

Time Series Forecasting Using Neural Networks

Bruno Miguel Paiva Soalheira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Andreas Miroslaus Wichert

Examination Committee

Chairperson: Prof. José Carlos Martins Delgado

Supervisor: Prof. Andreas Miroslaus Wichert
Member of the committee: Prof. João Carlos Serrenho Dias Pereira

October 2019

2

Acknowledgments

I would like to acknowledge everyone that played an important role during my

academic accomplishments.

First, I want to thank my supervisor, professor Andreas Wichert, for supporting

me since the beginning of my thesis. Every time I needed technical advice or even

a word of encouragement, he was there to help me.

Secondly, I want to thank my family, who were always there with unconditional

love and support.

Finally, my closest friends, who were extremely important just by being there

and all the small gestures and words of encouragement.

Thank you all for making this possible.

3

Abstract

Artificial neural networks are a powerful machine learning technique that is

used for several ends; time series forecasting is one of them. Several of these

techniques are explored with special attention to recurrent neural networks, which

are one of the methods most commonly used in time series forecasting. All these

methods are presented with the goal of better understanding recurrent neural

networks. There is no predefined better algorithm to solve this type of problems; in

this field experimentation is required and only then we can draw conclusions.

In this case, feedforward neural networks and recurrent neural networks will be

used to obtain models capable of predicting time series. Two related data sets but

with some important differences that will affect the results are used in these

experimentations. The main objective is to compare the two types of networks on

both data sets, presenting the limitations, drawbacks and advantages of each one

of them.

In most cases, recurrent neural networks outperform feedforward neural

networks for time series forecasting problems.

Keywords: machine learning; recurrent neural networks; feedforward neural

networks; time series forecasting.

4

Resumo

Redes neuronais artificiais são uma técnica de aprendizagem de máquina que

é usada para várias finalidades; previsão de séries temporais é uma delas. Muitas

desta técnicas são exploradas com especial atenção às redes neurais recorrentes,

que são um dos métodos mais utilizados neste tipo de problemas de previsão de

séries temporais. Não existe um método predefinido que seja melhor que os outros

para resolver este tipo de problemas; nesta área é necessário experimentação e só

depois é que é possível retirar conclusões.

Neste caso, redes neurais feedforward e redes neurais recorrentes serão

usadas para obter modelos capazes de fazer a previsão de séries temporais. Dois

conjuntos de dados relacionados mas com importantes diferenças que afetarão os

resultados serão usados nestas experimentações. O principal objetivo é comparar

os dois tipos de redes neurais em ambos os conjuntos de dados, apresentando as

limitações, vantagens e desvantagens de cada um deles.

Na maioria dos casos, redes neurais recorrentes têm melhor desempenho do

que redes neurais feedforward para problemas de previsão de séries temporais.

Palavras-chave: aprendizagem de máquina; redes neurais recorrentes; redes

neurais feedforward; previsão de séries temporais.

5

Table of Contents

Table of Contents ... 5

1 Introduction .. 8

1.1 Motivation .. 8

1.1.1 Time Series Forecasting .. 8

1.1.2 Neural networks ... 8

1.2 Objectives .. 8

1.3 Outline ... 9

2 Related Work ... 10

2.1 Important concepts .. 10

2.1.1 Forecasting .. 10

2.1.2 Time Series .. 10

2.1.3 Time Series Analysis ... 10

2.1.4 Time Series Forecasting .. 11

2.2 Some Prediction Techniques ... 11

2.2.1 Moving Average ... 11

2.2.2 Weighted Moving Average ... 11

2.2.3 Exponential Smoothing .. 12

2.2.4 Regression ... 13

2.2.4.1 Linear Regression .. 13

2.2.4.2 Polynomial Regression .. 14

2.2.5 Autoregressive Model .. 14

2.2.6 Autoregressive-moving-average model (ARMA) 15

2.2.7 Autoregressive integrated moving average (ARIMA) 15

2.3 Neural Networks .. 16

2.3.1 History .. 16

2.3.2 Biology ... 17

2.3.3 Definition and Structure ... 18

2.3.4 Learning Methods .. 20

2.3.5 Activation Function ... 20

6

2.3.6 Backpropagation .. 21

2.3.7 Recurrent Neural Networks .. 22

2.3.7.1 Elman Network ... 23

2.3.7.2 Jordan Network .. 23

2.3.7.2 Hopfield Network .. 23

2.3.7.3 Bidirectional Associative Memory ... 24

2.3.7.4 Echo State ... 24

2.3.7.5 Independently Recurrent Neural Network 24

2.3.7.6 Conclusion ... 24

2.3.8 Advantages of neural networks .. 24

2.3.9 Disadvantages of neural networks ... 26

2.3.10 Applications of neural networks .. 27

2.3.11 Conclusions ... 27

3 Thesis plan .. 29

3.1 Introduction and initial plan .. 29

3.2 Second and definitive plan ... 29

3.3 Technologies used ... 30

3.4 Evaluation method ... 30

4 Comparing feedforward neural networks with recurrent neural networks

31

4.1 Choosing the data sets .. 31

4.2 Pre-processing the data ... 33

4.2.1 Pre-processing the temperatures data set 34

4.2.2 Pre-processing the sunspots data set .. 34

4.3 Experimentation introduction and notes ... 35

4.3.1 Results of the temperatures data set using a feedforward neural

network 36

4.3.2 Results of the sunspots data set using a feedforward neural network

37

4.3.3 Results of the temperatures data set using Elman and Jordan neural

networks 39

4.3.4 Results of the sunspots data set using Elman and Jordan neural

7

networks 42

4.4 Conclusions of the experimentations ... 43

5 Conclusion ... 45

5.1 Results ... 45

5.2 Improvements .. 46

5.3 Difficulties .. 46

5.4 End notes ... 47

6 Bibliography ... 48

7 Appendix A .. 50

8

1 Introduction

1.1 Motivation

1.1.1 Time Series Forecasting

Time series forecasting is an area of machine learning that has been fascinating

data scientists for the last few decades. The field of machine learning has brought

us innumerous advantages, being one of them the capability of being able to predict

what is going to happen and the only thing we need is information. No matter how

hard and random a data set may seem, these algorithms can find patterns that are

not possible to identify using other techniques. Using past and present data we can

infer what is going to happen in the future with precision; we must choose the right

method and experimentation is the key.

1.1.2 Neural networks

Neural networks are an amazing method using for different purposes; time

series forecasting is only one of them. They can also be used in many different other

areas like in customer research, data validation and risk management. It is also

important to refer that they are not alone; there are other methods capable of

accomplishing some things that neural networks can and we will discuss these in the

next chapter.

Neural networks models have been around for more than half a century now.

Since the publication of the first papers on the matter, scientists knew these models

had enormous potential to achieve innumerous goals. Just by thinking of the

complexity of the human brain, we can only imagine how far neural networks can go.

It is a huge area of study and it is important to refer that only a small fraction of the

neural network’s capabilities is taken advantage of, nowadays. There is so much

more to discover on this matter.

1.2 Objectives

The first part of the thesis is focused on presenting relevant information

regarding some of these machine learning techniques with special focus on neural

networks.

In the second part of the thesis, two distinct neural networks models will be

implemented to two distinct data sets: recurrent neural networks and feedforward

9

neural networks. We want to compare the results of both these models, and which

one is more reliable to solve this type of problems.

1.3 Outline

As previously mentioned, this thesis will be composed of two main parts after

this introduction:

• Chapter 2, in which we discuss and present the theory behind this complex

area of research. We briefly present some important concepts; prediction

methods that are used in this area other than neural networks; we explain in

detail neural networks, including its history, definition and structure; then we

delve into the specific type of neural networks we are interested in for this

project: recurrent neural networks; we describe the different architectures

that exist and the advantages, disadvantages and applications for this type

of neural networks.

• In Chapters 3, 4 and 5 we will present the proposed architecture, the

evaluation method that will be used to analyze the results and the

experimentations and conclusions of the thesis, respectively.

10

2 Related Work

2.1 Important concepts

2.1.1 Forecasting

It consists of predicting what is going to happen, considering the information

collected regarding past and present events. This allows people, businesses,

companies and other entities to make decisions according to their goals. Although

forecasting is, in several cases, a helpful technique it should not be used to exclude

or ignore already known information.

Forecasting is a method that helps management in its attempts to cope with the

uncertainty of the future.

2.1.2 Time Series

Characterized as a set of data points obtained from existing records, usually a

sequence of equally spaced points in time, tabulated or plotted in time order. In a

more mathematical way, using the definition suggested by Robert H. Shumway and

David S. Stoffer in Time Series Analysis and Its Applications [1] “…we may consider

a time series as a sequence of random variables x1, x2, x3, …, where the variable x1

denotes the value taken by the series at the first time point, the variable x2 denotes

the value for the second time period, x3 denotes the value for the third time period,

and so on.”

There are several components of time series and some of the most important

ones to consider are:

• Trends. The linear increasing or decreasing behavior of the series over time.

• Seasonality. A seasonal pattern exists when a series is influenced by

seasonal factors.

• Cycles. A cyclic pattern exists when data exhibits rises and falls that are not

of fixed period.

• Noise. The variability of the time series observations that cannot be

explained by the model.

2.1.3 Time Series Analysis

The primary objective of this analysis is to develop mathematical models in order

to find patterns in the data and to extract meaningful statistics and other

11

n

characteristics of the data [16]. There are many methods to obtain this type of

information and we will delve into some of them later.

A time series can be white noise. It is white noise if the variables are

independent and identically distributed with a mean of zero and a finite variance.

White noise is important for a main reason:

• Predictability. If a time series is white noise it is not possible to reasonably

model it and make any type of predictions.

2.1.4 Time Series Forecasting

Joining the previously mentioned concepts we obtain time series forecasting,

which is the topic regarding this work [9]. Mainly, it consists of predicting future

events by applying models to time series. It is an extremely important area of

machine learning because there are several prediction problems involving time

components. Every time series problem is very specific and with its own data

characteristics, and according to that the most fitting model(s) must be chosen to

analyze the data.

2.2 Some Prediction Techniques

In order to have a better understanding on the matter, we will look briefly into

some techniques that are used in this type of analysis.

2.2.1 Moving Average

An interesting, yet simple model in which we infer predictions using the mean

value of past data. Considering the characteristics of the data, we will choose how

further back we want to investigate. Let Ft+1 be the forecast value for the next period,

where t is the current period, n is the forecasting horizon (i.e. how far back we look)

and A is the data value from each period:

Ft+1 =
Æt+ Æt—1+ ...+ Æt—n

(2.1)

2.2.2 Weighted Moving Average

A variant and clearly more versatile approach of the previously mentioned

algorithm. As the name says, it is basically the same idea of the previous algorithm

12

n

except the fact that every data value from each period At, At–1, … , At–n is multiplied

by the importance (weight) we want to give to each period. Considering the same

notations from equation (1) and using w as the weight for each period we can obtain

the forecast the following way:

Ft+1 =
wtÆt+ wt—1Æt—1+ ...+ wt—nÆt—n

(2.2)

and considering that:

wt + wt–1 + ⋯ + wt–n = 1 (2.3)

Even though MA algorithms are simplistic and effective in some situations they

also present several limitations.

The fact that Moving Averages can spread out over any period can be

problematic because the general trend can change depending on the time period

being analyzed. It is also important to refer that these methods don’t work for all

companies specially the ones that are heavily influenced by current events. They are

only focused on past events and completely ignore current and valuable information

such as new competitors, higher or lower demand for products in the industry…

Concluding, careful inspection must be done before applying this method since

the results might be misleading if not done following the right terms.

2.2.3 Exponential Smoothing

A different approach that uses past values as dependent variables in a

predictive model that gives more weight to more recent observations [2]. Let Ft–1 be

the forecast value for the last period, At–1 be the data value for last period and α be

the smoothing constant (expresses how much our forecast will react to observed

differences) we can obtain the forecast for the next time period Ft :

Ft = Ft–1 + α(At–1 − Ft–1) (2.4)

As in the previous method, some concerns arise when dealing with Exponential

Smoothing analysis.

It produces forecasts that lag the actual trends, the main reason being that the

algorithm neglects the ups and downs associated with the random variations. Also,

this method will not work properly if there is a trend in the series, therefore it is more

13

efficient when used for short-term forecasts and with no cyclical or seasonal

variations.

2.2.4 Regression

The main objective is to obtain the relationships between a dependent variable

(response) and one or more independent variables (predictors) with the final goal of

generating a model that can predict future values for the dependent variables given

values for the independent variables [3]. This type of analysis has several

subgroups.

2.2.4.1 Linear Regression

It is a type of regression which consists of a linear approach to model the

relationship between the dependent and independent variables. There are two types

of linear regression:

• Simple Linear Regression. This is the simplest case in which only one

dependent variable and one independent variable are considered. In other

words, only one variable is needed to predict the future values. Considering

y to be the response, x the predictor, þO and þ1 the regression coefficients

and s the error term we obtain:

y = þO + þ1x + s (2.5)

where the regression coefficients have the mathematical meanings of

interception (þO) and slope (þ1) of a straight line are to be determined

according to the data in analysis and the error term accounts for deviations

of the data from the specified straight line.

• Multiple Linear Regression. In some cases, we take into account k

predictors:

y = þO + þ1x1 + þ2x2 + ⋯ + þkxk + s (2.6)

and, once again, using the information we possess about the data we

choose the values for þO, þ1, þ2, … , þk according to the importance that we

want to give to each predictor.

14

i=1

It may seem obvious, but it is important to refer that linear models are limited to

linear relationships and the data must be independent.

Only in a few cases we can find a straight line to model our data and, because

of the model being described as a straight line, it is not possible to model cases in

which having curves is convenient.

This model is based in the relationships between the mean values of the

dependent and independent variables but in some cases can be necessary to look

at the extremes of the dependent variable.

Outliers can have huge effects on the predictions because the mean values will

be affected by these.

2.2.4.2 Polynomial Regression

It is another subtype of regression analysis and one of the ways to overcome

some of the limitations presented by linear regression models, particularly the

linearity [23][24]:

y = þO + þ1x + þ2x2 + ⋯ + þkxk + s (2.7)

This method still presents some limitations.

As in the previous cases, the presence of outliers in the data can affect the

results of a nonlinear analysis and, in addition to this, there are fewer ways to detect

outliers in nonlinear regression models than there are for linear regression.

2.2.5 Autoregressive Model

This model uses previous observations as input to a regression equation to

predict future values [11]. It is commonly used to describe time-varying processes in

different areas, such as, nature, economics, etc. [25][26]. AR(p) is the notation used

for this type of models and refers to an AR model or order p and, taking this into

account, we can define the following equation to represent this model:

Xt = c + ∑p *i Xt–i + st (2.8)

where Xt is the value to predict, Xt–1, Xt–2, … , Xt–p are the p previous values used,

*1, *2, … , *p are the parameters of the model, c is a constant and st is the white

noise error term.

15

i=1

i=1 i=1

2.2.6 Autoregressive-moving-average model (ARMA)

This name should sound familiar to the reader since this method involves two

previously mentioned models working together. As a quick reminder, the AR part

consists of predicting a value on its own past values and the MA part involves

modeling the error term as a linear combination of error terms occurring

contemporaneously and at successive times in the past. ARMA(p,q) is used to

denote this model and refers to the p order of the AR part and the q order of the MA

part [27]. Consider this different way of defining the MA model to better understand

the ARMA model:

Xt = µ + st + ∑q 8i st–i (2.9)

where 81, 82 , … , 8q are the parameters of the model, µ is the expectation of Xt and

st and st–1 , st–2 , … , st–q are white noise error terms.

A new equation to define the ARMA model is obtained:

Xt = c + st + ∑p *i Xt–i + ∑
q

 8i st–i (2.10)

2.2.7 Autoregressive integrated moving average (ARIMA)

It is a widely used generalization of the previous model and, once again, we

have AR and MA working together with the particularity of the use of an integration

component which indicates that the data values have been replaced with the

difference between their current values and past values (this difference may occur

several times) [28]. A standard notation used is ARIMA(p,d,q) where p and q were

specified earlier and d refers to the number of times the raw observations are

differenced, also known as the degree of differencing. In general, first we apply

differencing and after we apply the ARMA model to the differenced series.

ARIMA models requires a stationary series (no trends, no seasonality and a

constant autocorrelation).

It also requires expertise and experience if fitting the model manually (it is hard

to choose the correct values for p,d,q).

Although this method is excellent for forecasting, it is quite difficult to explain

and interpret, therefore if interpretability is very important ARIMA models might not

be the best choice.

16

This section had the main goal of introducing some algorithms used in time

series forecasting in order to provide some knowledge on how they work, which will

be helpful in understanding the idea behind neural networks, a prediction technique

that has the whole next section reserved for itself due to the fact that this will be the

method used in this project.

2.3 Neural Networks

2.3.1 History

The study of the human brain has been around for centuries and it was only

natural to try to harness this thinking process. In the 40s and 50s some scientists

started taking this matter seriously and published several papers.

Warren McCulloch and Walter Pitts were among the first to write about neural

networks in 1943 [4].

As computers advanced in the following years, it became possible to model

some of these theories. The first few attempts to model neural networks failed but

later attempts were successful and from that point on different types of neural

network models were developed and used for various purposes.

In 1959, Bernard Widrow and Marcian Hoff developed models that they named

ADALINE and MADALINE. MADALINE was the first neural network model to be

applied to a real-world problem with success.

Scientists were impressed with the results of these models and they kept

pushing forward which caused people to exaggerate the potential of neural networks.

Neural networks were powerful methods but the technology limitations in the mid-

1950s were too big to overcome. The perceptron, which was proposed by Frank

Rosenblatt in 1958, had a major drawback; it could only learn to separate linearly

separable classes. Critiques arose regarding neural networks research which,

obviously, led to a period of stunted growth till the early 1980s.

In 1982 John Hopfield presented a paper in which he showed how neural

networks could work and what they could do.

By 1985 the American Institute of Physics began what has become an annual

meeting where innumerous scientists would get together and discuss new ideas

about neural networks. This meeting was called Neural Networks for Computing.

Over the last few years, technology has been evolving exponentially, which led

to the development of systems capable of handling even more complex artificial

neural networks.

Nowadays, neural networks are a subject of constant study; they are discussed

everywhere.

17

In Figure 2.1 some important advances in the area of neural networks are

shown.

Figure 2.1 Important marks in the history of neural networks

2.3.2 Biology

The biological inspiration is evident therefore it is important to briefly discuss

how the brain works [5]. The brain consists of millions of connected elements known

as neurons. Considering, for our own convenience, that neurons have four principal

components: the dendrites, the axon, the cell body and the synapses. The dendrites

18

are short and branched and is an extension of the nerve cell, along which impulses

received from other cells at synapses are transmitted to the cell body. The axons are

the long threadlike parts of the nerve cells, along which impulses are conducted from

the cell body to other cells. The cell body is the spherical part of the neuron that

contains the nucleus and is connected to both the axon and the dendrites. The

junction or point of connection between two nerve cells, more specifically the

connection between the axon of one cell and the dendrites of the next cell is called

synapse. A simplified visual representation of all these components is represented

in Figure 2.2.

Although artificial neural networks were, unarguably, one of the discoveries of

the century they still do not approach, by any means, the complexity of the human

brain. It is a fact that artificial neural networks have been capable of more and more

over the last years, but they are still not able of mimicking the human brain for many

complex tasks. It is expected that soon artificial neural networks will be performing

tasks closer to human level and perhaps even becoming mathematically and

structurally more similar to biological neural networks.

Figure 2.2 The Structure of a Neuron. Adapted from “Neural Network Design”

by Hagan, M.T., Demuth, H.B., Beale, M.H. and De Jesús (1996)

2.3.3 Definition and Structure

An artificial neural network, commonly referred as simply neural network is a

type of machine learning, just like all the methods presented in the last chapter. In

its most general form, a neural network is a machine that is designed to model the

19

way in which the brain preforms a particular task; the network is usually implemented

by using electronic components or is simulated in software on a digital computer

[6][8] [10][12][13][14][15][16][17][18][19][20][21][22].

There are multiple types of neural networks and we will look into some of them.

The most basic one and easier to understand is the feedforward neural network, in

which the information travels in only one direction from input to output.

It is helpful to know the structure of a neural network in order to better

understand it. Neural networks are, usually, composed by the following elements:

• Input layer. The input layer is the very beginning of the workflow for artificial

neural networks. It consists of artificial input neurons and brings the initial

data into the system for further processing by subsequent layers of artificial

neurons.

• Hidden layer. The hidden layer is located between the input layer and output

layer, where artificial neurons take in a set of weighted inputs and produce

an output using an activation function.

• Output layer. The output layer is the last layer of a neural network that

produces the outputs for the program.

• Synapse. The synapse is the strength of the connection between two

artificial neurons.

The following Figure 1.2 shows the typical structure of an artificial neural

network. The circles correspond to the neurons of each layer and the links between

these neurons are the synapses.

Figure 2.3 A Typical Neural Network

20

2.3.4 Learning Methods

Neural networks have a learning phase which is crucial for the potential results.

There are three methods for learning strategies:

• Supervised learning. It is the machine learning task of learning a function

that maps an input to output based on example input-output pairs. The

example input-output pairs are usually called training data and each of these

consists of an input object (usually a vector) and an output value. The new

inputs that will be tested are called test data. This algorithm analyses the

training data and infer a function that will be used to calculate the output

values for the new test data values [12][29].

• Unsupervised Learning. This method must be used when there is no training

data to learn from. The neural network analyses the data, and then a cost

function tells the neural network how far it was from the correct result.

Basically, the model learns from the test data and keeps adapting according

to this data.

• Reinforced Learning. This algorithm reinforces the neural network in the

presence of positive results and punishes it for negative results, forcing the

neural network to learn over time.

2.3.5 Activation Function

In neural networks, an activation function is what defines the output of a node

given an input or set of inputs. This output is used as input of the next node and so

on until a desired solution to the original problem is found. It maps the resulting

values into a desired range (0 to 1 or -1 to 1, for instance) [33].1

There are two types of activation functions:

• Linear Activation Function. The function is linear. Therefore, the output of

the functions will not be confined between any range. These functions don’t

really help with the usual problems and data that we analyze using neural

networks.

ƒ(x) = x (2.11)

• Non-Linear Activation Function. The function is not linear. This type of

functions is commonly used because it can adapt to complex types of data.

1 What is an Activation Function (deepai.org)?

21

6w

For example, we have the sigmoid activation function, which is used to

obtain values between 0 and 1 (commonly used in probability problems), we

have tanh activation function, which provides values ranging from -1 to 1

(commonly used for classification between two classes), among many

others. The sigmoid function is an example and is defined the following way:

$(z) = 1

1+e

(2.12)

2.3.6 Backpropagation

In the beginning, the weights of a neural network are initialized randomly, and

these values need to be adjusted until we obtain the values that fit our model the

best. One of the most common ways to accomplish this is using the backpropagation

technique. It is a method used to calculate a gradient that is needed in the calculation

of the weights used in a neural network. It is more used in situations where there are

more than a hidden layer in a neural network [34].2

Backpropagation requires three things to work properly:

• A dataset consisting of input-output pairs.

• A feedforward neural network, meaning that there are no connections

between nodes in the same layer and that layers are fully connected.

• An error function, which defines the error between the desired output and

the obtained output.

This method is used in any feedforward networks to learn a training set of inputs

and outputs.

The main idea behind backpropagation is to update the weights’ values in such

a way that the error becomes minimum. First, we figure out if we have whether to

increase or decrease the values of the weights. Once we know which way to go, we

keep making smaller and smaller adjustments until the network provides the desired

results.

Considering ղ to be the learning rate, C to be the loss function and ε(t) to be a

stochastic term we can update the weights w, using a stochastic gradient descent,

the following way:

wij(t + 1) = wij(t) + ղ 6C
ij

+ s(t) (2.13)

2 What is Backpropagation? (deepai.org).

—z

22

2.3.7 Recurrent Neural Networks

Recurrent Neural Networks have been deeply studied since the 1990’s. They

are commonly used to learn sequential or time varying patterns, which is the matter

we are dealing with in this project [7].

There are two types of architectures of recurrent neural networks.

The first ones are named fully connected neural networks (Figure 2.4). Fully

connected networks do not have distinct input layers of nodes, and each node has

input from all the other nodes.

The second ones are named partially connected neural networks (Figure 2.5).

Although some nodes are part of a feedforward structure, other nodes provide the

sequential context and receive information from other nodes.

Figure 2.4 A Fully Connected Recurrent Neural Network

Figure 2.5 A Partially Connected Recurrent Neural Network

23

2.3.7.1 Elman Network

An Elman network contains three layers and a set of context units. The context

units are connected to the hidden layer with the fixed weight of one. At each time

step, the input is fed-forward, and a learning rule is applied. The context units save

a copy of the previous values of the hidden layer nodes with the goal of maintaining

a sort of a state, allowing this model to perform tasks like sequence-prediction

[30][31].

Let ℎt be the hidden layer vector, yt the output vector, xt the input vector, W, U

and b the parameter matrices and vector and oh and oy the activation functions. The

hidden layer and the output vector are calculated the following way:

ℎt = oh(Whxt + Uhℎt–1 + bh) (2.14)

yt = oy(Wyℎt + by) (2.15)

2.3.7.2 Jordan Network

Jordan networks are similar to Elman networks with the small difference of the

context units containing information about the output layer instead of the hidden

layer. Considering the same variable from the previous two formulas, we can obtain

the value for the hidden layer and the output vector for the Jordan networks:

ℎt = oh(Whxt + Uhyt–1 + bh) (2.16)

yt = oy(Wyℎt + by) (2.17)

2.3.7.2 Hopfield Network

It works by learning a number of binary patterns and then returning the one that

is the most similar to a given input.

It consists of only one layer of nodes which are connected to each other but not

to itself. It is a feedback network since the outputs are redirected to the inputs. Every

node is, at the same time, the input and output of the network, therefore the number

of input and output nodes is the same. After a certain number of iterations, the values

of the nodes tend to converge.

24

2.3.7.3 Bidirectional Associative Memory

It is a variant of Hopfield network that stores associative data as a vector.

It consists of two layers of neurons, which are fully connected to each other.

Once the weights have been established, the first input layer presents the pattern in

the other layer, and vice versa [32].

2.3.7.4 Echo State

The echo state network contains a sparsely connected random hidden layer.

The connectivity and weights of the hidden layer neurons are fixed and randomly

assigned. The weights of the output neurons can be learned so that the network can

produce specific temporal patterns. So, basically the only thing that changes in this

network is the weight of the synapses connecting the hidden layer nodes to the

output layer nodes.3

2.3.7.5 Independently Recurrent Neural Network

In this type of network, each neuron only receives information about its past

state and thus neurons are independent of each other’s states.

2.3.7.6 Conclusion

These mentioned models are just some of the ones that are used in time series

forecasting problems. Only a brief description of each of them was provided in order

to give a general idea of how each of them works.

2.3.8 Advantages of neural networks

Artificial neural networks bring some benefits that overcome some of the

limitations referred in the algorithms mentioned in the previous chapter. It is apparent

that a neural network derives its computing power through its massively parallel

distributed structure and its ability to learn and therefore generalize. Generalization

consists on the process of the neural network obtaining reasonable results for inputs

that were not part of the training [11].

The following points are just some of the benefits and capabilities that neural

networks offer us:

• Nonlinearity. Artificial neurons can be linear or nonlinear. A neural network,

made up of an interconnection of nonlinear neurons, is itself nonlinear. This

3 Jaeger H., Echo State Network (Scholarpedia, 2007).

25

is an important characteristic because it allows us to deal with a higher

variety of problems, particularly nonlinear problems.

• Input-Output Mapping. Supervised learning is one of the methods to train

neural networks. Each data sample in the training data consists of an input

and a desired output. The network is trained by receiving these data samples

randomly and then the network’s synaptic weights keep being modified in

order to minimize the network’s result and the desired result. Providing the

data samples in a different order also helps training the network and the train

keeps going until the network reaches a steady state, where there are no

significant changes in the synaptic weights. Thus, the neural network learns

from the data contained in the training set by constructing an input-output

mapping for the problem at hand.

• Adaptivity. Neural networks have the capability of changing synaptic weights

according to the goals we have in hands. In some cases, when a neural

network is trained to operate in a specific environment it can easily be

retrained to deal with minor changes. Moreover, when a neural network is

operating in a nonstationary environment it should be trained to deal with

constant changes and the synaptic weights must adapt in real time. The

ability to adapt a neural network according to the situation we have in hands

is indeed a huge advantage, but this will affect the robustness of the same

network. As the robustness level increases the adaptive level tends to

decrease and vice-versa.

• Evidential Response. In the context of pattern classification, a neural

network usually provides information about which pattern to select and also

the confidence in the decision made. The confidence can be used to reject

ambiguous patterns and thereby improve the classification performance of

the network.

• Contextual Information. Knowledge is represented by the very structure and

activation state of a neural network. Every neuron is potentially affected by

the global activity of the other neurons in the network. Consequently, neural

networks deal with contextual information very naturally.

• Fault Tolerance. A neural network, implemented in hardware form, has the

potential to be inherently fault tolerant. In other words, in the presence of

adverse operating conditions the neural network’s performance will degrade

gracefully.

• Uniformity of Analysis and Design. The same notation is used in different

problems and environments where neural networks are used.

• Neurobiological Analogy. As previously mentioned, neural networks are

inspired by the analogy with the brain. Neurobiologists look to artificial

26

networks as an interpretation tool to better understand neurobiological

phenomena. On the other hand, we have engineers that try to develop more

complex models using neurobiology as inspiration.

2.3.9 Disadvantages of neural networks

Although neural networks are extremely advantageous and outperform nearly

every other machine learning algorithm, they also have some negative aspects:

• Black Box. Neural networks are extremely powerful but also very complex.

The complexity of neural networks comes with the disadvantage of being

hard to understand what is truly happening when unexpected results are

presented. Hence, it is not advised to use neural networks in some domains

because it might be hard to explain some results (Figure 2.6).

• Duration of Development. There are several libraries that help with the

implementation of neural networks but sometimes it is important to be aware

of details that might be important.

• Amount of Data. Of course, it depends on the problem in hands, but it is

frequent that loads of data are required to train neural networks. It needs

much more data when compared with other machine learning algorithms.

The more data we possess to train our neural network the better it will

operate.

• Computationally Expensive. The power of neural networks comes with the

price of being extremely expensive. The amount of computational power

depends how complex and big the neural network is and the amount of data

there is to process.

Figure 2.6 A neural network seen as a black box

27

2.3.10 Applications of neural networks

Neural networks have several applications. Some applications improved its

results thanks to neural networks and I’m going to mention two of the most relevant:

• Image Processing and Character Recognition. Neural network’s capability

of receiving several inputs, process them and deal with non-linear

relationships is playing a big role in image processing and character

recognition. Character recognition is used in several problems like automatic

number plates recognition, in airports, for passport recognition and

information extraction and converting handwriting in real time to control a

computer, for instance. Image processing and recognition are used in facial

recognition, cancer detection and satellite imagery for agricultural and

defense usage (Figure 2.7).

• Forecasting. This is an extremely important application of neural networks

and is used in many different contexts. For instance, neural networks are

used in weather forecasting, earthquake prediction, mathematical finance,

astronomy, among others. All these problems are extremely complex and

that’s why they rely on neural networks.

Figure 2.7 An example of how neural networks can be used in the context of

Character Recognition problems. Adapted from “Application of Neural Networks to

Character Recognition” by Dong Xiao Ni (2007)

2.3.11 Conclusions

Chapter 2 had the main goal of presenting a general overview of neural

networks and other related algorithms. It is not possible to go in detail in every single

topic because neural networks are a huge matter of research and its capabilities

28

have been growing over the past decades but the main concepts and ideas were

presented so it is possible to understand the idea behind the work of this thesis.

29

3 Thesis plan

3.1 Introduction and initial plan

For this project, I always had in mind working with data sets that were related

with a big issue that is becoming more and more evident as time goes by; the climate

change.

I started researching and looking for data sets that looked interesting to work

with and the initial plan was to work with a multivariate data set that aimed to predict

if one day is either going to be an ozone day (meaning the ozone level is above a

certain predefined threshold) or a normal day. This data set included several

attributes including the temperatures at different times and in different atmospheric

pressures throughout the day, the wind speed at various times of the day, the sea

level pressure, the relative humidity, the total solar radiation for the day, among

others. The neural network would learn from these attributes and their respective

results (ozone day or not) and would be able to make predictions according to the

attributes.

3.2 Second and definitive plan

I ended up deviating from the initial plan because I decided that I wanted to see

the differences of how feedforward neural networks and recurrent neural networks

deal with seasonal and non-seasonal data sets. I had in mind that feedforward neural

networks would perform well on seasonal data sets because there is no need of

memory since the pattern is very clear.

Still with the climate change subject in mind, I found two interesting related

univariate data sets. The first one was the seasonal data set and it contained

information regarding the mean monthly global temperatures for a period of 65 years

over the twentieth century. The second one was the non-seasonal data set and it

contained information regarding the yearly number of sunspots over a period of 314

years; a factor that greatly affects the temperatures and one that we can’t control.

The Maunder Minimum was a period (1645-1715) in which the sunspots

became exceedingly rare and this period roughly coincided with the middle part Little

Ice Age, during which Europe and North America experienced colder than average

temperatures. The volcanic activity is the current best explanation for the cause of

this little ice age period, but the Maunder Minimum phenomena is also one of the

factors that affected the temperature during this period.

Basically, I want to predict both data sets using feedforward neural networks

and recurrent neural networks and then compare the performance of each of the

algorithms. During the recurrent neural networks experimentations, I want to

30

compare Elman networks and Jordan network and check how impactful their small

differences in structure affect the results.

I also had in mind performing another experimentation which involved predicting

values for one data set while training the neural networks with the other data set. I

ended up not doing this experimentation because as we know not only the sunspots

affect the temperature; there are many other factors and therefore the results would

be more accurate if we would use other data sets that would contain relevant

information on these factors.

3.3 Technologies used

At first, I wanted to develop this project in Python, which is a language that I am

comfortable with and it is commonly used to solve these types of problems. After a

discussion with my supervisor, professor Andreas Wichert, who recommended me

to use R, I decided to change and use this R language because it is a language more

directed to implement machine learning techniques than Python. I was not as

comfortable with R as I was with Python, but the learning process was fine; it didn’t

take me a long time to get used to the language. I was also familiar with the language

from the SAD course (Sistemas de Apoio à Decisão) where I used this language to

perform similar activities like data pre-processing and application of several data

mining algorithms like SVM (Support Vector Machine), kNN (k-Nearest Neighbors),

LVQ (Learning Vector Quantization), Decision Trees and even Neural Networks.

For IDE I chose R Studio, which I had some familiarity with it because I used it

during the SAD course.

3.4 Evaluation method

As mentioned before, I plan on comparing the performance of both recurrent

neural networks and feedforward neural networks and to accomplish this I will use

measures of accuracy. The main measure used will be RMSE (root-mean-squared-

error) and, when needed, I will recur to other measures to dissipate the doubts.

The evaluation process will consist of dividing the data sets in two parts: a

training data set and a test data set. The training data set will be used to train our

neural networks. Then we will compare the predictions from our models against the

test data sets. For this, we will compare the results graphically and numerically using

the previously mentioned measurement of accuracy and others if needed.

31

4 Comparing feedforward neural networks with
recurrent neural networks

4.1 Choosing the data sets

To start off with my experimentations, I decided to pick two related data sets; a

simpler one where the seasonality is very clear and there are not many deviations

from the regular values and a more complex one where there are clearly more

deviations from the pattern. Both data sets were obtained from datamarket.com and

the first one is called “mean-monthly-temperature-1907-1972” and it contains 792

observations of the mean monthly global temperatures in Fahrenheit starting on

January 1907 and ending on December 1972 (Figure 4.1). The second data set is

called “yearly-mean-total-sunspot-number” and it contains 315 observations of the

mean yearly number of sunspots starting on 1700 and ending on 2014 (Figure 4.2).

I decided to choose these two data sets because there is a clear relation between

them as I explained in the previous chapter. The number of sunspots is a huge factor

on the temperatures around the planet. In Figures 4.3 and 4.4 I present two samples

of both temperatures and sunspots data sets, respectively.

Figure 4.1 Mean monthly temperatures 1907-1972

32

Figure 4.2 Yearly mean number of sunspots 1700-2014

Figure 4.3 Temperatures data sample

33

Figure 4.4 Sunspots data sample

4.2 Pre-processing the data

It is important to mention this process since it can greatly affect the results. If we

don’t perform a correct pre-processing of the data, it will negatively affect the results.

This process is a data mining technique that involves transforming raw data into an

understandable format that can be used for several purposes, including analysis.

Real world data is often incomplete, inconsistent, and/or lacking in certain behaviors

or trends; therefore, it is likely to contain many errors. Some of the steps of data pre-

processing include checking out for missing values, values normalization/

standardization, checking out the consistency of the data types, splitting the data

into training and test data sets, among others.

34

Now I will describe the pre-processing method I followed before applying the

neural network models.

First, I extracted the data sets as csv files from the data source. In R, I set the

working directory to the respective directory where I downloaded my csv files to and

obtained the files content to the program.

The pre-processing plan presented in the next two sub-sections was followed in

every experimentation.

4.2.1 Pre-processing the temperatures data set

• I removed the last row which contained irrelevant information.

• The column containing the month and year was removed.

• The column containing the temperatures was defined as characters, so I had

to turn the characters into numeric values.

• I turned the column containing the temperatures into a vector and applied a

function that to normalize the data set (values of the temperatures ranging

from 0 to 1).

• I split the data set in two parts: a training data set and test data set. I

experimented with training data set containing 80% of the observations and

the test data set containing 20% of the observations.

• Finally, I turned my training and test data sets into time series objects.

4.2.2 Pre-processing the sunspots data set

• I removed the last row which contained irrelevant information.

• The column containing the year was removed.

• The column containing the number of sunspots was defined as characters,

so I had to turn the characters into numeric values.

• I turned the column containing the number of sunspots into a vector and

applied the normalization function again.

• I also split the data set in two parts with the same sizes as I did in the first

data set.

• I turned the training and test data sets into time series objects which are

ready to be trained and analyzed.

In Figures 4.5 and 4.6 the time-series objects for both data sets I used for my

experimentations are shown. Equation 4.1 shows the formula followed to obtain the

normalized values.

35

n

Figure 4.5 Time series objects of the temperatures data set used to perform the

experimentations

Figure 4.6 Time series objects of the sunspots data set used to perform the

experimentations

X = X–XNin

XNax–XNin

(4.1)

where Xn is the normalized value, X corresponds to the value that we want to

normalize, XNin is the minimum value of our data and XNas is the maximum value

of our data.

For better understanding of the pre-processing involved in these

experimentations the code is available for examination in Appendix A.

Since the pre-processing was done, we could now start preparing to deal with

the core of our experimentations, which is to train our neural networks.

4.3 Experimentation introduction and notes

The results I’m about to present are in compliance with what I expected in the

beginning with exception of one or two points that I will mention later on.

Before I present the results and conclusions I obtained, it is important to mention

an important fact about the experimentations on this project; it is known that neural

networks have hidden layers and these layers will be the main concern during our

experimentations. There are no rules for choosing the number of hidden layers and

hidden nodes and the only way to figure them out is by experimenting several values

for them and analyzing if the results are improving or not. By default, the nnetar

function, has a predefined number of hidden layers and hidden nodes. The hidden

layer is one and the hidden nodes depends on the context of the problem. This

predefined number of hidden nodes will be my starting point and I will proceed by

testing with smaller and higher number of nodes in order to figure out which is the

best number to obtain the best results possible. For the Elman and Jordan networks

the process will be similar, but I can also choose the number of hidden layers of the

network.

36

4.3.1 Results of the temperatures data set using a feedforward

neural network

We trained our data set with a feedforward neural network. For this, we used

the R function nnetar which is used for forecasting univariate time series and the

architecture of this network is composed by a single hidden layer.

As aforementioned, the data set was divided into the training and test data sets.

The training data set contained data from January 1907 to October 1959 while the

test data set contained the rest from November 1959 to December 1972.

I called the nnetar function to train the network with the training set and create

a model; then I forecasted the respective values for the time period corresponding

to the test set using the predict function and compared the obtained results to the

test set, graphically and numerically.

I tested the model with several number of hidden nodes. To compare the results,

I used the accuracy function which returns several measures of the forecast

accuracy. I spoke with my professor and he recommended me to use the RMSE

(root-mean-squared-error) which is one of the most frequently used measures in

times series forecasting problems. The RMSE value is obtained the following way:

RMSE = J
∑N

 (fi–oi)
2

i=1

N
(4.2)

where ƒi are the forecasts, oi are the observed values (known results) and N is the

sample size.

With the default number of hidden nodes (14) I obtained an RMSE of

0.05062419. I tested with higher and lower number of nodes and the best RMSE

value was 0.04603968 when the number of hidden nodes was 2. The graphic (Figure

4.7) shows the comparison between the test set data (in red) and the prediction

made by our model (in blue). It is important to refer that the graph contains the

normalized values of the temperatures.

The results of these experimentations were the expected. Since the data is

seasonal which means that it has a periodic, repetitive and generally regular and

predictable pattern, the feedforward neural network model performed sufficiently well

to make a good prediction.

Figure 4.8 shows the instructions that are used to train the network and to make

predictions using our model.

These results were expected since the start because of the seasonality of the

data set, which allows the feedforward neural network to perform well even without

the existence of a memory.

37

Figure 4.7 Comparison between the temperatures test set and the prediction

of the feedforward neural network

Figure 4.8 Instructions used to train and make predictions

4.3.2 Results of the sunspots data set using a feedforward neural

network

For the number of sunspots data set the approach was very similar.

The data set was divided in two parts. The training data set contained data

points from the starting year of 1700 and ending on 1951 while the test data set

contained data from 1952 to 2014.

As mentioned, the procedure was similar; we called the nnetar function and it

produced a model with its default values. The predict function was used to obtain the

predictions of the number of sunspots for the years 1952-2014. After, we compared

the results to our test data set.

As in the previous experimentation, we tested with several number of hidden

nodes in order to figure out which is the best for this model. The default number of

hidden nodes for this model was 5 and provided an RMSE value of 51.668736. I

proceeded by testing with lower numbers of hidden nodes and the best I obtained

was with 2 hidden nodes the value of 41.01420. For the higher values hidden nodes

the best result was found for 7 hidden nodes and the RMSE value of 45.722987. The

graphical representations of the models with 2 hidden nodes and 7 hidden nodes

38

are represented in Figures 4.9 and 4.10, respectively. Again, in blue we have the

predictions from our model and in red the actual values.

So, as it is noticeable, for the model with 2 hidden nodes the results are not

even remotely close to the desired ones. We can observe that our prediction almost

converges to a straight line.

For the second model with 7 hidden nodes even though the results are not the

best it is visually clear that they provide a result closer to our goal.

I decided to take into account two more measures that are clearly relevant to

the context of this problem. I used the MPE (Mean Percentage Error) and the MAPE

(Mean Absolute Percentage Error).

The MPE is the average of percentage errors by which forecasts of a model

differ from actual values of the quantity being forecast. The value of MPE is obtained

the following way:

MPE =
1OO%

∑n

at–ft

 (4.3)
n t=1 at

where at is the actual value of the quantity being forecast, ƒt is the forecast, and n

is the number of times for which the variable is forecast.

The MAPE measures the accuracy as a percentage and can be calculated as

the average absolute percent error for each time period minus actual values At

divided by actual values. Considering At to be the actual values, Ft the forecast

values and n the sample size we can obtain the MAPE the following way:

MAPE = 1 ∑n

 |
at–ft

|

 (4.4)
n t=1 at

For the 2 hidden nodes model we have an MPE of -136.8492 while MAPE is

166.6492. For the 7 hidden nodes model we have an MPE of -54.22009 and an

MAPE of 94.26946.

For this specific case, we can conclude that the second model is overall better

than the first one.

The results were not surprising. The performance was poor, as we can see from

the accuracy values we obtained. This is since our data set is non-seasonal, which

requires our network to have memory in order to perform well.

39

Figure 4.9 Comparison between the sunspots test set and the prediction of the

feed-forward neural network with 2 hidden nodes

Figure 4.10 Comparison between the sunspots test set and the prediction of

the feed-forward neural network with 7 hidden nodes

4.3.3 Results of the temperatures data set using Elman and Jordan

neural networks

I will now experiment with the same data sets using recurrent neural networks,

more specifically Elman and Jordan neural networks. These networks were designed

to implement memory in order to perform better in other type of problems like time

varying sequences. For the first problem, I already obtained a pretty decent result

with the feedforward neural network mainly because the data is seasonal, but for our

second problem, where the data is non-seasonal, I want to improve the results with

the following experimentations.

40

To achieve better results, I trained my model with lagged versions of the original

time series. In this case I used 12 lagged versions which corresponds to the 12

months of the year. This method is commonly used in times series because of a

phenomenon called autocorrelation, which is a tendency for the values in a time

series to be related to previous copies of itself. This is important to identify patterns

which will help determining the seasonality of the series.

I started experimenting with a single hidden layer. I called the elman function with

the different numbers of hidden nodes and then the predict function. In the end, the

respective RMSE values were calculated. The best value for the RMSE I obtained

was 0.04949789 for 6 hidden nodes. After this, I started experimenting with 2 hidden

layers. For 2 hidden layers, I decided to automate the process with a cycle since it

would consume a lot of time otherwise. By the end of the loop, my program would

return the best RMSE value and the corresponding number of hidden nodes of each

hidden layer. The best results obtained were for 3 hidden nodes for both of the

layers. The corresponding RMSE value was 0.04879495. It is important to mention

the parameters that I used to call the elman and jordan functions; the “inputs[train]”

contains the values corresponding to the training component (80%) of all the lagged

versions of the time series, the “outputs[train]” contains the values corresponding to

the training component (80%) of the original time series, “size=c(i,j)” corresponds to

the number of hidden nodes in the corresponding hidden layers,

“learnFuncParams=c(0.1)” is the parameter used for the learning function and

“maxit=5000” corresponds to the number of iterations that we use to train our model.

The following Figures 4.11, 4.12 and 4.13 show the comparison between the

prediction and test set, the iterative error plot, and the instruction used to train the

neural network, respectively. The first graph has the normalized values of the

temperatures and the bottom values are the years of the prediction. The iterator error

plot shows us how the network error evolved along the training iterations.

The results here were fine as expected. The prediction of both the recurrent

neural networks were fine with good accuracy values. The unexpected part is that

our feedforward model outperformed the recurrent models.

41

Figure 4.11 Comparison between the temperature test set and the prediction of

the Elman neural network

Figure 4.12 Iterative error plot for the Elman network on the temperatures data

set

Figure 4.13 Instruction used to call the elman function

Now it is time to train our data with the Jordan network. The setup was the

same of the Elman network. The only difference is that I called the jordan

function instead. The explanation of the parameters is analogous to the elman

network and the parameters used in the function call were also the same. The

best result achieved for this network was with an RMSE value of 0.0495885 for a

42

single hidden layer with 4 nodes. As it is not possible to have more than a

hidden layer in Jordan networks, we will compare the results between the best

values of RMSE between the two networks with one hidden layer. In this case

the Elman network performed slightly better; the difference is minor though. The

respective prediction is in Figure 4.14 and the instruction is in Figure 4.15.

Figure 4.14 Comparison between the temperature test set and the prediction of

the Jordan neural network

Figure 4.15 Instruction used to call the jordan function

4.3.4 Results of the sunspots data set using Elman and Jordan

neural networks

The procedure for this experimentation was the same presented in the previous

section 6.3.3.

For this non-seasonal data set, the best results I obtained for the Elman network

were an RMSE value of 0.06965678 with two hidden layers containing 5 and 2

hidden nodes. For a single hidden layer, the best RMSE value was 0.08226485.

For the Jordan network the best value for the RMSE was 0.08479622

corresponding to a single layer with 7 hidden nodes.

In this case, the Elman network outperformed the Jordan network again.

The following Figure 4.16 and 4.17 show the comparisons for the Elman and

Jordan networks, respectively.

43

The results obtained were expected. The recurrent neural networks performed

well on this non-seasonal data set and the values of the accuracy for the predictions

are very good. The existence of a memory in our models, for non-seasonal time

series forecasting problems, is crucial for the positive results.

Figure 4.16 Comparison between the sunspots test set and the prediction of the

Elman neural network

Figure 4.17 Comparison between the sunspots test set and the prediction of the

Jordan neural network

4.4 Conclusions of the experimentations

From these experimentations, I can conclude that for the seasonal dataset the

feedforward neural network performed sufficiently well. On the other hand, for the

non-seasonal dataset the results were not even close to satisfactory. Using the

recurrent neural networks, either Jordan network or Elman network, the results were

positive for both the seasonal and non-seasonal dataset.

44

The main conclusion we can take is that recurrent neural networks are a better

approach when we are dealing with time series.

45

5 Conclusion

5.1 Results

To sum up the obtained results I present them in the following tables of Figures

5.1 and 5.2. In the first table we have the RMSE values corresponding to the

networks with one hidden layer.

Figure 5.1 Comparison between all the networks with one hidden layer

Figure 5.2 Results from the Elman network with two hidden layers

For the temperatures data set, we can conclude that the feedforward neural

network was the one that performed the best. This is a surprising result for me, I was

expecting it to perform well but not to beat the performance of both the recurrent

neural networks; as mentioned before, the good result is explained by the

seasonality of the first data. Between the Jordan and Elman networks the results are

very similar even though the Elman network value is slightly better.

Regarding the sunspots and the feedforward neural network the expected

happened; the network performance was extremely poor in the non-seasonal data

set, which can be explained by the fact that this type of network doesn’t have a type

of memory like the recurrent neural networks do. Between the Jordan and Elman

networks the value obtained from the Elman network is again slightly better.

In the second table, where we have the values for two hidden layers, we

obtained better values. This happened because the network is deeper; an extra layer

will allow the network to boost its performance when dealing with more complex,

non-linear problems.

46

So, the main conclusion we can infer from these results are:

• Feedforward neural networks are worth considering we are dealing with

seasonal time series data sets; they might even outperform recurrent neural

networks or other techniques.

• Elman neural networks slightly outperformed Jordan neural networks but the

difference is not significant, so it is worth taking both into account when

dealing with these problems.

• The deeper the neural network is the better it will perform with complex

problems. It is important to note that increasing layers will also increase the

cost and the time consumed, and sometimes this tradeoff is not worth

because the results might not be that much better or even, in some cases,

they might get worse.

5.2 Improvements

Even though we chose to work with neural networks, other algorithms (some of

them described in Chapter 2) would be able to solve this type of problems and maybe

with even better results. Regarding the neural networks, we could try different

activation functions.

We used training and test data sets containing 80% and 20% of the data,

respectively. We could improve the results by trying different sizes for these

partitions. We could also use different parts of the data for these partitions; for

example the training data set being the last years of the data set and the test data

set being the beginning or even split the test data set and make part of the prediction

in the beginning and part of the prediction in the end.

5.3 Difficulties

As previously mentioned, it took me some time to get used to the R language.

The pre-processing was also a part that was time consuming; it was hard to

figure out some things like, for instance, that some variable were not defined as the

type they should be and that I had to turn my vectors into time series objects.

During the model training part, the hardest parts were figuring out what were the

best accuracy measures to compare the results and researching on the neural

networks function and the meaning of their parameters.

Certainly, I faced more problems, but these are the ones that come to mind and

the ones that I struggled the most with.

I am satisfied with the way I overcame these difficulties and managed to

complete my work.

47

5.4 End notes

Through the realization of this work, I learned a lot about neural networks, which

caught my attention and had been intriguing me since the SAD course. I learned

about different types of neural networks as well as other algorithms that can be used

to accomplish the same goals. During the realization of the experimentations, I

gained a deeper view on how some of these machine learning techniques work.

Overall, it was an enriching experience that allowed me to learn more and

improve in one of the areas that has been captivating me.

48

6 Bibliography

1. Shumway, R.H. and Stoffer, D.S. (2000). Time Series Analysis and Its

Applications. Springer International Publishing.

2. Cowpertwait, P.S.P and Metcalfe A.V. (2009). Introductory Time Series with

R. Springer-Verlag New York.

3. Montgomery, D.C. , Jennings, C.L. and Kulahci, M. (2008). Introduction to

Time Series Analysis and Forecasting. Wiley

4. McCulloch, W.S. and Pitts, W.H. (1943). A Logical Calculus of the Ideas

Immanent in Nervous Activity.

5. Hagan, M.T. , Demuth, H.B. , Beale, M.H. and De Jesús, O. (1996). Neural

Network Design. Martin Hagan.

6. Haykin, S.S. (1993). Neural Networks and Learning Machines. Pearson.

7. Medsker, L.R. and Jain, L.C. (1999, Dec 20). Recurrent Neural Networks:

Design and Applications. CRC Press.

8. Skapura, D.M. (1996). Building neural networks. Addison-Wesley

Professional.

9. Casdagli, M. And Eubank, S. (1992, Jun 20). Nonlinear Modeling and

Forecasting. CRC Press.

10. Gerven, M. V. and Bohte, S. (2017, Dec 19). Artificial Neural Networks as

Models of Neural Information Processing. Frontiers in Computional

Neuroscience.

11. Shmueli, G. and Lichtendahl Jr., K.C. (2015, Jul 17). Pratical Time Series

Forecasting with R: A Hands-On Guide. Axelrod Schnall Publishers.

12. Russel, S.J. and Norving, P (2010). Artificial Intelligence: A Modern

Approach. Prentice Hall.

13. Kleene, S.C. (1956). Representation of Events in Nerve Nets and Finite

Automata. Annals of Mathematics Studies.

14. Donald, H. (1949). The Organization Of Behaviour. New York: Wiley.

15. Werbos, P.J. (1975). Beyond Regression: New Tools for Prediction and

Analysis in the Behavioral Sciences.

16. Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview.

17. Ivakhnenko, A.G. and Grigor’evich Lapa, V. (1967). Cybernetics and

forecasting techniques. American Elsevier Pub. Co.

18. Behnke, S. (2003). Hierarchical Neural Networks for Image Interpretation.

Lecture Notes in Computer Science. Springer.

19. Graves, A. and Schmidhuber, J. (2009). Offline Handwriting Recognition

with Multidimensional Recurrent Neural Networks.

49

20. Ciresan, D.; Giusti, A.; Gambardella, L.M. and Schmidhuber, J. (2012).

Deep Neural Networks Segment Neuronal Membranes in Electron

Microscopy Images. Curran Associates, Inc.

21. Graupe, D. (2013. Principles of Artificial Neural Networks. World Scientific.

22. Crick, F. (1989). The recent excitement about neural networks. Nature.

23. Yin-Wen, C.; Cho-Jui, H.; Kai-Wei, C.;Ringgaard, M.; Chih-Jen, L. (2010).

Training and testing low-degree polynomial data mapping via linear SVM.

Journal of Machine Learning Research.

24. Fan, J. (1996). Local Polynomial Modelling and Its Applications: From linear

regression to nonlinear regression. Chapman & Hall/CRC.

25. Yule, G.U. (1927). On a Method of Investigating Periodicities in Disturbed

Series with Special Reference to Wolfer’s Sunspot Numbers. Philosophical

Transactions of the Royal Society of London.

26. Theodoridis, S. (2015). Machine Learning: A Bayesian and Optimization

Prespective. Academic Press.

27. Box, G.; Jenkins, G.M.; Reinsel, G.C. (1994). Time Series Analysis:

Forecasting and Control. Prentice-Hall.

28. Notation for ARIMA Models. Time Series Forecasting System. SAS Institute.

29. Geman, S.; Bienenstock, E. and Doursat, R. (1992). Neural networks and

the bias/variance dilemma. Neural Computation.

30. Sak, H.; Senior, A. and Beaufays, F. (2014). Long Short-Term Memory

recurrent neural network architectures for large scale acoustic modeling.

31. Milos, M. (2012). Comparative analysis of Recurrent and Finite Impulse

Response Neural Networks in Time Series Prediction. Indian Journal of

Computer and Engineering.

32. Kosko, B. (1988). Bidirectional Associative Memories. IEEE Transactions on

Systems, Man, and Cybernetics.

33. Hinkelmann, K. Neural Networks. University of Applied Science

Northwestern Switzerland.

34. Nielsen, M.A. (2015). Chapter 6. Neural Networks and Deep Learning.

50

7 Appendix A

Here we can find the pre-processing code for both data sets used in our

experimentations (first for the temperatures data set and secondly the sunspots data

set).

Temperatures data set:

Sunspots data set:

