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Member of the Committee: Prof. Pedro Tiago Martins Batista

December 2019







Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.



To my aunt Aida.



Acknowledgements

I would like to express appreciation to my supervisor at IST, Professor Alexandre Bernardino, for all

the patience and expertise he transmited to me throughout the development of this thesis. Moreover,

to Professor John Van Opstal from Radboud University for his support and to my fellow colleagues at

ORIENT I project, Akhil John, Carlos Aleluia and Mariana Martins.

To all my friends in different stages of life and especially the ones who shared the university times

with me. I am lucky to have all of those at SIIIIIIIIIIM, you all know how important this group is to all of

us.

To the best housemates I could have asked for, Ricardo, Gui and João Guilherme. You were my

second family these years, and I am confident that you will always be.

To Rita, for helping me keep my head up through all the hard times. You inspire me to be a better

person everyday.

Finally, I want to express the deepest gratitude to the pillars of my life, my family. Thank you for all

the faith you always had on me, and for never giving up on giving me what I need to follow my path.
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Abstract

The way the human brain controls movements is a widely studied subject. Considering the specific case

of saccades, the trajectories the brain tends to choose from an infinite number of possible trajectories

are highly stereotypical, in which non-linear dynamic properties are observed. Also, the observation

that the eyes appear to use only two Degrees-of-freedom (DOF) to direct its line of sight, instead of the

possible three, provided by six extraocular muscles, was a motivation for studying these movements.

The plane in which the eyes move is called Listing’s plane (LP). It has also been suggested that, the

brain accounts for a particular kind of disturbance which could play an important role in these saccade

properties, called Signal-dependent noise (SDN). Here, a study on how saccades are controlled in the

presence of SDN assuming the existence of internal feedback is presented. Simulations were carried

out with a 3D biomimetic robot eye developed previously which was adapted to include a more realistic

muscle model, SDN and a feedback control loop. Different methods are tested to obtain a valid linear

parameterization of the eye model, which is then used to control stochastically the model using differ-

ent optimization principles forwarded in the literature through optimal feedback control. The non-linear

dynamic properties were observed only under SDN conditions - the existence of this kind of noise is

enough to replicate saccades optimizing accuracy and duration, disregarding the effort. The trajectories

are fully contained in LP only if the final position is penalized for deviations from the LP. Finding this was

independent of the type of noise used.

Keywords

Biomimetic eye, Listing’s plane, Main sequence, Optimal feedback control, Signal-dependent noise
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Resumo

A forma como o cérebro controla movimentos é um tema de estudo bastante explorado. No caso es-

pecı́fico das sacadas, as trajectórias escolhidas pelo cérebro dentro de uma infinidade de possı́veis

trajetórias seguem um padrão bem definido, com propriedades dinâmicas não-lineares. Além disso, o

facto de que os olhos se movem apenas em dois graus de liberdade dos três possı́veis que lhes são

concedidos por seis musculos extraoculares, é um factor motivacional para o estudo destes movimen-

tos. O plano onde os olhos se movem é o plano de Listing (PL). Aparentemente, o cérebro conta com

um tipo de perturbação distinto que é determinante nestas propriedades das sacadas, que é depen-

dente do sinal (SDN). Um estudo acerca do controlo de sacadas na presença de SDN assumindo a

presença de realimentação é apresentado nesta dissertação. Um modelo de um robot bimimético do

olho em 3D previamente desenvolvido é adaptado para incluir um modelo de musculo realista, SDN

e realimentação e subsequentemente usado para simulações. Diferentes métodos são testados para

obter uma linearização válida do modelo, usada para controlá-lo estocasticamente usando diferentes

principios de optimização através de controlo óptimo por realimentação. As propriedades não-lineares

são observadas apenas sob influência de SDN - a existência deste tipo de ruı́do é suficiente para

replicar sacadas optimizando apenas precisão e duração. As trajectórias são inteiramente contidas no

PL apenas penalizando desvios do PL na posição final, independentemente do tipo de perturbação

considerado.

Palavras Chave

Olho biomimético, Plano de Listing, Main sequence, Controlo óptimo por realimentação, Ruı́do depen-

dente do sinal
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1.1 Motivation

The way the human brain can control movements is a complex process about which researchers have

been intrigued since the early 20th century. Controlling human-like movements by such a sophisticated

system where both actuators and sensors are biological mechanisms which carry such characteris-

tic properties is a challenging problem and provides much potential for further research. Biomimetic

robotics is an area of research which aims for both providing new technological capabilities and better

understanding the behaviour of biological systems. Here, the saccadic system is studied and, more

precisely, an attempt to understand the reproduction of 3-dimensional eye movements is made by ap-

proaching the biological structure as a robotic system using engineering tools. The oculomotor system is

composed of six extraocular muscles which act in pairs, the eyeball and many circuitries throughout the

brain. It is responsible for different types of eye movements, namely the vestibular, optokinetic, smooth

pursuit, saccadic, vergence and short latency. In all eye-movement types, there is the clear objective

of keeping (pursuit, verstibular) or bringing (saccades, vergence) the point of interest centred on the

fovea, the highest resolution part of the retina. Eye orientation is represented by rotations about three

axis, specifying horizontal, vertical and torsional components. The saccadic movements are focused

here, as from the point of view of dynamics these are the most challenging. Saccades are quick and

precise movements performed simultaneously by the eyes when an abrupt change in the point of fixa-

tion is required. Remarkably, these follow stereotypical trajectories which are confined to a plane where

torsion is 0 [4] - the Listing’s plane - and with a consistent non-linear relationship between amplitude,

duration and velocity [5] - the main sequence. Several models have been developed to describe the

system - starting with one-dimensional open-loop models and later, more complicated models proposed

to mimick this class of eye movements. The challenge is then to create a three-dimensional model of the

saccadic system, from planning to kinematics and dynamics, loyal to the main sequence and Listing’s

plane characteristics.

In order to perform a saccade, the brain generates a control strategy in which the goal is to achieve a

more rewarding state. Different experiments have suggested that both velocity and latency of saccades

are related to the value assigned by the brain to a visual stimulus [6], meaning that expected reward

can influence the motor commands. Simultaneously, the change in the state produced by a motor

command is influenced by disturbances which grow with its size, called Signal-dependent noise (SDN)

[7–9]. Nowadays, the saccadic system is thought to rely on a combination of planning and correction

of the movements. Several research works reported that, even though the brain preprograms our eyes’

movement in order to reach the goal when stimulated by a visual signal, the generated trajectory might

change in midflight when the stimulus moves. Since saccades are such fast movements, it has been

suggested [10–13] that the brain has an internal estimate of the state of the eye, providing feedback

information that relies strongly on an efferent copy of the motor commands. The way uncertainty affects

2



sensory inputs, as well as motor commands, is acknowledged through learning which makes it possible

to tune the motor responses to different sensory information.

We begin this work with a previously built mechanical prototype of a biologically inspired eye with

six muscles. However, this system has problems related to undesired effects emerging from the system

mechanical implementation (e.g vibrations) [14]. So, in order to proceed with the study of saccades, a

model was developed in Matlab/Simulink from the mechanical prototype. This has allowed the achieve-

ment of empirical proof of the saccadic system using optimal control in open-loop, demonstrating that

this framework emulates saccades with Listing’s plane and main sequence behaviour [3].

1.2 Problem statement and Objectives

This thesis elaborates on the control of saccades on a model of a bio-inspired 3D robot of the eye, built

in the scope of ORIENT I project, a European collaboration (ERC advanced grant) between the Lisbon

visual robotics group of professor Bernardino, and the Donders Center for Neuroscience of professor

Van Opstal. The robot was previously projected and assembled [14], intenting to replicate the static and

dynamic properties of the eye. Later, this robot was modeled and a study on open-loop optimal control

of the saccades was made, expanding the existing knowledge on different cost terms and characteristics

of the plant and their influence in saccade trajectories [3].

It is our primary objective to improve and extend the existing model to introduce multiplicative noise in

both motor commands and sensory readings and to implement a more realistic muscle model [15]. More-

over, the model is analytically linearized, providing a reliable parametrization of the non-linear model at

any working point in a time efficient way and allowing for the design of a feedback control loop.

We aim to provide evidence on the influence of signal-dependent noise and feedback in 3-dimensional

saccades as well as to study the contributions of these features to the neuronal strategy for controlling

saccades, having as ground truth the empirical knowledge on eye dynamics [4,5].

1.3 Outline

The first chapter provides an introduction to the context of this thesis.

In chapter 2, fundamental notions about the developed work are given, together with state-of-the-art.

In chapter 3, we describe the modifications applied to the existing open-loop eye robot model and

the used methods for its linearization. The carried out tests which validate these procedures are also

presented.

Chapter 4 elaborates on the feedback loop design for the existing model and explains the approaches

to be tested in the control of saccades, as well as the metrics used to evaluate them. Hence, the results

3



for the different approaches are shown.

Chapter 5 sums up the main conclusions and achievements throughout the thesis. Moreover, possi-

ble work on different aspect of this matter are suggested.
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This chapter aims to provide the reader with basic helpful concepts to understand the developed work

in the following chapters along with state-of-the-art studies on related subjects. Firstly, an explanation on

the adopted notion of the oculomotor system throughout this thesis is given, followed by the behaviour

of eye movements and an overview on the used 3D rigid body representations of orientation. Then

multiplicative noise is explained, its bedrock and potential in this work and how it is modeled. Additionally,

the concept of reward in biological systems is clarified and finally, feedback in saccades is emphasized,

providing a base for the use of optimal feedback control theory in the control of saccades.

2.1 Oculomotor System

The oculomotor system, represented by the diagram in figure 2.1, consists of two main parts. On one

hand, it has a nonlinear plant formed by the eyes and their muscles, and on the other hand a saccade

controller inside the brain.

Figure 2.1: The oculomotor system

The extraocular muscles are responsible for eye movements and there are six of them. At first sight,

this would mean that there are six Degrees-of-freedom (DOF) in the plant. However, these muscles act

as agonist/antagonist pairs:

• Superior and inferior oblique - Torsional movements

• Superior and inferior rectus - Vertical movements

• Lateral and medial rectus - Horizontal movements

Therefore, because of the agonist/antagonist actions of the two muscles in each pair, only one DOF is

provided to the eye per pair and so it has in total only three DOF instead of the possible six. Furthermore,

these muscles are innervated by three cranial nerves, controlled by three different parts of the brain.

The point in moving the eyes is in placing the fovea, the area with the highest spatial resolution in

the retina, aligned with some visual stimulus. To perform saccadic eye movements, the brain prepares a

transient pulse command signal in the midbrain superior colliculus [10]. It has been suggested in several
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Figure 2.2: 6 extraocular muscles act in 3 agonist/antagonist pairs, each in one direction. [1]

models that the saccadic eye movement is controlled by an internal feedback circuit in the brainstem that

drives the three muscle pairs.

Finally, as these control circuits contain neural populations that are noisy, it has been suggested that

the system needs to optimize its control to deal with this noisy representation. There are two types of

noise in the system: additive noise and (multiplicative) Signal-dependent noise (SDN). Multiplicative

noise is a perturbation for which the standard deviation increases with the mean of the signal. In fact,

this kind of disturbance is present in biological systems in general [8], and has been suggested to be of

critical influence in the control of saccades [9].

2.2 Saccade Dynamics

Saccades have empirically observed stereotypical trajectories. Here we present the main properties

of these movements, which are used to validate the research made in several studies and this one.

2.2.1 Main sequence

The term main sequence has been adopted in the study of saccadic movements given that these follow

stereotypical relations between duration and amplitude as well as between peak velocity and amplitude

for all healthy individuals. The relation between amplitude and duration of saccades has been questioned

by scientists since the 19th century, but it was not until Dodge and Cline [16] that it was established that

the duration of saccades (or average velocity) increases stereotypically with amplitude. This result has

been confirmed later by several research works. On the other hand, it has also been shown by various

researchers that the peak velocity of saccades tends to increase linearly with amplitude, reaching a

saturation value for large saccades. Later, studies have shown that there is also a typical relationship
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between the movement amplitude and the asymmetry of saccadic velocity profiles, which is quantified

by their skewness [17]. By definition:

S =

∫∞
0

(t− µ)3|ω(t)|dt
σ3
∫∞
0
|ω(t)|dt

(2.1)

where µ is the mean and σ2 is the variance of the velocity profile, ω(t). The cause for the eyes to

obey main sequence behaviour has been suggested to lie in a deliberate design property of the saccadic

system - the kinematic characteristics can be traced back to single saccade-related cells by their burst

firing patterns which have the same skewness characteristics as velocity profiles and whose shape

varies noticeably with amplitude [10], suggesting that these characteristics are inherent to a strategy of

higher abstraction level.

These spatial-temporal relations which characterize saccades are illustrated in figure 2.3.

Figure 2.3: Non-linear dynamics of saccades - the main sequence. The dashed lines, L, represent the required
behaviour for a system to be linear. NL lines represent the observed relations in saccades.

The main sequence has been crucial for the study of saccades because of its regularity, having

enticed the scientific community to ask why the eyes move in such stereotypical form, and several

studies were made in the framework of optimal control to understand the strategy behind saccades

having it as ground truth. As a result, it is now well accepted that there is a speed-accuracy trade-off

behind the neural strategy controlling saccades, and there have been several suggestions on the origin

of this compromise. It is one of the main goals of this work to expand the existing knowledge on this

matter, which is introduced into greater detail in 2.4.2.

2.2.2 Eye orientation

When the eye is fixating some point in space, the gaze direction is defined by this point’s direction,

according to the eye orientation relative to y and z. Thus, the gaze direction does not specify the torsion

of the eye. However, as previously stated, the six extraocular muscles are mechanically arranged in
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such a way that the eye has 3 DOF rotating, as shown in figure 2.5 - torsionally when rotating about x,

vertically for y and horizontally for z, from a primary position where all these angles are 0.

Figure 2.4: Eye orientation - Muscles action in a coordinate system

There has been research about eye torsion for as much as 200 years [18], when Franciscus Cornelis

Donders stated that while looking at infinity with stationary, erect head, each gaze direction has a unique

torsional angle regardless of the way the eye reaches that orientation. In other words, the Donders’ law

states that the torsional component of the eye orientation is a function of the vertical and horizontal

components, meaning that the eye has not three but only two DOF

A further specification of Donders’ law came with Listing’s law, which states that with the head fixed

and gazing at infinity in the primary position, any eye orientation can be reached by a single rotation

about an axis in a plane orthogonal to the line of sight - the so-called Listing’s plane [2]. Since we define

the primary position as the position where the angles relative to three axes are zero, then Listing’s law

means that the torsion remains zero in any other eye orientation and so, the Listing’s plane is the set of

orientations where there is no torsion. Eye orientations are described by fictitious single-axis rotations

from the primary position. However, a true eye movement is not a rotation from the primary position, but

between arbitrary eye orientations. In that case, the eye orientation remains in Listing’s plane (LP), but

the actual axis of rotation that makes this happen is tilted out of this plane according to the so-called

half-angle rule [19].
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Figure 2.5: Listing’s half-angle rule adapted from [2].The dashed horizontal line represents the line of sight when the
eye is in primary position, and the dashed vertical line represents Listing’s plane, which is orthogonal to
the primary position. When a rotation starts from an eccentric position, the eye angular velocity vector
is described by an axis tilted out of LP half as much as the line of sight.

2.2.3 Straightness

One-dimensional models of the saccadic system have largely been used in the study of saccades

[5, 20], but these do not provide a complete framework of these movements, as oblique saccades can-

not be tested and therefore do not probe how the different actuators are coupled. To account for the

shortcomings in these, a common source model was formulated, explaining in the simplest possible

way the straightness of olique saccades by a single vectorial velocity generator [21]. In this model, the

velocity signal is decomposed trigonometrically between horizontal and vertical components, resulting

in perfectly scaled velocity components and thus perfectly straight saccades. Later, other formulated al-

ternative explanations for straight oblique saccades through cross-coupling of the horizontal and vertical

velocity generators in the brainstem [22].

Human saccades are remarkably straight. However, this is not trivial given the nonlinear main se-

quence relations. If the control of saccades were to be done independently between horizontal and

vertical components, the velocity components in the shortest dimension of the movement would last

less than the opposite. However, it turns out that the duration of saccade components are nearly identi-

cal regardless their size, which can be explained by both the common source model and more complex

cross-coupled models with their straight saccades.

There are several methods to measure the curvature of saccades. Here, we will compute the corre-

lation between horizontal and vertical velocity components of oblique movements. If the correlation is

unitary, then the saccade is straight since its velocity components are perfectly scaled versions of each
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other. The goal is thus to have near-unitary correlation to mimic saccades correctly.

2.3 3D Orientation/Rotation Representations

For a complete understanding and characterization of the oculomotor system, eye orientation must be

represented not only by the horizontal and vertical components but also by its torsion. Thus, different

approaches have been used in the field of neuroscience - rotation matrices, quaternions and rotation

vectors [23]. On the other hand, it is common in robotics to use different representations of 3D orientation

and motion. In this section we present some of these representations as well as the relations between

them, analysing their advantages and disadvantages given the problem at hands, considering that the

previously built model already uses two kinds of representations (quaternions and rotation matrices) and

that we will have to linearize it as stated in 1.2.

To linearize the saccadic system and control eye rotations we need a representation which allows us

to:

1. compute derivatives of orientations with respect to the parameters

2. integrate differential equations in parameter space

3. interpolate orientations smoothly between time instants

Based on the comparison between representations made in [24] we will comment on different orienta-

tion representations - Euler angles and Rotation matrices, unit quaternions, Angle-axis and exponential

map.

2.3.1 Euler angles and Rotation matrices

The Euler angles are three angles, α, β and γ that describe an orientation by rotations about the three

axes of a reference frame, x, y and z respectively. We define these angles according to the right-hand

rule and therefore a positive angle corresponds to a clockwise rotation about the respective axis.

The most common way to represent rotations (and subsequently orientation) is with rotation matrices.

A rotation matrix is, in a 3D configuration, given by a 3x3 matrix with unit length, mutually orthogonal

columns and determinant 1, det(R) = 1. The identity element of rotation matrices is the identity matrix,

I. The group of all such matrices is called the special orthogonal group, SO(3).

A rotation matrix can be defined from the Euler angles representation as follows:

Rx(α) =

1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)

Rz(γ) =

cos(γ) −sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


(2.2)
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To execute a rotation to a vector x using a rotation matrix R and obtain a rotated vector x′ we simply

multiply:

x′ = Rx (2.3)

The multiplication of several rotation matrices leads to a composed rotation. As this is done by

matrix product, the operation is noncommutative and thus, if we want to combine rotations about the

three elementary axes, Rx, Ry and Rz in one rotation matrix R then performing the operation in different

orders leads to different composed rotations. Also, the use of rotation matrices is inefficient considering

that nine values are used to describe a rotation instead of the necessary three.

2.3.2 Unit quaternions

Quaternions are a different way to describe rotations, which uses 4 numbers (q ∈ R4) to give a global

parametrization of SO(3). This representation generalizes complex numbers, and since these can be

used to describe planar rotations in the complex plane, quaternions can be used to describe space

rotations.

A quaternion can be written as:

q = q0 + qxi + qyj + qzk (2.4)

Here, q0, qx, qy and qz are real scalars and i, j and k are complex numbers related by:

i2 = j2 = k2 = ijk = −1 (2.5)

The first element, q0 is the scalar part of the quaternion and the remaining three compose its vector part:

q = (q0, ~q) (2.6)

The unit quaternion can encode a rotation about the unit axis of rotation n by an angle θ as

q = cos(
θ

2
) + (nxi + nyj + nzk)sin(

θ

2
) (2.7)

The angle and axis of the rotation can be obtained from the quaternion components through:

θ = 2cos−1(q0)

n =
(qx, qy, qz)√
q2x + q2y + q2z

(2.8)

In the case where the norm of the quaternion’s vector part is zero, the correspondent quaternion is the

identity quaternion, and an axis cannot be obtained.
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This representation carries the property of being particularly straightforward to perform rotations on

some ordinary 3D vector, which is done by transforming it into a quaternion by assigning to it a zero

scalar part (x0 = 0) and then applying quaternion multiplication:

x′ = q ◦ x ◦ q−1 (2.9)

The resulting x′ is also a quaternion with zero scalar part.

The multiplication between two quaternions is represented by ◦ and it is noncommutative. It is given

by

p ◦ q = p0q0 − p · q + p0q + q0p+ p× q (2.10)

and results in a quaternion.

Unit quaternions are free from gimbal lock when used to control rotations and good for combining ro-

tations. Furthermore, it is hard to compute derivatives of orientations with respect to the parameters, dqdv ,

which is troublesome for linearizing the eye plant.

2.3.3 Angle-axis representation

The angle-axis representation gives a way of representing orientation described by a three-dimensional

vector in which the axis, n is a unit vector described relative to a reference frame and the angle θ (in

radians) is the amount of rotation about that axis. The two are combined as follows:

v = θn =

vxvy
vx

 (2.11)

where,

n =

nxny
nx

 (2.12)

Since n is unit-length, only two values are needed to define it the magnitude of the third value, while it is

still necessary to define the sign.

Thus, the angle-axis notation has the advantage of representing a rotation with only three scalar

values. While it would seem that three components would be needed for the axis and one for the

angle, the fact that the axis is unit-length makes it necessary to define it only two parameters. This

representation provides an easy interface to interpret rotations.
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2.3.4 Exponential map

By using exponential mapping, a rotation matrix in SO(3) can be mapped from a vector in R3:

R = e[v]x (2.13)

where [v]x is the skew-symmetric matrix obtained from the angle-axis representation, v:

[v]x =

 0 −vz vy
vz 0 −vx
−vy vx 0

 (2.14)

The simplicity of computing derivatives of rotation with respect to the parameters, dR
dv is obvious,

which is an important feature of this representation, given the goal of linearizing the eye plant and that

for this purpose it is necessary to compute Jacobians.

dR

dvx
=

0 0 0
0 0 −1
0 1 0

 dR

dvy
=

 0 0 1
0 0 0
−1 0 0

 dR

dvz
=

0 −1 0
1 0 0
0 0 0

 (2.15)

The parameter rates for interpolation (time derivative) can be obtained, for small values of θ as a

function of v and the angular velocity of the rigid body, ω through [24]:

v̇ =
1

2
(γω + ω × v + ηv) (2.16)

with

γ =
12− θ2

6

η = ω · v60 + θ2

360

(2.17)

The exponential map seems to be a valid, useful option to parameterize eye rotations, combining the

perks of using angle-axis representation with the ease of computing derivatives (2.15)

2.3.5 Comparison between parametrizations

The three different representations present have different advantages and disadvantages between

them, depending on the use we want to give them.

• Euler angles and Rotation matrices - Altough Rotation matrices are widely used, these are of

high complexity for computation. Nevertheless, these provide an easy way of combining rotations.

• Unit quaternions The quaternion is a widely used representation of 3D rotations in robotics and
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is especially good when dealing with problems of big rotations because of the absence of singular-

ities. Nevertheless, to linearize a system parameterized by quaternions is quite a challenge which

can easily be tackled using the exponential map.

• Angle-axis - It is the easiest to visualize. However, the complexity of combining rotations makes it

less convenient to work with in the simulator.

• Exponential map - This representation is, in fact, a tool to easily go from a rotation vector (R3) to

a rotation matrix (SO(3)) which makes the interpretation easy as well as combining rotations. The

derivatives with respect to parameters and time are easily computed with this method [24].

The different orientation representations are used in this thesis in different contexts considering their

properties and the task in which they are applied.

2.4 Feedback in saccades

The problem of generating motor commands to make some movement, like a saccade, can be mod-

elled as an optimal feedback control problem:

• The movement has a cost;

• A forward model gives a prediction of the outcome generated by some action;

• Some information about the system’s state is retrieved during the execution.

The influence of feedback in saccades has been proven previously in different contexts. Sparks and

Mays [25], for instance, trained monkeys to look at a brief flash of light after it occurred but, in the latency

period of the saccade changed the eye gaze by stimulation on the monkeys’ brain in some of the trials.

In this experiment, if there were no influence of feedback, the monkeys would perform a saccade with the

predetermined direction and amplitude, failing the goal completely. However, the monkeys were able to

perform saccades reaching the goal, proving that somehow the brain is keeping track of the orientation

of the eye and taking it into account when performing movements. In various models following this

experiment, the internal feedback signal has been represented as an efference copy signal of position

and/or velocity coming from the brainstem [10–12]. On the other hand, studies have suggested also

that saccades happen too fast for proprioceptive signals to play a significant role in feedback [26] as

well as visual information [13]. To sum it up, the eyes’ orientation has been shown to be monitored by

the brain but with little or no help from sensory information, so this can only mean that the influence

of feedback relies strongly on a precise internal forward model used to predict the consequences of
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generated motor commands. On the other hand, the presence of sensory feedback has been proven in

movements that combine eye and head gaze shifts [27], but that is not in the scope of this thesis. The

fact that saccades rely mostly on an internal model while having such good performance makes us infer

that this model must be accurate. As stated previously in 2.5, SDN is critical in motor-planning [9] and

has to be considered therefore by this model - through learning the brain can understand variability and

its structure and how it affects the movement.

2.4.1 State-space representation

The state-space representation of a system consists of a mathematical model containing its state

variables and relating its inputs and outputs using first-order differential equations. The great advantage

of state-space representation is that it provides a very compact way of modelling both SISO and MIMO

systems. [28] The equations below can describe a discretized version of a linear dynamical system with

additive noise, εx and εy:
x(k+1) = Ax(k) +Bu(k) + εx

y(k) = Hx(k) + εy
(2.18)

Here A represents the dynamic matrix, containing information about the system’s dynamic properties,

B represents the input matrix which translates the influence of the input, u and H is the output matrix,

which transforms the state x into sensory readings y.Let m be the dimension of vector u - number of

elements in the motor commands - and n is the dimension of vector x - number of elements defining the

state.

Additive noises, εx and εy, are defined as Gaussian random variables with zero-mean and variance

Qx and Qy respectively:
εx ∼ N (0, Qx)

εy ∼ N (0, Qy)
(2.19)

where Qx and Qy are n × n and m × m symmetric and positive definite matrices which we assume

diagonal and with values qx and qy respectively in their diagonals.

2.4.2 Optimal Feedback Control

To find, in a set of equations which describe a system, the values for their variables which minimize

a cost, J , is a problem of optimal control. In mathematical terms, it deals with finding the minima for a

function of u, the action variable, and x, the state variable:

J(u) = Ψ(x(p)) +

∫ p

0

l(x,u)dt (2.20)
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where

t ∈ [0, p]

ẋ = f(x,u)

While J is the cost to be optimized, Ψ represents a contribution to the cost associated with the terminal

state, x(p). l is the lagrangean function which is related to the contributions made to the cost during the

optimization interval. However, the study of optimal control endowed with feedback relies more strongly

on the field of stochastic optimal control for technical reasons - discrete spaces are proven to converge

in a reasonable amount of time, unlike the continuous form. In this framework, it is the expected value

of the cost we want to optimize, E[J ]. Moreover, the Linear-Quadratic-Gaussian (LQG) framework [29]

applies to the control of biological movements [30] and therefore an optimal control law can be obtained.

In order to understand the dynamics of these eye movements (explained in 2.2), some research has

been made regarding the neuronal strategy behind them or, in other words, what the brain is trying to

optimize when performing saccades. While it is well accepted that there is a trade-off between speed

and accuracy originated by SDN, since it explains the main sequence [9, 10], there is still some debate

regarding other cost terms such as energy consumption, which has been claimed to be critical to the

way the eye behaves in [31]. This thesis tries to go over these classical saccade control approaches

considering the influence of feedback, based on state-of-the-art knowledge [32] [20], a time constraint

to movements and SDN not only in the motor commands but also in the sensor readings. We have

as our base framework the classical approach in which the brain develops a control strategy regarding

accuracy, energy consumption and speed:

J = Jx + Ju + Jp (2.21)

The first term in (2.21), Jx, is responsible for penalizing the end-point inaccuracy, so it should increase

as the eye’s final state diverges from the goal set at the beginning. We define Jx in the following form (p

represents the last time-step of the movement):

Jx = x(p)TTx(p) (2.22)

Here, T is a n × n, positive definite, diagonal matrix, and its values define the assigned penalization to

each state-variable at the end of the movement.

The second term, on the other hand, represents the cost of control - a term proportional to the sum

of squared motor commands. This is how energy consumption is weighted in the movement cost:

Ju =

p∑
k=0

u(k)TLu(k) (2.23)
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where L is a m×m, positive definite, diagonal matrix. The values in this matrix weigh the penalization of

each motor command, u Finally, the term Jp induces time-pressure in the optimization. It is thought that

the brain assigns value, λ, to a stimulus which decreases hyperbolically with time, according to β [33,34]

- the cost will increase along with the delay,p, in reaching the goal:

Jp = λ

(
1− 1

1 + βp

)
(2.24)

The resulting cost function is thus a function of p. Nevertheless, as it is our objective to study the

role of feedback in controlling saccades - that is, we want to track the system’s state and get the optimal

motor commands as a response to it - we must consider a cost per time step, so that it is possible to

decide which muscle activations should be done so as to have minimum cost given the state at time step

k:

α(k) = u(k)TLu(k) + x(k)TT (k)x(k) +
λβ

1 + βp
(2.25)

The term T (k) is kept null for all time-steps except for the last, since we want to penalize inaccuracy only

in the endpoint and not during the whole movement.

To find the optimum policy, we consider Bellman’s principle of optimality: An optimal policy has

the property that whatever the initial state and decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first decision. If the policy is optimal, it

will minimize the sum total of costs [35]. It is thus useful to define a function, vπ∗ which gives us the

accumulated cost at each step - a function analogous to the Bellman equation with the difference that

we want to minimize it:

vπ∗(x
(k)) = min

u(k)
{α(k) + E[vπ∗(x

(k+1))|x(k),u(k)]} (2.26)

For any time-step, k, its value is given by the cost at that time-step α(k) plus the expected value of the

state resulting from applying the optimal policy since the system is endowed with random disturbances

which have an influence on E[vπ∗(x
(k+1))|x(k),u(k)]. By solving this problem recursively, starting at

some state x(p) where the optimal policy is to do nothing u(p) = 0 then we can obtain the optimum policy

for the previous time step k − 1 and so on.

Since we do not have access to the internal state of the system at each time step, the Kalman

framework (explained in 2.4.3) is used to get an estimate of it, x̂(k). Todorov [30] proposed a form for

(2.26) at each time-step:

vπ∗(x
(k), x̂(k)) = x(k)TW (k)

x x(k) + (x(k) − x̂(k))TW (k)
e (x(k) − x̂(k)) + w(k) (2.27)

Notice that x̂ is introduced here, as it is assumed that the brain does not have access to the full state of

the eye and uses an estimate of it. This is further explained in the next section.
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Setting W (p)
x = T and W (p)

e = 0 and noting that under the optimal policy u(p) = 0, we get the value

of cost α(p). By recursively replacing in the Bellman equation (2.26) and then applying the minimization

in (2.27) we can get the optimal motor commands for each time step. To simplify the notation, we set

e(k) = x(k) − x̂(k).

vπ∗(x
(k), x̂(k)) = min

u(k)


u(k)TLu(k) + x(k)TT (k)x(k) +

λβ

1 + βp

+ E[x(k+1)TW (k+1)
x x(k+1)|x(k), x̂(k),u(k)]

+ E[e(k+1)TW (k+1)
e e(k+1)|...] + w(k+1)

 (2.28)

Here, the influence of disturbances come into the optimization since since we want to compute the

expected value of the scalar quantities that depend on the quadratic form of the random variables x and

e:

E[xTAx] = E[x]TAE[x] + tr[Avar[x]] (2.29)

In a system perturbed with additive noise, the variances to consider are Qx and Qy. The solution

comes as the commoonly seen LQG controller gains:

G(k) ≡ (L+BTW (k+1)
x B)−1BTW (k+1)

x A

u(k) = −G(k)x̂(k)
(2.30)

where,

W (k)
x ≡ T (k) +ATW (k+1)

x A−G(k)TBTW (k+1)
x A (2.31)

So far, we have described the optimization process to obtain the optimal feedback control of saccades

over a fixed movement duration, p. However, movements of different amplitudes have different durations

as stated in section 2.2. So, it is necessary to optimize the cost function over the range of all plausible

saccade durations:

min
p

{
p∑
k=0

vπ∗(x
(k))

}
(2.32)

The duration which minimizes the expected cost is chosen, and the correspondent control law is used.

2.4.3 Optimal Estimation

When controlling a system, the controller often does not have access to the full state-space. For

instance, if the system has in its state-space both position and velocity, it might happen that velocity

cannot be measured and the controller has access only to the system’s position but wants to control

the two variables. State observers combine the measured output of a system with the input to provide

an estimate of the system’s state given the available information, with the goal of having the smallest
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difference between the estimated output and the system’s output. That is the case of the Kalman Filter

(KF), a largely used mathematical tool with applications in many kinds of engineering devices:

x̂(k|k) = x̂(k|k−1) +K(k)(y(k) −Hx̂(k|k−1))

x̂(k+1|k) = Ax̂(k|k) +Bu(k)
(2.33)

Here, K(k) represents the Kalman gain at time-step k, which reflects the confidence that the observer

has in the measurements relative to the prediction provided by the internal model represented by A,B

and H. Hence, this tool not only provides state estimates using observations and the available informa-

tion of an internal mathematical model of the device but also filters disturbances, all through the gains

K(k)- random additive noise in its most common formulation.

K(k) = P (k|k−1)HT (HP (k|k−1)HT +Qy)−1 (2.34)

P k|k−1 is the prior state uncertainty. The posterior state uncertainty, P k|k is calculated in the following

form, according to the model’s dynamics:

P (k|k) = P (k|k−1)(I −HTK(k)T )

P (k+1|k) = AP (k|k)AT +Qx
(2.35)

As can be seen in equations (2.34) and (2.35) the sources of variability, Qx and Qy, are included and

influence the values of gain which translate the confidence on the sensor readings (matrix H), given an

internal model of the system dynamics (matrix A) - an increase in variability results in a decrease in the

Kalman gain.

2.5 Signal-dependent Noise

Systems are usually perturbed by additive gaussian noise, in different contexts like control, communi-

cation or data acquisition systems. However, some systems are endowed not only with additive but also

with SDN as is the case of biological systems, in which the variance of the noise depends on the size of

the signal. This effect has been studied before in different research projects from diverse scientific con-

texts such as psychology and neurophysics and was firstly hypothesized as being originated by muscle

contractions [7] but later proven to be a result of neuronal commands unrelated to how muscles produce

force [8]. These experiments showed most importantly that the standard deviation of the force produced

by humans grows linearly as a function of the mean force.

Regarding specifically the control of saccades, some research has also been made on the effect of

SDN. Saccades have stereotypically asymmetric velocity profiles, producing larger commands earlier in
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the movement rather than its opposite. The reason for this peculiar behaviour lies on the neural strategy

of control, which tries to minimize variability [9] by producing large commands early in the movement in

order to let variability dissipate naturally throughout the movement by the viscous dynamics of the eye

and reaching, therefore, the end of the movement with maximum accuracy. In other words, the variability

produced by SDN early in the movement has a smaller influence on the end-point accuracy of the eye.

Indeed, it has been shown in [20] that a noise-free saccade has a fairly symmetrical profile, which does

not correspond to the biological eye movement.

However, it is not only in biological systems that multiplicative noise is present. It can be seen also

in fields of image processing, in which there is the notorious case of speckle-noise [36], caused by

the roughness of the object being captured. In digital photography, there is also SDN when capturing

surfaces with shadows or caused by dust on the lens.

2.5.1 Control of saccades with SDN

With SDN, the system has the influence of a kind of noise which is amplified by the size of both the

motor commands and the sensory readings. By adding these terms to the normal system state-space

representation (2.18), the result is the following system equations:

x(k+1) = Ax(k) +B(u(k) + ε(k)u ) + εx

y(k) = H(x(k) + ε(k)s ) + εy
(2.36)

One can notice the introduction of terms εu and εs. These noise terms are characterized with zero-

mean magnitude and variance that depends on the motor commands u and state x in the following

form:

ε(k)u ≡


c1u

(k)
1 φ

(k)
1

c2u
(k)
2 φ

(k)
2

...
cmu

(k)
m φ

(k)
m

 ε(k)s ≡


d1x

(k)
1 µ

(k)
1

d2x
(k)
2 µ

(k)
2

...
dnx

(k)
n µ

(k)
n


φ ∼ N (0, 1) µ ∼ N (0, 1)

ci ≥ 0 di ≥ 0

(2.37)

A more straightforward way of defining the SDN terms comes if we make

C1 ≡

c1 0 0
0 0 0

0 0
. . .

 C2 ≡

0 0 0
0 c2 0

0 0
. . .

 (2.38)

D1 ≡

d1 0 0
0 0 0

0 0
. . .

 D2 ≡

0 0 0
0 d2 0

0 0
. . .

 (2.39)

21



and so we have

ε(k)u =

m∑
i=1

Ciu
(k)φ

(k)
i

ε(k)s =

n∑
i=1

Dix
(k)µ

(k)
i

(2.40)

and since φ and µ are Gaussian random variables, then also εu and εs are gaussian random variables

as follows:

ε(k)u ∼ N (0,

m∑
i=1

Ciu
(k)u(k)TCi)

ε(k)x ∼ N (0,

n∑
i=1

Dix
(k)x(k)TDi)

(2.41)

Finally, replacing the noise terms in (2.36) by (2.40) we obtain a final form for the system equations

endowed with both additive noise and SDN, firstly approached by Emo Todorov [32] and later adapted

by Reza Shadmehr et Al. as one can find in [20]

x(k+1) = Ax(k) +B(u(k) +

m∑
i=1

Ciu
(k)φ

(k)
i ) + εx

y(k) = H(x(k) +

n∑
i=1

Dix
(k)µ

(k)
i ) + εy

(2.42)

SDN affects the optimization of vπ∗ since it alters the variance in the model: we now have both the

additive noise and SDN variances,
∑m
i=1 Ciu

(k)u(k)TCi and
∑n
i=1Dix

(k)x(k)TDi (2.41). The solution of

(2.27) with the presence of SDN is given by:

G(k) ≡ (L+ C(k+1)
x + C(k+1)

e +BTW (k+1)
x B)−1BTW (k+1)

x A

u(k) = −G(k)x̂(k)
(2.43)

where,
C(k+1)
x ≡

∑
i

CTi B
TW (k+1)

x BCi

C(k+1)
e ≡

∑
i

CTi B
TW (k+1)

e BCi
(2.44)

and
W (k)
e ≡ (A−AK(k)H)TW k+1

e (A−AK(k)H) +G(k)TBTW (k+1)
x A

W (k)
x ≡ T (k) +ATW (k+1)

x A+D(k+1)
e −G(k)TBTW (k+1)

x A
(2.45)

We can see that control gains are inversely proportional to the motor noise and the energy penaliza-

tion term. Intuitively, this makes sense - if the motor noise term is higher it is advantageous to produce

smaller motor commands, and the same applies to the energy term. Notice that the control gains ob-

tained from the optimization of vπ∗(x(k), x̂(k)) must depend on the observer gains, K since we are also
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optimizing the estimation error.

SDN influences not only the control but also the state estimation. The equations for computing the

Kalman gains are thus different, as we have to include in them the sources of variability which depend

on the motor commands and the state:

K(k) = P (k|k−1)HT (HP (k|k−1)HT +Qy +
∑
i

HDix̂
(k)x̂(k)TDT

i H
T )−1 (2.46)

P (k|k) = P (k|k−1)(I −HTK(k)T )

P (k+1|k) = AP (k|k)AT +Qx +
∑
i

BCiu
(k)u(k)TCTi B

T (2.47)

The introduction of SDN in the system results that the Kalman gains at each time step are depen-

dent on the state and the motor command at the same time step. To solve this problem, Todorov [32]

suggested an iterative method for computing the Kalman gains, which as been adapted later to the

notation used here [20]1. It consists of firstly, using equations (2.34) and (2.35) ignoring the presence

of multiplicative noise and then using these Kalman gains to compute the control gains from equation

(2.43). After that, a new sequence of Kalman gains is calculated from the following equation, with the

unconditional covariances S(k)
e , E[e(k)e(k)T ] and S(k)

x , E[x̂(k)x̂(k)T ]:

K(k) = S(k)
e HT (HS(k)

e HT +Qy +
∑
i

HDiS
(k)
x DT

i H
T )−1

S(k+1)
e = Qx + (A−AK(k)H)S(k)

e +
∑
i

BiCiG
(k)Sx(k)G(k)TCTi

S(k+1)
x = AK(k)HS(k)

e AT + (A+BG(k))S(k)
x (A+BG(k))T

(2.48)

Todorov showed that, by repeating this method, the Kalman and control gains are guaranteed to con-

verge in few iterations.

1Although expressions (2.48) were originally from [20], the equations for K(k) and S
(k)
e had mistakes in this reference which

were corrected to the present expressions.
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Eye model
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In this chapter, we present the work developed regarding the eye model. Firstly, a muscle model

proposed in [15] is introduced to the existing eye plant model, followed by a description of the physical

nonlinear plant. Subsequently, two methods are used to identify the system - through Matlab/System

Identification Toolbox and analytical linearization of the state equations. Finally, the behaviour of both the

muscle model alone and the 3D biomimetic robot model is presented, along with a comparison between

the two identification methods.

3.1 Muscle model

Extraocular muscles behave according to the law of reciprocal innervation [37]. This law states that

an increase in the innervation of an agonist muscle is accompanied by a simultaneous decrease in the

innervation to the antagonist muscle. Thus, the six extraocular muscles can be seen as three pairs

of agonist/antagonist muscles acting in three distinct directions, x, y and z. When the agonist muscle

is innervated, it contracts, applying a pulling force in the eye. Simultaneously, the antagonist muscle

relaxes, but still produces a force in the opposite direction thanks to its elasticity.

In this work, we assume that there are 3 identical systems (one per pair of muscles) which receive

a neuronal activation signal and transform it into force - this is the force production part or the agonist

component of our muscle model. The model used in this work was extracted from [15] as follows

α1ḟ + α2f = u (3.1)

where u is an activation signal and f is the force applied by the agonist muscle. The sign of the activation

defines which of the two muscles in the pair will act as agonist. For uy, for example, a positive value

represents an activation of the superior rectus and therefore an upward movement occurs.

The equation denotes a 1st order system in which the time constant is defined by the values of α1

and α2, meaning that the time our muscles take to reach the desired value is defined by these constants.

Figure 3.1 presents the implementation of the force production part of the muscle in our simulator.

Figure 3.1: Muscle model

However, this muscle model would be incomplete without the antagonist component of the pair. In

other words, the antagonist muscle’s elasticity and the influence it has on the system’s dynamics. In
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fact, it is this part of the model which causes the coupling between the three dimensions in hand: eye

orientation displacement causes the antagonist muscles to produce a force contrary to the sense of the

displacement, which is modelled as an elastic for each muscle. Further explanation on the antagonist

component of our muscle model is presented in the following section.

3.2 3D Biomimetic robot eye model

In a previous work of this project, the model illustrated by the diagram in figure 3.2 was implemented

[3]. The model represents a biomimetic robot of the eye where three motors are responsible for the

movement of six points, Pi where springs are attached to replicate the six extraocular muscles. By

moving these insertion points, tension is produced in these springs and therefore eye movement is

generated.

Figure 3.2: Diagram of the initial nonlinear 3D model of the human eye, with position inputs. Adapted from [3].

Here, the input generates a change in the motor insertion points, Pi (see figure 3.3). To compute the

torque created by the elastics, one must first compute the position of the insertion points in the eye, Qi,

which vary with the eye orientation, v. This is done by rotating the initial position of these points to the

current position, using a rotation matrix:

Qi = RQi0 (3.2)
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The force exerted by each elastic on each insertion point can be computed as follows:

Fi =
ki
l0i

(
‖Pi −Xi‖+ ‖Xi −Qi‖

) Xi −Qi
‖Xi −Qi‖

(3.3)

Where, as seen in figure 3.3, Xi represents the intermediate points through which the elastics pass.

Finally, we can calculate the torque applied in the eyeball by the elastics

τela=
∑
i

Qi × Fi (3.4)

The total torque applied to the eyeball consists not only of the one created by the elastics, τela, but

also to the friction and gravity torques

τ = τela + τf + τg (3.5)

where,
τf = −βω

τg = Cm × Fg
(3.6)

Cm is the center of mass, given by Cm = R(v)Cm0, and Fg is the gravity force.

We know from Newton’s second law that torque is related to angular acceleration according to

τ = Jα (3.7)

finally, integrating α, we get the angular velocity, which can be combined to the orientation inside the

model, expressed in quaternions, q, to obtain the rate of change in quaternions. This is achieved by

representing the angular velocity ω by a quaternion with null scalar part, ω. 1

q̇ =
1

2
ω ◦ q (3.8)

This value is further integrated and combined with the initial orientation in quaternions, rotating it. With

this, we arrive at a new orientation of the eye in the simulator.

However, it is our goal to adapt this model, changing the muscle model so that the system input

becomes a neuronal signal given to muscles which produce force, without disregarding their elastic

characteristics. To do so, we use the assumption that the six extraocular muscles act in three pairs -

the oblique pair (superior and inferior) cause torsional movements, the superior and inferior rectus pair

is responsible for vertical movements while the lateral and medial rectus pair account for the horizontal

component of saccades so respectively, we assume that these three muscle pairs produce separately

1Starting from the initial time-step, k = 0, the orientation of the subsequent time-step is given by q(1) = ω ◦ q(0). Thus, to
get the orientation at any time-step k we do q(k) = ωk ◦ q(0) and, representing the angular velocity quaternion as ω = e

θ
2
n it is

simple to arrive at d
dt
q(k) = θ

2
n ◦ q(k) and finally, noting that θ

2
n = ω then we get (3.8)
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the torsional, vertical and horizontal components of the torque to be applied in the eyeball, but have

coupled elastic components, dependent on the eye orientation

Figure 3.3: Biomimetic robot eye one-dimensional model. Pi represents the points where elastics are fixed, Xi
are points through which the elastics pass and Qi are the insertion points of the elastics in the eyeball.
These elastics represent the elastic part of muscles which act in pairs. The force these muscles produce
is applied directly in the eyeball as an external force, τext

In this model, when one of the muscles of each pair receives an activation signal for generating force,

it contracts, applying a force in the eyeball(agonist).The other muscle receives no input and is simply

extended (antagonist) creating a force in the direction contrary to the movement, as represented in figure

3.3. In the three-dimensional case, the forces created by the three muscle pairs form a torque which we

called τext. The action of the muscles translates into the sum of two torques applied to the eyeball - the

external torque (agonist) and the elastic torque (antagonist):

τmusc = τext + τela (3.9)

The total torque is now different from the one in the initial model (3.5):

τ = τmusc + τf + τg (3.10)

Furthermore, as stated in 2.3, it is desired to obtain the output in the angle-axis representation. This

is done by converting the quaternion to angle-axis using equation (2.8). We finally arrive at the new form

of the model with the requires changes, seen in figure 3.4.

Using the exponential map [24] to parameterize the coordinates of the eye according to (2.16) and

(2.17) and Newton’s 2nd law to model rotations (3.7), we arrive at the following system of differential

29



Figure 3.4: Diagram of the nonlinear 3D model of the human eye

equations which rules the system.{
v̇ = 1

2 (γω + ω × v + ηv)

ω̇ = J−1(τext(u) + τela(v) + τg(v)− τf (ω))
(3.11)

We have presented the analytical formulae to compute all the quantities present in (3.11) except for

the input defined τext. By solving equation (3.1) in the 3D case where f = τext(u) we have

τext(u) =
u

α2
(1− e

−α2t
α1 ) (3.12)

considering equation 3.12, it becomes clear that when α1 tends to zero, the torque is simply

τext(u) =
u

α2
(3.13)

For simplicity of modeling the system in the state-space, α1 was assumed to be close to zero since the
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time constant in the muscle actuators is much smaller than that of the remaining system and this removes

the burden of having a time dependency in the input matrix of the system. Also as time increases in

(3.12), the torque value also tends to (3.13).

Thus, defining the state, x as the orientation and angular velocity of each dimension, and the input

as the neuronal commands, u we have the following system

v̇ = f1(v,ω)

ω̇ = f2(v,ω,u)
(3.14)

Here, v =

v1v2
v3

 and ω =

ω1

ω2

ω3

 thus this leads us to the 6th-order state-space:

x =

[
v
ω

]
=


v1
v2
v3
ω1

ω2

ω3

 (3.15)

with inputs:

u =

u1u2
u3

 (3.16)

Moreover, we consider the brain to have access to a position signal in its feedback loop (see section 2.4)

and thus we have

y =

v1v2
v3

 (3.17)

To design a feedback loop for our nonlinear model of the eye it is necessary to get a linear estimate

of the system’s dynamics, A, and input influence, B. For this, two main approaches were considered: (i)

using MATLAB/System Identification Toolbox and (ii) the analytical linearization of the described system.

These are explained in detail below.

3.3 System Identification

Having the model built with the necessary specifications as previously stated, it is time to estimate a

representation of the system’s dynamic properties to be used when building the system’s controller and

also a state estimator - in this case, its state-space matrices, A,B and H. The identification of linear
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models is done here around the equilibrium point (x0,u0) and are thus valid near this point:

x0 =


0
0
0
0
0
0

 u0 =

0
0
0

 (3.18)

The estimation of these parameters is called system identification and is performed through mathe-

matical methods using observed input-output pairs of signals. Using Matlab’s System Identification tool-

box, the model of the robot was identified with the subspace state-space estimation approach (n4sid)

by using, as an input signal in u, a pseudo-random binary signal (PRBS) and observing its output’s

characteristics, y. The PRBS is a binary sequence ranging from two values whose periods are pseudo-

random. Thus, there are some restrictions which have to be obeyed to get a reasonable identification of

the system. Here, the main parameters to take into account were both the input’s clock period, i.e. the

time period for a change in the input value to be allowed, which should not be too low to give the system

time to stabilize before changing the input value again, and the input range in the 3 different channels.

Furthermore, we imposed the identification to be made in a 6th-order state-space since each of the

3 dimensions of the movement can be described by a second-order differential equation.

In order to keep the relation between the hidden state, x and the output, y, a a restriction on the

values in the output matrix had to be imposed:

H =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


This way, we can force the values of x1, x3 and x5 to represent the eye’s angular position components

in the eye reference frame axes x, y and z.

However, this way of parameterizing the system cannot force the other state variables to be the

system velocities in the different directions. Therefore, we compute a linear approximation to the system

analytically, where the state variables are completely known.

3.4 System Linearization

The state equations (3.11) which rule the motion of the system are nonlinear. Through Jacobian

linearization of the system, we can attain a linear approximation of the system for perturbations, δ,
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around some operating point (x0,u0) using the following method:

ẋ = f(x,u)

f(x,u) = f(x0,u0) +
df

dx

∣∣∣∣
x0,u0

δx +
df

du

∣∣∣∣
x0,u0

δu

δx = x− x0

δu = u− u0

(3.19)

In the case of the operating point, (x0,u0), being an equilibrium point, we know that the system is not

moving and therefore we have

f(x0,u0) = 0 (3.20)

which leaves us with

δẋ =
d(x− x0)

dt
= ẋ (3.21)

Finally, substituting in (3.19) we arrive at a way of computing the linearized state equation of the

system around the equilibrium point (x0,u0)

ẋ = f(x,u) =
df

dx

∣∣∣∣
x0,u0

δx +
df

du

∣∣∣∣
x0,u0

δu (3.22)

Analogously to (2.18), where the system is formulated in the state space, and (3.14), the state equation,

we have then:

A =

[
df1
dv

df1
dω

df2
dv

df2
dω

]

B =

[
df1
du

df2
du

] (3.23)

The dimensions to each of the derivatives in these matrices are (3× 3) since both f1 and f2 are defined

in R3 as well as the states v and ω, leading to the dimensions of (6× 6) and (6× 3) for matrices A and

B, respectively. To compute these derivatives, some support from the MATLAB/Symbolic Math Toolbox

was used given the extensiveness of these calculations.

Regarding (3.11) and (3.14), for f1 the jacobian was calculated exclusively using this tool. On other

hand, for f2 we considered the inertia moment to be constant around the equilibrium point (in reality it

changes slightly with the eye orientation as it moves the centre of mass), and so there are two parts of

it which depend on v - the torque produced by the elastics, τela and the gravity torque, τg. In fact, as the

system is making use of rotation matrices for computing both the torques, the chain rule applies - the

symbolic tool computes the derivatives with respect to a rotation matrix variable of the muscle insertion

points, Q, and then making use of the exponential map the derivative of Q with respect to the exponential
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variables, v, is analytically computed and multiplies the first:

df2(Q(v))

dv
=
df2(Q(v))

dQ(v)

dQ(v)

dv
(3.24)

The derivative with respect to ω is very straightforward to compute since the only part of f2 depending

on it is the friction torque, τf = −βω.

In the end, we get a linearization of the continuous system which we want to control stochastically, so

it has to be discretized. For this purpose, we use MATLAB/Control System Toolbox function c2d() with

zero-order hold method and a sampling time of 0.001s, which was considered adequate for the purpose

of this work. However, this value can easily be changed if needed depending on the particular control

architecture to be used in the real system. The linearized system matrices can be found in appendix A.

3.5 Results

3.5.1 Muscle responses

The 1st order agonist muscle system response is presented in figure 3.5, for different values of α1,

with fixed α2 = 1. We know from control systems theory that a first-order system has settling time of

3τ , and τ is the time constant, given in this case by τ = α1

α2
. So, the with fixed α2, the settling time is

dependent on the value of α1 alone - as its value increases, the system becomes slower.

Figure 3.5: Agonist muscle response to a neuronal signal of amplitude 0.1, with α2 = 1 and different values of α1
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The responses in 3.5 confirm what was expected: with a low value of α1 the muscles respond almost

instantaneously, while with higher values the settling time increases. In section 3 we considered α1 = 0

to simplify the state-space model, since the time-constant of the remaining eye system is high enough

to discart the delay in the muscle response.

Let us now analyse the combined response of the agonist and antagonist pair of muscles. For this, we

will simulate a neuronal step signal activating the agonist muscle: lateral rectus - horizontal component

in the positive sense of the force. This results in a positive torque in the eye ball that moves horizontally

and pulls the antagonist muscle that counteracts this force passively via its elastic characteristic. We

expect that this torque will have the opposite sign in the horizontal direction, leading to the stabilization

of the muscle torque at zero τzmusc = 0 and thus demonstrating the agonist/antagonist action of the

muscles.

Figure 3.6: Agonist/antagonist action of the muscle model. Here, τext represents the lateral rectus as it simulates a
contraction (agonist) in the positive sense of the horizontal component of the torque, while τela simulates
the action of the medial rectus (antagonist). The action of both results in a pulse, τmusc

As seen in figure 3.6, the simulated response is as expected. The step neuronal signal originates

a step response of the agonist muscle, simulating its contraction, while the elastics produce a contrary

torque stabilizing the total torque produced by the pair of muscles over a time period of roughly 130ms.

3.5.2 Identification and Linearization

To validate if the 3D Nonlinear System (NLS) is correctly modelled by the state equations (3.11) a step

input was put into the NLS in MATLAB/Simulink and its output was observed. From the output, the rate
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of change of the exponential coordinates and the angular acceleration were both calculated through the

presented formula. Simultaneously, the values of ω were obtained from the simulation of the system as

well as the orientation output and its numerical differentiations were made in MATLAB.

Figure 3.7: Comparison between the numerically
and analytically calculated values of the
rate of change of the exponential coor-
dinates

Figure 3.8: Comparison between the numerically
and analytically calculated values of the
angular acceleration

v̇1 v̇2 v̇3 ω̇1 ω̇2 ω̇3

Relative
error(%) 1.23 0.66 1.10 2.19 3.41 8.23

Table 3.1: Relative error between analytical computations and experimental values of v̇ and ω̇ in the 3 different
dimensions

The results for these calculations are shown in figures 3.7 and 3.8 for v̇ and ω̇ respectivelly. The

relative error between the numerical and the analytical results was calculated using the following method

and the resultant values are presented in table 3.1.

REv̇(%) =

∑p
k=1

v̇LS(k)−v̇NLS(k)
v̇NLS(k)

p
× 100%

REω̇(%) =

∑p
k=1

ω̇LS(k)−ω̇NLS(k)
ω̇NLS(k)

p
× 100%

(3.25)

As one can see, the error values are quite low, confirming what can be seen in the plots - the system is

well described by the state equations and, therefore, we can proceed for the linearization of the system.

The analytical linearization of the system was done as described in 3.4. A Matlab function was

created, which allows for the linearization of the system around any given operating point, (v,u), in a

time-efficient manner - the whole linearization is done with symbolic variables and these can then be

replaced by the operating point very rapidly, providing a valid linearization of the eye model around the

whole ocular range. The reason why it is important to have a fast linearization is discussed further in the
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document.

The linearization around the equilibrium point

x =

[
v
ω

]
=


0
0
0
0
0
0

 (3.26)

was tested together with the model obtained from system identification in two ways - firstly, using the

compare() function from Matlab and then by performing saccades controlled in open-loop (without any

disturbance), using the Linearized System (LS) parameters for the optimization. The commands ob-

tained from the optimal control approach were then used to generate the saccades in the three different

systems: the LS, the Identified System (IDS) and the NLS, which is our ground truth for comparing the

identification and linearization.

Figure 3.9: Simulated response of IDS and LS superimposed in their 3 dimensions - the percentages represent
the normalized mean squared goodness measure of each model in each dimension, the values of the
output, v, are expressed in radians

Figure 3.9 shows the plot obtained from Matlab/System Identification Toolbox’s function compare().

The fitness value is calculated by

fit(i) = 1− ‖xzval(i)− x(i)‖
‖xzval(i)−mean(xzval(i))‖

(3.27)
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and it indicates how close are the systems’ outputs relative to the measured output in the NLS, contained

in zval. This result suggests that the NLS is better identified by the linearization than by Matlab’s System

Identification Toolbox. To get a better grasp on how this results while performing saccades, we followed

to the second experiment.

Figure 3.10: Response of the three different systems to the same saccade inputs. (Up) Horizontal saccade with
goal set to 10◦, in which it can be seen that the NLS behaves similarly to the LS. (Down) Horizontal
saccade of large amplitude 30◦, where although the IDS has a bad transient phase, its steady state
value is closer to the NLS the one displayed by the LS.

In figure 3.10 the responses from the three systems to the saccade input is shown for a small am-

plitude and a bigger amplitude saccade. It becomes clear when analysing these plots that when the LS

is working further away from the linearization operating point, it performs worse than for smaller mag-

nitudes when compared to the NLS. However in bigger amplitude saccades, in fact, the IDS seems to

stabilize in a similar value to the NLS, unlike the linearized version. Also, it is straightforward to notice

that the LS behaves better than the IDS for small amplitude saccades both in the rise and in the static

phases - while the IDS overshoots and oscillates, the LS is seemingly critically damped. To quantify

how much worse the LS gets for bigger amplitudes, the mean relative error was calculated for a range

of different amplitudes in horizontal and vertical saccades, and plotted as seen in figures 3.11 and 3.12.
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Figure 3.11: The relative error in a horizontal sac-
cade is below 20% in the LS but al-
ways greater than 30% in the IDS in a
ocular range of 30º

Figure 3.12: The relative error in a horizontal sac-
cade is very low (<5%) in the LS but
always greater than 70% in the IDS in
a ocular range of 30º
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In 2.4, we presented state-of-the-art work on optimal feedback control of biogological movements.

Here, we elaborate on the various approaches considered in this thesis and analyze each different

approach relative to the real human eye behaviour described in 2.2 by testing them in our 3D eye

simulator.

4.1 Control design

The notion of the oculomotor system adopted in this thesis is presented in section 2.1, and an overview

of its components is given through the rest of chapter 2. Here, we elaborate more on the design of the

feedback loop implemented to the eye plant.

To perform a saccade to a certain goal orientation yss, we first optimize the expected value of the

cost function, as in (2.29), for a fixed movement duration, p. The expected cost E[J(p)], in the framework

of stochastic feedback control, is given by (2.27) for all time steps in the saccade movement k ∈ [0; p]

This process is repeated by searching in the whole plausible space of p - we assume that a saccade

cannot be shorter than a minimum duration, minp, nor longer than a maximum duration, maxp. The

movement duration which minimizes the expected cost is then selected, and the corresponding gains

are used in the control. Detailed information on the optimization process is given in section 2.4.2 and

the considered forms of the cost function are described later in section 4.2.

The state-space equations of the closed-loop system are

x(k+1) = Ax(k) +B(u(k) + ε(k)u ) + εx

y(k) = H(x(k) + εs) + εy

x̂(k+1) = Ax̂(k) +AK(k)(y(k) −Hx̂(k)) +Bu(k)

u(k+1) = −G(k+1)x̂(k+1)

(4.1)

The optimal control gains, G(k), are computed only for the time-steps k = 1 . . . p. To keep the system in

steady state after instant p we have to continue giving actuation to the system, otherwise it will return to

the rest position. We do this by switching to a control scheme where the control gains are zero and the

reference input forces a new equilibrium point at the target position.

The feedback of the system is in form of a position signal and the actuation is made through the

neuronal activation signal which generates force. Given that the control architecture of the system is

based on proportional actuation facing the state error (fig.4.1), when this error is null the controller does

not generate any actuation and hence the system does not stabilize in the goal orientation. In other

words, the system is type 0, which means that zero steady-state error is not assured without integral

action and there is, then, the need to introduce a gain in the reference value and a feedforward term uff

Introducing a reference input in a feedback control loop is a well-studied problem in control theory. To
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Figure 4.1: Type 0 system with proportional controller - this system cannot stabilize with zero steady-state error.

implement this, we based ourselves on the explanation given in [28] on Reference Inputs with Estimators

(Chapter 8). These contributions are added to the system employing two gains, Nx and Nu, which are

obtained based on the system’s dynamics

[
Nx
Nu

]
=

[
A− I B
H 0

]−1 [
0
I

]
(4.2)

The gains Nx and Nu are implemented in the system as seen in figure 4.2. By setting as reference the

desired goal orientation, it generates a reference state, s and a reference motor command uff , as seen

in the block diagram in figure 4.2.

Figure 4.2: Diagram of system with reference tracking gains Nx and Nu.

Hence, this implies that at the end of the movement, as the saccade optimal control gains are no

longer defined, the system is controlled only by the reference input. Since we are studying fundamentally

the saccadic movement and not the subsequent period of fixation, the noise is removed at the end of
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the movement, p, for simplification purposes.

k ≤ p

x(k+1) = Ax(k) +B(u(k) + uff + ε(k)u ) + εx

x̂(k+1) = Ax̂(k) +AK(k)(y(k) −Hx̂(k)) +B(u(k) + uff )

k > p

x(k+1) = Ax(k) +Buff + εx

x̂(k+1) = Ax̂(k) +Buff

(4.3)

The final system has the following equations:

k ≤ p

x(k+1) = Ax(k) +B(u(k) + uff + ε(k)u ) + εx

y(k) = H(x(k) + εs) + εy

x̂(k+1) = Ax̂(k) +AK(k)(y(k) −Hx̂(k)) +B(u(k) + uff )

u(k+1) = G(k+1)(s− x̂(k+1))

k > p

x(k+1) = Ax(k) +Buff + εx

y(k) = Hx(k) + εy

(4.4)

Figure 4.3: Block diagram of the oculomotor system. The optimal control splits between an optimal estimator and
an optimal command generator. The generated commands are disturbed with additive and multiplicative
noise. The resulting command is applied in the eye plant and its state, which is hidden, is also disturbed
with additive noise and SDN. The available information to the observer is the eye orientation.

Figure 4.3 summarizes the implementation of the feedback loop on the existing eye model, which

was done using Matlab/Simulink. The derivation of the control and estimation gains, G and K can be

found in sections 2.4.2 and 2.4.3 respectively, in which we use the stochastic optimal control Approach
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developed in [32]. The description for matrices A,B,H,C,D,Qx and Qy is presented in section 2.4.1,

where we give the background on the generic state-space representation of systems as well as on the

specific case of systems with multiplicative terms of noise.

4.2 Optimal control Approaches

While the theoretical background for feedback optimal control was given in section 2.4.2, here we

elaborate on the principles of the brain when performing saccades - the cost function of our optimal con-

trol problem. As stated previously, the parameters for which the brain tries to optimize when performing

movements is a widely studied and debatable subject. Many hypotheses have been analyzed through

optimal control, by matching different optimality principles with the stereotypical eye dynamics, but very

few of these studies considered the specific case of optimal feedback control of saccades with SDN.

However, there have been studies on this subject [13,20] which are used here as the main background.

In both these works, the cost assigned to saccades was considered to depend on three different aspects

- Accuracy, Energy and Duration (AED).

J = Jx + Ju + Jp (4.5)

In the framework of stochastic feedback control, this translates into the cost per step described by

(2.25). This formulation of the optimal control problem has allowed researchers to obtain main sequence

behaviour of their models while respecting Listing’s law both in the mentioned works and in open-loop

optimal control formulations.

Recall that the expected value of the cost in any step k is given by the cost per step, α(k), plus the

expected value of the state resulting from applying the policy at that step, u(k):

vπ∗(x
(k), x̂(k)) = min

u(k)


u(k)TLu(k) + x(k)TT (k)x(k) +

λβ

1 + βp

+ E[x(k+1)TW (k+1)
x x(k+1)|x(k), x̂(k),u(k)]

+ E[e(k+1)TW (k+1)
e e(k+1)|...] + w(k+1)

 (4.6)

Also, the expected values in the above equation have the form (2.29) which depends on the variability of

the state and the estimation error and therefore, in the presence of SDN depend on the quadratic form

of the motor commands:

E[x(k+1)|x(k), ˆx(k),u(k)] = Ax(k+1) +Bu(k)

var[x(k+1)|...] = Qx +
∑
i

BCiu
(k)u(k)TCTi B

T (4.7)
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Approach Cost terms Signal-dependent noise
1 AED -
2 AED X
3 AD -
4 AD X

Table 4.1: Different Approaches considered in the formulation of the optimal feedback control problem.

E[e(k+1)|...] = (A−AK(k)H)e(k)

var[e(k+1)|...] = Qx +
∑
i

BCiu
(k)u(k)TCTi B

T +AK(k)QyK
(k)TAT

+
∑
i

AK(k)HDix
(k)x(k)TDT

i H
TK(k)TAT

(4.8)

This gives us the hint that the brain might not be minimizing effort but only endpoint accuracy and

duration while considering the influence of SDN, as has been proposed previously [9,38]:

J = Jx + Jp (4.9)

which, in the stochastic framework leads us to the cost per step

α(k) = x(k)TT (k)x(k) +
λβ

1 + βp
(4.10)

We call this Approach AD as it optimizes accuracy and duration, although with the presence of SDN we

are implicitly optimizing effort as well.

In sum, we expect that a system without SDN which minimizes effort will behave similarly to one with

SDN but disregarding the effort in the cost function. In both cases the system is penalizing the sum of

squared motor commands, u2, either through minimization of effort or variability, respectively. Although

some results have been obtained suggesting this analogy [9, 31, 39], these works have not considered

a three-dimensional model of the eye as ours does.

Table 4.1 summarizes the Approaches considered in experiments. In all these Approaches it is nec-

essary to tune variables T , λ and β which play a role in the cost functions to minimize as explained in

section 2.4.2. In the AED optimization Approaches it is necessary to consider another variable corre-

spondent to the effort penalization cost, L.

Moreover, to validate the correct behaviour of saccades in each Approach, it is necessary to define

a set of metrics with the human physiological ground which allow us to match the obtained results with

the normal human saccade behaviour.
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4.3 Saccade metrics

Here, we present the factors to consider when evaluating the performance of our system in emulating

the behaviour of the human eye. In section 2.2 we presented the most commonly used characteristics

of this group of eye movements on research works with the same goal as ours: (i) the main sequence,

(ii) velocity profile asymmetry and (iii) the Listing’s plane. However, as we are implementing optimal

feedback control for the first time to a three-dimensional model of the saccadic system, there is another

item which we have to consider in the validation of the performed simulations - the straightness of

saccades. To sum up, there are four elements to consider in this work:

• Main sequence - the stereotypical relation between amplitude and duration and between ampli-

tude and peak velocity of saccades must be observed.

• Asymmetry - as the duration of saccades gets longer, their temporal velocity profiles tend to

become more asymmetrical, with the peak velocity being attained early in the movement.

• Listing’s plane - the eye torsion is zero in head-fixed saccades - vx = 0.

• Straightness - Oblique saccades exhibit a slight curvature in their trajectories.

To analyse if saccades performed by the simulator obey the main sequence, we perform multiple

simulations from random initial orientations to random goal orientation within a range of [−15◦; 15◦]. This

is a range where our linearization is valid, with low error between the linearized and nonlinear system as

seen in figures 3.11 and 3.12. The amplitude, duration and peak velocity of each trial is stored and then

plotted. Then we compare with the results from human trials: duration increases linearly with amplitude

and that peak velocity increases with amplitude.

The asymmetry of the velocity profiles is measured through a method suggested in [17] which con-

sists on obtaining a relation between the acceleration period, i.e. the time until the peak velocity is

attained, and the total saccade duration,

Scoef =
kpeak
p

(4.11)

The resulting value should be, for saccades, at most Scoef = 0.5, and should decrease towards Scoef = 0

as saccade duration increases, meaning that the peak is attained early in the movement and never after

half of the duration.

To check for Listing’s plane constraint, the whole trajectory is recorded in each saccade. Then, the

horizontal components, vz are plotted against the torsion values, vx and the same is done between

vertical, vy and torsional components. It is expected that these plots form a cluster around the zero
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torsion line in both the graphs - the Listing’s plane. A good measurement for the thickness of Listing’s

plane is its standard deviation, σx, which is around 0.6◦ for humans.

The straightness of a saccade can be measured quantitatively by computing the correlation between

its vertical and horizontal velocity components. Our system is considerably coupled, so only with coor-

dinated control of each muscle is it possible to attain straight trajectories. In human saccades, only a

slight curvature is observed in oblique saccades - with a near unitary correlation between vertical and

horizontal velocities in oblique saccades. To analyse the curvature of saccades we perform oblique sac-

cades in which the angle between horizontal and vertical components is at least 25◦, and the movement

amplitude is within the acceptable range of our approximation, shown in section 3.5.2 (we use the value

of 20◦). The correlations between horizontal and vertical velocity components are computed and the

minimum correlation trial is plotted so that it is possible to visualize the most curved saccade.

4.4 Results

In this section, we present the results on the four different criterions presented in 4.3 obtained using

the different Approaches taken and specified in table 4.1. The values of variables T , λ and β were kept

constant through the different experiments, varying only the energy penalty term, L and the motor noise

matrix, C. A further analysis on LP is given for a case in which torsion is unconstrained. It is important to

note that the search for the optimal movement duration was made in multiples of two sampling periods,

and the sampling period is ∆t = 0.001s

4.4.1 Approach 1 - AED optimization without SDN

Multiple saccades were simulated setting the multiplicative noise matrices C and D to zero, and

keeping the additive noise variances with the values qx = 0.001 and qy = 0.001 The data recorded from

each trial - saccade duration, amplitude, peak velocity and final position - were used to plot the results

regarding the specified saccade metrics.

• Main sequence In figures 4.4, the relations between amplitude, duration and peak velocity are

displayed, in order to analyse if the non-linear kinematic properties are respected in this Approach.

As expected, the compromise between accuracy, duration and effort originates movements with main

sequence properties - saccade duration grows linearly with amplitude as seen in 4.4a while the maxi-

mum attained velocity during the movement grows nonlinearly (figure 4.4b), reaching a saturation point

around 1300 (deg/s). Because the saccades have randomly generated initial and goal orientations, there

is some variability in the velocity for movements with the same amplitude since the different directions

lead to slightly different costs.
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(a) Amplitude vs. duration (b) Amplitude vs. peak velocity

Figure 4.4: Approach 1 - Main sequence

(a) Horizontal component vs. Verti-
cal component

(b) Torsion vs. Horizontal compo-
nent (c) Torsion vs. Vertical component

Figure 4.5: Approach 1 - Listing’s plane

• Listing’s plane The trajectories of saccades were recorded and their torsion values through each

trial were plotted against the vertical and horizontal components, to analyse if the torsion lies in a plane

and if it corresponds to the Listing’s plane (figure 4.5).

The obtained plots show roughly a line in both the XY and XZ planes. The obtained value for the

standard deviation of the torsion is σx = 0.09◦, which is a very low value. The reason for the low

thickness of the plane is that we are constraining the endpoint torsion as much as the vertical and

horizontal components, in matrix T .

• Velocity profiles Horizontal saccades of different amplitudes were performed to check how their

velocity profiles differ with amplitude. Scoef was calculated with equation 4.11 and a trend line was fitted

to facilitate the visualization of its evolution.

Figure 4.6a shows the effect of the effort penalization in this Approach with the saturation on peak

velocity, and the linear increase in duration with saccade amplitude. Notice that for small amplitude

saccades, when velocity decreases towards zero it remains in zero (e.g. 10◦ line), in contrast to what

happens with bigger amplitudes (e.g. 35◦ line). The reason why this happens is that our controller is
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(a) Temporal velocity profiles of horizontal saccades
with different amplitudes (b) Scoef relation with movement duration

Figure 4.6: Approach 1 - Velocity profiles and their skewness

based on the linearization made and, as stated in 3.5.2, the error between the linearization and the

nonlinear model increases when the saccade amplitude moves away from the equilibrium point in which

the model was linearized. This, together with the fact that after the saccade as reached its duration, p,

the controller has no effect and the model is thus controlled by the feedforward command alone, yields

the sudden change in velocity observed in larger saccades.

Another feature to be analysed from the plots in figure 4.6 is the asymmetry of velocity profiles. Em-

pirical observations on humans have shown that the velocity peak is attained early in the movement,

resulting in asymmetrical curves for larger movement amplitudes. This was not observed using Ap-

proach 1 - although the value of Scoef decreases with amplitude, it is always greater than 0.5, meaning

that the peak velocity is reached after half of the movement duration. We assume this to happen only in

the presence of multiplicative noise, so this result is as expected.

• Curvature The saccade with the most curved trajectory from the set of oblique movements sim-

ulated is shown in figure 4.7. The value of the correlation between horizontal and vertical velocity

components is very high and it can be seen in the figure that the movement is almost perfectly straight

as expected.

4.4.2 Approach 2 - AED optimization with SDN

After adding signal-dependent noise to the simulator, with ci = 0.01 for i = 1, 2, 3, i.e with equal noise

magnitudes in the 3 input dimensions, again multiple saccades were simulated optimizing accuracy,

effort and duration, using the same values in the accuracy penalty matrix T, effort matrix L and temporal

reward discounting α and β.

• Main sequence The main sequence plots, seen in figure 4.8, have the desired shapes, demon-
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Figure 4.7: Saccade with lowest correlation between horizontal and vertical velocity components from a set with
mean correlation of 0.998

(a) Amplitude vs. duration (b) Amplitude vs. peak velocity

Figure 4.8: Approach 2 - Main sequence

strating the linear relation between amplitude and duration (4.8a) and the saturating relation between

amplitude and peak velocity (4.8b). However, these have differences when compared to the main se-

quence relations obtained in Approach 1, where multiplicative noise was inexistent – the slope of the

linear relation between amplitude and duration is bigger and the peak velocity attains lower values for the

same amplitudes, saturating at around 1100(deg/s). These differences reflect the influence of multiplica-

tive noise in the system. By introducing this kind of disturbance which is as stated proportional to the

squared motor commands, the system finds it more advantageous to produce lower motor commands,

reducing the effort. The result is a bigger movement duration and analogously lower maximum velocity

for a saccade of the same amplitude, hence explaining the bigger increase of duration with amplitude

and the lower value of saturation in the peak velocity.

• Listing’s plane By plotting the orientations in the XY and XZ plane, the listing’s plane is shown in
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(a) Horizontal component vs. Verti-
cal component

(b) Torsion vs. Horizontal compo-
nent (c) Torsion vs. Vertical component

Figure 4.9: Approach 2 - Listing’s plane

(a) Temporal velocity profiles of horizontal saccades
with different amplitudes (b) Scoef relation with movement duration

Figure 4.10: Approach 2 - Velocity profiles and their skewness

figure 4.9. Again, the Listing’s plane displays a very low thickness, with an insignificant increase in the

standard deviation. (σx = 0.14◦)

• Velocity profiles The temporal velocity profiles here show the lower saturation values on the peak

velocity as well as the increased difference between the durations of different amplitude saccades, con-

firming the conclusions attained by analyzing the main sequence plots. Furthermore, it is noticeable that

in high amplitude movements the velocity profiles show asymmetry, reaching its maximum value early in

the saccade. This is further confirmed by the Scoef plotted against movement duration in figure 4.10b,

with values under 0.5 which decrease with movement duration. This result confirms the expectation that

the asymmetry in temporal velocity profiles is originated by SDN.

• Curvature The saccade obtained in the lowest correlation trial, seen in figure 4.11, is slightly

curved. The mean value of correlation is roughly the same as in Approach 1, but the trials in Approach

2 have greater variability also in the correlation between velocity components given the introduction of

SDN. In fact, the saccade presented here is more realistic relatively to the ones performed by humans.
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Figure 4.11: Saccade with lowest correlation between horizontal and vertical velocity components from a set with
mean correlation of 0.990

4.4.3 Approach 3 - AD optimization without SDN

Approach 3 was experimented by removing the cost term on effort (L = 0), thus optimizing accu-

racy and duration. As in Approach 1, SDN was set to zero and saccades with random initial and goal

orientations were simulated.

• Main sequence The main sequence dependencies are in this Approach, as expected, not followed.

Analysing figure 4.12, although the duration seems to increase linearly with amplitude, the relation

between amplitude and peak velocity is strange - bigger velocities are attained given the complete

disregard on the values of the motor commands in this Approach. The absence of effort penalization

and signal-dependent noise implicitly in the accuracy term causes the system to see no advantage in

producing low motor commands, resulting in big peak velocity values.

• Listing’s plane The trajectories obtained in this Approach also obey the Listing’s plane restriction,

once more with very low thickness as seen in figure 4.13

• Velocity profiles In simulations with no SDN and not optimizing effort, there is no reason not

to produce big motor commands since we are in no way interested in minimizing u. The temporal

velocity profiles in figure 4.14a reflect this effect, with the maximum velocity of the saccade being reached

as soon as the movement begins as a result of the system finding itself in the state with the biggest

value of error, to which the motor commands are proportional (see equation 4.4). This fast reaction

of the controller produces velocity profiles in the system which do not correspond to the shape of the

ones observed in human saccades, although their asymmetry increases with movement duration (figure

4.14b. On the other hand, we can see that for bigger amplitudes the peak velocities decrease, as a

result of the trade-off between endpoint accuracy and duration - the system finds it more convenient to
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(a) Amplitude vs. duration (b) Amplitude vs. peak velocity

Figure 4.12: Approach 3 - Main sequence

(a) Horizontal component vs. Verti-
cal component

(b) Torsion vs. Horizontal compo-
nent (c) Torsion vs. Vertical component

Figure 4.13: Approach 3 - Listing’s plane
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(a) Temporal velocity profiles of horizontal saccades
with different amplitudes (b) Scoef relation with movement duration

Figure 4.14: Approach 3 - Velocity profiles and their skewness

achieve the goal orientation accurately and hence takes more time to reach it, which results in lower

gain values given that we use T (k) = 0 for all time-steps except the last, k = p. To get a better grasp

on the influences these parameters have on the controller gains, see 2.4.2. Approach 3 fails to replicate

velocity profiles of human saccades.

• Curvature The most curved saccade simulated in Approach 3 has the lowest correlation between

velocity components in all the Approaches, with the reasonably lower value of 0.8744. This is most likely

caused by the fact that motor commands are not being minimized and the produced velocities are thus

more irregular as seen in figure 4.14a. Nevertheless, the trajectory described by the eye, displayed in

figure 4.15 is still reasonably straight.

4.4.4 Approach 4 - AD optimization with SDN

Finally, we added SDN to the system and experimented it optimizing accuracy and duration in several

random saccades. The results are presented below.

• Main sequence As in Approaches 1 and 2, the nonlinear dynamic properties of saccades are

respected in this case as shown in figure 4.16. Although the effort is not constrained, the addition

of motor signal-dependent noise is enough to make the main sequence relations similar to Approach

2, where effort was minimized. Notice that these plots are much the same as the ones obtained in

Approach 2 - meaning that the values of noise used make the introduction of this disturbance play a

more significant role in the optimization than the effort term.

• Listing’s plane In figure 4.17 on can see that the torsion in experimented saccades stays in Listing’s

plane throughout the movements, once again resulting in a very low thickness of the plane.

• Velocity profiles The obtained plots of velocity profiles for different amplitude horizontal saccades
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Figure 4.15: Saccade with lowest correlation between horizontal and vertical velocity components from a set with
mean correlation of 0.839

(a) Amplitude vs. duration (b) Amplitude vs. peak velocity

Figure 4.16: Approach 4 - Main sequence

(a) Horizontal component vs. Verti-
cal component

(b) Torsion vs. Horizontal compo-
nent (c) Torsion vs. Vertical component

Figure 4.17: Approach 4 - Listing’s plane
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(a) Temporal velocity profiles of horizontal saccades
with different amplitudes (b) Scoef relation with movement duration

Figure 4.18: Approach 4 - Velocity profiles and their skewness

are shown in figure 4.18a. These are very similar to the ones obtained using Approach 2, presenting an

increased asymmetry in bigger amplitude movements as well as peak velocity saturation, as expected

since this Approach also considers the influence of SDN.

• Curvature The curvature of the performed saccades is here very similar to what has been ob-

served in Approach 2, confirming once more that these two Approaches are highly connected. Both the

minimum correlation trial and the mean of correlations have almost the same values. The most curved

saccade, seen in 4.19, presents a reasonably straight trajectory as expected.

By matching the results obtained in this Approach to the ones presented for Approach 1 and 2, we

can take the conclusion that, elegantly, the minimization of endpoint accuracy in a system endowed with

noise that depends on the square of the motor commands, u2, produces the same realistic saccadic

movements as optimizing effort, confirming the hypothesis suggested in [9, 38] which motivates this

thesis. Moreover, all the Approaches considered optimal feedback control and positive results were

obtained in this framework, which is consistent with our assumption that the oculomotor system relies

on a feedback loop.

Moreover, the trajectories described by saccades in all of the tested Approaches are slightly curved

and present near-unitary correlations between horizontal a vertical velocity components. In a system

where no restrictions were imposed to assure straightness of trajectories, the optimality principles were

sufficient to generate realistic saccades with scaled components of velocity. We conclude from these

facts that at the origin of generating saccades is a vectorial source which is decomposed, generating

nearly straight movements.
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Figure 4.19: Saccade with lowest correlation between horizontal and vertical velocity components from a set with
mean correlation of 0.986

(a) Horizontal component vs. Verti-
cal component

(b) Torsion vs. Horizontal compo-
nent (c) Torsion vs. Vertical component

Figure 4.20: Eye trajectories with unconstrained torsional component.

4.4.5 Unconstrained torsion

After obtaining the Listing’s plane (LP) results shown in the previous sections for Approaches 1-4, we

tested the system behaviour upon removal of the weight related to the torsion in the endpoint accuracy

term of the cost function, given that the obtained LPs in the different Approaches present much the same

thicknesses. Furthermore, the obtained standard deviation values for the torsion are too low considering

the measurements made in humans in other research works.

With the purpose of testing the effect of this modification in our Approach, again multiple saccade

trajectories with random goal directions were recorded. The performance of the system was, in this

case, bad considering the previous Approaches - the torsion values are much higher and thus the eye

does not move in a plane.

The reason for this might be related to the coupling between the 3 dimensions in the model, especially

58



the torsional and horizontal components, which results in highly coupled gains for ux and uz and thus

causing the torsion values to vary much in the favour of horizontal gains when it is not constrained.

This aspect is illustrated by the values of the dynamic matrix obtained in the linearization, in appendix

A.1. The results in figure 4.20 suggest that high torsion values correspond to high horizontal amplitude

saccades. Another hypothesis is that since no importance is given to the torsional component, the

variability is accumulated in this irrelevant dimension.

Nonetheless, further research on this topic would be useful to confirm or contradict these hypothe-

ses.
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This work proposed to implement an optimal feedback controller of saccades in a three-dimensional

model of a mimetic robot of the eye plant, resembling the human oculomotor system. Through optimal

feedback control, a controller and an estimator were designed to perform saccades optimally according

to a cost function. To study the principles optimized by the brain to perform these movements, different

cost functions were tested, with different noise conditions, includind Signal-dependent noise (SDN). The

results obtained were put against empirical data on the behaviour of human eyes with repect to kine-

matics properties (Listing’s plane constraint, trajectory curvature) and dynamical properties (the main

sequence and asymmetric temporal velocity profiles).

Using the model previously built in the scope of ORIENT I project, we adapted the model to a more

realistic input of force (muscle activations), instead of position. Having the goal of controlling it using

linear control techniques, we had to perform its linearization. Firstly, we used Matlab’s System Iden-

tification Toolbox to obtain a linear parametrization of the model. However, this method was far from

perfect, and another approach was taken by analytical linearization of the model, which proved to fit the

needs of this work better.

Having a reliable parameterization of the system, we proceeded to the design of the control loop

of the saccadic movements. This was made through optimal feedback control for the duration of the

saccade. The problem of fixating the eye in the goal orientation after the saccade was not the main focus

of the thesis so, to tackle it, no biological considerations were made and a common control technique

based on feedforward was used.

To understand the neural principles behind saccadic movements, a study was made on the cost

terms to optimize. In parallel, a study on the contribution of SDN was made for the considered cost

functions. The combinations of these two topics resulted in four different approaches to study - accuracy,

effort and duration optimization considering either the classical additive noise or the more biologically

plausible SDN (Approaches 1 and 2) and accuracy and effort penalization, again with additive noise or

SDN (Approaches 3 and 4). To validate each of these approaches we evaluated the obtained results

according to a set of criteria defined by empirical observations on humans.

5.1 Discussion

After scrutinizing the performance of each approach in the different criteria, we concluded that the

minimization of effort is redundant in the presence of SDN, as expected from an analytical perspective -

both effort minimization and SDN presence with accuracy minimization imply that the motor commands

are penalized. While in the absence of SDN it is necessary to minimize effort to obtain main sequence

properties, in its presence, minimizing accuracy and duration is sufficient. Furthermore, we conclude

that the asymmetry of velocity profiles arises from the influence of SDN alone - in both AED and AD op-
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timizations, an increase of skewness with movement duration was only observed when the multiplicative

term of disturbance was present.

The curvatures of the trajectories in the performed experiments by different approaches suggest a

confirmation that 3D saccades are generated by a common vectorial generator [21], as the velocity

profiles obtained for oblique saccades are scaled versions between the horizontal and vertical compo-

nents. The most realistic trajectories are observed in approaches with SDN, once more supporting the

hypothesis that this disturbance is determinant in saccade dynamics and kinematics.

The results obtained on the Listing’s plane analysis were inconclusive. In the performed trials, a

weight on the torsional values was assigned, resulting in almost perfect Listing’s planes for every ap-

proach. By removing the weight on this component, however, the system stopped using exclusively 2

Degrees-of-freedom (DOF), moving on the torsional dimension as well. This seems to be a consequence

of using feedback controlling saccades in this system, with coupling between the 3 pairs of muscles but

more research on this topic has to be made to confirm this hypothesis.

5.2 Contribution

The constributions made with this thesis are the following

• First empirical proof of 3D saccadic system control using optimal feedback control and

considering signal-dependent noise;

• Demonstration of the influence of signal-dependent noise on saccade behaviour, together

with a study on the influence of different cost terms.

• Adaptation of mimetic eye model to more realistic input and its analytical linearization;

• Optimal feedback control scripts.

In bold text, the scientific contributions and in normal text, the more technical contribtuions for further

work in the project.

5.3 Future Work

Although this thesis accomplishes its main goals, some questions still remain.

Firstly, the linearization of the 3D biomimetic robot model which is made in this thesis, although

theoretically allowing for linearization in different operating points, it was only done around the equilibrium

point (x0,u0). The scripts developed in this thesis provide a useful base to compute fast linearizations

of the system at arbitrary operating points.
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Second, we did not address thoroughly the post-saccadic period of the simulation. One option is to

include the fixation period in the optimization, by dividing the cost function into two parts, one for the

saccade cost and the other for the fixation cost.

Third, it would be interesting to obtain a more detailed figure on how the extraocular muscles are

coupled to understand how much effort the brain has to make to prevent eye torsion.

Finally, after concluding the eye system, further work is planned on the ORIENT project to develop

an auditory system and the integration of these two systems with a head-neck joint.
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A
Appendix A

A.1 Linearized system

A.1.1 Continuous

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−521.1 0 −68.2 −42.0 0 0
0 −560.7 0 0 −42.0 0

−184.6 0 −1049.5 0 0 −42.0



B =


0 0 0
0 0 0
0 0 0

2101.3 0 0
0 2101.3 0
0 0 2101.3


H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
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A.1.2 Discrete

A =


.9997 0 −3.3611e− 5 9.7919e− 4 0 −1.1126e− 8

0 0.9997 0 0 9.7919e− 4 0
−9.1032e− 5 0 0.9995 −3.0134e− 8 0 9.7911e− 4
−0.5102 0 −0.0667 0.9586 0 −3.3143e− 5

0 −0.5490 0 0 0.9586 0
−0.1808 0 −1.0276 −8.9766e− 5 0 0.9583



B =


0.001 0 −5.8694e− 9

0 0.001 0
−1.5897e− 8 0 0.001

2.0576 0 −2.3379e− 5
0 2.0575 0

−6.3319e− 5 0 2.0574


H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
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