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Abstract 

Artificial neural networks are a powerful machine learning technique that is 

used for several ends; time series forecasting is one of them. Several of these 

techniques are explored with special attention to recurrent neural networks, which 

are one of the methods most commonly used in time series forecasting. All these 

methods are presented with the goal of better understanding recurrent neural 

networks. There is no predefined better algorithm to solve this type of problems; in 

this field experimentation is required and only then we can draw conclusions. 

In this case, feedforward neural networks and recurrent neural networks will be 

used to obtain models capable of predicting time series. Two related data sets but 

with some important differences that will affect the results are used in these 

experimentations. The main objective is to compare the two types of networks on 

both data sets, presenting the limitations, drawbacks and advantages of each one 

of them. 

In most cases, recurrent neural networks outperform feedforward neural 

networks for time series forecasting problems. 

 

Keywords: machine learning; recurrent neural networks; feedforward neural 

networks; time series forecasting. 
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Resumo 

Redes neuronais artificiais são uma técnica de aprendizagem de máquina que 

é usada para várias finalidades; previsão de séries temporais é uma delas. Muitas 

desta técnicas são exploradas com especial atenção às redes neurais recorrentes, 

que são um dos métodos mais utilizados neste tipo de problemas de previsão de 

séries temporais. Não existe um método predefinido que seja melhor que os outros 

para resolver este tipo de problemas; nesta área é necessário experimentação e só 

depois é que é possível retirar conclusões. 

Neste caso, redes neurais feedforward e redes neurais recorrentes serão 

usadas para obter modelos capazes de fazer a previsão de séries temporais. Dois 

conjuntos de dados relacionados mas com importantes diferenças que afetarão os 

resultados serão usados nestas experimentações. O principal objetivo é comparar 

os dois tipos de redes neurais em ambos os conjuntos de dados, apresentando as 

limitações, vantagens e desvantagens de cada um deles. 

Na maioria dos casos, redes neurais recorrentes têm melhor desempenho do 

que redes neurais feedforward para problemas de previsão de séries temporais. 

 

Palavras-chave: aprendizagem de máquina; redes neurais recorrentes; redes 

neurais feedforward; previsão de séries temporais. 
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1 Introduction 
 
 

1.1 Motivation 
 

 
1.1.1 Time Series Forecasting 

 
Time series forecasting is an area of machine learning that has been fascinating 

data scientists for the last few decades. The field of machine learning has brought 

us innumerous advantages, being one of them the capability of being able to predict 

what is going to happen and the only thing we need is information. No matter how 

hard and random a data set may seem, these algorithms can find patterns that are 

not possible to identify using other techniques. Using past and present data we can 

infer what is going to happen in the future with precision; we must choose the right 

method and experimentation is the key. 

 

1.1.2 Neural networks 
 

Neural networks are an amazing method using for different purposes; time 

series forecasting is only one of them. They can also be used in many different other 

areas like in customer research, data validation and risk management. It is also 

important to refer that they are not alone; there are other methods capable of  

accomplishing some things that neural networks can and we will discuss these in the 

next chapter. 

Neural networks models have been around for more than half a century now. 

Since the publication of the first papers on the matter, scientists knew these models 

had enormous potential to achieve innumerous goals. Just by thinking of the 

complexity of the human brain, we can only imagine how far neural networks can go. 

It is a huge area of study and it is important to refer that only a small fraction of the 

neural network’s capabilities is taken advantage of, nowadays. There is so much 

more to discover on this matter. 

 

1.2 Objectives 
 

The first part of the thesis is focused on presenting relevant information 

regarding some of these machine learning techniques with special focus on neural 

networks. 

In the second part of the thesis, two distinct neural networks models will be 

implemented to two distinct data sets: recurrent neural networks and feedforward 
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neural networks. We want to compare the results of both these models, and which 

one is more reliable to solve this type of problems. 

 

1.3 Outline 
 

As previously mentioned, this thesis will be composed of two main parts after 

this introduction: 

• Chapter 2, in which we discuss and present the theory behind this complex 

area of research. We briefly present some important concepts; prediction 

methods that are used in this area other than neural networks; we explain in 

detail neural networks, including its history, definition and structure; then we 

delve into the specific type of neural networks we are interested in for this 

project: recurrent neural networks; we describe the different architectures 

that exist and the advantages, disadvantages and applications for this type 

of neural networks. 

• In Chapters 3, 4 and 5 we will present the proposed architecture, the 

evaluation method that will be used to analyze the results and the 

experimentations and conclusions of the thesis, respectively. 
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2 Related Work 
 

2.1 Important concepts 
 
 

2.1.1 Forecasting 
 

It consists of predicting what is going to happen, considering the information 

collected regarding past and present events. This allows people, businesses, 

companies and other entities to make decisions according to their goals. Although 

forecasting is, in several cases, a helpful technique it should not be used to exclude 

or ignore already known information. 

Forecasting is a method that helps management in its attempts to cope with the 

uncertainty of the future. 

 

2.1.2 Time Series 
 

Characterized as a set of data points obtained from existing records, usually a 

sequence of equally spaced points in time, tabulated or plotted in time order. In a 

more mathematical way, using the definition suggested by Robert H. Shumway and 

David S. Stoffer in Time Series Analysis and Its Applications [1] “…we may consider 

a time series as a sequence of random variables x1, x2, x3, …, where the variable x1 

denotes the value taken by the series at the first time point, the variable x2 denotes 

the value for the second time period, x3 denotes the value for the third time period, 

and so on.” 

There are several components of time series and some of the most important 

ones to consider are: 

• Trends. The linear increasing or decreasing behavior of the series over time. 

• Seasonality. A seasonal pattern exists when a series is influenced by 

seasonal factors. 

• Cycles. A cyclic pattern exists when data exhibits rises and falls that are not 

of fixed period. 

• Noise. The variability of the time series observations that cannot be 

explained by the model. 

 
 
 

2.1.3 Time Series Analysis 
 

The primary objective of this analysis is to develop mathematical models in order 

to find patterns in the data and to extract meaningful statistics and other 
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n 

characteristics of the data [16]. There are many methods to obtain this type of 

information and we will delve into some of them later. 

A time series can be white noise. It is white noise if the variables are 

independent and identically distributed with a mean of zero and a finite variance. 

White noise is important for a main reason: 

• Predictability. If a time series is white noise it is not possible to reasonably 

model it and make any type of predictions. 

 

2.1.4 Time Series Forecasting 
 

Joining the previously mentioned concepts we obtain time series forecasting, 

which is the topic regarding this work [9]. Mainly, it consists of predicting future 

events by applying models to time series. It is an extremely important area of 

machine learning because there are several prediction problems involving time  

components. Every time series problem is very specific and with its own data 

characteristics, and according to that the most fitting model(s) must be chosen to 

analyze the data. 

 
 
 

2.2 Some Prediction Techniques 
 

 
In order to have a better understanding on the matter, we will look briefly into 

some techniques that are used in this type of analysis. 

 

2.2.1 Moving Average 
 

An interesting, yet simple model in which we infer predictions using the mean 

value of past data. Considering the characteristics of the data, we will choose how 

further back we want to investigate. Let Ft+1 be the forecast value for the next period, 

where t is the current period, n is the forecasting horizon (i.e. how far back we look) 

and A is the data value from each period: 

 

Ft+1 = 
Æt+ Æt—1+ ...+ Æt—n 

 
(2.1) 

 
 
 
 

2.2.2 Weighted Moving Average 
 

A variant and clearly more versatile approach of the previously mentioned 

algorithm. As the name says, it is basically the same idea of the previous algorithm 



12 
 

n 

except the fact that every data value from each period At, At–1, … , At–n is multiplied 

by the importance (weight) we want to give to each period. Considering the same 

notations from equation (1) and using w as the weight for each period we can obtain 

the forecast the following way: 

 

Ft+1 = 
wtÆt+ wt—1Æt—1+ ...+ wt—nÆt—n 

 
(2.2) 

 
 

and considering that: 
 

wt +  wt–1 + ⋯ +  wt–n = 1 (2.3) 

 
Even though MA algorithms are simplistic and effective in some situations they 

also present several limitations. 

The fact that Moving Averages can spread out over any period can be 

problematic because the general trend can change depending on the time period 

being analyzed. It is also important to refer that these methods don’t work for all 

companies specially the ones that are heavily influenced by current events. They are 

only focused on past events and completely ignore current and valuable information 

such as new competitors, higher or lower demand for products in the industry… 

Concluding, careful inspection must be done before applying this method since 

the results might be misleading if not done following the right terms. 

 

2.2.3 Exponential Smoothing 
 

A different approach that uses past values as dependent variables in a 

predictive model that gives more weight to more recent observations [2]. Let Ft–1 be 

the forecast value for the last period, At–1 be the data value for last period and α be 

the smoothing constant (expresses how much our forecast will react to observed 

differences) we can obtain the forecast for the next time period Ft : 

 
Ft   =  Ft–1  +  α(At–1 − Ft–1) (2.4) 

 
As in the previous method, some concerns arise when dealing with Exponential 

Smoothing analysis. 

It produces forecasts that lag the actual trends, the main reason being that the 

algorithm neglects the ups and downs associated with the random variations. Also, 

this method will not work properly if there is a trend in the series, therefore it is more 
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efficient when used for short-term forecasts and with no cyclical or seasonal 

variations. 

 

2.2.4 Regression 
 

The main objective is to obtain the relationships between a dependent variable 

(response) and one or more independent variables (predictors) with the final goal of 

generating a model that can predict future values for the dependent variables given 

values for the independent variables [3]. This type of analysis has several 

subgroups. 

 

2.2.4.1 Linear Regression 
 

It is a type of regression which consists of a linear approach to model the 

relationship between the dependent and independent variables. There are two types 

of linear regression: 

• Simple Linear Regression. This is the simplest case in which only one 

dependent variable and one independent variable are considered. In other 

words, only one variable is needed to predict the future values. Considering 

y to be the response, x the predictor, þO and þ1 the regression coefficients 

and s the error term we obtain: 

 
y  =  þO +  þ1x + s (2.5) 

 
where the regression coefficients have the mathematical meanings of 

interception (þO) and slope (þ1) of a straight line are to be determined 

according to the data in analysis and the error term accounts for deviations 

of the data from the specified straight line. 

 

• Multiple Linear Regression. In some cases, we take into account k 

predictors: 
 
 

y  =  þO +  þ1x1 + þ2x2 + ⋯ + þkxk + s (2.6) 

 
and, once again, using the information we possess about the data we 

choose the values for þO, þ1, þ2, … , þk according to the importance that we 

want to give to each predictor. 
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i=1 

It may seem obvious, but it is important to refer that linear models are limited to 

linear relationships and the data must be independent. 

Only in a few cases we can find a straight line to model our data and, because 

of the model being described as a straight line, it is not possible to model cases in 

which having curves is convenient. 

This model is based in the relationships between the mean values of the 

dependent and independent variables but in some cases can be necessary to look 

at the extremes of the dependent variable. 

Outliers can have huge effects on the predictions because the mean values will 

be affected by these. 

 

2.2.4.2 Polynomial Regression 
 

It is another subtype of regression analysis and one of the ways to overcome 

some of the limitations presented by linear regression models, particularly the 

linearity [23][24]: 

y =  þO +  þ1x + þ2x2  + ⋯ + þkxk  +  s (2.7) 

This method still presents some limitations. 

As in the previous cases, the presence of outliers in the data can affect the 

results of a nonlinear analysis and, in addition to this, there are fewer ways to detect 

outliers in nonlinear regression models than there are for linear regression. 

 

2.2.5 Autoregressive Model 
 

This model uses previous observations as input to a regression equation to 

predict future values [11]. It is commonly used to describe time-varying processes in 

different areas, such as, nature, economics, etc. [25][26]. AR(p) is the notation used 

for this type of models and refers to an AR model or order p and, taking this into 

account, we can define the following equation to represent this model: 

 

Xt = c + ∑p *i  Xt–i +  st (2.8) 

 
 

where Xt is the value to predict, Xt–1, Xt–2, … , Xt–p are the p previous values used, 

*1, *2, … , *p are the parameters of the model, c is a constant and st is the white 

noise error term. 
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i=1 

i=1 i=1 

2.2.6 Autoregressive-moving-average model (ARMA) 
 

This name should sound familiar to the reader since this method involves two 

previously mentioned models working together. As a quick reminder, the AR part 

consists of predicting a value on its own past values and the MA part involves 

modeling the error term as a linear combination of error terms occurring 

contemporaneously and at successive times in the past. ARMA(p,q) is used to 

denote this model and refers to the p order of the AR part and the q order of the MA 

part [27]. Consider this different way of defining the MA model to better understand 

the ARMA model: 

 

Xt = µ + st + ∑q 8i st–i (2.9) 
 
 

where 81, 82 , … , 8q are the parameters of the model, µ is the expectation of Xt and 

st and st–1 , st–2 , … , st–q are white noise error terms. 

A new equation to define the ARMA model is obtained: 

 

Xt = c + st + ∑p *i Xt–i + ∑
q

 8i st–i (2.10) 

 
 

 
2.2.7 Autoregressive integrated moving average (ARIMA) 

 
It is a widely used generalization of the previous model and, once again, we 

have AR and MA working together with the particularity of the use of an integration 

component which indicates that the data values have been replaced with the 

difference between their current values and past values (this difference may occur 

several times) [28]. A standard notation used is ARIMA(p,d,q) where p and q were 

specified earlier and d refers to the number of times the raw observations are 

differenced, also known as the degree of differencing. In general, first we apply 

differencing and after we apply the ARMA model to the differenced series. 

 

ARIMA models requires a stationary series (no trends, no seasonality and a 

constant autocorrelation). 

It also requires expertise and experience if fitting the model manually (it is hard 

to choose the correct values for p,d,q). 

Although this method is excellent for forecasting, it is quite difficult to explain 

and interpret, therefore if interpretability is very important ARIMA models might not 

be the best choice. 
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This section had the main goal of introducing some algorithms used in time 

series forecasting in order to provide some knowledge on how they work, which will 

be helpful in understanding the idea behind neural networks, a prediction technique 

that has the whole next section reserved for itself due to the fact that this will be the 

method used in this project. 

 

2.3 Neural Networks 
 
 

2.3.1 History 
 

The study of the human brain has been around for centuries and it was only 

natural to try to harness this thinking process. In the 40s and 50s some scientists 

started taking this matter seriously and published several papers. 

Warren McCulloch and Walter Pitts were among the first to write about neural 

networks in 1943 [4]. 

As computers advanced in the following years, it became possible to model 

some of these theories. The first few attempts to model neural networks failed but 

later attempts were successful and from that point on different types of neural 

network models were developed and used for various purposes. 

In 1959, Bernard Widrow and Marcian Hoff developed models that they named 

ADALINE and MADALINE. MADALINE was the first neural network model to be 

applied to a real-world problem with success. 

Scientists were impressed with the results of these models and they kept 

pushing forward which caused people to exaggerate the potential of neural networks. 

Neural networks were powerful methods but the technology limitations in the mid- 

1950s were too big to overcome. The perceptron, which was proposed by Frank 

Rosenblatt in 1958, had a major drawback; it could only learn to separate linearly 

separable classes. Critiques arose regarding neural networks research which, 

obviously, led to a period of stunted growth till the early 1980s. 

In 1982 John Hopfield presented a paper in which he showed how neural 

networks could work and what they could do. 

By 1985 the American Institute of Physics began what has become an annual 

meeting where innumerous scientists would get together and discuss new ideas 

about neural networks. This meeting was called Neural Networks for Computing. 

Over the last few years, technology has been evolving exponentially, which led 

to the development of systems capable of handling even more complex artificial 

neural networks. 

Nowadays, neural networks are a subject of constant study; they are discussed 

everywhere. 
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In Figure 2.1 some important advances in the area of neural networks are 

shown. 

 

Figure 2.1 Important marks in the history of neural networks 
 
 
 

2.3.2 Biology 
 

The biological inspiration is evident therefore it is important to briefly discuss 

how the brain works [5]. The brain consists of millions of connected elements known 

as neurons. Considering, for our own convenience, that neurons have four principal 

components: the dendrites, the axon, the cell body and the synapses. The dendrites 
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are short and branched and is an extension of the nerve cell, along which impulses 

received from other cells at synapses are transmitted to the cell body. The axons are 

the long threadlike parts of the nerve cells, along which impulses are conducted from 

the cell body to other cells. The cell body is the spherical part of the neuron that 

contains the nucleus and is connected to both the axon and the dendrites. The 

junction or point of connection between two nerve cells, more specifically the 

connection between the axon of one cell and the dendrites of the next cell is called 

synapse. A simplified visual representation of all these components is represented 

in Figure 2.2. 

Although artificial neural networks were, unarguably, one of the discoveries of 

the century they still do not approach, by any means, the complexity of the human 

brain. It is a fact that artificial neural networks have been capable of more and more 

over the last years, but they are still not able of mimicking the human brain for many 

complex tasks. It is expected that soon artificial neural networks will be performing 

tasks closer to human level and perhaps even becoming mathematically and 

structurally more similar to biological neural networks. 

 

Figure 2.2 The Structure of a Neuron. Adapted from “Neural Network Design” 

by Hagan, M.T., Demuth, H.B., Beale, M.H. and De Jesús (1996) 

 

2.3.3 Definition and Structure 
 

An artificial neural network, commonly referred as simply neural network is a 

type of machine learning, just like all the methods presented in the last chapter. In 

its most general form, a neural network is a machine that is designed to model the 
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way in which the brain preforms a particular task; the network is usually implemented 

by using electronic components or is simulated in software on a digital computer 

[6][8] [10][12][13][14][15][16][17][18][19][20][21][22]. 

There are multiple types of neural networks and we will look into some of them. 

The most basic one and easier to understand is the feedforward neural network, in 

which the information travels in only one direction from input to output. 

It is helpful to know the structure of a neural network in order to better 

understand it. Neural networks are, usually, composed by the following elements: 

• Input layer. The input layer is the very beginning of the workflow for artificial 

neural networks. It consists of artificial input neurons and brings the initial 

data into the system for further processing by subsequent layers of artificial 

neurons. 

• Hidden layer. The hidden layer is located between the input layer and output 

layer, where artificial neurons take in a set of weighted inputs and produce 

an output using an activation function. 

• Output layer. The output layer is the last layer of a neural network that 

produces the outputs for the program. 

• Synapse. The synapse is the strength of the connection between two 

artificial neurons. 

The following Figure 1.2 shows the typical structure of an artificial neural  

network. The circles correspond to the neurons of each layer and the links between 

these neurons are the synapses. 

Figure 2.3 A Typical Neural Network 
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2.3.4 Learning Methods 
 

Neural networks have a learning phase which is crucial for the potential results. 

There are three methods for learning strategies: 

• Supervised learning. It is the machine learning task of learning a function 

that maps an input to output based on example input-output pairs. The 

example input-output pairs are usually called training data and each of these 

consists of an input object (usually a vector) and an output value. The new 

inputs that will be tested are called test data. This algorithm analyses the 

training data and infer a function that will be used to calculate the output 

values for the new test data values [12][29]. 

• Unsupervised Learning. This method must be used when there is no training 

data to learn from. The neural network analyses the data, and then a cost 

function tells the neural network how far it was from the correct result. 

Basically, the model learns from the test data and keeps adapting according 

to this data. 

• Reinforced Learning. This algorithm reinforces the neural network in the 

presence of positive results and punishes it for negative results, forcing the 

neural network to learn over time. 

 

2.3.5 Activation Function 
 

In neural networks, an activation function is what defines the output of a node 

given an input or set of inputs. This output is used as input of the next node and so 

on until a desired solution to the original problem is found. It maps the resulting 

values into a desired range (0 to 1 or -1 to 1, for instance) [33].1 

There are two types of activation functions: 

• Linear Activation Function. The function is linear. Therefore, the output of 

the functions will not be confined between any range. These functions don’t 

really help with the usual problems and data that we analyze using neural 

networks. 

 

ƒ(x) = x (2.11) 

 

• Non-Linear Activation Function. The function is not linear. This type of 

functions is commonly used because it can adapt to complex types of data. 

 
1 What is an Activation Function (deepai.org)? 
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6w 

For example, we have the sigmoid activation function, which is used to 

obtain values between 0 and 1 (commonly used in probability problems), we 

have tanh activation function, which provides values ranging from -1 to 1 

(commonly used for classification between two classes), among many 

others. The sigmoid function is an example and is defined the following way: 

 

 
$(z) =  1 

1+e 

 
(2.12) 

 
 

 
2.3.6 Backpropagation 

 
In the beginning, the weights of a neural network are initialized randomly, and 

these values need to be adjusted until we obtain the values that fit our model the 

best. One of the most common ways to accomplish this is using the backpropagation 

technique. It is a method used to calculate a gradient that is needed in the calculation 

of the weights used in a neural network. It is more used in situations where there are 

more than a hidden layer in a neural network [34].2 

Backpropagation requires three things to work properly: 

• A dataset consisting of input-output pairs. 

• A feedforward neural network, meaning that there are no connections 

between nodes in the same layer and that layers are fully connected. 

• An error function, which defines the error between the desired output and 

the obtained output. 

This method is used in any feedforward networks to learn a training set of inputs 

and outputs. 

The main idea behind backpropagation is to update the weights’ values in such 

a way that the error becomes minimum. First, we figure out if we have whether to 

increase or decrease the values of the weights. Once we know which way to go, we 

keep making smaller and smaller adjustments until the network provides the desired 

results. 

Considering ղ to be the learning rate, C to be the loss function and ε(t) to be a 

stochastic term we can update the weights w, using a stochastic gradient descent, 

the following way: 

 

wij(t + 1) = wij(t) + ղ 6C 
ij 

+ s(t) (2.13) 

 
 

 
 

2 What is Backpropagation? (deepai.org). 

—z
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2.3.7 Recurrent Neural Networks 
 

Recurrent Neural Networks have been deeply studied since the 1990’s. They 

are commonly used to learn sequential or time varying patterns, which is the matter 

we are dealing with in this project [7]. 

There are two types of architectures of recurrent neural networks. 

The first ones are named fully connected neural networks (Figure 2.4). Fully 

connected networks do not have distinct input layers of nodes, and each node has 

input from all the other nodes. 

The second ones are named partially connected neural networks (Figure 2.5). 

Although some nodes are part of a feedforward structure, other nodes provide the 

sequential context and receive information from other nodes. 

 

 
Figure 2.4 A Fully Connected Recurrent Neural Network 

 
 

 
 

Figure 2.5 A Partially Connected Recurrent Neural Network 
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2.3.7.1 Elman Network 
 

An Elman network contains three layers and a set of context units. The context 

units are connected to the hidden layer with the fixed weight of one. At each time 

step, the input is fed-forward, and a learning rule is applied. The context units save 

a copy of the previous values of the hidden layer nodes with the goal of maintaining 

a sort of a state, allowing this model to perform tasks like sequence-prediction 

[30][31]. 

Let ℎt be the hidden layer vector, yt the output vector, xt the input vector, W, U 

and b the parameter matrices and vector and oh and oy the activation functions. The 

hidden layer and the output vector are calculated the following way: 

 
 

ℎt  =  oh(Whxt  + Uhℎt–1 + bh) (2.14) 

 
yt  =  oy(Wyℎt + by) (2.15) 

 
2.3.7.2 Jordan Network 

 
Jordan networks are similar to Elman networks with the small difference of the 

context units containing information about the output layer instead of the hidden 

layer. Considering the same variable from the previous two formulas, we can obtain 

the value for the hidden layer and the output vector for the Jordan networks: 

 

ℎt  =  oh(Whxt  + Uhyt–1 + bh) (2.16) 

 
yt  =  oy(Wyℎt + by) (2.17) 

 
2.3.7.2 Hopfield Network 

 
It works by learning a number of binary patterns and then returning the one that 

is the most similar to a given input. 

It consists of only one layer of nodes which are connected to each other but not 

to itself. It is a feedback network since the outputs are redirected to the inputs. Every 

node is, at the same time, the input and output of the network, therefore the number 

of input and output nodes is the same. After a certain number of iterations, the values 

of the nodes tend to converge. 
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2.3.7.3 Bidirectional Associative Memory 
 

It is a variant of Hopfield network that stores associative data as a vector. 

It consists of two layers of neurons, which are fully connected to each other. 

Once the weights have been established, the first input layer presents the pattern in 

the other layer, and vice versa [32]. 

 

2.3.7.4 Echo State 
 

The echo state network contains a sparsely connected random hidden layer. 

The connectivity and weights of the hidden layer neurons are fixed and randomly 

assigned. The weights of the output neurons can be learned so that the network can 

produce specific temporal patterns. So, basically the only thing that changes in this 

network is the weight of the synapses connecting the hidden layer nodes to the 

output layer nodes.3 

 

2.3.7.5 Independently Recurrent Neural Network 
 

In this type of network, each neuron only receives information about its past 

state and thus neurons are independent of each other’s states. 

 

2.3.7.6 Conclusion 
 

These mentioned models are just some of the ones that are used in time series 

forecasting problems. Only a brief description of each of them was provided in order 

to give a general idea of how each of them works. 

 

2.3.8 Advantages of neural networks 
 

Artificial neural networks bring some benefits that overcome some of the 

limitations referred in the algorithms mentioned in the previous chapter. It is apparent 

that a neural network derives its computing power through its massively parallel 

distributed structure and its ability to learn and therefore generalize. Generalization 

consists on the process of the neural network obtaining reasonable results for inputs 

that were not part of the training [11]. 

The following points are just some of the benefits and capabilities that neural 

networks offer us: 

• Nonlinearity. Artificial neurons can be linear or nonlinear. A neural network, 

made up of an interconnection of nonlinear neurons, is itself nonlinear. This 
 

3 Jaeger H., Echo State Network (Scholarpedia, 2007). 
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is an important characteristic because it allows us to deal with a higher  

variety of problems, particularly nonlinear problems. 

• Input-Output Mapping. Supervised learning is one of the methods to train 

neural networks. Each data sample in the training data consists of an input 

and a desired output. The network is trained by receiving these data samples 

randomly and then the network’s synaptic weights keep being modified in 

order to minimize the network’s result and the desired result. Providing the 

data samples in a different order also helps training the network and the train 

keeps going until the network reaches a steady state, where there are no 

significant changes in the synaptic weights. Thus, the neural network learns 

from the data contained in the training set by constructing an input-output 

mapping for the problem at hand. 

• Adaptivity. Neural networks have the capability of changing synaptic weights 

according to the goals we have in hands. In some cases, when a neural 

network is trained to operate in a specific environment it can easily be 

retrained to deal with minor changes. Moreover, when a neural network is 

operating in a nonstationary environment it should be trained to deal with 

constant changes and the synaptic weights must adapt in real time. The 

ability to adapt a neural network according to the situation we have in hands 

is indeed a huge advantage, but this will affect the robustness of the same 

network. As the robustness level increases the adaptive level tends to 

decrease and vice-versa. 

• Evidential Response. In the context of pattern classification, a neural 

network usually provides information about which pattern to select and also 

the confidence in the decision made. The confidence can be used to reject 

ambiguous patterns and thereby improve the classification performance of 

the network. 

• Contextual Information. Knowledge is represented by the very structure and 

activation state of a neural network. Every neuron is potentially affected by 

the global activity of the other neurons in the network. Consequently, neural 

networks deal with contextual information very naturally. 

• Fault Tolerance. A neural network, implemented in hardware form, has the 

potential to be inherently fault tolerant. In other words, in the presence of 

adverse operating conditions the neural network’s performance will degrade 

gracefully. 

• Uniformity of Analysis and Design. The same notation is used in different 

problems and environments where neural networks are used. 

• Neurobiological Analogy. As previously mentioned, neural networks are 

inspired by the analogy with the brain. Neurobiologists look to artificial 
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networks as an interpretation tool to better understand neurobiological 

phenomena. On the other hand, we have engineers that try to develop more 

complex models using neurobiology as inspiration. 

 

2.3.9 Disadvantages of neural networks 
 

Although neural networks are extremely advantageous and outperform nearly 

every other machine learning algorithm, they also have some negative aspects: 

• Black Box. Neural networks are extremely powerful but also very complex. 

The complexity of neural networks comes with the disadvantage of being 

hard to understand what is truly happening when unexpected results are 

presented. Hence, it is not advised to use neural networks in some domains 

because it might be hard to explain some results (Figure 2.6). 

• Duration of Development. There are several libraries that help with the 

implementation of neural networks but sometimes it is important to be aware 

of details that might be important. 

• Amount of Data. Of course, it depends on the problem in hands, but it is 

frequent that loads of data are required to train neural networks. It needs 

much more data when compared with other machine learning algorithms. 

The more data we possess to train our neural network the better it will 

operate. 

• Computationally Expensive. The power of neural networks comes with the 

price of being extremely expensive. The amount of computational power 

depends how complex and big the neural network is and the amount of data 

there is to process. 

 
Figure 2.6 A neural network seen as a black box 
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2.3.10 Applications of neural networks 
 

Neural networks have several applications. Some applications improved its 

results thanks to neural networks and I’m going to mention two of the most relevant: 

• Image Processing and Character Recognition. Neural network’s capability 

of receiving several inputs, process them and deal with non-linear 

relationships is playing a big role in image processing and character 

recognition. Character recognition is used in several problems like automatic 

number plates recognition, in airports, for passport recognition and 

information extraction and converting handwriting in real time to control a 

computer, for instance. Image processing and recognition are used in facial 

recognition, cancer detection and satellite imagery for agricultural and 

defense usage (Figure 2.7). 

• Forecasting. This is an extremely important application of neural networks 

and is used in many different contexts. For instance, neural networks are 

used in weather forecasting, earthquake prediction, mathematical finance, 

astronomy, among others. All these problems are extremely complex and 

that’s why they rely on neural networks. 

 

Figure 2.7 An example of how neural networks can be used in the context of 

Character Recognition problems. Adapted from “Application of Neural Networks to 

Character Recognition” by Dong Xiao Ni (2007) 

 

2.3.11 Conclusions 
 

Chapter 2 had the main goal of presenting a general overview of neural 

networks and other related algorithms. It is not possible to go in detail in every single 

topic because neural networks are a huge matter of research and its capabilities 
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have been growing over the past decades but the main concepts and ideas were 

presented so it is possible to understand the idea behind the work of this thesis. 
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3 Thesis plan 

3.1 Introduction and initial plan 
 

For this project, I always had in mind working with data sets that were related 

with a big issue that is becoming more and more evident as time goes by; the climate 

change. 

I started researching and looking for data sets that looked interesting to work 

with and the initial plan was to work with a multivariate data set that aimed to predict 

if one day is either going to be an ozone day (meaning the ozone level is above a 

certain predefined threshold) or a normal day. This data set included several  

attributes including the temperatures at different times and in different atmospheric 

pressures throughout the day, the wind speed at various times of the day, the sea 

level pressure, the relative humidity, the total solar radiation for the day, among 

others. The neural network would learn from these attributes and their respective 

results (ozone day or not) and would be able to make predictions according to the 

attributes. 

 

3.2 Second and definitive plan 
 

I ended up deviating from the initial plan because I decided that I wanted to see 

the differences of how feedforward neural networks and recurrent neural networks 

deal with seasonal and non-seasonal data sets. I had in mind that feedforward neural 

networks would perform well on seasonal data sets because there is no need of 

memory since the pattern is very clear. 

Still with the climate change subject in mind, I found two interesting related 

univariate data sets. The first one was the seasonal data set and it contained 

information regarding the mean monthly global temperatures for a period of 65 years 

over the twentieth century. The second one was the non-seasonal data set and it 

contained information regarding the yearly number of sunspots over a period of 314 

years; a factor that greatly affects the temperatures and one that we can’t control. 

The Maunder Minimum was a period (1645-1715) in which the sunspots 

became exceedingly rare and this period roughly coincided with the middle part Little 

Ice Age, during which Europe and North America experienced colder than average 

temperatures. The volcanic activity is the current best explanation for the cause of 

this little ice age period, but the Maunder Minimum phenomena is also one of the 

factors that affected the temperature during this period. 

Basically, I want to predict both data sets using feedforward neural networks 

and recurrent neural networks and then compare the performance of each of the 

algorithms. During the recurrent neural networks experimentations, I want to 
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compare Elman networks and Jordan network and check how impactful their small 

differences in structure affect the results. 

I also had in mind performing another experimentation which involved predicting 

values for one data set while training the neural networks with the other data set. I 

ended up not doing this experimentation because as we know not only the sunspots 

affect the temperature; there are many other factors and therefore the results would 

be more accurate if we would use other data sets that would contain relevant 

information on these factors. 

 

3.3 Technologies used 
 

At first, I wanted to develop this project in Python, which is a language that I am 

comfortable with and it is commonly used to solve these types of problems. After a 

discussion with my supervisor, professor Andreas Wichert, who recommended me 

to use R, I decided to change and use this R language because it is a language more 

directed to implement machine learning techniques than Python. I was not as 

comfortable with R as I was with Python, but the learning process was fine; it didn’t 

take me a long time to get used to the language. I was also familiar with the language 

from the SAD course (Sistemas de Apoio à Decisão) where I used this language to 

perform similar activities like data pre-processing and application of several data 

mining algorithms like SVM (Support Vector Machine), kNN (k-Nearest Neighbors), 

LVQ (Learning Vector Quantization), Decision Trees and even Neural Networks. 

For IDE I chose R Studio, which I had some familiarity with it because I used it 

during the SAD course. 

 
3.4 Evaluation method 

 
As mentioned before, I plan on comparing the performance of both recurrent 

neural networks and feedforward neural networks and to accomplish this I will use 

measures of accuracy. The main measure used will be RMSE (root-mean-squared- 

error) and, when needed, I will recur to other measures to dissipate the doubts. 

The evaluation process will consist of dividing the data sets in two parts: a  

training data set and a test data set. The training data set will be used to train our 

neural networks. Then we will compare the predictions from our models against the 

test data sets. For this, we will compare the results graphically and numerically using 

the previously mentioned measurement of accuracy and others if needed. 
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4 Comparing feedforward neural networks with 
recurrent neural networks 

4.1 Choosing the data sets 
 

To start off with my experimentations, I decided to pick two related data sets; a 

simpler one where the seasonality is very clear and there are not many deviations 

from the regular values and a more complex one where there are clearly more 

deviations from the pattern. Both data sets were obtained from datamarket.com and 

the first one is called “mean-monthly-temperature-1907-1972” and it contains 792 

observations of the mean monthly global temperatures in Fahrenheit starting on 

January 1907 and ending on December 1972 (Figure 4.1). The second data set is 

called “yearly-mean-total-sunspot-number” and it contains 315 observations of the 

mean yearly number of sunspots starting on 1700 and ending on 2014 (Figure 4.2). 

I decided to choose these two data sets because there is a clear relation between 

them as I explained in the previous chapter. The number of sunspots is a huge factor 

on the temperatures around the planet. In Figures 4.3 and 4.4 I present two samples 

of both temperatures and sunspots data sets, respectively. 

 
 
 
 

 
Figure 4.1 Mean monthly temperatures 1907-1972 
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Figure 4.2 Yearly mean number of sunspots 1700-2014 

Figure 4.3 Temperatures data sample 
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Figure 4.4 Sunspots data sample 
 
 

4.2 Pre-processing the data 
 

It is important to mention this process since it can greatly affect the results. If we 

don’t perform a correct pre-processing of the data, it will negatively affect the results. 

This process is a data mining technique that involves transforming raw data into an 

understandable format that can be used for several purposes, including analysis. 

Real world data is often incomplete, inconsistent, and/or lacking in certain behaviors 

or trends; therefore, it is likely to contain many errors. Some of the steps of data pre- 

processing include checking out for missing values, values normalization/ 

standardization, checking out the consistency of the data types, splitting the data 

into training and test data sets, among others. 
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Now I will describe the pre-processing method I followed before applying the 

neural network models. 

First, I extracted the data sets as csv files from the data source. In R, I set the 

working directory to the respective directory where I downloaded my csv files to and 

obtained the files content to the program. 

The pre-processing plan presented in the next two sub-sections was followed in 

every experimentation. 

 

4.2.1 Pre-processing the temperatures data set 
 

• I removed the last row which contained irrelevant information. 

• The column containing the month and year was removed. 

• The column containing the temperatures was defined as characters, so I had 

to turn the characters into numeric values. 

• I turned the column containing the temperatures into a vector and applied a 

function that to normalize the data set (values of the temperatures ranging 

from 0 to 1). 

• I split the data set in two parts: a training data set and test data set. I 

experimented with training data set containing 80% of the observations and 

the test data set containing 20% of the observations. 

• Finally, I turned my training and test data sets into time series objects. 
 
 

4.2.2 Pre-processing the sunspots data set 
 

• I removed the last row which contained irrelevant information. 

• The column containing the year was removed. 

• The column containing the number of sunspots was defined as characters, 

so I had to turn the characters into numeric values. 

• I turned the column containing the number of sunspots into a vector and 

applied the normalization function again. 

• I also split the data set in two parts with the same sizes as I did in the first 

data set. 

• I turned the training and test data sets into time series objects which are 

ready to be trained and analyzed. 

 

In Figures 4.5 and 4.6 the time-series objects for both data sets I used for my 

experimentations are shown. Equation 4.1 shows the formula followed to obtain the 

normalized values. 
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n 

 

 
Figure 4.5 Time series objects of the temperatures data set used to perform the 

experimentations 

 

Figure 4.6 Time series objects of the sunspots data set used to perform the 

experimentations 

 

X   =     X–XNin  

XNax–XNin 

 
(4.1) 

 
 

where  Xn   is  the  normalized  value,  X  corresponds  to  the  value  that  we  want  to 

normalize, XNin  is the minimum value of our data and XNas  is the maximum value 

of our data. 

For better understanding of the pre-processing involved in these 

experimentations the code is available for examination in Appendix A. 

Since the pre-processing was done, we could now start preparing to deal with 

the core of our experimentations, which is to train our neural networks. 

 

4.3 Experimentation introduction and notes 
 

The results I’m about to present are in compliance with what I expected in the 

beginning with exception of one or two points that I will mention later on. 

Before I present the results and conclusions I obtained, it is important to mention 

an important fact about the experimentations on this project; it is known that neural 

networks have hidden layers and these layers will be the main concern during our 

experimentations. There are no rules for choosing the number of hidden layers and 

hidden nodes and the only way to figure them out is by experimenting several values 

for them and analyzing if the results are improving or not. By default, the nnetar 

function, has a predefined number of hidden layers and hidden nodes. The hidden 

layer is one and the hidden nodes depends on the context of the problem. This 

predefined number of hidden nodes will be my starting point and I will proceed by 

testing with smaller and higher number of nodes in order to figure out which is the 

best number to obtain the best results possible. For the Elman and Jordan networks 

the process will be similar, but I can also choose the number of hidden layers of the 

network. 



36 
 

4.3.1 Results of the temperatures data set using a feedforward 

neural network 

We trained our data set with a feedforward neural network. For this, we used 

the R function nnetar which is used for forecasting univariate time series and the 

architecture of this network is composed by a single hidden layer. 

As aforementioned, the data set was divided into the training and test data sets. 

The training data set contained data from January 1907 to October 1959 while the 

test data set contained the rest from November 1959 to December 1972. 

I called the nnetar function to train the network with the training set and create 

a model; then I forecasted the respective values for the time period corresponding 

to the test set using the predict function and compared the obtained results to the 

test set, graphically and numerically. 

I tested the model with several number of hidden nodes. To compare the results, 

I used the accuracy function which returns several measures of the forecast 

accuracy. I spoke with my professor and he recommended me to use the RMSE 

(root-mean-squared-error) which is one of the most frequently used measures in 

times series forecasting problems. The RMSE value is obtained the following way: 

 
 

RMSE = J
∑N

 (fi–oi)
2 

i=1 

N 
(4.2) 

 
 

where ƒi are the forecasts, oi are the observed values (known results) and N is the 

sample size. 

 

With the default number of hidden nodes (14) I obtained an RMSE of 

0.05062419. I tested with higher and lower number of nodes and the best RMSE 

value was 0.04603968 when the number of hidden nodes was 2. The graphic (Figure 

4.7) shows the comparison between the test set data (in red) and the prediction 

made by our model (in blue). It is important to refer that the graph contains the  

normalized values of the temperatures. 

The results of these experimentations were the expected. Since the data is 

seasonal which means that it has a periodic, repetitive and generally regular and 

predictable pattern, the feedforward neural network model performed sufficiently well 

to make a good prediction. 

Figure 4.8 shows the instructions that are used to train the network and to make 

predictions using our model. 

These results were expected since the start because of the seasonality of the 

data set, which allows the feedforward neural network to perform well even without 

the existence of a memory. 
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Figure 4.7 Comparison between the temperatures test set and the prediction 

of the feedforward neural network 

 

 
Figure 4.8 Instructions used to train and make predictions 

 
 

4.3.2 Results of the sunspots data set using a feedforward neural 

network 

For the number of sunspots data set the approach was very similar. 

The data set was divided in two parts. The training data set contained data 

points from the starting year of 1700 and ending on 1951 while the test data set 

contained data from 1952 to 2014. 

As mentioned, the procedure was similar; we called the nnetar function and it 

produced a model with its default values. The predict function was used to obtain the 

predictions of the number of sunspots for the years 1952-2014. After, we compared 

the results to our test data set. 

As in the previous experimentation, we tested with several number of hidden 

nodes in order to figure out which is the best for this model. The default number of 

hidden nodes for this model was 5 and provided an RMSE value of 51.668736. I 

proceeded by testing with lower numbers of hidden nodes and the best I obtained 

was with 2 hidden nodes the value of 41.01420. For the higher values hidden nodes 

the best result was found for 7 hidden nodes and the RMSE value of 45.722987. The 

graphical representations of the models with 2 hidden nodes and 7 hidden nodes 
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are represented in Figures 4.9 and 4.10, respectively. Again, in blue we have the 

predictions from our model and in red the actual values. 

So, as it is noticeable, for the model with 2 hidden nodes the results are not 

even remotely close to the desired ones. We can observe that our prediction almost 

converges to a straight line. 

For the second model with 7 hidden nodes even though the results are not the 

best it is visually clear that they provide a result closer to our goal. 

I decided to take into account two more measures that are clearly relevant to 

the context of this problem. I used the MPE (Mean Percentage Error) and the MAPE 

(Mean Absolute Percentage Error). 

The MPE is the average of percentage errors by which forecasts of a model 

differ from actual values of the quantity being forecast. The value of MPE is obtained 

the following way: 

 

MPE = 
1OO% 

∑n
 

 
 

at–ft 
 

 

 (4.3) 
n t=1    at

 

 

 
where at is the actual value of the quantity being forecast, ƒt is the forecast, and n 

is the number of times for which the variable is forecast. 

The MAPE measures the accuracy as a percentage and can be calculated as 

the average absolute percent error for each time period minus actual values At 

divided by actual values. Considering At to be the actual values, Ft the forecast 

values and n the sample size we can obtain the MAPE the following way: 

 
MAPE = 1 ∑n

 
 

 | 
at–ft

|
 

 
 

 (4.4) 
n    t=1 at

 

 
 

For the 2 hidden nodes model we have an MPE of -136.8492 while MAPE is 

166.6492. For the 7 hidden nodes model we have an MPE of -54.22009 and an 

MAPE of 94.26946. 

For this specific case, we can conclude that the second model is overall better 

than the first one. 

The results were not surprising. The performance was poor, as we can see from 

the accuracy values we obtained. This is since our data set is non-seasonal, which 

requires our network to have memory in order to perform well. 
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Figure 4.9 Comparison between the sunspots test set and the prediction of the 

feed-forward neural network with 2 hidden nodes 

 

 
 
 

Figure 4.10 Comparison between the sunspots test set and the prediction of 

the feed-forward neural network with 7 hidden nodes 

 

4.3.3 Results of the temperatures data set using Elman and Jordan 

neural networks 

I will now experiment with the same data sets using recurrent neural networks, 

more specifically Elman and Jordan neural networks. These networks were designed 

to implement memory in order to perform better in other type of problems like time 

varying sequences. For the first problem, I already obtained a pretty decent result 

with the feedforward neural network mainly because the data is seasonal, but for our 

second problem, where the data is non-seasonal, I want to improve the results with 

the following experimentations. 
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To achieve better results, I trained my model with lagged versions of the original 

time series. In this case I used 12 lagged versions which corresponds to the 12 

months of the year. This method is commonly used in times series because of a 

phenomenon called autocorrelation, which is a tendency for the values in a time 

series to be related to previous copies of itself. This is important to identify patterns 

which will help determining the seasonality of the series. 

I started experimenting with a single hidden layer. I called the elman function with 

the different numbers of hidden nodes and then the predict function. In the end, the 

respective RMSE values were calculated. The best value for the RMSE I obtained 

was 0.04949789 for 6 hidden nodes. After this, I started experimenting with 2 hidden 

layers. For 2 hidden layers, I decided to automate the process with a cycle since it 

would consume a lot of time otherwise. By the end of the loop, my program would 

return the best RMSE value and the corresponding number of hidden nodes of each 

hidden layer. The best results obtained were for 3 hidden nodes for both of the 

layers. The corresponding RMSE value was 0.04879495. It is important to mention 

the parameters that I used to call the elman and jordan functions; the “inputs[train]” 

contains the values corresponding to the training component (80%) of all the lagged 

versions of the time series, the “outputs[train]” contains the values corresponding to 

the training component (80%) of the original time series, “size=c(i,j)” corresponds to 

the number of hidden nodes in the corresponding hidden layers, 

“learnFuncParams=c(0.1)” is the parameter used for the learning function and 

“maxit=5000” corresponds to the number of iterations that we use to train our model. 

The following Figures 4.11, 4.12 and 4.13 show the comparison between the 

prediction and test set, the iterative error plot, and the instruction used to train the 

neural network, respectively. The first graph has the normalized values of the 

temperatures and the bottom values are the years of the prediction. The iterator error 

plot shows us how the network error evolved along the training iterations. 

The results here were fine as expected. The prediction of both the recurrent 

neural networks were fine with good accuracy values. The unexpected part is that 

our feedforward model outperformed the recurrent models. 
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Figure 4.11 Comparison between the temperature test set and the prediction of 

the Elman neural network 
 
 
 

 
Figure 4.12 Iterative error plot for the Elman network on the temperatures data 

set 
 
 

Figure 4.13 Instruction used to call the elman function 
 
 

Now it is time to train our data with the Jordan network. The setup was the 

same of the Elman network. The only difference is that I called the jordan 

function instead. The explanation of the parameters is analogous to the elman 

network and the parameters used in the function call were also the same. The 

best result achieved for this network was with an RMSE value of 0.0495885 for a 
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single hidden layer with 4 nodes. As it is not possible to have more than a 

hidden layer in Jordan networks, we will compare the results between the best 

values of RMSE between the two networks with one hidden layer. In this case 

the Elman network performed slightly better; the difference is minor though. The 

respective prediction is in Figure 4.14 and the instruction is in Figure 4.15. 

 
 

 
Figure 4.14 Comparison between the temperature test set and the prediction of 

the Jordan neural network 
 
 

Figure 4.15 Instruction used to call the jordan function 
 
 

4.3.4 Results of the sunspots data set using Elman and Jordan 

neural networks 

The procedure for this experimentation was the same presented in the previous 

section 6.3.3. 

For this non-seasonal data set, the best results I obtained for the Elman network 

were an RMSE value of 0.06965678 with two hidden layers containing 5 and 2 

hidden nodes. For a single hidden layer, the best RMSE value was 0.08226485. 

For the Jordan network the best value for the RMSE was 0.08479622 

corresponding to a single layer with 7 hidden nodes. 

In this case, the Elman network outperformed the Jordan network again. 

The following Figure 4.16 and 4.17 show the comparisons for the Elman and 

Jordan networks, respectively. 
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The results obtained were expected. The recurrent neural networks performed 

well on this non-seasonal data set and the values of the accuracy for the predictions 

are very good. The existence of a memory in our models, for non-seasonal time 

series forecasting problems, is crucial for the positive results. 

 

 

 
Figure 4.16 Comparison between the sunspots test set and the prediction of the 

Elman neural network 
 
 
 

 
Figure 4.17 Comparison between the sunspots test set and the prediction of the 

Jordan neural network 
 
 

4.4 Conclusions of the experimentations 
 

From these experimentations, I can conclude that for the seasonal dataset the 

feedforward neural network performed sufficiently well. On the other hand, for the 

non-seasonal dataset the results were not even close to satisfactory. Using the  

recurrent neural networks, either Jordan network or Elman network, the results were 

positive for both the seasonal and non-seasonal dataset. 
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The main conclusion we can take is that recurrent neural networks are a better 

approach when we are dealing with time series. 
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5 Conclusion 
 

5.1 Results 
 

To sum up the obtained results I present them in the following tables of Figures 

5.1 and 5.2. In the first table we have the RMSE values corresponding to the 

networks with one hidden layer. 

Figure 5.1 Comparison between all the networks with one hidden layer 
 
 

Figure 5.2 Results from the Elman network with two hidden layers 
 
 

For the temperatures data set, we can conclude that the feedforward neural 

network was the one that performed the best. This is a surprising result for me, I was 

expecting it to perform well but not to beat the performance of both the recurrent 

neural networks; as mentioned before, the good result is explained by the 

seasonality of the first data. Between the Jordan and Elman networks the results are 

very similar even though the Elman network value is slightly better. 

Regarding the sunspots and the feedforward neural network the expected 

happened; the network performance was extremely poor in the non-seasonal data 

set, which can be explained by the fact that this type of network doesn’t have a type 

of memory like the recurrent neural networks do. Between the Jordan and Elman 

networks the value obtained from the Elman network is again slightly better. 

In the second table, where we have the values for two hidden layers, we 

obtained better values. This happened because the network is deeper; an extra layer 

will allow the network to boost its performance when dealing with more complex, 

non-linear problems. 
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So, the main conclusion we can infer from these results are: 

• Feedforward neural networks are worth considering we are dealing with 

seasonal time series data sets; they might even outperform recurrent neural 

networks or other techniques. 

• Elman neural networks slightly outperformed Jordan neural networks but the 

difference is not significant, so it is worth taking both into account when 

dealing with these problems. 

• The deeper the neural network is the better it will perform with complex 

problems. It is important to note that increasing layers will also increase the 

cost and the time consumed, and sometimes this tradeoff is not worth 

because the results might not be that much better or even, in some cases, 

they might get worse. 

 

5.2 Improvements 
 

Even though we chose to work with neural networks, other algorithms (some of 

them described in Chapter 2) would be able to solve this type of problems and maybe 

with even better results. Regarding the neural networks, we could try different 

activation functions. 

We used training and test data sets containing 80% and 20% of the data, 

respectively. We could improve the results by trying different sizes for these 

partitions. We could also use different parts of the data for these partitions; for 

example the training data set being the last years of the data set and the test data 

set being the beginning or even split the test data set and make part of the prediction 

in the beginning and part of the prediction in the end. 

 

5.3 Difficulties 
 

As previously mentioned, it took me some time to get used to the R language. 

The pre-processing was also a part that was time consuming; it was hard to 

figure out some things like, for instance, that some variable were not defined as the 

type they should be and that I had to turn my vectors into time series objects. 

During the model training part, the hardest parts were figuring out what were the 

best accuracy measures to compare the results and researching on the neural 

networks function and the meaning of their parameters. 

Certainly, I faced more problems, but these are the ones that come to mind and 

the ones that I struggled the most with. 

I am satisfied with the way I overcame these difficulties and managed to 

complete my work. 
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5.4 End notes 
 

Through the realization of this work, I learned a lot about neural networks, which 

caught my attention and had been intriguing me since the SAD course. I learned 

about different types of neural networks as well as other algorithms that can be used 

to accomplish the same goals. During the realization of the experimentations, I 

gained a deeper view on how some of these machine learning techniques work. 

Overall, it was an enriching experience that allowed me to learn more and  

improve in one of the areas that has been captivating me. 
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7 Appendix A 
 

Here we can find the pre-processing code for both data sets used in our 

experimentations (first for the temperatures data set and secondly the sunspots data 

set). 

Temperatures data set: 

 
 
 

Sunspots data set: 
 


