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Abstract

This work focuses on the study of tethered flights of a small quadcopter from a ground-base, which could
be used to supply continuous power to the aerial robot and significantly extend its flight time. Some features
that facilitate the interaction between the quadcopter and the ground-base are studied and implemented. The
research starts by introducing a method capable of estimating the tension applied to a quadcopter by using
the inertial information from the IMU sensors and the quadcopter’s thrust. To filter the undesired noise
presented in the IMU measurements a Kalman filter is implemented. After the filtering process, the tension
estimate is used to present two alternative methods to control the UAV, based on the tension applied to it. The
first method allows to change the quadcopter’s position by applying a force to it. This solution is extended to
implement a process of landing a UAV by pulling the tether tethered to it. Moreover, the second method allows
to develop a novel position control structure, based on the tension that the tether applies to the quadcopter,
and on the shape of a tether that outlines a catenary curve. At last, the position of the quadcopter is estimated
taking into account the quadcopter’s tension estimates, and the shape of a tether that fits into the catenary
model.
Keywords: Tethered flight – Quadcopter modeling – Catenary curve – Kalman Filter

1 Introduction

1.1 Motivation

Micro aerial robots are known by their versatility
and ability to get information from higher altitudes,
whereas ground-robots are not able to do so. How-
ever, their small size does not allow them to carry
much load, which also means that their batteries
must have a small size, shorting their maximum flight
time. Given that ground-robots have a big payload
capacity, higher computational power and long bat-
tery life time, the small quadcopter can be attached to
a ground-robot, increasing the quadcopter’s benefits.
For simplification purposes, throughout this work,
the implemented solutions consider a non-movable
ground-base, but they can be transposed to a scenario
with a mobile ground-base. Nevertheless, the quad-
copter can also provide to ground-robots the aware-
ness and versatility that they usually do not have.
This way, the UAVs would have longer flight times
and the ground-robots would have access to informa-
tion that could not capture before.

1.2 Problem definition

Despite the benefits mentioned above, there are sev-
eral challenges that must be considered when conduct-
ing tethered flights, such as the tension that the tether
applies to the UAV. In case of a non-rigid tether con-
necting the quadcopter to a ground-base, the shape of
the tether approximately outlines a catenary curve.

The flight control of the UAV can be performed based
on the tension applied to it. Thus, it is necessary to
have an accurate estimate of that tension. However,
the IMU measurements have a high noise level that
does not allow to estimate the tension with the desired
accuracy.

The position estimate can be improve by exploiting
the properties of the tether and using the tension ap-
plied to the UAV. The tension on the end-points of
a catenary curve is related to its shape, which means
that the relation between the catenary model and the
tension applied to the quadcopter can be expressed
mathematically.

1.3 Contributions

This paper focuses on the study of tethered flights, im-
plementing features that can improve the interactions
between a quadcopter and a ground-robot. Aiming for
that, the following procedures are developed: a com-
putational simulation that allows to pre-test the
developed features in a safe environment, taking into
account both tethered and untethered flights; two al-
ternative ways of controlling the position of the
quadcopter based on the tension applied to it,
allowing to land the UAV by pulling the tether and
removing the necessity to have an external motion sys-
tem; a procedure to estimate the position of the
quadcopter, while assuming that the tether outlines
a catenary curve.
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1.4 Literature Review

The use of the catenary to model the tether attached
to a single UAV is studied in [1]. The use of multiple
UAVs tethered between them is approached in [2] and
[3], which can be useful in cooperative missions, such
as the transport of heavy payloads. In several situ-
ations, the UAVs can be used to provide additional
information to a ground-robot, such as described in
[4] and [5]. A possible design for the electrical and
mechanical components of the ground-base platform,
which supplies the power to the UAV, is introduced
in [6]. Furthermore, the resistance and weight of the
cable cannot be neglected, and so, different cables
have different performances. In [7] a method to make
a cable selection according to the relation between
“power loss in the cable and payload is discussed”
in order to increase the system performance. Addi-
tionally, a method that enables to switch between a
tethered powered supply and a battery supply, while
the quadcopter is flying, is presented in [8].

2 Quadcopter Modelling

Start by defining the world frame W , where
{w1, w2, w3} ∈ W , and the body frame B, where
{b1, b2, b3} ∈ B. The relation between them is given

by the position vector ~Rr - with its horizontal projec-
tion being defined as the radial distance vector ~r - and
by the rotation matrix R(η). Figure 1 illustrates both
frames ({W} and {B}) as well as the vector position
Rr, and the Euler angles roll, pitch and yaw (θ, φ,
and ψ, respectively) [2], [9] [10].

Figure 1: World frame {W}, rigid-body frame {B}, radial
vector ~Rr, and its horizontal projection ~r.

The quadcopter is modelled through the Newton-
Euler equations, according to equations 1 and 2. Con-
sider ~a as the acceleration of the quadcopter in the
world frame {W}, Fp as the force of the propellers, m
as the mass of the quadcopter, ~g as the gravity vec-
tor, ~ω as the angular velocity vector of the quadcopter
regarding the body frame, I as the inertia matrix of
the quadcopter, η the attitude (θ, φ and ψ), and τ
as the torque made by the propellers. Therefore, the
system is obtained from the Newton-Euler equation
as follows:

m~a = R(η)Fp +m~g + Fext (1)

~̇ωI = τ − ~ω × (~ωI) + τext (2)

Equation 3 displays the relation between the quad-
copter torques and the thrust produced by each mo-
tor, assuming that the axes of the body frame B are
rotated 45o degrees regarding the axes of the motor’s
arms. τxτy

τz

 =


√

2
2 l(−f1− f2 + f3 + f4)√
2

2 l(−f1 + f2 + f3− f4)
C(−f1 + f2− f3 + f4)

 (3)

The thrust of the quadcopter corresponds to the sum
of the thrust produced by each motor.

F = f1 + f2 + f3 + f4 (4)

Equation 5 maps the torques and total thrust of the
quadcopter to the thrust of each motor.
f1
f2
f3
f4

 =
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1 1 1 1
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√
2
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2
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√
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2 l
√

2
2 l −

√
2
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−C C −C C


−1 

F
τx
τy
τz


(5)

The input of the motors is a PWM signal. Therefore,
equation 6 presents the map between the thrust and
the input command, according to [11].

f = 2.130×10−11cmd2+1.033×10−6cmd+5.485×10−4

(6)

3 Characterization of the shape
of the tether

3.1 Catenary Curve

The catenary model consists of a hanging cable, with
no stiffness, sagging under its own weight and sup-
ported only by its ends (see figure 2).

Figure 2: Catenary curve and related parameters; world
{W} and catenary {C} frames.

The point (x1, y1) corresponds to the origin and the
point (x2, y2) to the position of the quadcopter. The
shape of the catenary can be defined according to a
mathematical model, in which expression 7 presents
the equation of the catenary.

y = a.cosh
(x− x0

a

)
+ C (7)
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Parameter 〈x0〉 is the abscissa of the lowest point.
Parameter 〈a〉 corresponds to the y coordinate of the
lowest point of the curve (x = x0) regarding the cate-
nary frame {C}, and it must always be positive.1.
Parameter 〈C〉 is an offset between the world frame
{W} and the catenary frame {C}, which depends on
the tether’s parameter 〈a〉 and the y coordinate of the
lowest point regarding the world frame (y0).

C = y0 − a (8)

Expressions 9 and 10 introduce the tether parameters
〈s1〉 and 〈s2〉, which represent the arc-length from the
curve lowest point to the origin and to the UAV, re-
spectively.

s1 = a.sinh
( |x1 − x0|

a

)
(9)

s2 = a.sinh
( |x2 − x0|

a

)
(10)

Equations 11 and 12 respectively present the hori-
zontal and vertical tension on the end-points of the
catenary curve. Both the horizontal and vertical ten-
sion depend on the tether’s parameters - 〈a〉 or 〈s〉 -
and on the weight of the tether, where ω is the tether
weight per length unit [12].

TH = ω.a (11)

TV = ω.s (12)

The absolute value of the tension results from the eu-
clidean norm of the horizontal and vertical tensions.

|T | =
√
T 2
V + T 2

H (13)

The quadcopter flying in a R3 space allows to define
the horizontal tension (TH) in terms of a component
along the x direction and another along the y direc-
tion, as shown in figure 3.

Figure 3: Horizontal tension decomposition.

The previous circumstance relates the tension along
the x and y direction according equation 14 and 15,
respectively.

Tx = cos(β).|TH | (14)

Ty = sin(β).|TH | (15)

1A negative value of parameter 〈a〉 would only have a phys-
ical meaning if the shape of the catenary was concave instead
of convex.

The parameters of the catenary cannot be mathemat-
ically computed by knowing only the two end-points
of the cable. Thus, these parameters - 〈a〉, 〈x0〉,
〈C〉, 〈s1〉, and 〈s2〉 - can be obtained gathering ad-
ditional information in two different ways: by match-
ing the lowest point of the catenary 〈x0〉 to the origin
(case 1); or by knowing the total length of the tether
〈stot〉 (case 2). Furthermore, these two different ap-
proaches have pros and cons. In case 1, the length of
the tether is not fixed but a ground-controller is nec-
essary to match the tether lowest point to the origin;
in case 2, the ground-controller is no longer necessary
but the length of the tether is assumed to be fixed.

3.2 Knowing two points and match-
ing the lowest point of the tether
to the origin

Start by considering that equations 16 and 17 describe
two points, with the first point (x1, y1) matching the
origin (see equation 18).

y1 = a.cosh(
x1 − x0

a
) + C (16)

y2 = a.cosh(
x2 − x0

a
) + C (17)

x0 = x1 (18)

Figure 4 illustrates the case.

Figure 4: Quadcopter attached to the ground controller
maintaining x0 at the origin.

When replacing x0 in equation 16 by equation 18 it
follows expression 19, and subtracting equation 17 by
equation 16 results the expression in equation 20, with
∆y = y2 − y1.

C = y1 − a. (19)

f(a) = ∆y −
(
a.cosh

(x2

a

)
− a
)

= 0 (20)

Parameter 〈a〉 is computed by using the iterative
method of Newton-Raphson in equation 20. This
method does not guarantee the convergence of the pa-
rameter to be estimated. To improve the convergence
of the method, it is necessary to have an accurate ini-
tial estimation of the parameter 〈a〉, which not only
helps the method to converge but also reduces the
necessary steps to do it, turning it faster. The expan-
sion of the hyperbolic cosine using a Taylor series (see
equation 21), and using the Cardano’s formula on the
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resultant cubic equation, allows to estimate an initial
approximation for the parameter 〈a〉.

cosh(x) =
ex + e−x

2
=

inf∑
n=0

x2n

(2n)!
= 1+

x2

2!
+
x4

4!
+
x6

6!
+...

(21)
The Cardano’s formula compute the roots of a cubic
polynomial having the general expression of equation
22 with a, b and c ∈ <.

x3 + αx2 + βx+ γ = 0 (22)

Any cubic expression having the form of expression
22 can be re-written in a reduced form, as shown in
equation 23,

y3 + p.y + q = 0 (23)

where y = x + α
3 , p = β − α2

2 and q = γ + 2α3

27 −
α.β
3 . After re-writing expression 22 into expression

23, the Cardano method allows to compute the roots
of expression 23 (see equation 24). Notice that these
roots correspond to the roots of expression 23, so it is
necessary to apply the change of variable x = y − α

3
in order to obtain the roots of expression 22 instead.

roots =
3

√
−q
2

+

√
q2

4
+
p3

27
+

3

√
−q
2
−
√
q2

4
+
p3

27
(24)

Given that, equation 25 results from the fourth-order
approximation of equation 20 according to the Taylor
expansion in equation 21.

∆y − x2
2

2!a
− x4

2

4!a3
= 0 (25)

Using equation 25, it results: α =
x2
2

2!∆y , β = 0 and

γ =
x4
2

4!∆y . Using the Cardano’s formula on equation
22, replacing α, β and γ by these new values, the
initial estimation for the 〈a〉 parameter is computed.
Equation 19 computes parameter 〈C〉, by knowing pa-
rameter 〈a〉.

3.3 Knowing two points and the
tether length

Another way of solving the problem is assuming that
x0 is unknown, but the length of the tether is con-
stant and known. This assumption leads to a pos-
sible and determined system of equations, similar to
the one given by equations 16-18. Given that, solv-
ing the system of equations 26-30 generates the curve
parameters.

y1 = a.cosh(
x1 − x0

a
) + C (26)

y2 = a.cosh(
x2 − x0

a
) + C (27)

stotal = s2 + s1 (28)

s1 = a.sinh
( |x1 − x0|

a

)
(29)

s2 = a.sinh
( |x2 − x0|

a

)
(30)

Subtracting equation 26 from equation 27, and mak-
ing use of the hyperbolic cosine properties, it follows:

∆Y = 2a.sinh(
∆x

a
).sinh(

xaverage − x0

a
), (31)

where ∆x = x2−x1
2 , xaverage = x2+x1

2 and ∆y =
y2 − y1. The expression of the length of the tether
〈stotal〉 is re-written by replacing equation 29 and 30
into expression 28, and using once more the hyper-
bolic sine properties.

stotal = 2a.sinh(
∆x

a
).cosh(

xaverage − x0

a
), (32)

Equation 33 presents a useful relation between 〈x0〉
and 〈a〉, which results from the division of ∆Y by
〈stotal〉.

x0 = xaverage − a.tanh−1(
∆Y

stotal
) (33)

The insertion of equation 33 in equation 31 allows to
obtain equation 34. Afterwards, using the Newton-
Raphson method on the equation 34 produces the
value of parameter 〈a〉, similar to what is done in
sub-section 3.2. However when ∆Y = 0 the param-
eter 〈a〉 is impossible to compute since equation 34
does not depend on 〈a〉 to be valid. Nevertheless,
from the knowledge that ∆Y = 0 it comes that x0

is known and corresponds to xaverage, which means
that equation 32 can compute the parameter 〈a〉. An
alternative approach is to force the value of ∆Y to be
not null by adding a small offset.

∆Y − 2.a.sinh(
∆x

a
).sinh(tanh−1(

∆Y

stotal
)) = 0 (34)

The expansion of the Taylor series derives the initial
estimation of parameter 〈a〉.

sinh(x) =
ex − e−x

2
=

inf∑
n=0

x2n+1

(2n+ 1)!
= x+

x3

3!
+
x5

5!
+...

(35)
By applying this approximation to expression 34, one
can re-write this last equation as a result of a 5th order
approximation for the hyperbolic sine, according to
equation 36.(

∆Y

2.sinh
(
tanh−1( ∆Y

stot
)
)−∆x

)
a4−∆x3

3!
a2−∆x5

5!
= 0

(36)
The assumption that α = a2 reduces equation 36 to
the 2nd order. Furthermore, the quadratic formula
presented in equation 37 produces the solution for this
2nd order expression

x2 =
−b+ /−

√
b2 − 4.a.c

2.a
, (37)

where

a =
∆Y

2.sinh(tanh−1( ∆Y
stotal

))
−∆x, b =

−∆X3

3!
, c =

−∆x

5!
.

(38)
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Reverting the variable substitution produces the de-
sired value for 〈a〉, according to equation 36.

a =
√

(α), (39)

Since equation 36 is a 4th order equation it produces 4
roots - in the relevant domain, two of them are com-
plex roots and two of them real roots, one positive
and other negative. Only the positive real root has a
physical meaning and so it is the only one to be taken
into account.
The replacement of 〈x0〉 and 〈a〉 into equation 26 or
into equation 27 allows to compute the 〈C〉 parame-
ter.

4 Tension Estimation - Kalman
filtering

4.1 General information

The sensor readings concerning the attitude, acceler-
ations, and thrust of the quadcopter present a high
level of noise, which means that it is impossible to de-
termine the tension of the quadcopter with the desired
accuracy. To filter the undesired noise, and assuming
that the noise is white Gaussian, a Kalman filter is
implemented.
Equations 40 and 41 describe a linear system in which
wk and vk are the process and the observation noise,
respectively.

xk = Axk−1 +Buk + wk (40)

yk = Cxk +D + vk (41)

Additionally, denote Q and R as the process and ob-
servation noise covariance matrices.

Q =

w1 . . . 0
...

. . .
...

0 . . . wn

 , R =

v1 . . . 0
...

. . .
...

0 . . . vn


(42)

The Kalman filter presents an optimal solution for
linear systems affected by white-Gaussian noise.
The Kalman filter has two main steps, which are the
prediction and correction. The prediction step es-
timates the system state having only into account
the model (a priori state estimate); the correction
step takes the information from the state observation
and re-computes the state estimate (a posteriori es-
timate). The weight between the a priori state es-
timate and the observations is managed through the
Kalman gain.
Prediction:

x̂−k = Ax̂k−1 +Buk (43)

P−k = APkA
T +Q (44)

Correction:

Kk = P−k C
T (CP−k C

T +R)−1 (45)

x̂k = x̂−k +Kk(yk − Cx̂−k ) (46)

Pk = (I −KkC)P−k (47)

4.2 Filtering process using a constant
model

The implemented solution considers a model where
the tension remains the same, which can be extended
to situations where the wire is not abruptly pulled
and do not have considerable oscillations.

x̂k+1 = x̂k (48)

The state estimate (x̂k) is a <3 vector, including the
tension along x, y and z directions, and yk is the ob-
servation vector, which includes the tension measure-
ments. The observation vector is computed through
indirect measurements, using the inertial information
from the quadcopter. The state and the observation
vector as well as A, B, C and D matrices are repre-
sented in 49.

x̂k =

TxkTyk
Tzk

 , yk =

TxobskTyobsk
Tzobsk

 ,
A = C =

1 0 0
0 1 0
0 0 1

 , B = D = 0

(49)

The tension measurements T obs are obtained through
equation 50, replacing its parameters by the sensor
readings. The variables in equation 50 have the same
notation as in section 2.

T obs = m(~a+ ~g)−R(η)Fp + Fext (50)

4.3 Filtering process using a non-
constant model

In section 4.2, the Kalman filter models the tension of
the tether as being constant. This section introduces a
model that takes into account the first and the second
derivatives, in order to predict the pulling movement
that may be applied. To simplify the development of
the model, without loss of generality, consider only the
tension along the x direction. Assume that equation
51 defines the Kalman model in discrete time.

Txk+1 = Txk + a(Txk − Txk−1)+
+b(Txk − Txk−1 − (Txk−1 − Txk−2))

(51)

Equation 52 represents the state space derived from
the equation 51.x1[k+1]

x2[k+1]

x3[k+1]

 =

0 1 0
0 0 1
b −(a+ 2b) (1 + a+ b)

x1[k]

x2[k]

x3[k]


(52)

Equation 53 presents the matrices A, B, C, D, as well
as the state estimate and the observation vector of
the Kalman filter - x̂k and yk. The tension T obsx is
obtained through equation 50.

x̂k =

Txk−2

Txk−1

Txk

 , yk = Txobsk ,

A =

0 1 0
0 0 1
b −(a+ 2b) 1 + a+ b

 , CT =

0
0
1

 , B = D = 0

(53)
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4.4 Simulation results - Tension es-
timation

4.4.1 Kalman filter using a constant model

To simulate the high level of noise that the real sensors
may have, the simulated reading of the accelerations,
attitude, and thrust pass through an Additive White
Gaussian Noise channel (AWGN), in Matlab. Fig-
ure 5 presents the tension estimates, before and after
the Kalman filtering, taking as input a step signal of
magnitude −0.02N at time t = 140s, concerning the
x direction.

Figure 5: Noisy measurements from the sensors, the ten-
sion’s true value, and the estimated tension.

On the one hand, the Kalman filter has a significant
impact on reducing the tension’s noise. On the other
hand, and since a constant model is used, it introduces
a delay when abrupt changes are applied.

4.4.2 Comparison between the constant and
non-constant model in Kalman filter

The performance of these two models is tested in Mat-
lab for the case where the applied tension is a step
signal, but without considering the drag effect.

Figure 6: Real tension (pink), tension estimated using the
constant model (green) and tension estimated using the
derivative model (purple).

As it can be observed, the new model presents slight
improvements since it can converge faster to the real
value and it also presents less noise for the steady
values, as illustrated in figure 7.

Figure 7: Zoom of figure 6 for steady values.

These results may look contradictory since the initial
model is ideally “perfect” for modeling constant val-
ues. However, this new model allows to increase the
confidence in the model (by decreasing the process
noise variance), making it less susceptible to the ob-
servation noise without losing the ability of following
fast changes.

4.5 Experimental results

4.5.1 Estimation of the vertical tension

The validation of the vertical tension estimate is done
by performing a vertical tethered takeoff, which repre-
sents the simplest experiment to compute its ground-
truth value Tvgt. This last one is calculated through
the height of the quadcopter z, and the weight per
length unit of the the tether ω.

Tvgt = ω.z (54)

Figure 8 illustrates the estimation of the vertical ten-
sion computed in two different scenarios: for a vertical
takeoff of height 0,3m and 1,3m. As it can be ob-
served, the estimated tension converge to the ground-
truth value, and the implementation of a Kalman fil-
ter is essential to suppress the sensor’s noise.

(a) Hovering at a height of 0,3m.

(b) Hovering at a height of 1,3m.

Figure 8: Ground-truth values and estimates of the verti-
cal tension applied to the UAV.

The tension estimation procedure does not take into
account the force that the ground exerts on the quad-
copter. Thus, in the initial instants, the vertical ten-
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sion estimate does not correspond to its ground-truth
values.

4.5.2 Estimation of the horizontal tension

To validate the horizontal tension estimate, its
ground-truth value is computed using a small mass
(coin) attached to a wire. Figure 9 illustrates the
scheme of the test-bench used to compute the ground-
truth values for the horizontal tension.

Figure 9: Test-bench for computing the horizontal tension.

Equation 55 computes the ground-truth value of the
horizontal tension, in which T corresponds to the
weight of the mass and γ is computed according to
equation 56 - zq and za are the height of the quad-
copter and the height of the vertical arm, respectively,
and rq is the quadcopter’s radial coordinate, assuming
the inertial frame presented in figure 9.

TH = cos(γ).T (55)

γ = tan−1(
zq − za
rq

) (56)

Figure 10(a) displays the tension estimate and the
ground-truth value for an attached mass of 2,3g, and
figure 10(b) shows the result for a tethered vertical
takeoff, where the tether direction is mainly vertical.

(a) Hovering flight at position x = −0.3, y =
z = 0.

(b) Hovering flight at x = y = 0 and z = 0.4.

Figure 10: Ground-truth values and estimates of the hor-
izontal tension applied to the UAV.

As figure 10(b) displays, the horizontal tension esti-
mate is nearly null - less than 0.01N.

5 Tension-based flight control

5.1 Tension following

The tension applied to the quadcopter is estimated
in real-time, according to section 4. The goal posi-
tion of the quadcopter changes if the estimated ten-
sion is greater than a pre-defined threshold. Thus,
when this occurs, the goal position of the UAV is suc-
cessively updated to its current position, making the
quadcopter to follow the pull’s direction. When the
tension applied to the quadcopter is no longer greater
than the pre-defined threshold, the goal position stops
being updated and the quadcopter remains hovering
at its last position.

To observe the behaviour of the tension following fea-
ture a few videos were taken 2, where figures 11 and
12 correspond to screenshots of those videos.

Figure 11: Screenshots of the quadcopter following the
tension’s direction.

Moreover, the implementation of the tension following
feature can also be used for the landing process. Given
that, after the first tug, a flag is activated indicating
that the tension following feature is on. Thus, if the
quadcopter flies under a certain height, the motors are
turned off. Without using an external motion system,
the same principle can be applied using a sensor dis-
tance, which deactivates the motors if the distance
to the landing platform is smaller than a threshold.
Figure 12 illustrates the mentioned landing process.

Figure 12: Screenshots of the landing of the quadcopter
using the tension following feature.

5.2 Tension-based position control

In the previous section, the quadcopter’s position is
updated if the estimated tension is greater than a pre-
defined threshold. This means that it is necessary to
know the quadcopter’s current position, which implies
the use of an external motion system. An alternative
way is to assume that the tether outlines a catenary
curve and the outer loop controller no longer uses the
goal and current position but, instead, uses a goal
tension and a current tension, as shown in figure 13.

2The full videos are presented on Youtube here.
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Figure 13: Tension-based Control Structure.

On the one hand, the quadcopter’s current tension
is estimated during flight as shown before, using the
attitude, thrust, and acceleration of the quadcopter
(see section 4). On the other hand, the goal tension
is computed by providing a goal position, regarding
the tether’s frame, and using the catenary’s properties
to compute the goal tension assuming to a perfect
catenary (see section 3).
Figure 14 presents the simulation results from Mat-
lab, obtained using the control structure from figure
13. However, due to the inaccurate estimation of the
vertical tension in the initial instants, the altitude’s
feedback loop of the quadcopter uses the altitude val-
ues - the goal and the current altitude - instead of
using the values of the vertical tension. In practice,
the altitude can be computed using a distance sensor
or, for cases of higher altitudes, by using an altimeter
sensor, without needing the use of an external motion
system.

(a) Current and goal position along x, y and z,
flight test one.

(b) Current and goal position along x, y and z,
flight test two.

Figure 14: Simulation results of the UAV’s flight using a
tension-based position control.

6 Position Estimation

6.1 Matching the lowest point of the
tether to the origin

Using the equations previously defined in section 3,
and additionally assuming that r0 = 03, it is devel-
oped a procedure to recover the position of the quad-
copter. The tether’s parameter 〈a〉 and the tether’s

3The r variable is the horizontal axis x of the catenary in a
<3 space (section 3).

length 〈s〉 are computed based on the horizontal ten-
sion H and the vertical tension Tv, according to equa-
tions 57 and 58, respectively.

a =
TH
ω

(57)

s2 =
Tv
ω

(58)

Remember that the length variable 〈s2〉 is the arc-
length distance from 〈r0〉 (radial distance of the
tether’s lowest point) to the quadcopter.
Using the relation between the length of the tether
with the radial distance r - distance along the plane
of the catenary curve - and the tether parameter 〈a〉,
one can obtain the value of r.

r = a.sinh−1(
s2

a
) (59)

The altitude can be directly computed according to
equation 60, also mentioned in section 2.

z = a.cosh(
r

a
)− a (60)

The radial distance is re-written in terms of x and
y distances (see equations 61 and 62 ,respectively),
where the angle between them corresponds to β =
tan−1

(Ty

Tx

)
(see figure 3). The tensions Tx and Ty are

the tension’s estimates along the x and y direction,
respectively, regarding the world frame.

x = r.cos(β) (61)

y = r.sin(β) (62)

The horizontal tension H of a vertical takeoff is nearly
null, which implies that the tether parameter 〈a〉 is
also going to be approximately zero (equation 57).
This raises an indetermination of type 0×∞ in equa-
tions 59 and 60. The limits of those equations when
a −→ 0 are presented in equation 64 and 63.

lim
a→0

z = lim
a→0

a.cosh(
r

a
)− a = |s2| (63)

lim
a→0

r = lim
a→0

a.sinh−1(
s

a
) = 0 (64)

6.2 Knowing the total length of the
tether

In a situation where r0 6= 0, another way of recov-
ering the position of the quadcopter is by knowing
the tether’s full length. Using, once more, the equa-
tions defined in section 3, it is possible to compute
the tether parameters 〈a〉 and 〈s2〉 (see equations 57
and 58). Notice, however, that the length 〈s2〉 no
longer matches the total length since 〈r0〉 cannot be
considered null (equation 65).

stot = s2 + s1 (65)

This way, replacing x0 by r0 in expression s1 (see
equation 29), and using the relation presented in equa-
tion 65, one can derive equation 66.

r0 = ri + a.sinh−1(
stot − s2

a
) (66)
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Furthermore, by replacing x0 by r0 in expression s2

(equation 30), the radial distance r comes as:

r = r0 + a.sinh−1(
s2

a
) (67)

At last, equation 68 uses the catenary’s expression
and computes the quadcopter’s altitude.

z = a.cosh(
r − r0

a
) + C (68)

Equation 69 computes parameter 〈C〉.

C = yi − a.cosh(
xi − x0

a
) (69)

The vertical takeoff implies that equations 67 and 68
have a mathematical indetermination of type 0×∞.
The limits of those equations are presented in equa-
tions 70 and 71.

lim
a→0

z = lim
a→0

a.cosh(
r

a
) + C = zi + |s2| − |s1| (70)

lim
a→0

r = lim
a→0

a.sinh−1(
s1

a
) + a.sinh−1(

s2

a
) = 0 (71)

6.3 Experimental Results - knowing
the tether full length

To avoid the modeling of the tether’s oscillations, the
results presented throughout this section concern hov-
ering flights. Additionally, the angle β, which relates
the radial distance with the x and y coordinates, is
also a source of inaccuracy. It is initially assumed
that the β angle is known and is computed using
the Mocap system. In practice, the angle β could be
computed using a visual or mechanical system on the
ground controller that could indicate the direction of
the tether. Figure 15 presents a pair of experiments
in which the height corresponds to 1m and the radial
distances are similar between them.

(a) Hovering at x ' 1, 2m, y ' 0m and z ' 1m.

(b) Hovering at x ' 1m, y ' −0.3m and z '
1m.

Figure 15: Hovering at same height z and similar radial
distance (x, y) for small angle β (< 20o).

In a second set of experiments (figure 16) the radial
distances are also similar between them but the esti-
mation of the quadcopter’s height is evaluated for two
different heights - 0,5m and 1,2m.

(a) Hovering at x ' 1m, y ' 0m and z ' 1, 2m.

(b) Hovering at x ' 1m, y ' 0m and z ' 0, 5m.

Figure 16: Hovering at different heights z and similar ra-
dial distance (x, y) for small angle β (< 10o).

A third set of experiment (figure 17) is performed with
a bigger range for the value of the y coordinate.

(a) Hovering at x ' 0, 5m, y ' −0.6m and z '
1m.

(b) Hovering at x ' 0, 9m, y ' 0.6m and z '
1m.

Figure 17: Hovering at same height z and different radial
distance (x, y) for non-small angle β (> 30o).

In the initial instants the Kalman filter assumes that
the tensions Tx and Ty are null, which means that the
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length 〈s2〉 and the tether parameter 〈a〉 also start to
be zero (see equations 72 and 73).

s2 =
Tv
ω

(72)

a =
TH
ω

(73)

According to the expression deduced in equation 71,
the initial estimated position of the radial coordinate
is null, implying that x and y coordinates are also null.
On the one hand, the equation 70 allows to infer that
the initial estimate regarding the altitude corresponds
to zi − |s1|, since s2 is zero. On the other hand, the
tether’s total length is given by equation 65, which
means that s1 = stot for a null length s2. Equation
74 presents the initial estimate of the altitude over
this set of experiments.

z = zi − |s1| = 0, 754− 1, 6 = −0, 846 (74)

7 Conclusions

This work presented a method to estimate the ten-
sion applied to a quadrotor by using measurements
from the IMU sensors. Due to the high level of noise,
two Kalman based filtering processes were introduced.
Furthermore, the tension estimate was used to present
alternative ways of controlling the quadcopter, and
to improve the position estimate of a tethered quad-
copter.

The first flight control strategy used the tension esti-
mate to update the quadcopter’s position. Neverthe-
less, the position of the quadcopter must be known
through an external motion system. Aiming to de-
velop a control strategy that does not need to know
the position of the UAV, a novel methodology that
uses the tether’s shape and the tension estimate was
introduced.

Moreover, this study presented a method to estimate
the position of the quadcopter based on the tension
that the tether applies to the UAV and its shape.

7.1 Future Work

The interaction between a ground-robot and a UAV
allows almost unlimited feasible features. Using the
work presented throughout this thesis, the following
future implementations are suggested:

• To implement the tension-based position control
(see section 5.2) into a real-life scenario.

• To develop the physical ground-controller to
maintain the tether lowest point at the origin.

• To include in the ground-controller the mecha-
nism to compute the angle β that split the radial
distance in the x and y components.
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