude of each of the aircrafts (ver-
tical axis) corresponding to their horizontal posi-
tion (horizontal axis) along the simulation. It is
possible to see in Figure 24 that the conflict was
cleared by the TCAS systems. The TCAS system
corresponding to the aircraft that departed from the
right (orange in the graphic) resolved the conflict by
determining a certain climb rate. The TCAS sys-
tem corresponding to the other aircraft (blue) de-
termined a descend rate to solve the conflict. The
determined resolutions were correctly followed until
the conflict was cleared.

Figure 24: Trajectory of the aircraft (altitude in the
vertical axis, horizontal coordinate, in the horizon-
tal axis).

7. Conclusions
In this work it was developed a real-time trajectory-
planning algorithm, using a modified RRT algo-
rithm and a trajectory optimization algorithm. An
enhancement step was also implemented, this step
allows a quick improvement of the trajectory gen-
erated by the RRT. The trajectory optimization al-
gorithm allows to generate locally-optimal trajec-
tories, it considers a cost function that is a combi-
nation of energy consumption and trajectory time.
The developed algorithm was further improved with
an emergency protocol that stops the multi-rotor
in critical scenarios. A simplified testing frame-

work was developed to access the capabilities of the
developed algorithms. The real-time path-planner
showed to be capable of creating collision free tra-
jectories in partially unknown environments, by
quickly adjusting the trajectory when new obsta-
cles are detected. To prove that the algorithm is
fit for a variety of maps the planner was tested in
random maps, where the obstacles are initially un-
known and the information about their position is
revealed only within a certain range. This algo-
rithm is also capable of avoiding unexpected moving
obstacles, considering also sensor delay.

Besides this dynamic capabilities, the developed
trajectory planner allows to select the amount of
computational time spent in an initial optimization.
This gives the algorithm anytime capabilities, let-
ting the user choose between computational time
and trajectory optimally.

The algorithms at the time are only capable of
considering spheres and cuboids as obstacles. This
can be changed in the future for general convex ob-
stacles, for example by using the GJK and the ex-
panding polytope algorithms. The algorithms can
also be extended to fixed-wing aircrafts by, for in-
stance, limiting the minimum speed (stall speed)
and the climb rate of the aircraft.

In order to prove that a real-multi-rotor is capa-
ble of following the computed trajectories, a simu-
lation in Gazebo was performed. In this simulation
the virtual UAV was capable of following the tra-
jectory while keeping a position error smaller than
one meter at all times, in an aggressive maneuver.

The developed algorithms were then upgraded
in order to make them more suitable for non-
segregated air-space. This integration includes the
possibility of computing trajectories that promote
the flight at a certain flight level and the integration
with a simplified TCAS system. The interrogation
rate was considered to be the same as in scenarios
involving manned aircraft. The algorithm proved
to be able to follow the resolutions provided by the
TCAS system, this interesting feature shows how
the algorithms can follow protocols designed for hu-
man pilots.

For future work, besides extending the algorithm
for general obstacles and fixed wing aircrafts. It
would be interesting to implement the algorithms
in C++ and test if it is possible to use them for
on-board planning.

Acknowledgements
The author would like to thank Professor Rodrigo
Ventura and Professor Afzal Suleman for the guid-
ance provided throughoutthis work. (Acknledge-
ment for Boeing and NRC funds here.)

References
[1] Lozano-Perez, “Spatial planning: A configura-

9

tion space approach,” IEEE Transactions on
Computers, vol. C-32, pp. 108–120, Feb 1983.

[2] B. Siciliano, L. Sciavicco, V. Luigi, and G. Ori-
olo, Trajectory Planning, ch. 4. 01 2011.

[3] G. Grisetti, S. Grzonka, and W. Burgar, “A
fully autonomous indoor quadrotor.,” IEEE
TRANSACTIONS ON ROBOTICS, p. 90100,
2012.

[4] J. van den Berg Dustin J. Webb., “Kinody-
namic, rrt*: Optimal motion planning for sys-
tems with linear differential constraints,” May
2012.

[5] J. Kok, L. F. Gonzalez, and N. Kelson,
“Fpga implementation of an evolutionary al-
gorithm for autonomous unmanned aerial ve-
hicle on-board path planning,” IEEE TRANS-
ACTIONS ON EVOLUTIONARY COMPU-
TATION, VOL. 17, pp. 272 – 281, April 2013.

[6] J. TISDALE, Z. KIM, and J. K. HEDRICK,
“Autonomous uav path planning and estima-
tion,” IEEE Robotics & Automation Magazine,
pp. 35–42, June 2009.

[7] I. K. Nikolos, K. P. Valavanis, I. Se-
nior Member, N. C. Tsourveloudis, and A. N.
Kostaras, “Evolutionary algorithm based of-
fline/online path planner for uav naviga-
tion,” IEEE TRANSACTIONS ON SYS-
TEMS, MAN, AND CYBERNETICSPART
B: CYBERNETICS, VOL. 33, NO. 6, pp. 818–
912, December 2003.

[8] X. Zhang, J. Chen, B. Xin, and H. Fang, “On-
line path planning for uav using an improved
differential evolution algorithm,” in Proceed-
ings of the 18th World Congress The Interna-
tional Federation of Automatic Control Milano
(Italy), pp. 6349–6354, August 2011.

[9] J. T. Betts, “A survey of numerical methods
for trajectory optimization,” August 1998.

[10] N. Ratliff, M. Zucker, J. A. Bagnell, and
S. Srinivasa, “Chomp: Gradient optimiza-
tion techniques for efficient motion planning,”
IEEE International Conference on Robotics
and Automation, May 2009.

[11] A. Richards and J. P. How, “Aircraft tra-
jectory planning with collision avoidance us-
ing mixed integer linear programming,” Pro-
ceedings of the American Control Conference,
pp. 1936–1941, May 2002.

[12] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto,
R. Siegwart, and E. Galceran, “Continuous-
time trajectory optimization for online uav

replanning,” IEEE/RSJ International Con-
ference on Intelligent Robots and Systems
(IROS), October 2016.

[13] J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, J. Schulman, Y. Duan,
and P. Abbeel, “Motion planning with se-
quential convex optimization and convex col-
lision checking.,” The International Journal of
Robotics Research, p. 12511270, 2014.

[14] C. Park, J. Pan, and D. Manocha, “Itomp:
Incremental trajectory optimization for real-
time replanning in dynamic environments.,”
Proceedings of the Twenty-Second Interna-
tional Conference on Automated Planning and
Scheduling, p. 207215, 2012.

[15] M. Pavone and R. E. Allen, “A real-time
framework for kinodynamic planning in dy-
namic environments with application to quad-
copter obstacle avoidance.,” Robotics and Au-
tonomous Systems, p. 174193, 2018.

[16] C. Livadas, J. Lygeros, and N. A. Lynch,
“High-level modeling and analysis of tcas,”
in Proceedings 20th IEEE Real-Time Systems
Symposium (Cat. No.99CB37054), pp. 115–
125, Dec 1999.

[17] S. M. LaValle, Planning Algorithms. Cam-
bridge, U.K.: Cambridge University Press,
2006.

[18] J. L. Marins, T. M. Cabreira, K. S. Kap-
pel, and P. R. Ferreira, “A closed-form en-
ergy model for multi-rotors based on the dy-
namic of the movement,” in 2018 VIII Brazil-
ian Symposium on Computing Systems Engi-
neering (SBESC), pp. 256–261, Nov 2018.

[19] N. Koenig and A. Howard, “Design and use
paradigms for gazebo, an open-source multi-
robot simulator,” in 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566),
vol. 3, pp. 2149–2154 vol.3, Sep. 2004.

[20] “Ros (robot operating system), documenta-
tion. accessed in 8th july, 2019..”

[21] F. Furrer, M. Burri, M. Achtelik, and R. Sieg-
wart, Robot Operating System (ROS): The
Complete Reference (Volume 1), ch. RotorS—
A Modular Gazebo MAV Simulator Frame-
work, pp. 595–625. Cham: Springer Interna-
tional Publishing, 2016.

[22] T. Lee, M. Leok, , and N. H. McClamroch,
“Geometric tracking control of a quadrotor uav
on se(3),” 49th IEEE Conference on Decision
and Control, pp. 5420–5425, December 2010.

10

