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Abstract

The concept of blockchain was developed with the purpose of decentralizing the trade of assets,

suppressing the need for intermediaries during this process, as well as achieving a digital trust between

parties. A blockchain consists in a public immutable ledger, constituted by chronologically ordered blocks

such that each contains records of a finite number of transactions.

The Ethereum platform, that this thesis particularly approaches, is implemented using a blockchain

architecture and introduces the possibility of storing Turing complete programs. These programs, known

as smart contracts, can then be executed using the Ethereum Virtual Machine. Despite its core language

being EVM bytecode, they can also be implemented using a high-level language, being Solidity the

most used. Among its applications stand out decentralized information storage, tokenization of assets

and digital identity verification, which can lead to revolutions in several systems, such as supply chain

management.

In this thesis, a method for the formal verification of Solidity smart contracts is proposed. An im-

perative language, which describes a great subset of Solidity, is implemented using the Isabelle/HOL

proof assistant, and associated with big-step execution semantics. Properties about programs are de-

scribed using Hoare logic, a proof system is defined for the language, for which results on soundness and

completeness are obtained.

The verification of an electronic voting smart contract is described, which shows the degree of proof

complexity that can be achieved using this method. Examples of vulnerable smart contracts are also

presented, containing overflow and reentrancy bugs.
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Resumo

O conceito de blockchain foi desenvolvido com o objectivo de descentralizar a troca de bens, suprimindo

a necessidade de intermediários durante o processo. Propõe-se a atingir uma confiança digital entre as

partes envolvidas. A blockchain consiste num arquivo público e imutável, constitúıdo por blocos ordenados

cronologicamente tais que cada contém o registo de um conjunto finito de transacções.

A plataforma Ethereum, que esta tese aborda particularmente, é implementada numa arquitectura

blockchain e introduz, ainda, a possibilidade de guardar programas Turing completos. Estes programas,

denominados por smart contracts, podem então ser executados através da Ethereum Virtual Machine.

Apesar de a sua linguagem núcleo ser EVM bytecode, também podem ser implementados usando lingua-

gens de alto ńıvel, sendo Solidity a mais usada. Entre as suas aplicações destacam-se o armazenamento

de informação descentralizado, a tokenização de bens e a gestão de sistemas de verificação de identi-

dades digitais. Estes podem levar a revoluções em vários sistemas, tais como a gestão de cadeias de

abastecimento.

Nesta tese é proposto um método para a verificação formal de smart contracts escritos em Solidity.

Uma linguagem imperativa que descreve grande parte da linguagem Solidity, é implementada no assistente

de prova Isabelle/HOL, ao qual é associada a uma semântica de execução big-step. Propriedades acerca

dos programas são descritas usando cálculo de Hoare, um sistema formal é definido para a linguagem,

para o qual são apresentados resultados de correcção e completude.

É descrita a verificação de um smart contract de voto electrónico que demonstra a complexidade de

prova que consegue ser alcançada com este método. São também apresentados exemplos de vulnerabili-

dade existentes como bugs de overflow ou re-entrância.

Palavras Chave

verificação formal, Isabelle/HOL, cálculo de Hoare, Ethereum, blockchain, contractos inteligentes
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1
Introduction

1.1 Motivation

The concept of blockchain was developed with the purpose of decentralizing the trade of assets, suppress-

ing the need for intermediaries during the process, as well as achieving digital trust between parties, with

the use of cryptography. The emergence of this concept was associated with the appearance of Bitcoin,

one of the first decentralized cryptocurrencies, introduced in 2008 by Satoshi Nakamoto [1]. A cryp-

tocurrency is independent of any central administrative entities but instead, uses a peer-to-peer digital

system, managed by a network of nodes. Bitcoin transactions are stored in a blockchain, an append-only

public ledger, through the process of mining. Nodes in the network, the miners, try to solve a difficult

- costly and time consuming - computational problem which consists in finding an adequate value for

which the transaction is valid. These computations are called proof of work and involve hash functions

so, once the value is found, it can be easily verified and the miner gets rewarded. When a transaction is

verified by the network it is timestamped and incorporated to the blockchain using a signature obtained

by a cryptographic hash function. This hash includes data from the previous block’s hash which makes

the whole chain cryptografically secure and, therefore, immutable. If one tries to delete or change data

after it has been validated, the subsequent blocks would reject that modification as their hashes would

no longer be valid.

This work is focused on the Ethereum platform, proposed by Vitalik Buterin [2] in 2013, which simi-

larly uses a blockchain architecture but also introduces the feature of storing Turing complete programs,

known as smart contracts. These programs can then be executed by the stack-based Ethereum Vir-

tual Machine (EVM) using EVM bytecode. The formalization of EVM was first approached by Gavin

Wood [3]. Developers can write smart contracts in higher level languages, being Solidity the most popular.

It follows an object oriented structure and is highly influenced by C++, Python and JavaScript.

Ethereum also introduces the concept of gas, each operation in the virtual machine has an associated

cost in ether, the Ethereum currency, and when a contract is executed, either by being called by a

transaction or code in another contract, the original transaction initiator needs to pay for the total cost

of operations.

Ethereum enables the creation of decentralized applications. Its applications, mainly based on the

trade of digital assets, can go from substituting middlemen in areas such as banking and finances, the
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tokenization of real-world assets, facilitating their transference or transaction, management and verifi-

cation of digital identities, which associated with record storing can be applied to medical records, to a

revolution of the traditional supply chain.

In a potential future where decentralization becomes a costume, there’s still a long path to follow

regarding Ethereum security. Specially since it deals with valuable assets and because of its immutability.

For instance in 2016, the DAO contract, with the goal of implementing a Decentralized Autonomous

Organization, was exploited due to a bug in its code. The attack was reentrancy based and resulted in

the loss of approximately $50 million in ether. Another common Solidity bugs are overflow and underflow,

related to the fact that EVM works with 256-bit unsigned integers.

That being said, the main goal of this work is introduced: the formal verification of Ethereum smart

contracts using Isabelle, a higher order logic (HOL) theorem prover. The primary idea was to verify

contracts written in EVM bytecode by defining the EVM using this prover. However, it was realized that

there’s was already some work being developed in the subject [4]. Nevertheless, the option of working

with smart contracts written in Solidity, a language prone to some vulnerability, was followed. The

construction of a simple imperative language was developed in Isabelle until a relevant subset of Solidity

was reached. To formalize the meaning of the language, in terms of execution, operational big-step

semantics are defined. The verification of programs defined in this language is approached using Hoare

logic, a proof system is defined with that intent. A program’s specification is stated through a set of

preconditions and postconditions, that should be verified before and after execution and correct according

to rules defined for each command. The notion of a valid Hoare formula is formally defined and having so,

soundness and (relative) completeness results are obtained for the proof system. The concept of weakest

precondition [5] is used in the completeness result and in the description of an optimized method for

applying the Hoare rules. Finally, relevant examples of application, which describe the expressiveness of

the language, are described and analyzed, namely regarding electronic voting, tokens and reentrancy.

1.2 Literature review

The introductory article [2] from Ethereum’s founder, Vitalik Buterin, gives an initial intuition about

Ethereum and its possible applications. The formalization of these ideas are described in Ethereum’s

yellow paper, by Gavin Wood [3]. The work by our colleague Beatriz [6] was also important to understand

Ethereum’s main concepts.

Having in mind the formal verification of Ethereum in Isabelle/HOL some introductory works [7]

were followed as tutorials. There are already some implementations of the EVM, namely one in Lem

by Yochi Hirai [4], which can be translated to several theorem provers such as Coq and Isabelle/HOL.

This work was analyzed and contributed to the change of subject from EVM bytecode to a higher level

language, Solidity. The book concrete semantics [8] includes an introduction to Isabelle/HOL, but also an
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introduction to semantics and its applications, based on a simple imperative language, IMP. It covers topics

such as operational semantics, compiler correctness, and Hoare logic. This initial language was developed

into SOLI. The polymorphic way SOLI statements were defined was based on a language described in

a compilation of Isabelle/HOL examples [9] and the language for concurrent programs by Nipkow and

Nieto [10]. The work by Schirmer [11] for sequential programs was a big influence in this work, either for

the formalization of concepts such as big-step and axiomatic semantics, as well as modeling some features

like calling functions and handling exceptions.

Regarding Hoare logic, the original papers by Hoare [12] and [13] were followed to develop the proof

system in Isabelle/HOL. The question regarding the use auxiliary variables in specifications was analyzed,

Kleymann [14] introduces a Consequence rule for that matter. Weakest precondition calculus was a con-

cept introduced by Dijkstra [5] and the computation of weakest preconditions and verification conditions

are based, again, on concrete semantics [8] and the work by Frade and Pinto [15].

Regarding the soundness result, the proof was based on the proof by Schirmer [11], including the

concepts of execution with limit and validity with limit and context. The completeness result, and in

this case the correct term is relative completeness, a concept introduced by Cook [16], is based on the

proof by Winskel [17], which uses weakest preconditions, with the addition of new cases.

The main literature for all the aspects of Solidity were the language’s documentation available online

[18]. The realization of the immense possibilities for Solidity hacking was due to the Ethernaut game [19].

1.3 Outline

The present chapter, introduces a background to this thesis, motivations, as well as a literature review.

Chapter 2 introduces the formalization of concepts behind the Ethereum blockchain: the world state,

accounts, transactions and the blockchain itself. Also a proper introduction to Solidity is approached.

Chapter 3 introduces the SOLI language. It covers its syntax, big-step semantics and some implemen-

tation details regarding the state space - storage vs. local variables - and the execution environment.

Additional language features, created using the initial set of commands, define how to throw and handle

exceptions - in Solidity all state changes are reverted - and how to call a procedure with argument passing,

returning from the call and returning results. A syntax is defined, as well as execution rules.

Chapter 4 introduces Hoare logic and its formalization for SOLI regarding partial correctness. There’s

a detailed explanation for the Consequence rule and how to deal with recursive procedures. Results

for soundness and (relative) completeness are obtained. The definition and computation of weakest

precondition for SOLI is presented, as well as the computation of verification conditions based on this

concept. An alternative formulation of rules following a weakest precondition style and a method for their

application is formulated. Finally, Hoare rules for additional language features defined in the previous

chapter are introduced. Some examples follow along the way such as the verification of the factorial
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function for both the imperative and recursive cases.

In Chapter 5 some examples of program verification are analyzed: an electronic voting contract and

two contracts known to be vulnerable, a Token with an overflow bug and a simplified version of DAO.

Chapter 6 wraps this thesis with an overview of the achieved results and some considerations about

future work.

Appendix A presents the main Isabelle/HOL theories developed during this thesis.
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2
The Ethereum blockchain

As described in the introduction of this thesis, Ethereum can be seen as a decentralized computing

platform, it uses a blockchain architecture and introduces the feature of storing Turing complete programs,

known as smart contracts. This chapter introduces the formal definition of some Ethereum concepts

and presents the structure of a Solidity contract.

2.1 Formalization of concepts

In the following definitions let Nx the set of non-negative integers with size up to x bits. An account is

an object part of the Ethereum environment that is identified by a 160-bit string known as the account’s

address.

Definition 1 (World state). The world state is a mapping σ between addresses (160 bit strings) and

account states.

σ : {0, 1}160 → N256 × N256 × {0, 1}256 × {0, 1}256

There are two types of accounts: externally owned accounts (EOA) and accounts associated with

code (contract accounts). The first are owned by an external user and have no associated code, while

the latter contain code, and its respective storage, associated. Blockchain uses asymmetric cryptography

to manage accounts. Each EOA has its own public and a private keys. The account’s address is derived

from its public key, the owner has the private key which allows to control the account. The currency

used in Ethereum is called ether.

Definition 2 (Account state). Given an address a, the account state σ(a) is a tuple A = 〈nonce, balance,

storagehash, codehash〉, where

• nonce ∈ N256 is equal to, if a is the address of an EOA, the number of transactions sent from this

address or, if a is the address of a contract account, the number of contract-creations made by this

account;

• balance ∈ N256 is the value of ether owned by a;

• storagehash is the 256-bit hash of the root node of a Merkle Patricia tree that encodes the storage

contents of the account;
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• codehash is the Keccak-256 hash of the EVM code of this account, in case of an EOA corresponds

to the hash of the empty string.

There are two types of transactions, contract creation transactions and transactions which result in

message calls. A transaction is triggered by an external actor.

Definition 3 (Transaction). A transaction is a tuple T = 〈nonce, gasPrice, gasLimit, to, value, v, r, s,

init/data〉, where

• nonce ∈ N256 is the number of transactions sent by the sender of the transaction;

• gasprice ∈ N256 is equal to the cost per unit of gas, in ether, for all computation costs of this

transaction;

• gaslimit ∈ N256 is equal to the maximum amount of gas that should be used in the execution of

this transaction;

• to ∈ {0, 1}256 is the address of the message call’s recipient or, for a contract creation transaction,

∅;

• value ∈ N256 is the value of ether to be transferred to the message call’s recipient or, in the case

of contract creation, as an endowment to the newly created account.

• v, r, s are values corresponding to the signature of the transaction, which are used to determine

the sender of the transaction;

Additionally, in the case of a contract creation transaction

• init is the EVM code for the account initialisation procedure;

Or, in the case of a message call

• data is the input data of the message call.

A message call is an internal concept which consists in data (a set of bytes) and value (specified as

ether) passed from an account to another. It may be triggered by a transaction, where the sender is an

EOA, or by EVM code, where the sender is a contract account.

Transactions are grouped and stored in finite blocks.

Definition 4 (Block). A block B is a package of data constituted by

• the header which is a collection of relevant pieces of information such as its number, difficulty

level, gas limit and usage, timestamp, logs bloom filter and nonce. It also contains hashes of the

parent block’s header, the ommers list and the roots of the following structures: state, transaction

list and transaction receipts;
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• the transaction list;

• a set of block headers which have the same parent as the current block’s parent’s parent. Such blocks

are called ommers.

Ethereum can be seen as a transaction-based state machine. In such a representation a transaction

represents a valid transition between two states σt and σt+1. Since transactions are grouped in finite

blocks, a block may also represent a state transition σ′t and σ′t+1. These transitions between blocks

introduce the concept of a chain of blocks, a blockchain.

Definition 5 (Blockchain). A blockchain is defined as an ordered sequence of blocks

B = {B0,B1, ...}.

2.2 Solidity, a high-level language for smart contracts

In this thesis, an approach to the formal verification of Solidity smart contracts is presented. Solidity is

an object-oriented language highly influenced by C++, Python and JavaScript. It is the most famous high

level language for smart contract implementation, that is, which compiles to EVM bytecode. The EVM

consists in a stack machine which operates with 256-bit elements. The operations are associated with a

volatile memory and can access the contract account’s storage. Each operation has a cost associated in

ether, known as gas.

As formalized in the previous section, a contract account is associated with storage and code and

resides at a specific address on the Ethereum blockchain.

Regarding code structure, a Solidity contract declaration consists, as it follows a object-oriented

structure, in a set of state variables, which are part of the account’s storage, and a set of functions

declarations. Functions in a contract can introduce local variables, which are stored in the EVM memory.

Solidity also contains a set of globally available variables which can be accessed regarding the current

block, transaction, message call and address. Also some mathematical and cryptographic functions are

defined such as the Keccak-256 and SHA-256 hash functions.

A function can be called by an external user, an EOA, which initiates a transaction, or by another

contract. This happens when a called contract contains code which call another contract, generating a

new message call. Note that a message call is an internal concept, which differs from a transaction but

can be triggered by it.

A function call can be internal, when the called function belongs to the same contract, or external,

when the function is part of another contract. An external call can be a regular call, or a delegate call, in

which code is executed in the context of the calling contract. Details about these methods and respective

implementation are presented in 3.6.2.
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Every contract has a fallback function, a function with no arguments or return values, which is

automatically executed whenever a call is made to the contract and none of its other functions match the

given function identifier or no data is supplied. This is the case when the contract receives ether, with

no data specified. The fallback function is distinguished by the fact of having no name associated.

In Solidity there are three methods to send ether: send(), transfer() and call.value(amount)().

The first two have a 2300 gas limit for code execution, due to the triggering of the receiver contract’s

fallback function. call.value allows to set a gas limit, but if no value is defined there is no limit for the

execution. send() returns false on failure, while transfer() and call.value() return an exception.

When an exception is thrown, all states changes are reverted. The approach for modelling exceptions

and state reversion is described in sections 3.6.1 and 3.6.3.
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3
The SOLI language

This chapter is focused on the construction of an imperative language on Isabelle/HOL, which aims to

be a subset of Solidity, capturing its more important concepts in order to succeed on proving properties

about smart contracts.

The core elements of the language are defined and a set of big-step executions rules is introduced to

describe their semantics. Some more complex language structures, such as calling function and throw-

ing/handling exceptions, are constructed using the core commands.

3.1 Syntax

In order to formalize a subset of Solidity, basic imperative constructs are defined, such as assignments,

sequential composition, conditional statements and while loops, along with auxiliary commands to call

procedures and to throw and handle exceptions. This set captures the expressiveness of the most relevant

Solidity control structures.

The syntax of the language is a combination of deep and shallow embeddings. Commands are repre-

sented by an inductive datatype whereas some other syntactic elements are represented as abbreviations

of its semantics, such as assertions, expressions and assignments. Boolean expressions, bexp, and asser-

tions, assn, are defined as state sets. For instance, let s be a state and b a boolean expression. If s

belongs do b, it means the expression evaluates as true in that state, otherwise, if s doesn’t belong to b,

it means the expression evaluates as false in that state.

The state space representation, which models the values of the program variables, is independent of

this definition and approached in 3.3. SOLI commands are built upon a dependence on the state space.

Definition 6 (Syntax). Let ś be the state space type. The syntax for boolean expressions and assertions

is defined by the types ′s bexp and ′s assn, respectively. The syntax for commands is defined by the

polymorphic datatype ś com, where ś⇒ ś is a state-update function and fname the type of function

names.
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′s bexp := ′s set
′s assn := ′s set
′s com := Skip | Upd ′s ⇒ ′s | Seq ′s com ′s com | If ′s bexp ′s com ′s com

| While ′s bexp ′s com | Dyncom ′s ⇒ ′s com | Call fname
| Revert | Handle ′s com ′s com

Upd is used to model assignments by executing a state-update function ′s ⇒′ s. Conditional state-

ments and while loops are defined with the usual syntax. The Skip command, which does nothing, is

also defined and can be used, for instance, to express a conditional with no else branch.

In order to add some complexity to the language, such as calling other functions and reverting all state

changes, the following commands are introduced in SOLI. Dyncom allows to write statements which are

state dependent, this is useful when referring to states in different steps of execution. A general Call

is introduced here, which receives a function name. It corresponds to the simplest form of calling a

procedure, where there are no parameter passing, returning results or variables to reset. The different

types of procedure calls and respective execution details are described in 3.6.2. Revert throws a revert

type exception which signals that the state must be reverted. Handle is an auxiliary command used to

handle state reversion if signaled.

3.2 Semantics

The most common approaches to formalize the meaning of a program are denotational semantics, oper-

ational semantics and axiomatic semantics. Denotational semantics describe the meaning of a program

by attaching mathematical meaning to the expressions of the language. The axiomatic approach consists

on a set of logical rules that describe the effect of a program on assertions about its state. The most

common example is Hoare Logic which will be formalized for SOLI in chapter 4.

The aim of operational semantics is to to capture the meaning of a program as a relation that describes

how the program executes directly, that is, by describing how a sequence of computational steps should

be executed from state to state. The execution can be described individually - small-step semantics - or

as a whole result - big-step semantics. In this section, the big-step semantics are defined.

To model the operational semantics, the state space ′s is augmented, as described by the datatype
′s state, with information about whether or not any exceptions where thrown.

′s state := Normal ′s | Rev ′s

The execution starts in a normal state and changes to a revert state if a Revert command occurs.

This flags that all state changes should be or were reverted.
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To formalize the execution relation, the function body environment Γ is introduced, which maps

function names to the corresponding bodies.

Definition 7 (Big-step semantics). The big-step semantics for SOLI are based on a deterministic evalu-
ation relation formalized by predicate

Γ ` 〈c, s〉 ⇒ t

where

Γ :: fname ⇀ ′s com

c :: ′s com

s, t :: ′s state

and evaluated accordingly to the set of rules represented in Figure 3.1.

The meaning for this relation is that if command c is executed in state s then the execution terminates

in state t.

Γ ` 〈Skip, Normal s〉 ⇒ Normal s
(Skip)

Γ ` 〈Upd f, Normal s〉 ⇒ Normal (f s)
(Upd)

Γ ` 〈c1, Normal s1〉 ⇒ s2 Γ ` 〈c2, s2〉 ⇒ s3
Γ ` 〈Seq c1 c2, Normal s1〉 ⇒ s3

(Seq)

s ∈ b Γ ` 〈c1,Normal s〉 ⇒ t

Γ ` 〈If b c1 c2, Normal s〉 ⇒ t
(IfTrue) s /∈ b Γ ` 〈c2, Normal s〉 ⇒ t

Γ ` 〈If b c1 c2, Normal s〉 ⇒ t
(IfFalse)

s1 ∈ b Γ ` 〈c, s1〉 ⇒ s2 Γ ` 〈While b c, s2〉 ⇒ s3

Γ ` 〈While b c, Normal s1〉 ⇒ s3
(WhileTrue)

s /∈ b

Γ ` 〈While b c, Normal s〉 ⇒ Normal s
(WhileFalse)

Γ ` 〈c s, Normal s〉 ⇒ t

Γ ` 〈DynCom c, Normal s〉 ⇒ t
(DynCom)

Γ ` 〈the(Γ f), Normal s〉 ⇒ t

Γ ` 〈Call f, Normal s〉 ⇒ t
(Call)

Γ ` 〈c1,Normal s〉 ⇒ Normal t

Γ ` 〈Handle c1 c2,Normal s〉 ⇒ Normal t
(HandleNormal)

Γ ` 〈c1,Normal s〉 ⇒ Rev r Γ ` 〈c2, Normal r〉 ⇒ t

Γ ` 〈Handle c1 c2, Normal s〉 ⇒ t
(HandleRevert)

Γ ` 〈Revert, Normal s〉 ⇒ Rev s
(Revert)

Γ ` 〈c, Rev s〉 ⇒ Rev s
(RevState)

Figure 3.1: Big-step execution rules for SOLI
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Most of these rules start in a normal state and either stay in the same type of state or end in an

unknown state type due to the inductive nature of this definition. The only rules that explicitly model

states of the revert type are Revert, HandleRevert and RevState. The detailed description of the rules

follows.

Skip is an axiom which states that the command Skip makes no alterations to the state. The Upd

axiom states that if the command is an assignment, Upd f , the final state is the application of the

state update function f to the initial state. If the command is Seq c1 c2, the final state is the result of

executing c2 from the resulting state of executing c1 from the initial state.

The guards for conditional statements and loops are evaluated semantically as state sets to which the

current state belongs (or not). If the command is a conditional statement, If b c1 c2, and b is true, the

final state is the result of executing c1 from the initial state. If b is false, the final state is the result

of executing c2 from the initial state. If the command is While b c and b is false, the state remains

unaltered. If b is true, the body of the loop c is executed from the initial state, resulting in a intermediate

state. The final state appears by recursively applying the WhileTrue or WhileFalse rule, depending on

the case. If the command is DynCom c, where c is a command which receives a state, the final state is

the execution of cs from s, where s is the initial state. If the command is Call f , the final state is the

same as executing Γf from the initial state.

If the command is Handle c1 c2, the result depends on the execution of c1. If executing c1 terminates

in a normal state, the final state is that state, there is no need to handle any exceptions thrown. If the

execution terminates in a revert state, the final state is the result of executing c2, the command which

handles the exception, from that same state but as normal, otherwise some rules such as the assignment

would not have the expected effect. If the command is Revert, the final state corresponds to signaling

the initial state, that is, the modification from normal state to revert type state. RevState is an axiom

which allows the propagation of the revert state.

3.3 The state space

The state space is usually represented by a mapping from variable names to their values. However this

approach induces some typing issues in HOL, a datatype would have to be created to represent the

different types of values. To simplify this problem and since the goal of this thesis is to verify properties

about specific programs, it was chosen to explicitly state the HOL type for each variable by working with

records.

Some of the used typed are constructed from the HOL types. For instance, Solidity works with 256-bit
unsigned integers and an account address is represented by a 160-bit value. Here follow the construction
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of some types from the type word, which represents a bit.

byte := 8 word

address := 160 word

uint := 256 word

(3.1)

A record of Isabelle/HOL is a collection of fields where each has a specified name and type. A record

comes with select and update operations for each field. Record types can also be defined by extending

other record types.
Consider the record st which represents the storage of a Solidity contract and loc which is defined by

extending st and represents the local variables of the functions in that contract.

record st :=

owner :: address

record loc := st +

a :: uint

b :: uint

res :: uint

(3.2)

Consider the field a from the loc record, its selector and update functions are a :: loc ⇒ uint and

a− update :: uint ⇒ loc ⇒ uint. a− update n loc is expressed with the syntax locLa := nM.

The operations on records only modify its relative field, this is useful since there is no need to define

frame conditions.

3.4 Environment variables

Solidity defines a set of global variables regarding the execution environment, mainly to provide infor-

mation about the blockchain. With respect to the block, variables regarding the current block’s hash,

miner’s address, difficulty, gaslimit, number and timestamp, are defined. For the transaction, there are

variables regarding the current message call: data, gas, sender and signature, which corresponds to the

first 4 bytes of the call data, and for the whole transaction: gasprice and origin. In SOLI these variables

are part of the environment record env.

Also, an account state is defined as record Account with four fields corresponding to its nonce, balance,

storage and code. The world state is defined as a field of the env record gs which maps addresses to

their account states. For instance, to access the balance of the account with address a one has to state

balance gs a.
Finally, variables regarding the current address and the current timestamp are added to the env
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record.
record env :=

block coinbase :: uint

block difficulty :: address

block gaslimit :: uint

block number :: uint

block timestamp :: uint

msg data :: byte list

msg sender :: address

msg value :: uint

tx origin :: address

tx gasPrice :: uint

address this :: address

gs :: address⇒ Account

(3.3)

Upon the creation of a contract, the storage record st is defined as an extension of this record.

record st := env +

owner :: address

record loc := st +

a :: uint

b :: uint

res :: uint

(3.4)

3.5 Concrete syntax

To improve readability of SOLI programs, some syntax translations are introduced. To simplify stating

boolean expressions and assertions, the translation ⦃b⦄ is used. ⦃b⦄ is defined as the set of states for

which the predicate b holds.

To refer to a variable x without being explicit about the record where it belongs, x́ is used. Let c1
and c2 be commands, b a boolean and s a state.

x́ ::= a ⇀ Upd (λs. sLx := aM)
c1; ; c2 ⇀ Seq c1 c2

IF b THEN c1 ELSE c2 ⇀ If ⦃b⦄ c1 c2
IF b THEN c1 ⇀ IF b THEN c1 ELSE Skip

WHILE b DO c ⇀ While ⦃b⦄ c
REQUIRE b ⇀ Require ⦃b⦄

Figure 3.2: Syntax translations
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The Require command is introduced in section 3.6.1.

As an example, consider the imperative definition of factorial written in SOLI. Suppose this function

is part of a contract for which the state space is the one described in 3.2. The local variables for this

specific function are represented in record loc. Function parameters are modelled according to the state

space definition.

fac imp :: st com where

fac imp ≡ b́ ::= 1; ;
(WHILE (́a > 0) DO

b́ ::= b́ × á; ;
á ::= á − 1); ;

ŕes ::= b́

Figure 3.3: Factorial program in SOLI - imperative version

3.6 Additional language features

3.6.1 Exceptions

To deal with exceptions, the EVM has two available opcodes: REVERT and INVALID. Both undo all state

changes, but REVERT will also allow to return a value and refund all remaining gas to the caller, whereas

INVALID will simply consume all remaining gas. Solidity uses these opcodes to handle exceptions using the

revert(), require() and assert() functions. The require() and assert() functions receive a bool

and throw the respective exception if the condition is not met. revert() simply throws the exception.

Both revert() and require() use the REVERT opcode and can also receive an error message to display

to the user; assert() uses the INVALID opcode.

Gas isn’t modeled in SOLI, the main reason is because it expresses a high level language and would

not be accurate to measure gas consumption since is defined for each opcode. Also the goal is to verify

properties which are expressed in a symbolic way, in most of the cases this measure is not very relevant.

Of course one could estimate bounds for SOLI commands, maybe with the help of some side tools such

as the Remix compiler, and define the consumption inductively.

Require functions are statements that usually remain in the final Solidity program since they are

useful to ensure valid inputs or state conditions, while asserts should only be used to verify errors in the

early stages. Also the conditions that would be checked in an assert can be verified along with the desired

properties in the verification.

In SOLI the revert() and require() functions are modeled. revert() corresponds to the Revert

command, which modifies the current state type from Normal to Rev. The require() function is defined

by the Require command, as a conditional statement.
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Require :: ′s bexp ⇒ ′s com

Require b := If b Skip Revert
(3.5)

The big-step execution rules for Require are represented in Figure 3.4. The derivation of this and

remaining execution rules described in this chapter are proven in Isabelle/HOL. They follow by unfolding

definitions and using the introduction rules from Figure 3.1.

s ∈ b Γ ` 〈Skip, Normal s〉 ⇒ Normal s

Γ ` 〈Require b, Normal s〉 ⇒ Normal s
(RequireTrue)

s /∈ b Γ ` 〈Revert, Normal s〉 ⇒ Rev s

Γ ` 〈Require b, Normal s〉 ⇒ Rev s
(RequireFalse)

Figure 3.4: Execution rules for Require

3.6.2 Calling a function

In Solidity, a function call can be internal or external. Internal calls are direct calls, intended for functions

of the same contract, which are translated into simple jumps in EVM, therefore the current memory is

not cleared. External calls, which call functions from other contracts, are made via message call, so all

function arguments have to be copied to memory. The amount of ether or gas sent with the call may be

specified.

External calls can be regular calls or delegate calls. A regular call is a regular message call. A delegate

call is a message call where the code is executed in the context of the calling contract, this includes the

message call parameters, such as sender and value, and the storage of the contract. Due to this, delegate

call should only be used if one trusts the called contract to modify the storage and if the storage layout

is compatible.
In order to model these types of functions, calling must be extended with the following definition,

which introduces the modelling of passing arguments, resetting local variables and returning results.

call :: J ′s ⇒ ′s, fname, ′s ⇒ ′s ⇒ ′s, ′s ⇒ ′s ⇒ ′s com K ⇒ ′s com

call pass f return result :=

DynCom (λs. (Upd pass; ;

Call f ; ;

(DynCom (λt. Upd (return s); ; result s t))))

(3.6)

Here DynCom is used to abstract over the state space and refer to certain program states, in this

case the initial state s is captured by the first DynCom and the state after executing the body of the

called procedure, t, is captured by the second DynCom. The function pass, receives the initial state s

and is used to pass the arguments of the function to the intended variables in the memory before the body
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of the function is executed. The return function is used to return from the procedure by cleaning the

state, that is by restoring the local variables. In the case of a function call with a return value, the result

function is used to communicate the results to the caller environment by updating the result variable.

Both return and result functions receive the states s and t. The control flow of call is described is in

Figure 3.5.

s t
pass s Call f return s t result s t

call pass f return result

Figure 3.5: Control flow for call

The big-step execution rule for call, which is described in Figure 3.6, follows intuitively from the

above description, first the body of the called function is executed after passing the arguments, that is,

by starting in state pass s. Then the result command is executed after returning from the call, that is,

starting in state return s t.

(the (Γf), Normal (pass s)) ⇒ Normal t (result s t, Normal (return s t)) ⇒ u

(call pass f return result, Normal s) ⇒ u
(ExecCall)

Figure 3.6: Execution rule for call

3.6.2.A Internal call

The dynamics of this definition are described considering the simplest case of internal calling, in which

the functions are in the same contract and so, the state variables and the memory are the same.

Consider the fac function defined in 3.3 and the corresponding state record. In this contetx, the

argument of the function is stored in the variable a and the result value in the variable res. Consider

another function in the same contract which contains a statement that internally calls fac giving as

argument a value stored in variable i and states the result should be passed to the variable m. This

statement is described in SOLI using the call function.
To initialize the call and pass the parameters, the value of i should be copied to a.

pass = λs. s(|a := i s|)

Since there’s no actual message call, there’s no need to clear the memory so the return function
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becomes

return = λst. t

Finally, the execution result is communicated to the caller. Since the result is stored in res, the
variable m is updated with this value. Here, u is the state after returning from the call.

result = λst. Upd (λu. u(|m := res t|))

In conclusion, to perform the described internal call in SOLI the following auxiliar procedure has to
be defined.

call (λs. s(|a := i s|)) fac (λst. t) (λst. Upd (λu. u(|m := res t|)))

3.6.2.B External call

For a external call both the caller and the callee contract have to be considered, so the state record of

the callee is extended with the state record of the caller.

When the called function is being executed the context of execution changes, some environment

variables regarding the new message call have to be updated such as msg sender, msg value, msg data

and address this. The remainder, which refer to the transaction itself, are not altered.

The call is initialized by passing the parameters as previously explained and updating the sender of
the message to the current address and the current address to the address of the called contract.

pass = λs. s(|a := i s, msg sender := address this s, address this := fac adr s|)

To return from the procedure, only the state variables resulting from the execution of the function
body are propagated to the caller. The local and environment variables (msg sender and address this)
which were used to execute the function body are reset. After this update the state becomes equal to
the initial state s except for the state variables which are propagated from t. This is expressed as

return = λst. s(|owner := owner t|)

The result of the execution is, again, communicated to the caller.

result = λst. Upd (λu. u(|m := res t|))

The auxiliary procedure to perform an external call follows.

call (λs. s(|a := i s, msg sender := address this s, address this := fac adr s|))

fac

(λst. s(|owner := owner t|)

(λst. Upd (λu. u(|m := res t|)))
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3.6.3 Reverting state changes

In Solidity, whenever an error occurs, for instance when some condition is not satisfied, a REVERT exception

is thrown and all state changes made in the current call must be reverted. In section 3.2 it was introduced

that whenever a Revert occurs, the state type changes from Normal to Rev, which works as a flag for

state reversion.

Suppose one wants to execute the SOLI statement bdy starting in a normal type state s. The execution

can run without any errors and terminate in a normal state t. But, if an exception is thrown, the execution

must be stopped with the current Rev state t′ in order to proceed to the state reversion. This is modelled

with Handle bdy c, where c is the statement which handles the reversion.

Inside c, first, the state is passed to a normal state in order to allow the regular SOLI statements, for

instance Upd to be executed. The update of the state variables to their original value is made with the

rvrt function, which receives the initial state s and the current state t. Finally the error is propagated

by re-throwing Revert. The control flow of a statement execution is described in 3.7.

s t

t′ t′ s

bdy

rvrt s Revert

init bdy rvrt

Figure 3.7: Control flow for init

In order to actually revert the state, first one needs to get hold of the initial state which can be

captured using DynCom. Also, while taking care of the state reversion, another DynCom is used to

refer to the current state when updating the variables.

Therefore whenever a block statement, such as a function, is written in SOLI it is encapsulated in an

init function which receives the function body and the rvrt function which models the reset of all state

variables in case of error.

init :: J ′s com, ′s ⇒ ′s ⇒ ′sK ⇒ ′s com

init bdy rvrt :=

DynCom (λs. (Handle bdy; ;

(DynCom (λt. Upd (rvrt s); ; Revert))))

The big-step execution rules for init are defined in Figure 3.8. For normal execution it is immediate,
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is just the regular execution of bdy. If an exception is thrown when executing bdy, its execution stops in

a revert type state t and the full execution will terminate in state rvrt s t.

(bdy, Normal s) ⇒ Normal t

(init bdy rvrt, Normal s) ⇒ Normal t
(ExecNormal)

(bdy, Normal s) ⇒ Rev t

(init bdy rvrt, Normal s) ⇒ Rev (rvrt s t)
(ExecRev)

Figure 3.8: Execution rules for init
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4
Hoare Logic

In order to check the validity of a program specification, a proof system for axiomatic semantics is intro-

duced: Hoare logic. This system was proposed by Tony Hoare in 1969 [12], [13]. After the formalization

of Hoare rules for SOLI, a detailed explanation is introduced for the Consequence rule, where the propa-

gation of auxiliary variables is described, and both CallRec and Asm rules, which are used to deal with

recursive procedures. Results on soundness and (relative) completeness of the system are presented. The

concept of weakest precondition is introduced, and is used in the completeness proof and the computa-

tion of verification conditions. With the goal of achieving automation of program verification, a strategy

for rule application is described where a main verification condition is propagated from the end of the

program to the beginning using verification condition computations, this results in a final condition to be

verified: the inclusion of the precondition in this condition. Along this application some auxiliary verifi-

cation conditions may be generated. An alternative formulation of rules, known as weakest precondition

style and which follows this strategy, is introduced. The relation between the verification conditions and

these rules is established. Finally, rules for the additional language features introduced in the previous

chapter are presented.

A formula for Hoare logic, which is called a Hoare triple, is of the form

P c Q,

where c is a command and P and Q are assertions. P is said to be the precondition and Q the post-

condition. Semantically, an assertion is a predicate on the state. The specification of a program can be

intuitively defined by such a triple. In SOLI assertions are defined as sets of states. For a given state s,

an assertion P is said to be true, that is, s satisfies P , if s ∈ P .

A Hoare triple is said to be semantically valid if, the execution of c starting in a state that satisfies P ,

ends in a state that satisfies Q. This definition corresponds to validity in terms of partial correction and

is formalized in section 4.3. There is also the approach of total correctness in which termination of the

program is also guaranteed. In this work we will consider partial correctness even though total correction

may also be achieved by adding the notion of a well-founded relation of states to the rules which deal

with cycles and recursive calls.
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4.1 The proof system

A proof system for partial correctness of Hoare logic is introduced. Command execution can result in a

Normal state or in a Rev state. To model this feature in this proof system, the postcondition is split in

two, Q and A, one for regular and other for exceptional termination.

To reason about recursive procedures, a set of assumptions Θ is introduced. This set contains function

specifications, which will be used as hypothesis when proving the body of a recursive procedure. An

assumption for a function is a tuple which contains its precondition, name and both postconditions.

′s assmpt := 〈′s assn, fname, ′s assn, ′s assn〉

The notation used for a derivable Hoare formula, which becomes a quadruple, is associated with the

procedure body environment Γ and with the set of assumptions Θ.

Definition 8 (Hoare logic). A Hoare logic is defined for SOLI such that a derivable formula is represented

by where and the proof system is constituted by the rules in figure 4.1.

Γ,Θ ` P c Q,A

Γ :: fname ⇒ ′s com

Θ :: ′s assmpt set

P,Q,A :: ′s assn

c :: ′s com,

There is a rule for each SOLI command and, additionally, the Asm and Consequence rules. To have

an intuitive meaning for the rules of this system, one should read it backwards. For instance, for the

Upd rule, if Q holds (for regular execution) after the update then P is the set of states such that the

application of f to them belongs to Q.

The Skip and Revert rules are dual. In the first, the precondition is the same as the postcondition for

normal termination and in the second as the exceptional postcondition. The Seq and Handle rules are

also dual. In the Seq rule the intermediary assertion R connects the precondition of the second statement

with the postcondition for normal termination of the first statement. For the Handle rule the connection

is made between the precondition of the second statement and the exceptional precondition of the first.

The If rule also generates a proof for each of the two branches which leads to the postcondition Q,

and for each the precondition is the set of spaces which satisfy P intercepted with the sets of states which

satisfy or not b. In the While rule, P has the role of loop invariant. P is preserved by the execution of

the loop body, that is, P is always satisfied after the execution of c provided that is also satisfied before

execution. The boolean condition b is true before every loop execution and false upon loop termination.
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Γ,Θ ` Q Skip Q,A
(Skip)

Γ,Θ ` {s. f s ∈ Q} (Upd f) Q,A
(Upd)

Γ,Θ ` P c1 R,A Γ,Θ ` R c2 Q,A

Γ,Θ ` P (Seq c1 c2) Q,A
(Seq)

Γ,Θ ` (P ∩ b) c1 Q,A Γ,Θ ` (P ∩ −b) c2 Q,A

Γ,Θ ` P (If b c1 c2) Q,A
(If)

Γ,Θ ` (P ∩ b) c P,A

Γ,Θ ` P (While b c) (P ∩ −b), A
(While)

Γ,Θ ` P c1 Q,R Γ,Θ ` R c2 Q,A

Γ,Θ ` P (Handle c1 c2) Q,A
(Handle)

Γ,Θ ` A Revert Q,A
(Revert)

∀s ∈ P. Γ,Θ ` P (c s) Q,A

Γ,Θ ` P (DynCom c) Q,A
(DynCom)

(P, f,Q,A) ∈ S ∀〈P, f,Q,A〉 ∈ S. f ∈ dom Γ ∧ Γ, (Θ ∪ S) ` P (the (Γ f)) Q,A

Γ,Θ ` P (Call f) Q,A
(CallRec)

(P, f,Q,A) ∈ Θ

Γ,Θ ` P (Call f) Q,A
(Asm)

∀s ∈ P ′. ∃PQA. Γ,Θ ` P c Q,A ∧ Q ⊆ Q′ ∧ A ⊆ A′ ∧ s ∈ P

Γ,Θ ` P ′ c Q′, A′ (Conseq)

Figure 4.1: Hoare logic for SOLI

In the DynCom rule, the triple has to hold for every state that satisfies the precondition because the

dynamic command depends on the state. Detailed descriptions for the CallRec, Consequence and Asm

rules are approached in the following sections.

4.1.1 The Consequence rule

In order to explain the additional structural rule of Consequence, used to adjust the precondition and

postconditions, the concepts of stronger and weaker assertions in Hoare logic are introduced. If the truth

of P ′ can be inferred from the truth of P , stated as P ⊆ P ′, then P is said to be stronger than P ′ and,

reversely, P ′ is said to be weaker than P .

A consequence rule allows to infer Γ,Θ ` P ′ c Q′, A′ given that Γ,Θ ` P c Q,A and the following

side conditions hold: P ′ is stronger than P and both Q′ and A′ are weaker than Q and A, respectively.

A simplified version of this rule for each case, strengthening the precondition or weakening the post-

conditions, is derived.
Kleymann [14] argues about the importance of auxiliary variables, also known as logical variables, in

Hoare logic. These are variables that appear in the assertions but do not appear in the program itself.
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Γ,Θ ` P ′ c Q,A P ⊆ P ′

Γ,Θ ` P c Q,A
(strengthen pre)

Γ,Θ ` P c Q′, A′ Q′ ⊆ Q A′ ⊆ A

Γ,Θ ` P c Q,A
(weaken post)

Consider the factorial specification 4.1.

〈{| á = n |}, fac, {| ŕes = fac n |}, {}〉 (4.1)

In the precondition, the variable n freezes the program variable a so that one can refer to its initial

value in the postcondition. Auxiliar variables allow the connection between pre and postconditions.

In the verification of recursive procedures, the specification of the procedure is assumed while verifying

its body. In the factorial example an issue comes up when the specification for n−1 is required. It cannot

be derived from the specification for n using the traditional consequence rule.

Kleymann proposes a consequence rule that introduces a dependence of assertions on auxiliary vari-

ables beyond the dependence on program variables (the state space). This rule allows to modify auxiliary

variables when strengthening preconditions and weakening postconditions. Nonetheless, to reason with

such a rule in HOL has the condition of having a fixed type to the auxiliar variable.

The Consequence rule follows another path. In SOLI auxiliary variables are not introduced and can

be stated as free variables. Therefore, to solve the issue with the factorial specification 4.1 one can simply

universally quantify the auxiliary varible n.
However, suppose one wants to prove a formula 4.2 in which an auxiliary variable n stores information

about a variable i, in the initial state. And also, to reason about the postcondition Q, which depends on
i, one needs information about the precondition on the initial state of i, which is saved in n.

Γ,Θ ` {|P í|} c {|Q í|} (4.2)

Γ,Θ ` {|́i = n ∧ P í|} c {|P n −→ Q í|} (4.3)

The solution is to reformulate 4.2 to 4.3 so that information about the precondition is transported to

the postcondition. Since n is an auxiliary variable and therefore independent from any state modification,

we can infer that P n holds in the postcondition and state it as and hypothesis for Q í.
Generally speaking, to prove a formula, one can fix information about all program variables, which

corresponds to the initial state, to the auxiliary variable Z and include this information in the postcon-
dition.

Γ,Θ ` P c Q (4.4)

∀Z. Γ,Θ ` {s. s = Z ∧ s ∈ P} c {t. Z ∈ P −→ t ∈ Q} (4.5)

The formula 4.5 is derivable from 4.4 using the simple consequence rule. It suffices to show the
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strengthening of the precondition 4.6 and the weakening of the postcondition 4.7, which hold trivially.

{s. s = Z ∧ s ∈ P} ⊆ P (4.6)

Q ⊆ {t. Z ∈ P −→ t ∈ Q} (4.7)

However, to prove that 4.4 is derived from 4.5, one has to prove 4.8 and 4.9. First there are no means
to instantiate Z as a s, neither to establish the fact that Z ∈ P . As seen previously the purpose of this
statement is to connect the precondition with the postcondition.

P ⊆ {s. s = Z ∧ s ∈ P} (4.8)

{t. Z ∈ P −→ t ∈ Q} ⊆ Q (4.9)

That being said, the simple consequence rule does not suffice to deal with auxiliary variables and

prove the equivalence between 4.4 and 4.5.
To instantiate Z as s and infer Z ∈ P , the side condition P ⊆ P ′ must be weakened to ∀s ∈ P. s ∈ P ′.

The quantification of the initial state is also extended to the remaining side conditions. The Hoare
formula is also incorporated into the side conditions premise. This leads to the Consequence rule in 4.1.
Using this rule, the condition to prove becomes 4.10, which holds trivially.

∀s ∈ P. s ∈ {s = s ∧ s ∈ P} ∧ {t. s ∈ P −→ t ∈ Q} ⊆ Q (4.10)

It is possible to derive other consequence rules, for instance a Kleymann conequence rule. As opposed

to the Consequence rule, the premises are split but remain connected through the auxiliary variable Z.

Being a derived rule makes it possible that Z only appears in the premises without having a fixed type.

Being explicit about Z may facilitate some proofs.

∀Z. Γ,Θ ` (P ′ Z) c (Q′ Z), (A′ Z) ∀s ∈ P. ∃Z. s ∈ (P ′ Z) ∧ (Q′ Z) ⊆ Q ∧ (A′ Z) ⊆ A

Γ,Θ ` P c Q,A
(ConseqK)

4.1.2 Recursive procedures

For the sake of simplicity, consider the parameterless call. Let c be the body of the procedure p, executing

Call p should correspond to executing c. However, a issue arises when c contains a call to p, it leads to

infinite derivations.

Hoare proposes the introduction of hypothetical derivation to prevent this issue. If one reasons under

the assumption that the call specification holds, one is able to prove the body c.

In order to do so, Hoare formulas are annotated with the set of assumptions Θ. The verification of a

call statement will result in the addition of its specification to Θ and verification of the procedure body.

If a recursive call to that procedure appears, the Asm rule is used.

The general CallRec rule (4.1) introduces this idea for dealing with any number of procedure specifi-

cations. For instance to add all instances of a specification with auxiliary variables (see 4.1) or mutually

25



recursive procedures. A set of specifications S is introduced and every procedure body in S is verified un-

der the assumptions that the specifications hold. A side condition arises which states that all procedures

must belong to the execution environment Γ.

A variant of this rule, which is explicit about procedures and auxiliary variables, can be derived. Here

the assertions depend on the procedure and on the set of auxiliary variables Z. Pr is the set of mutually

recursive procedures.

Pr ⊆ dom Γ ∀Z. Γ, (Θ∪ (∪p ∈ Pr. ∪Z. {〈P p Z, f, Q p Z, A p Z〉})) ` (P p Z) (the (Γ f)) (Q p Z), (A p Z)

∀p ∈ Pr. ∀Z. Γ,Θ ` (P p Z) (Call f) (Q p Z), (A p Z)
(CallProcRec)

This rule can also be modified to be used directly for one single recursive procedure.

p ∈ dom Γ ∀Z. Γ, (Θ ∪ (∪Z. {〈P Z, f, Q Z, A Z〉})) ` (P Z) (the (Γ f)) (Q Z), (A Z)

∀Z. Γ,Θ ` (P Z) (Call f) (Q Z), (A Z)
(CallProcRec1)

A simple rule that directly unfolds the body of a procedure from a Call statement may also be derived

from the CallRec rule.

P ⊆ P ′ Γ,Θ ` P ′ (the (Γ f)) Q,A

Γ,Θ ` P (Call f) Q,A
(CallBody)

4.2 Weakest precondition calculus

In order to verify properties about programs using Hoare logic, a backward propagation method is

followed. In this method, sufficient conditions for a certain result, the postcondition, are determined.

The rules are successively applied backwards, starting in the postcondition until the beginning of the

program. Some side conditions may be generated.

In backward reasoning, to prove Γ,Θ ` P c Q,A, one could prove that Γ,Θ ` P ′ c Q,A and P ⊆ P ′

hold, using the Consequence rule. Even better, one could show that Γ,Θ ` P ′′ c Q,A, where P ′′ is the

weakest precondition of Q for c. The weakest precondition is said to be the most lenient assumption on

the initial state such that Q,A will hold after the execution of the command c. Any precondition such

that the formula holds will be stronger than P ′′.

Weakest precondition calculus, also know as predicate transformer semantics (Dijkstra [5]), is a refor-

mulation of Hoare logic. It constitutes a strategy to reduce the problem of proving a Hoare formula to
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the problem of proving an HOL assertion, which is called the verification condition. Since assertions are

expressed as sets, reasoning about the conditions is expressed using set operations.

Definition 9 (Weakest precondition calculus). Let c be a command, Q and A assertions and wpΓ,Θ(c,Q,A)

the weakest precondition of Q,A for c. The weakest precondition calculus for SOLI is inductively defined

as follows

wpΓ,Θ (Skip, Q, A) = Q

wpΓ,Θ (Revert, Q, A) = A

wpΓ,Θ (Upd f, Q, A) = {s. f s ∈ Q}

wpΓ,Θ (Seq c1 c2, Q, A) = wpΓ,Θ (c1, wpΓ,Θ (c2, Q, A), A)

wpΓ,Θ (If b c1 c2, Q, A) = {s. (s ∈ b −→ s ∈ wpΓ,Θ (c1, Q, A)) ∧ (s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))}

wpΓ,Θ (While c, Q, A) = {s. (s ∈ b −→ s ∈ wpΓ,Θ (Seq c (While b c), Q, A)) ∧ (s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))}

wpΓ,Θ (Call f, Q, A) = Pf , such that f ∈ dom Γ ∧ (Pf , f, Qf , Af ) ∈ Θ

wpΓ,Θ (DynCom c, Q, A) =
⋂

s

wpΓ,Θ (c s, Q, A)

wpΓ,Θ (Handle c1 c2, Q, A) = wpΓ,Θ (c1, Q, wpΓ,Θ (c2, Q, A)).

A strategy to generate verification conditions based on this calculus and corresponding formulation

of rules is described in 4.4.

4.3 Soundness and completeness

In this section, the concepts of semantic validity and derivability of Hoare formulas are compared. More-

over an attempt to prove their equivalence is described with respect to semantics described in 3.2. The

soundness proof follows easily after introducing the notion of execution with limit on nested procedure

calls. The completeness proof, and here the correct term is relative completeness, uses the notion of

weakest precondition. The formal definition for validity regarding partial correctness follows.

Definition 10 (Validity - Partial Correctness).

Γ � P c Q,A if ∀s t. Γ ` 〈c, s〉 ⇒ t ∧ s ∈ Normal ‘P −→ t ∈ Normal ‘Q ∪ Rev ‘A.

Here, s ∈ Normal Ṕ means that there is an s′ such that s = Normal s′ and s′ ∈ P . Executing

the statement c from normal state s such that P holds and execution ends in state t implies that the

precondition must hold for t, it can be either a normal state and Q hold or in a revert state and A hold.

4.3.1 Soundness

The goal is to prove that if a formula is derivable then it must be valid. The proof follows by induction

on the derivation and consists in showing that every rule preserves validity. Since for most cases the
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construction of rules 4.1 follows the execution rules, except the ones for loops and procedure calls, the

proof follows easily assuming the validity of their premises or is straightforward in the case of axioms.

For loops additional induction on the loop body execution is introduced. In the case of calls, for instance

recursive calls, it must be taken into account the set of assumptions Θ and also the depth of recursion.

However the definitions of validity and big-step semantics are not rich enough to approach these properties.

First, the notion of validity is extended with the set of assumptions.

Definition 11 (Validity with context).

Γ,Θ � P c Q,A if ∀〈P, f,Q,A〉 ∈ Θ. Γ � P (Call f) Q,A −→ Γ � P c Q,A.

Also, an additional set of big-step rules to deal with depth of recursion is defined, where n is a limit

on nested procedure calls.

Definition 12 (Big-step semantics with limit). The big-step semantics for SOLI with limit on the depth
of recursion are formalized by predicate

Γ ` 〈c, s〉 n=⇒ t

where

Γ :: fname ⇀ ′s com

c :: ′s com

s, t :: ′s state.

The rules are equivalent to the normal big-step rules 3.1, except for the Call statement, where the

limit n is decremented.

Γ ` 〈the (Γ f), Normal s〉 n=⇒ t

Γ ` 〈Call f, Normal s〉 n+1===⇒ t
(Calln)

This set of rules is monotonic regarding the limit n, which follows by induction on the execution depth

n.

Lemma 1 (Monotonicity).

Γ ` 〈c, s〉 n=⇒ t ∧ n ≤ m −→ Γ ` 〈c, s〉 m=⇒ t

Now validity can be established regarding the limit on nested recursive calls.

Definition 13 (Validity with limit).

Γ �n P c Q,A if ∀s t. Γ ` 〈c, s〉 n=⇒ t ∧ s ∈ Normal̀ P −→ t ∈ Normal`Q ∪ Rev`A.
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Finally the notions of validity with context and validity with limit are joined, leading to a definition

which suits the needs to reason about recursive procedure calls.

Definition 14 (Validity with limit and context).

Γ,Θ �n P c Q,A if ∀〈P, f,Q,A〉 ∈ Θ. Γ �n P (Call f) Q,A −→ Γ �n P c Q,A.

The required conditions to show that Hoare rules preserve validity are now established. An auxiliary

lemma to the soundness result is stated.

Lemma 2.

(∀n. Γ,Θ �n P c Q,A) −→ Γ,Θ � P c Q,A

Proof. Using the monotonicity property, it can be shown by induction on rule structure that

Γ ` 〈c, s〉 ⇒ t = (∃n. Γ ` 〈c, s〉 n=⇒ t) (4.11)

and therefore it can be inferred that a formula is valid if it is valid for all recursion depths,

Γ � P c Q,A = (∀n. Γ �n P c Q,A). (4.12)

Taking context Θ into account the result follows.

A first result about soundness of Hoare formulas is proved regarding validity with recursion limit and

context.

Proposition 1 (Soundness within limit and context).

Γ,Θ ` P c Q,A −→ (∀n. Γ,Θ �n P c Q,A)

Proof. For each rule, the proof follows by structural induction. For most rules the proof is straightforward,

except for While and CallRec. Here, only those cases and the Seq case are shown.

• c = Seq c1 c2: Consider as induction hypothesis 4.13 and 4.14, which assume validity of the premises
of the rule.

Γ,Θ �n P c1 R,A (4.13)

Γ,Θ �n R c2 Q,A (4.14)

We want to show that validity is preserved by the rule.

Γ,Θ �n P (Seq c1 c2) Q,A
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That is, by unfolding the validity definition:

∀s1s3. (∀〈P, f,Q,A〉 ∈ Θ. Γ �n P (Call f) Q,A ∧

〈Seq c1 c2, Normal s1〉
n=⇒ s3 ∧ s1 ∈ Normal ′P −→

s3 ∈ Normal ′Q ∪ Rev ′A)

Fixing s1 and s3, assume

〈Seq c1 c2, Normal s1〉
n=⇒ s3 (4.15)

s1 ∈ Normal ‘P (4.16)

From 4.15 s2 is obtained such that

〈c1, Normal s1〉
n=⇒ s2 (4.17)

〈c2, s2〉
n=⇒ s3 (4.18)

By unfolding the definition of validity in 4.13 and having both 4.17 and 4.16 follows:

s2 ∈ Normal ‘R ∪ Rev ‘A.

There are two cases to consider

– s2 is Normal: from 4.18 and 4.14 follows

s3 ∈ Normal ‘Q ∪ Rev ‘A.

– s2 is Rev: from 4.18 follows

s3 ∈ Rev ‘A.

• c = While b c: assuming the following hypothesis,

Γ,Θ �n (P ∩ b) c P,A (4.19)

the goal is to show,
Γ,Θ �n P (While b c) (P ∩ −b), A

which by unfolding the definition of validity corresponds to showing

∀〈P, f,Q,A〉 ∈ Θ. Γ �n P (Call f) Q,A ∧ (4.20)

Γ ` 〈While b c, Normal s〉 n=⇒ t ∧ (4.21)

s ∈ P −→ (4.22)

t ∈ Normal ‘(P ∩ −b) ∪ Rev ‘A. (4.23)

There are two cases two consider the inital state for execution

– s /∈ b: using the WhileFalse execution rule follows that t = Normal s, and by 4.22 that

t ∈ Normal ‘P , furthermore t ∈ Normal ‘(P ∩ −b).

– s ∈ b: since a recursive loop is generated, it is necessary to use a nested induction on loop
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execution

Γ ` 〈While b c, Normal s〉 n=⇒ t ∧ (4.24)

s ∈ P −→ (4.25)

t ∈ Normal ‘(P ∩ −b) ∪ Rev ‘A. (4.26)

From 4.25 and by using the WhileTrue execution rule, r is obtained such that

Γ ` 〈c, Normal s〉 n=⇒ r (4.27)

Γ ` 〈While b c, r〉 n=⇒ t. (4.28)

Using hypothesis 4.19 and considering execution 4.27 and the fact that s ∈ P ∩ b, it follows
that

r ∈ Normal ‘P ∪Rev ‘A.

Again, there are two cases to consider for state r.

∗ r ∈ Rev ‘A: from 4.28 follows that t = r hence

t ∈ Rev ‘A.

∗ r ∈ Normal ‘P : by applying the nested induction hypothesis with execution 4.28 follows

t ∈ Normal ‘(P ∩ −b) ∪Rev ‘A.

• c = Call f : Under the hypothesis of
〈P, f,Q,A〉 ∈ S (4.29)

and
∀〈P, f,Q,A〉 ∈ S. f ∈ dom Γ ∧ (∀n. Γ, (Θ ∪ S) �n P (the (Γ f)) Q,A), (4.30)

it is to be shown
Γ,Θ �n P (Call f) Q,A.

By unfolding the definition of validity with limit and context 14 and since the call can be generalized
for all specifications in S because hypothesis 4.29 holds, this is equivalent to prove the following
inclusion

∀〈P, f,Q,A〉 ∈ Θ. Γ �n P (Call f) Q,A −→ ∀〈P, f,Q,A〉 ∈ S. Γ �n P (Call f) Q,A (4.31)

The proof follows by induction on n.

– n = 0: follows trivially since there’s no procedure execution if the recursion limit is 0.

– n = m+ 1: It is known that

∀〈P, f,Q,A〉 ∈ Θ. Γ �m+1 P (Call f) Q,A.

By monotonicity lemma (1) follows

∀〈P, f,Q,A〉 ∈ Θ. Γ �m P (Call f) Q,A,
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and by induction hypothesis,

∀〈P, f,Q,A〉 ∈ S. Γ �m P (Call f) Q,A.

Then
∀〈P, f,Q,A〉 ∈ (Θ ∪ S). Γ �m P (Call f) Q,A. (4.32)

By unfolding the validity definition to the hypothesis 4.30 and having 4.32,

∀〈P, f,Q,A〉 ∈ S. Γ �m P (the (Γf)) Q,A.

Using the execution rule with recursion limit follows

∀〈P, f,Q,A〉 ∈ S. Γ �m+1 P (Call f) Q,A.

The intended soundness result is finally achieved by joining proposition 1 and lemma 2.

Proposition 2 (Soundness within context).

Γ,Θ ` P c Q,A −→ Γ,Θ � P c Q,A

4.3.2 Completeness

For a complete proof system, every true formula is provable within the system. And, since this is the case

of an axiomatic deductive system, it follows that the set of all provable formulas is recursively enumerable.

On the other hand, consider the Hoare formula

Γ � true Skip Q,A.

This formula is valid iff
∀s. s ∈ true −→ s ∈ wpΓ,Θ(Skip, Q, A)

which is equivalent to
∀s. s ∈ true −→ s ∈ Q.

Hence, having a recursively enumerable set of true formulas for system 4.1 could be reduced to having

an recursively enumerable set of true formulas for assertions in HOL. Now, this is impossible according

to Gödel’s incompleteness theorem and therefore the introduced proof system cannot be complete.

Moreover, consider the Hoare formula

Γ � true c false, false.

This formula is valid if and only if c terminates for no initial state. The set of true formulas cannot

be recursively enumerable because that would mean the halting problem would be decidable. Again, the

proof system cannot be complete.
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This incompleteness arises precisely due to the incompleteness of HOL, the language used for asser-

tions. Though Hoare logic is not complete, due to its inheritance of HOL, its relative completeness can

be proved. Cook [16] introduces the notion of relative completeness by separating incompleteness of the

assertion language from incompleteness due to inadequacies in the axioms and rules for the programming

language constructs. Completeness is proved on the assumption that there is an oracle which can be

inquired about the validity of an HOL assertion, hence the denomination of relative completeness.

The proof relies on the concept of weakest precondition. From the definition of weakest precondition

9, the following lemma can be inferred.

Lemma 3.

Γ,Θ � P c Q,A −→ (s ∈ P −→ s ∈ wpΓ,Θ(c, Q, A))

A useful weakest precondition property regarding the derivation of a formula and its precondition is

also proven.

Lemma 4.

Γ,Θ ` wpΓ,Θ(c,Q,A) c Q,A

Proof. The proof follows by showing that the rules in system 4.1 preserve this property using structural

induction on c.

• c = Skip. By the Skip axiom
Γ,Θ ` Q Skip Q,A. (4.33)

For the Upd and Revert cases the proof is equivalent.

• c = Seq c1 c2. By induction hypothesis follows

Γ,Θ ` wpΓ,Θ(c1, wpΓ,Θ(c2, Q, A), A) c1 wpΓ,Θ(c2, Q,A), A (4.34)

Γ,Θ ` wpΓ,Θ(c2, Q, A) c2 Q,A. (4.35)

Hence by the Seq rule the result follows

Γ,Θ ` wpΓ,Θ(c1, wpΓ,Θ(c2, Q, A), A) (Seq c1 c2) Q,A. (4.36)

The proof for the Handle case is equivalent.

• c = If b c1 c2. By induction hypothesis

Γ,Θ ` wpΓ,Θ(c1, Q, A) c1 Q,A (4.37)

Γ,Θ ` wpΓ,Θ(c2, Q, A) c2 Q,A. (4.38)

It is known that

wpΓ,Θ(c1, Q, A) = wpΓ,Θ(c, Q, A) ∩ b (4.39)

wpΓ,Θ(c2, Q, A) = wpΓ,Θ(c, Q, A) ∩ −b. (4.40)
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So

Γ,Θ ` wpΓ,Θ(c, Q, A) ∩ b c1 Q,A (4.41)

Γ,Θ ` wpΓ,Θ(c, Q, A) ∩ −b c2 Q,A, (4.42)

and by the If rule

Γ,Θ ` wpΓ,Θ(If b c1 c2, Q, A) (If b c1 c2) Q,A. (4.43)

• c = While b c1. The following semantic equivalence holds

While b c1 ≡ If b (Seq c1 (While b c1)) Skip. (4.44)

It is also possible to infer

wpΓ,Θ(If b (Seq c1 (While b c1)) Skip, Q, A) = {s. (s ∈ b −→ s ∈ wpΓ,Θ (Seq c1 (While b c1)), Q, A)) ∧

(s /∈ b −→ s ∈ wpΓ,Θ (Skip, Q, A))} =

{s. (s ∈ b −→ s ∈ wpΓ,Θ (Seq c1 (While b c1)), Q, A))

∧ (s /∈ b −→ s ∈ Q} =

wpΓ,Θ(While b c1)

By the If case follows that

Γ,Θ ` wpΓ,Θ (While b c1, Q, A) (While b c1) Q,A. (4.45)

• c = Call f . By induction hypothesis

(wpΓ,Θ (the (Γ f), Q, A), f, Q, A) ∈ S (4.46)

and
∀(wpΓ,Θ (the (Γ f), Q, A), f, Q, A) ∈ S. f ∈ dom Γ ∧

Γ, (Θ ∪ S) ` wpΓ,Θ (the (Γ f), Q, A) (the (Γ f)) Q,A.
(4.47)

Suppose Pf is the precondition for the specification of function f . Since tuples in S are function
specifications, it follows that

wpΓ,Θ (the (Γ f), Q, A) = Pf (4.48)

and
(Pf , f, Q, A) ∈ S. (4.49)

Having 4.49 and 4.47, and using the CallRec rule follows

Γ,Θ ` Pf (Call f) Q,A, (4.50)

which is equivalent to
Γ,Θ ` wpΓ,Θ(Call f, Q,A) (Call f) Q,A. (4.51)

• c = DynCom c′. By induction hypothesis

∀s ∈ wpΓ,Θ(c′ s, Q, A). Γ,Θ ` wpΓ,Θ(c′ s, Q, A) (c′ s) Q,A. (4.52)
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Since

∀s ∈ wpΓ,Θ(c′ s, Q, A). (
⋂

s

wpΓ,Θ(c′ s, Q, A) ⊆ wpΓ,Θ(c′ s, Q, A)), (4.53)

the precondition can be strengthened

∀s ∈ wpΓ,Θ(c′ s, Q, A). Γ,Θ `
⋂

s

wpΓ,Θ(c′ s, Q, A) (c′ s) Q,A. (4.54)

Having 4.54, by the DynCom rule follows

Γ,Θ `
⋂

s

wpΓ,Θ(c′ s, Q, A) (DynCom c′) Q,A, (4.55)

which is equivalent to

Γ,Θ ` wpΓ,Θ(DynCom c′, Q,A) (DynCom c′) Q,A. (4.56)

Finally, the (relative) completeness proposition can be inferred.

Proposition 3 (Completeness).

Γ,Θ � P c Q,A −→ Γ,Θ ` P c Q,A

Proof. Assuming the validity holds, from lemma 3 follows that s ∈ P implies that s ∈ wpΓ,Θ(c,Q,A).

Therefore the precondition of Γ,Θ ` wpΓ,Θ(c,Q,A) c Q,A can be strengthened, resulting in Γ,Θ `

P c Q,A.

4.4 Computation of verification conditions

In this section a strategy for the backward propagation method for Hoare logic is approached. Backward

propagation of assertions can be made through the computation of the weakest precondition for each

rule. The automation of this method can be achieved, but with the exception of some features. The

invariant of a while loop must be supplied explicitly and the proof of the verification condition plus side

conditions cannot be fully automated, although some simplifications can be made.

To facilitate the automation, more specifically stating an invariant, the concept of annotated command

is introduced. Its syntax is defined by the polymorphic datatype ś acom, where ś is the state space

type, ś⇒ ś a state-update function and fname the type of function names. The syntax is equivalent to

normal commands except for the While command, which is annotated with the corresponding invariant,

as an assertion.
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Definition 15 (Syntax for annotated commands). The syntax for annotated commands is defined by the

polymorphic datatype ś acom.

′s acom := Skip | Upd ′s ⇒ ′s | Seq ′s acom ′s acom | If ′s bexp ′s acom ′s acom

| While ′s assn ′s bexp ′s acom | Dyncom ′s ⇒ ′s acom | Call fname
| Revert | Handle ′s acom ′s acom

The weakest precondition calculus for annotated commands is the same as for normal commands

except for While where it becomes the loop invariant.

Definition 16 (Weakest precondition calculus for annotated commands). The weakest precondition cal-

culus for annotated commands is inductively defined as follows

wpΓ,Θ (Skip, Q, A) = Q

wpΓ,Θ (Revert, Q, A) = A

wpΓ,Θ (Upd f, Q, A) = {s. f s ∈ Q}

wpΓ,Θ (Seq c1 c2, Q, A) = wpΓ,Θ (c1, wpΓ,Θ (c2, Q, A), A)

wpΓ,Θ (If b c1 c2, Q, A) = {s. (s ∈ b −→ s ∈ wpΓ,Θ (c1, Q, A)) ∧ (s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))}

wpΓ,Θ (While I b c, Q, A) = I

wpΓ,Θ (Call f, Q, A) = Pf , such that f ∈ dom Γ ∧ (Pf , f, Qf , Af ) ∈ Θ

wpΓ,Θ (DynCom c, Q, A) =
⋂

s

wpΓ,Θ (c s, Q, A)

wpΓ,Θ (Handle c1 c2, Q, A) = wpΓ,Θ (c1, Q, wpΓ,Θ (c2, Q, A)).

The goal for a verification condition computation is to follow a strategy which simulates a derivation

in the proof system for Hoare logic. Therefore, the vc computation for each command can be obtained

using the structure of each rule in the proof system.

To simplify the generation of unnecessary conditions, verification conditions are calculated indepen-

dently from preconditions. An auxiliary function vcΓ,Θ
aux computes the conditions generated from the

structure of the rules. The main function vc is then constituted by the conditions generated by vcΓ,Θ
aux

and a condition which verifies that the precondition implies the weakest precondition of the program.

Definition 17 (Verification condition I). The verification condition function vc is defined as

vc (Γ,Θ ` P c Q,A) = P ⊆ wpΓ,Θ (c, Q, A) ∪ vcΓ,Θ
aux (c, Q, A),

where the auxiliary verification condition vcΓ,Θ
aux is inductively computed as
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vcΓ,Θ
aux (Skip, Q, A) = ∅

vcΓ,Θ
aux (Revert, Q, A) = ∅

vcΓ,Θ
aux (Upd f, Q, A) = ∅

vcΓ,Θ
aux (Seq c1 c2, Q, A) = vcΓ,Θ

aux (c1, wpΓ,Θ(c2, Q, A), A) ∪ vcΓ,Θ
aux (c2, Q, A)

vcΓ,Θ
aux (If b c1 c2, Q, A) = vcΓ,Θ

aux (c1, Q, A) ∪ vcΓ,Θ
aux (c2, Q, A)

vcΓ,Θ
aux (While I b c, Q, A) = (I ∩ b) ⊆ wpΓ,Θ (c, I, A) ∪ vcΓ,Θ

aux (c, I, A) ∪ (I ∩ −b) ⊆ Q

vcΓ,Θ
aux (Call f, Q, A) = Qf ⊆ Q

vcΓ,Θ
aux (DynCom c, Q, A) =

⋂
s

vcΓ,Θ
aux (c s, Q, A)

vcΓ,Θ
aux (Handle c1 c2, Q, A) = vcΓ,Θ

aux (c1, Q, wpΓ,Θ(c2, Q, A)) ∪ vcΓ,Θ
aux (c2, Q, A).

However, upon the verification of a program with any number of function calls, one has to use assume

their specification is valid and belongs to the set of assumptions.

In order to do so, let c be the program to be verified and consider the set S which contains the

specification for every function call that is generated by executing c. Upon the verification of c, the body

of every function in S is verified. The set S is added to the set of assumption so, in case these bodies

contain other calls, the specification can be assumed.

A verification condition suitable for every program is formalized.

Definition 18 (Verification condition II). Let S be the set of specifications for every function whose call
is generated by the execution of c. The verification condition function V C for c is defined as

V C (Γ,Θ ` P c Q,A) = P ⊆ wpΓ,Θ (c, Q, A) ∪ vcΓ,Θ
aux (c, Q, A) ∪

⋃
〈P,f,Q,A〉∈S

vc (Γ, (Θ∪S) ` P (the (Γ f)) Q,A).

4.4.1 An alternative formulation of rules

In order to implement these verification condition computations, which explicitly separate the main

verification condition, the inclusion of precondition in the weakest precondition of the program, from

auxiliary conditions generated from the structure of the rules, the main rules in 4.1 are modified to a

structure that will be referred as weakest precondition style.

First, the vc function is applied to each case to obtain the premises of the modified rules. For the

simpler cases Skip, Revert and Upd, the rule is obtained straightforwardly.

vc (Γ,Θ ` P Skip Q, A) = P ⊆ Q

vc (Γ,Θ ` P Revert Q, A) = P ⊆ A

vc (Γ,Θ ` P (Upd f) Q,A) = P ⊆ {s. f s ∈ Q}

From these computations the intuition for the rules follows. Note that the derivation of the new rules

from the initial set of rules is proved in Isabelle using the Consequence rule.
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P ⊆ Q

Γ,Θ ` P Skip Q,A
(Skip′)

P ⊆ A

Γ,Θ ` P Revert Q,A
(Revert′)

P ⊆ {s. f s ∈ Q}

Γ,Θ ` P (Upd f) Q,A
(Upd′)

Figure 4.2: Weakest precondition style rules for Skip, Revert and Upd

For the Seq case, the intermediate assertion corresponds to the weakest precondition for the second

command. Let R = wpΓ,Θ (c2, Q, A). The unfolding of the vc computation leads to no modification to

the rule. This makes sense since the rule introduces a relation, as an assertion, between two statements.

vc (Γ,Θ ` P (Seq c1 c2) Q,A) = P ⊆ wpΓ,Θ (Seq c1 c2, Q, A) ∪

vcΓ,Θ
aux (c1, wpΓ,Θ (c2, Q, A), A) ∪ vcΓ,Θ

aux (c2, Q, A)

= P ⊆ wpΓ,Θ (c1, wpΓ,Θ(c2, Q, A), A) ∪ vcΓ,Θ
aux (c1, R, A) ∪

R ⊆ wpΓ,Θ (c2, Q, A) ∪ vcΓ,Θ
aux (c2, Q, A)

= vc (Γ,Θ ` P c1 R,A) ∪ vc (Γ,Θ ` R c2 Q,A)

For the If case, let P1 = wpΓ,Θ (c1, Q, A) and P2 = wpΓ,Θ (c2, Q, A) in the vc computation.

The rule follows such by stating a weakest precondition which depends on P1 and P2.

vc (Γ,Θ ` P (If b c1 c2) Q,A) = P ⊆ wpΓ,Θ (If b c1 c2, Q, A) ∪ vcΓ,Θ
aux (c1, Q, A) ∪ vcΓ,Θ

aux (c2, Q, A)

= P ⊆ {s. (s ∈ b −→ s ∈ wpΓ,Θ (c1, Q, A)) ∧ (s /∈ b −→ s ∈ wpΓ,Θ (c2, Q, A))} ∪

vcΓ,Θ
aux (c1, Q, A) ∪ vcΓ,Θ

aux (c2, Q, A)

= P ⊆ {s. (s ∈ b −→ s ∈ P1) ∧ (s /∈ b −→ s ∈ P2)} ∪

vcΓ,Θ
aux (c1, Q, A) ∪ P1 ⊆ wpΓ,Θ (c1, Q, A)) ∪ vcΓ,Θ

aux (c2, Q, A) ∪

P2 ⊆ wpΓ,Θ (c2, Q, A))

= P ⊆ {s. (s ∈ b −→ s ∈ P1) ∧ (s /∈ b −→ s ∈ P2)} ∪

vc (Γ,Θ ` P1 c1 Q,A) ∪ vc (Γ,Θ ` P2 c2 Q,A)

P ⊆ {s. (s ∈ b −→ s ∈ P1) ∧ (s /∈ b −→ s ∈ P2)} Γ,Θ ` P1 c1 Q,A Γ,Θ ` P2 c2 Q,A

Γ,Θ ` P (If b c1 c2) Q,A
(If ′)

Figure 4.3: Weakest precondition style rule for If

For the While case, the rule follows simply by unfolding definitions in the vc computation.
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vc (Γ,Θ ` P (While b c) Q,A) = P ⊆ wpΓ,Θ (While b c, Q, A) ∪ (I ∩ b) ⊆ wpΓ,Θ (c, I, A) ∪ vcΓ,Θ
aux (c, I, A) ∪

(I ∩ −b) ⊆ Q

= P ⊆ I ∪ vc (Γ,Θ ` (I ∩ b) c I, A) ∪ (I ∩ −b) ⊆ Q

P ⊆ I Γ,Θ ` (I ∩ b) c I, A (I ∩ −b) ⊆ Q

Γ,Θ ` P (While b c) Q,A
(While′)

Figure 4.4: Weakest precondition style rule for While

The remaining rules such as Handle and DynCom are not taken into account since they are only

used as auxiliary statements for calling procedures and reverting state changes. The rules for these more

complex language structures are approached in 4.5.

Using this system of rules stated in a weakest precondition style, the method for proving Hoare

formulas follows a structured and simplified strategy, in a sense that it mimics a recursive computation

and that unnecessary conditions are not generated. It follows a path with the main goal of proving the

implication of the precondition in the generated weakest precondition, always separating this path from

the ones for auxiliary verification conditions. An implementation of a tactic for the automatic application

of these rules can be written in ML, which can then be used in Isabelle/HOL proofs.

4.4.2 Factorial as an example

As an example for the explicit application of this method, a proof for the imperative factorial program

3.3 is presented. A factorial definition fac, which is used in the specification assertions, is defined in

HOL.

fac :: nat⇒ nat where

fac i = (if i ≤ 0 then 1 else fac (i− 1) × i)
(4.57)

The goal is to prove the derivation 4.58 by a successive backwards application of the weakest precon-

dition rules, resulting in verification conditions to be proved.

Γ,Θ ` {| á = i|} fac imp {| ŕes = fac i|}, {} (4.58)

After unfolding the fac imp definition, the Seq rule is applied, followed by the Upd’ rule and subset

inclusion simplifications which results in the subgoal
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1. Γ,Θ `{| s. a s = i s|}

Upd (b update (λ .1)); ;

While{s. 0 < a s} (Upd (s. s(|b := b s× a s|)); ; Upd (s. s(|a := a s− 1|))

{s. s(|res := b s |) ∈ {s. b s = fac (i s)}}, {}.

The Seq rule is, again, applied, followed by the While’ rule where the invariant is supplied:

I = {s. b s× fac(a s) = fac(i s)}

This results in 3 subgoals:

1. Γ,Θ `{s. b s× fac(a s) = fac(i s)} ∩ {s. 0 < a s}

Upd (s. s(|b := b s× a s|)); ; Upd (s. s(|a := a s− 1|)

{s. b s× fac(a s) = fac(i s)

2. {s. b s × fac(a s) = fac(i s)} ∩ −{s. 0 < a s} ⊆ {s. s(|res := b s |) ∈ {s. b s = fac (i s)}}

3. Γ,Θ `{| s. a s = i s|} Upd (b update (λ .1)) {s. b s× fac(a s) = fac(i s).

For the first subgoal, the Seq rule is applied, next to successive Upd’ rules. For the third, the Upd’
rule is applied once, which results in the final verification conditions:

1. {s. b s× fac(a s) = fac(i s)} ∩ {s. 0 < a s} ⊆

{s. s(|b := b s× a s|) ∈ {s. s(|a := a s− 1|) ∈ {s. b s× fac(a s) = fac(i s)}}}

2. {s. b s × fac(a s) = fac(i s)} ∩ −{s. 0 < a s} ⊆ {s. s(|res := b s |) ∈ {s. b s = fac (i s)}}

3. {| s. a s = i s|} ⊆ {s. s(|b := 1|) ∈ {s. b s× fac(a s) = fac(i s)}}.

The first and third conditions follow by simplification using the fac definition. The second condition is

proved using an auxiliar lemma which states

0 < a x =⇒ b x× a x× fac(a x− 1) = b x× (fac(a x− 1)× a x). (4.59)

4.5 Rules for derived statements

In this section the rules for additional language features described in 3.6, such as exception handling and

procedure calls, are derived.

Since the Require command is modelled as a conditional statement, the rule is derived using 4.3. The

auxiliary conditions result in Γ,Θ ` P1 Skip Q,A and Γ,Θ ` P2 Revert Q,A, which can be omited by

taking P1 as Q and P2 as A by the axioms Skip and Revert.

P ⊆ {s. (s ∈ b −→ s ∈ Q) ∧ (s /∈ b −→ s ∈ A)}

Γ,Θ ` P (Require b) Q,A
(Require′)

The Init statement corresponds to a regular execution of the body ending in a state for which the
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regular postcondition Q holds or, in the case of an exception being thrown, the execution ends in a state

such that by reverting all state changes the exceptional postcondition A holds. To do so, a dependence

on the initial state s is introduced in the premise.

∀s ∈ P. Γ,Θ ` P bdy Q, {t. rvrt s t ∈ A}

Γ,Θ ` P (Init bdy rvrt) Q,A
(Init)

4.5.1 Calling a function

As described in 3.6.2 a call statement allows to model parameter passing, resetting local variables and

returning a result.

So, whenever a call statement occurs, we want to apply a rule that uses the specification of the

procedure so we can then apply the CallRec rule (or one of its variants) to deal with the possibility of

recursion.

In order to do so, the specification must be adapted to the current context. Let 〈P ′ Z, f, Q′ Z, A′ Z〉

be the specification of Call f . A suitable instance of the auxiliary variable Z must be found such that

the precondition of the specification P ′ Z holds.

The execution starts in state s such that the precondition P holds, then Z is found such that pass s ∈

P ′ Z. It is known that t ∈ Q′ Z because of the specification, where t is the result after execution the

body of the called procedure. R s t is the assertion, which depends on the initial state s and t, that holds

after returning from the call and before returning a result. This will lead to the final result such that Q

holds.

s t

∈ ∈ ∈ ∈ ∈

P P ′ Z Q′ Z R s t Q

pass s Call f return s t result s t

call pass f return result

Figure 4.5: Control flow for call with assertions

To derive such a rule, the Kleymann style consequence rule is used, the explicity of Z makes it easier

to adapt the specification to the current context.

The weakest precondition consists in finding the suitable instance of Z and stating the relation between

the states in Q′ Z and R s t. The specification of the procedure is presented as an Hoare formula. The

states s and t are universally quantified since a dependence on those states is created.
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P ⊆ {s. ∃Z. pass s ∈ P ′ Z ∧ (∀t. t ∈ Q′ Z −→ return s t ∈ R s t)}
∀Z. Γ,Θ ` (P ′ Z) (Call f) (Q′ Z), A ∀st. Γ,Θ ` (R s t) (result s t) Q,A

Γ,Θ ` P (call pass f return result) Q,A
(CallRec′)

With this rule, the method for reasoning about procedure calls can now be fully explained. When

such is encountered, if it is in the form of an call statement, the weakest precondition style CallRec’ rule

is applied to adapt the statement to its specification, the statement becomes presented in the simple form

Call f .

When the call is in the form Call f , if the called procedure presents any form of recursion, the

CallRec rule, or one of its more specific versions (see 4.1.2), is used. Those include versions explicit about

auxiliary variables and procedures, therefore being specific for a single recursive procedure CallProcRec1,

a set of recursive procedure or even mutual recursion CallProcRec. The body is unfolded and whenever

a recursive call appears, it is know that its specification was added to Θ and therefore the Asm rule can

be applied.

In the case of a non recursive procedure, the CallBody rule is applied which simply unfolds the

procedure body.

In conclusion, consider a recursive version of factorial. The function body fac rec contains the

statement call fac which is defined as a call statement and corresponds to a recursive call to fac rec for

á− 1.

fac rec :: st com where

fac rec ≡ IF (́a = 0) THEN ŕ ::= 1
ELSE (call fac ; ; ŕ ::= á× ŕ)

call fac :: st com where

call fac ≡ call (λs. sLa := a s− 1M)
fac rec

(λst. tLa := a sM)
(λst. Upd (λu. uLr := r tM))

Figure 4.6: Factorial program in SOLI - recursive version

The goal is to verify the factorial body for all possible values for á. In order to do so, the auxiliary

variable n is introduced and generally quantified.

∀n. Γ,Θ ` ⦃a = n⦄ Call fac rec ⦃r = fac n⦄, {}

Since this is a situation of a single recursive procedure with an explicit auxiliary variable, the Call-

ProcRec1 rule is applied. The factorial specification is added to the set of assumptions for all instances

of the auxiliary variable n and the body of the called procedure is unfolded. The body is verified and

42



upon appearance of the statement call fac, the CallRec’ rule is applied, followed by the Asm rule which

uses the added assumption to verify the recursive call.
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5
Application to real-world smart contracts

In this chapter SOLI is tested on actual smart contracts, in particular some vulnerable ones. An electronic

voting contract, a Token with an overflow bug and a simplified version of DAO are analyzed.

5.1 Electronic voting

One of the applications for smart contracts is electronic voting. In this example the Ballot contract1,

which features automatic and transparent vote counting and delegate voting, is presented. This contract

illustrates a vast majority of Solidity’s features.

Structs are complex variables which are constituted by a set of variables, in SOLI they are represented

as records. The Ballot contract has a V oter that contains the weight of the voter, which is accumulated

by delegation, a boolean that states whether the person already voted, in case of vote delegation, the

delegate’s address, and the index of the voted proposal. It also contains a Proposal struct which contains

the proposal name and corresponding vote count.

record V oter =

weight :: nat

voted :: bool

delegate :: address

vote :: nat

record Proposal =

name :: char list

voteCount :: nat

(5.1)

As global variables the contract contains an address chairperson, a mapping voters between addresses

and V oter structs and a list of Proposal structs, which are stored in the st record.

record st = env +

chairperson :: address

voters :: address ⇒ V oter

proposals :: Proposal list

(5.2)

The contract is composed by the constructor function, the giveRightToV ote function, which increases

the weight of a voter (who hasn’t already voted) to 1 and can only be called by chairperson, the delegate

function which can be used by a voter to delegate his vote, the vote function which gives the person’s vote

weight to a proposal, the winningProposal function which computes the winning proposal by finding
1 https://solidity.readthedocs.io/en/v0.5.12/solidity-by-example.html
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the maximum value of voteCount in the proposal list and, finally, the winnerName function which uses

the previous computation to return the name of the winner proposal.

INIT is defined as an init statement to revert all state changes in case of exception, that is, resetting

the global variables to their initial values. Every function of the contract begins with this statement.

This example is focused on the verification of the winnerName function, which returns the name of

the winning proposal by calling the winningProposal function which returns the corresponding index.

This function finds the maximum value of voteCount in the list of proposals using a loop. It introduces

the necessity of supplying an invariant and to verify that, while the list is gone through, the current

maximum is correctly computed. This computation compares the current value of the list with the

previous maximum. The verification requires a definition on the maximum of a list and additional

lemmas on the matter to be introduced.

In order to internally call the winningProposal function, call wp is defined as a call statement where

the result value winningProposal out is passed to the variable r. The body function Γ is defined so that

the (Γ winningProposal) = winningProposal com.

winningProposal com :: loc com

winningProposal com ≡
INIT ( ẃinningProposal out ::= 0; ;

ẃinningV oteCount ::= 0; ;
ṕ ::= 0; ;
WHILE (́p < length ṕroposals) DO

IF (́winningV oteCount < voteCount ṕroposals[́p]) THEN
ẃinningV oteCount ::= voteCount ṕroposals[́p]; ;
ẃinningProposal out ::= ṕ; ;

ṕ ::= ṕ+ 1)

winnerName com :: loc com

winnerName com ≡
INIT ( call wp; ;

ẃinnerName out ::= name ṕroposals[́r])

call wp :: st com

call wp ≡ call (λs. s) winningProposal (λst. t)
(λst. Upd (λu. uLr := winningProposal out tM))

Figure 5.1: winningProposal and winnerName functions

The verification consists in showing that the returned value r from the winningProposal function

corresponds to the maximum vote count of the list and that the output of the winnerName function is

the corresponding name. The max′ function was defined to retrieve the maximum of a list of natural

numbers.

While reasoning about the current element of the list, located at index p, the list selector function
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is used. However, it is not defined for the empty list. If the list of proposals is empty, at some point in

the verification, since p is initialized as 0, the first element of the list is selected from the empty list and

therefore the verification does not succeed.

The assumption that the list must be not empty is added. The assumption can be either be added

to the precondition or to the actual function as a Require statement. Since this is assumed, the winning

proposal is initialized as the list’s first element which will be compared with the next element by initializing

p as 1. These modifications are added to the winningProposal function.

winningProposal com :: loc com

winningProposal com ≡
INIT ( REQUIRE (length ṕroposals > 0); ;

ẃinningProposal out ::= 0; ;
ẃinningV oteCount ::= voteCount ṕroposals[0]; ;
ṕ ::= 1; ;
WHILE (́p < length ṕroposals) DO

IF (́winningV oteCount < voteCount ṕroposals[́p]) THEN
ẃinningV oteCount ::= voteCount ṕroposals[́p]; ;
ẃinningProposal out ::= ṕ; ;

ṕ ::= ṕ+ 1)

Figure 5.2: winningProposal updated function

The properties regarding the correctness of the function outputs to be verified can be stated as the

regular postcondition of a Hoare formula. The initial values for global variables are stored in the auxiliar

variables chair, vtrs and prop.

Γ,Θ ` ⦃ chair = ćhairperson ∧ vtrs = v́oters ∧ prop = ṕroposals ⦄

winnerName com

⦃ max′ (map voteCount prop) = (map voteCount prop)[́r] ∧

ẃinnerName out = name prop[́r] ⦄,

⦃ ćhairperson = chair ∧ v́oters = vtrs ∧ ṕroposals = prop ⦄

(5.3)

The invariant I for the function loop is supplied which states the limits that should be verified on

the value of p and that, while the loop iterates through the list, the current winningV oteCount is the

maximum of the p first elements of the list.

I = ⦃ 1 ≤ ṕ ≤ length prop ∧

ẃinningV oteCount = max′(take ṕ (map voteCount prop)[́winningProposal out] ⦄
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The application of the verification method results, after simplification, in two conditions.

1. ṕroposals 6= {} =⇒

1 ≤ length ṕroposals ∧ voteCount ṕroposals[0] = max′ (take 1 (map voteCount ṕroposals))

2. ṕ < length ṕroposals =⇒

( max′ (take ṕ (map voteCount ṕroposals)) < voteCount ṕroposals[́p] −→

max′ (take (́p+ 1) (map voteCount ṕroposals)) = voteCount ṕroposals[́p])

( ¬ max′ (take ṕ (map voteCount ṕroposals)) < voteCount ṕroposals[́p] −→

max′ (take (́p+ 1) (map voteCount ṕroposals)) = max′ (take ṕ (map voteCount ṕroposals)))

(5.4)

To verify these conditions, some auxiliary lemmas are introduced. The first verification condi-

tion is generated from the simplification of the inclusion of the precondition in the weakest precon-

dition of the program. The condition is proven using lemmas 5 and 6, together with the fact that

voteCount ṕroposals[0] = (map voteCount ṕroposals)[0]. Both these lemmas are proven by induction

on the structure of l.

Lemma 5.

l 6= {} =⇒ 1 ≤ length l.

Lemma 6.

l 6= {} =⇒ l[0] = max′ (take 1 l).

In order to prove the second condition, which results from the invariant, lemma 7 is presented. It

states, under the assumption that a list is not empty, that the maximum of the list is the maximum

between the list of its first n− 1 members and its last element.

Lemma 7.

{x1, ... , xn} 6= {} =⇒ max′ ({x1, ... , xn}) = max (max′ {x1, ... , xn−1}) xn.

It follows by induction on the structure of the list using the definition of max′ and functions last and

butlast. For l = {x1, ... , xn}, butlast l = {x1, ... , xn−1} and last l = xn.

Consider lemma 8.

Lemma 8. Let ṕ be an uint, then

ṕ < length l =⇒ l 6= {}.

It follows that ṕ < length ṕroposals =⇒ ṕroposals 6= {}. Lemma 7 can now be used to prove the

condition by taking {x1, ... , xn} as take (́p+ 1) (map voteCount ṕroposals).
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5.2 Ethereum tokens

Ethereum not only has its own currency, ether, but also has tokens which can act like currency. Most of

Ethereum tokens follow the ERC20 standard, which defines a set of functions to be implemented by the

tokens to allow integration between them. This set includes the basic operations of transferring tokens,

approving allowance of tokens to a delegate account and retrieving the total supply, the balance of an

address, or the allowance of an address to another.

Solidity, and specially token smart contracts, are prone to underflows and overflows since the EVM

works with 256-bit unsigned integers and, therefore, all operations are performed modulo 256.

As an example of a vulnerable implementation of an ERC20 token, the Hexagon (HXG) token2 will

be taken into account. Amongst its global variables the contract contains a mapping balanceOf between

addresses and their balances, a mapping allowances between addresses and another mapping between

addresses and the allowed value. It also contains an uint burnPerTransaction which is set to 2.

The Hexagon contract contains a transfer function which is used by other contract functions to

transfer a value of tokens val, between an address from and the address to. During the transaction

there’s a fee burnPerTransaction, which is charged to the from account. That fee is burned by being

sent to the 0x0 address.

transfer :: loc com
transfer ≡

INIT (REQUIRE (́to 6= ádr0); ;
REQUIRE (́balanceOf f́rm ≥ v́al + b́urnPerTransaction); ;
REQUIRE (́balanceOf t́o+ v́al ≥ b́alanceOf t́o); ;
b́alanceOf ::= b́alanceOf (́frm := b́alanceOf f́rm− (́val + b́urnPerTransaction)); ;
b́alanceOf ::= b́alanceOf (́to := b́alanceOf t́o+ v́al); ;
b́alanceOf ::= b́alanceOf (́adr0 := b́alanceOf ádr0 + b́urnPerTransaction); ;
ćurrentSupply ::= ćurrentSupply − b́urnPerTransaction)

Figure 5.3: transfer function from the Hexagon contract

In order for this function to meet its specification it should be the case that, after the function is

executed, the balance of address from decreases by val + 2, the balance of address to increases by val

and the balance of address adr0 increases by 2. In case of failure of one of the require statements, the

balances should maintain their initial values. These conditions are expressed by formula 5.5 where some

auxiliary variables are introduced to store initial values.

2 https://etherscan.io/address/0xB5335e24d0aB29C190AB8C2B459238Da1153cEBA#code
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Γ,Θ ` ⦃ b́urnPerTransaction = 2 ∧ from = f́rm ∧ t = t́o ∧ a = ádr0 ∧

bal from = b́alanceOf from ∧ bal to = b́alanceOf t ∧ bal a = b́alanceOf a ∧

supply = ćurrentSupply ∧ from 6= a ∧ from 6= t ∧ a 6= t ⦄

transfer

⦃ uint (́balanceOf from) = uint bal from− (uint v́al + 2) ∧

uint (́balanceOf t) = uint bal to+ uint v́al ∧ uint (́balanceOf a0) = uint bal a+ 2⦄,

⦃ b́alanceOf from = bal from ∧ b́alanceOf t = bal to ∧ b́alanceOf a = bal a⦄

(5.5)

Note that the conditions in the regular postcondition are stated using the uint Isabelle function which

casts an unsigned integer to an integer. This allows to check that an operation does not underflow or

overflow. For instance, for the addition operation, it is known that

uint (x+ y) = if (uint x+ uint y < 2256)

then uint x+ uint y

else uint x+ uint y − 2256.

(5.6)

Therefore the addition of x and y does not overflow if uint (x+ y) = uint x+ uint y.

However, looking at the transfer function, there’s no condition that prevents overflow when adding

v́al and b́urnPerTransaction. The uint arith Isabelle tactic is used in the proof to unfold this definition,

which gets stuck with a verification condition which depends precisely on that condition. One is not able

to prove 5.5 since there’s no way to guarantee

uint (val + 2) = uint val + 2 (5.7)

and therefore prove
uint (balanceOf from) = uint (bal from− (val + 2))

= uint bal from− (uint val + 2)
(5.8)

This vulnerability can be exploited. Suppose the transfer function is called by an attacker with val

equal to 2256 − 2. It follows that val+ burnPerTransaction = 2256 − 2 + 2 = 0 and therefore the second

require statement’s guard will become balanceOf f́rm ≥ 0 which is always true. The balance of f́ rm is

then decreased by 0 and the balance of t́o increased by 2256 − 2.

To solve this issue a require statement can be added to the transfer function which checks if v́al +

b́urnPerTransaction < 2256.

An additional good practice is to use the solidity library SafeMath, which prevents overflow and

underflow for every arithmetic operation.

Similar results regarding addition overflow were obtained for the SMT and SCA tokens, in the

transferProxy and transferMulti functions, respectively. A result regarding multiplication overflow

was also analyzed in the batchTransfer function present in the BEC token contract.
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5.3 Reentrancy

A DAO is a Decentralized Autonomous Organization built using the Ethereum blockchain. Its goal is to

codify the rules and decision making procedures of an organization, eliminating the need for documents

and people in charge, creating a structure with decentralized control. A DAO has associated tokens,

used to give the investors the right to vote on projects.

In 2016, an hacker exploited a bug in the DAO contract which resulted in the loss of approximately

$50 million in ether. This was the first reentrancy attack which consisted in draining funds using the

attacker’s fallback function.

A fallback function is a contract’s function, with no arguments or return values, which is automatically

executed whenever a call is made to the contract and none of its other functions match the given function

identifier or no data is supplied. This is the case when the contract receives ether, with no data specified.

The vulnerability consisted in the fact that DAO’s withdraw function uses call.value() to send ether

to the caller’s account. Now, this triggers its fallback function, which contains arbitrary code defined by

the owner.

To deepen the technical aspects of this attack, a simplified version of the DAO contract, babyDao, is

approached. This version consists in a mapping credit between addresses and their respective balances,

defined as a global variable, the constructor function, a donate function, a getCredit function and a

withdraw function. The purpose of the withdraw function is to drain all caller’s funds in the contract

and send this value in ether to its account. This is modelled as the call statement call value defined so

that the values of some environment variables, msg sender, msg value and address this, are updated,

the balance of user is increased by msg value and the balance of babyDao is decreased by the same

amount. Then, the fallback function’s code is executed and to return from the call, the global variables

values are restored. After this operation, the credit of user is updated to 0. The body function Γ is

defined so that the (Γ withdraw) = withdraw com and the (Γ fallback) = fallback com.

withdraw com :: loc com
withdraw com ≡ INIT (

IF (́credit user > 0) THEN
call value; ;

ćredit ::= ćredit(user := 0))

Figure 5.4: withdraw function
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call value :: loc com

call value ≡ call (λs. sL msg sender := address this s, , msg value := (credit s) user
address this := user,

gs := (gs s)(user := ((gs s) user)Lbalance := balance ((gs s) user)
+ (credit s) userM,
babyDao := ((gs s) babyDao)Lbalance := balance ((gs s) babyDao)
− (credit s) userM)M)

fallback

(λst. sLcredit := credit t, gs := gs tM)
(λst. Skip)

Figure 5.5: call value definition

To write the specification for withdraw, which consists in stating that the credit of user is drained
to 0, the balance of user is increased by its credit value and the balance of babyDao is decreased by the
same amount, the auxiliary variables c, b and bdao are introduced.

∀c b bdao. Γ,Θ `⦃ c = ćredit user ∧ b = balance (́gs user) ∧ bdao = balance (́gs babyDao) ⦄

withdraw

⦃ ćredit user = 0 ∧ balance (́gs user) = b+ c ∧ balance (́gs babyDao) = bdao− c ⦄, {}

(5.9)

Note that gs denotes the world state function which maps addresses to their accounts. In the case

of a so called friendly fallback function, which is modelled by a Skip statement, the specification 5.9 for

withdraw holds.

However, suppose an attacker writes a fallback function for its own account which besides increasing

the attacker’s balance and decreasing the balance of babyDao, contains code that checks whether the

balance of babyDao will remain bigger or equal than 0 after another possible withdraw, and if so, withdraw

is called.

fallback :: loc com
fallback ≡ INIT (

IF (balance (́gs babyDao)− ćredit user ≥ 0)
THEN call withdraw)

Figure 5.6: Malicious fallback function

Note that call withdraw is defined as Call statement which updates environment variables, calls

withdraw and restores the values for global variables.

Suppose the attacker has some credit c and bdao is the total balance of babyDao. When the attacker

calls the withdraw function, call value transfers ether to the attacker, triggering its fallback function

which may create another call to withdraw. This causes the attacker to receive the same amount of

ether again and enter a recursive loop until all possible ether has been drained from babyDao without

causing the function to fail, that is, when the guard of the conditional statement in the fallback function
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evaluates to false.

Note the attacker’s credit is only set to 0 after call value, and therefore, after all these recursive

calls. The withdraw function ends up being called
⌊

bdao
c

⌋
times and the attacker increases its value by⌊

bdao
c

⌋
× c.

A proof for this reentrancy attack is accomplished in Isabelle, using the recursive features defined for

the semantics of SOLI.

In order to avoid this kind of attack two practices should be followed. The first consists in always

updating the contact’s funds, in this case the credit mapping, before sending those funds to the caller.

The second is avoid using call.value(), but instead use transfer() or send() which are both limited to

2300 gas, which wouldn’t allow heavy operations such as multiple external calls.
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6
Conclusions

6.1 Contributions

The main contribution from this thesis is the development of an imperative language and respective

semantic systems, regarding a considerable subset of Solidity, based on a set of existent imperative

languages in Isabelle/HOL. The main additions were the modelling of Solidity calls, both internal and

external, and the possible ways to throw an exception, that is, calling a revert operation, and then

proceeding to the actual state reversion. Both features use a combination of the basic SOLI commands,

but the essential point was the use of dynamic commands, which allow to refer to states in certain steps

of execution. During calls, the processes of returning and resetting global variables include the update of

environment variables regarding the current message and transaction.

The relative completeness proof, uses an auxiliary lemma that involves the concept of weakest pre-

condition. There isn’t always a usual definition of this concept for every command in SOLI, therefore

some computations for the wp calculus had to be introduced. Connected to the wp calculus, some vc

computation cases are proposed. For instance, the weakest precondition for Call is assumed to be the

precondition for the specification of the called function and for DynCom the intersection of the weakest

preconditions for every instance of the dynamic command. Consequently some cases in the proof of the

auxiliary lemma are also introduced.

The main advantage about using a proof assistant is the richness with which properties about programs

can be expressed. From the ballot example, it can be seen how invariants increase the complexity of a

proof, but also how that complexity can be tackled using auxiliary properties. Also, a list of several

Tokens was analyzed and in most cases, upon a correct specification, the tactic uint arith is able to find,

or at least give a hint of, overflows and underflows. Finally, the possibility of recursion allows to model

reentrancy situations and fallback function attacks.

6.2 Future Work

Delegate calls and gas modeling are some Solidity features to be added to the current language. The

issue is that gas is measured using the total cost of operations used by EVM. There is the possibility of

establishing a bound for Solidity commands, but a lot of accuracy would be lost. A possible approach
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would be to connect SOLI with a EVM Isabelle/HOL implementation, establishing a compilation from a

language to another.

A lot of syntax is yet to be enhanced, not only to improve readability but to simplify and automate

program specification. This can be achieved using ML, a language which can be written on top of

Isabelle/HOL. Related to this subject, a ML tactic for the automatic application the weakest precondition

style rules according to the described backward propagation method This tactic would generate the

simplified verification conditions generated from the method.
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A
Isabelle theories

A.1 Command syntax

theory Com

imports Main

begin

type_synonym 's bexp = 's set

type_synonym 's assn = 's set

typedecl fname

datatype 's com = Skip

| Upd 's ⇒ 's

| Seq 's com 's com

| If 's bexp 's com 's com

| While 's bexp 's com

| DynCom 's ⇒'s com

| Call fname

| Handle 's com 's com

| Revert

definition Require :: 's bexp ⇒'s com where

Require b ≡ If b Skip Revert

definition init :: 's com ⇒ ('s ⇒'s ⇒'s) ⇒'s com where

init bdy rvrt ≡ DynCom (λs. Handle bdy ( DynCom (λt.

Seq (Upd (rvrt s)) Revert )))

definition call :: ['s⇒'s, fname , 's⇒'s⇒'s, 's ⇒'s ⇒('s com )] ⇒'s com where

call init f return c ≡ DynCom (λs. (Seq (( Seq (Upd init) (Call f)))

( DynCom (λt. Seq (Upd ( return s)) (c s t)))))

end
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A.2 Big-step semantics

theory Big_step

imports Syntax_trans

begin

datatype 's state = Normal 's | Rev 's

type synonym 's body = fname ⇀ 's com

inductive

big_step :: ['s body , 's com , 's state , 's state] ⇒ bool

for Γ :: 's body

where

Skip: Γ ` 〈Skip , Normal s〉 ⇒ Normal s |

Upd: Γ ` 〈Upd f, Normal s 〉 ⇒ Normal (f s) |

Seq: J Γ ` 〈c1 , Normal s1〉 ⇒ s2 ; Γ ` 〈c2 , s2〉 ⇒ s3 K =⇒

Γ ` 〈c1;;c2 , Normal s1〉 ⇒ s3 |

IfTrue : J s∈b; Γ ` 〈 c1 , Normal s 〉 ⇒ t K =⇒

Γ ` 〈If b c1 c2 , Normal s〉 ⇒ t |

IfFalse : J s /∈b; Γ ` 〈 c2 , Normal s 〉 ⇒ t K =⇒

Γ ` 〈If b c1 c2 , Normal s〉 ⇒ t |

WhileFalse : s /∈b =⇒ Γ ` 〈While b c, Normal s〉 ⇒ Normal s |

WhileTrue : J s ∈ b; Γ ` 〈c, Normal s〉 ⇒ s '; Γ ` 〈 While b c, s'〉 ⇒ t K =⇒

Γ ` 〈 While b c, Normal s〉 ⇒ t |

DynCom : Γ ` 〈(c s), Normal s〉 ⇒ t =⇒ Γ ` 〈 DynCom c, Normal s〉 ⇒ t |

Call: J Γ ` 〈the (body f), Normal s〉 ⇒t K =⇒ Γ ` 〈Call f, Normal s〉 ⇒ t |

HandleRevert : J Γ ` 〈c1 , Normal s〉 ⇒ Rev r; Γ ` 〈c2 , Normal r〉 ⇒ tK =⇒

Γ ` 〈Handle c1 c2 , Normal s〉 ⇒ t |

HandleNormal : Γ ` 〈c1 , Normal s〉 ⇒ Normal t =⇒

Γ ` 〈 Handle c1 c2 , Normal s〉 ⇒Normal t |

Revert : Γ ` 〈Revert , Normal s〉 ⇒ Rev s |

RevState : Γ ` 〈c, Rev s〉 ⇒ Rev s

lemma RequireTrue :

J s∈b; Γ ` 〈Skip , Normal s〉 ⇒ Normal s K =⇒

Γ ` 〈Require b, Normal s〉 ⇒ Normal s

<Proof >
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lemma RequireFalse :

J s /∈b; Γ ` 〈Revert , Normal s〉 ⇒ Rev s K =⇒

Γ ` 〈Require b, Normal s 〉 ⇒ Rev s

<Proof >

lemma ExecCall :

J Γ ` 〈the (Γ f), Normal (pass s)〉 ⇒ Normal t;

Γ ` 〈result s t, Normal ( return s t)〉 ⇒ u K =⇒

Γ ` 〈call pass f return result , Normal s〉 ⇒u

<Proof >

lemma ExecNormal :

Γ ` 〈bdy , Normal s〉 ⇒ Normal t =⇒

Γ ` 〈init bdy rvrt , Normal s〉 ⇒ Normal t

<Proof >

lemma ExecRev :

Γ ` 〈bdy , Normal s〉 ⇒ Rev t =⇒

Γ ` 〈init bdy rvrt , Normal s〉 ⇒ Rev (rvrt s t)

<Proof >

end

A.3 Hoare logic

theory Hoare

imports Big_step

begin

type_synonym 's assn = 's set

type_synonym 's assmpt = ('s assn × fname × 's assn × 's assn)

definition

hoare_valid :: 's body ⇒ 's assn ⇒ 's com ⇒ 's assn ⇒ 's assn ⇒ bool

where

Γ � P c Q,A ≡ (∀s t. Γ ` 〈c,s〉 ⇒ t −→ s ∈ Normal ` P −→

t ∈ Normal ` Q ∪ Rev ` A)
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inductive

hoare :: 's body ⇒ 's assmpt set ⇒ 's assn ⇒'s com ⇒ 's assn ⇒

's assn ⇒ bool

for Γ :: 's body

where

Skip: Γ,Θ ` Q Skip Q, A |

Upd: Γ,Θ ` {s. f s ∈ Q} (Upd f) Q,A |

Seq: J Γ,Θ ` P c1 Q, A; Γ,Θ ` Q c2 R,A K =⇒

Γ,Θ ` P (c1;;c2) R,A |

If: J Γ,Θ ` (P ∩ b) c1 Q, A; Γ,Θ ` (P ∩ -b) c2 Q, A K =⇒

Γ,Θ ` P (If b c1 c2) Q,A |

While: Γ,Θ ` (P ∩ b) c P, A =⇒

Γ,Θ `P (While b c) (P ∩ -b), A |

DynCom : ∀s ∈ P. Γ,Θ ` P (c s) Q,A =⇒ Γ,Θ ` P ( DynCom c) Q,A |

CallRec : J(P,f,Q,A)∈ Specs; ∀(P,f,Q,A) ∈ Specs. f ∈ dom Γ ∧

Γ, (Θ ∪ Specs)` P (the (Γ f)) Q, A =⇒

Γ,Θ ` P (Call f) Q,A |

Handle : J Γ,Θ ` P c1 Q,R; Γ,Θ ` R c2 Q,A K =⇒ Γ,Θ `( Handle c1 c2) Q,A |

Revert : Γ,Θ ` A Revert Q,A |

Asm: (P,f,Q,A)∈ Θ =⇒ Γ,Θ ` P (Call f) Q,A |

Conseq : ∀s ∈ P. ∃P' Q' A'. Γ,Θ ` P' c Q',A' ∧ s ∈ P' ∧ Q'⊆ Q ∧ A'⊆ A =⇒

Γ,Θ ` P c Q,A

lemma strengthen_pre :

J Γ,Θ ` P c Q,A ; P'⊆P K =⇒ Γ,Θ ` P' c Q,A

<Proof >

lemma weaken_post :

J Γ,Θ ` P c Q,A; Q ⊆ Q '; A ⊆ A' K =⇒ Γ,Θ ` P c Q',A'

<Proof >

lemma ConseqK :

J ∀Z. Γ,Θ ` (P' Z) c (Q' Z),(A' Z);

∀ s ∈ P. (∃ Z. s∈P' Z ∧ (Q' Z ⊆ Q) ∧ (A' Z ⊆ A))K =⇒ Γ,Θ ` P c Q,A

<Proof >
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% weakest precondition style rules

lemma Upd ':

P ⊆ {s. f s ∈ Q} =⇒ Γ,Θ ` (Upd f) Q,A

<Proof >

lemma If ':

assumes c1: Γ,Θ ` B c1 Q, A

assumes c2: Γ,Θ ` C c2 Q, A

assumes wp: P ⊆ {s. (s ∈ b −→ s ∈ B) ∧ (s /∈ b −→ s ∈ C)}

shows Γ,Θ ` P (If b c1 c2) Q, A

<Proof >

lemma Skip ':

P ⊆ Q =⇒ Γ,Θ ` P Skip Q,A

<Proof >

lemma Revert ':

P ⊆ A =⇒ Γ,Θ ` P Revert Q,A

<Proof >

lemma While ':

J P ⊆ I; Γ,Θ ` (I ∩ b) c I,A; (I ∩ -b) ⊆ Q K =⇒ Γ,Θ ` (While b c) Q,A

<Proof >

lemma Require ':

assumes wp: P ⊆ {s. (s ∈ b −→ s ∈ Q) ∧ (s /∈ b −→ s ∈ A)}

shows Γ,Θ ` P ( Require b) Q,A

<Proof >

%rules for call

lemma CallProcRec :

assumes deriv_bodies : ∀p∈Procs.

∀Z. Γ, (Θ ∪ (
⋃

p∈Procs.
⋃

Z. {(P p Z, p, Q p Z, A p Z)}))

` (P p Z) (the (Γ p)) (Q p Z),(A p Z)

assumes Procs_defined : Procs ⊆ dom Γ

shows ∀p∈Procs. ∀Z. Γ,Θ ` (P p Z) (Call p) (Q p Z),(A p Z)

<Proof >
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lemma CallProcRec1 :

assumes deriv_body :

∀Z. Γ, (Θ ∪ (
⋃

Z. {(P Z, p, Q Z, A Z)}) ` (P Z) (the (Γ p)) (Q Z),(A Z)

assumes p_defined : p ∈ dom Γ

shows ∀Z. Γ,Θ ` (P Z) (Call p) (Q Z),(A Z)

<Proof >

lemma CallBody :

assumes body: Γ f = Some body

assumes deriv_body : Γ,Θ ` P' body Q,A

assumes WP: P ⊆ P'

shows Γ,Θ ` P (Call f) Q,A

<Proof >

% additional rules

lemma CallRec ':

assumes c: ∀s t. Γ,Θ ` (R s t) ( result s t) Q,A

assumes body: ∀Z. Γ,Θ ` (P' Z) (Call f) (Q' Z), A

assumes pass: P ⊆ {s. ∃Z. pass s ∈ P' Z ∧

(∀t. t ∈ Q' Z −→ return s t ∈ R s t)}

shows Γ,Θ ` P (call pass f return result ) Q,A

<Proof >

lemma Call ':

assumes c: ∀s t. Γ,Θ ` (R s t) ( result s t) Q,A

assumes body: Γ f = Some body

assumes body_der : ∀s. Γ,Θ ` (P' s) body {t. return s t ∈ R s t}, A

assumes pass: P ⊆ {s. pass s ∈ P' s}

shows Γ,Θ ` P (call pass f return result ) Q,A

<Proof >

lemma init_exec :

assumes body: ∀s ∈ P. Γ,Θ ` bdy Q, {t. rvrt s t ∈ A}

shows Γ,Θ ` P ( init_exec bdy rvrt) Q, A

<Proof >
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A.4 Ballot

theory Ballot

imports Hoare Env

begin

record Voter =

weight :: nat

voted :: bool

delegate :: address

vote :: nat

record Proposal =

name :: char list

voteCount :: nat

%state variables

record st = env +

voters :: address ⇒ Voter

proposals :: Proposal list

chairperson :: address

record loc = st + %add local varibles

% constructor

propNames :: (char list) list %arg

i :: nat

% giveRightToVote

voter :: address %arg

%deleg

t :: address %arg

senderVd :: Voter

to :: address

del :: Voter

n :: nat

propd :: Proposal
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%vote

senderVv :: Voter

pr :: nat %arg

propv :: Proposal

% winningProposal

winningVoteCount :: nat

p :: nat

winningProposal_out :: nat %res

% winnerName

r :: nat % stores call result

winnerName_out :: char list %res

% auxiliary functions

definition

INIT :: loc com ⇒ loc com

where

INIT bdy = init_exec bdy (λ s t.

t⦃voters := voters s, proposals := proposals s,

chairperson := chairperson s⦄)

definition

call_wp :: fname loc com

where

call_wp f = call (λs. s) f (λ s t. t)

(λ s t. (Upd (λ u. u⦃r:= winningProposal_out t⦄)))

consts fncts :: (fname * loc com) list

definition

Γ :: fname ⇀ loc com

where

Γ = map_of fncts

% functions

definition
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ballot :: loc com

where

ballot ≡ INIT(

ćhairperson ::= ḿsg_sender ;;

v́oters ::= v́oters (́ chairperson := (́ voters ćhairperson )Lweight :=1M);;

í ::=0;;

( WHILE (́i < ( length ṕropNames )) DO

(́ proposals ::= ṕroposals@[Lname= ṕropNames ! í, voteCount =0M];;

í ::= í + 1)))

definition

giveRightToVote :: loc com

where

giveRightToVote ≡ INIT(

( REQUIRE (́ msg_sender = ćhairperson ));;

( REQUIRE ( ¬ voted (́ voters v́oter )));;

( REQUIRE (( weight (́ voters v́oter )) = 0));;

v́oters ::= v́oters (́ chairperson := (́ voters ćhairperson )Lweight :=1M)))

definition

deleg :: loc com

where

deleg ≡ INIT(

t́o ::= t́;;

śenderVd ::= v́oters (́ msg_sender );;

( REQUIRE (¬voted śenderVd ));;

( REQUIRE (́ to 6= ḿsg_sender ));;

( WHILE ( delegate (́ voters t́o) 6= adr0) DO

t́o ::= ( delegate (́ voters t́o ));;

( REQUIRE (́ to 6= ḿsg_sender )));;

śenderVd ::= śenderVdLvoted := TrueM;;

śenderVd ::= śenderVdLdelegate := t́oM;;

d́el ::= v́oters (́to );;

(IF (voted d́el) THEN (

ń ::= vote d́el ;;

ṕropd ::= ṕroposals !́n;;

ṕroposals ::= list_update ṕroposals ń

(́ propdLvoteCount := voteCount ṕropd + weight śenderVdM))
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ELSE (́ del ::= (́delLweight := weight d́el + weight śenderVd M))))

definition

vote :: loc com

where

vote ≡ INIT(

sendr ::= v́oters (́ msg_sender );;

( REQUIRE ( weight śendr 6= 0));;

( REQUIRE (¬ voted śenderVv ));;

śendr ::= śendrLvoted := True , vote := ṕrM;;

ṕrop ::= ṕroposals !́pr;;

ṕroposals ::= list_update ṕroposals ṕr

(́ propLvoteCount := voteCount ṕrop + weight śenderVvM))

definition

winningProposal_com :: loc com

where

winningProposal_com ≡ INIT(

(́ winningProposal_out ::= 0;;

ẃinningVoteCount ::= 0;;

ṕ ::= 0;;

( WHILE (́p < ( length ṕroposals )) DO(

(IF (́ winningVoteCount < ( voteCount (́ proposals !́p))) THEN

ẃinningVoteCount ::= voteCount (́ proposals !́p);;

ẃinningProposal_out ::= ṕ ELSE Skip );;

ṕ ::= ṕ + 1))))"

definition

winnerName :: loc com

where

winnerName ≡ INIT(

call_wp winningProposal ;;

ẃinnerName_out ::= name (́ proposals !́r))
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%1 - modifying the initialization of p

definition

winningProposal '_com :: loc com

where

winningProposal '_com ≡ INIT(

(́ winningProposal_out ::= 0;;

ẃinningVoteCount ::= voteCount ṕroposals !0;;

ṕ ::= 1;;

( WHILE (́p < ( length ṕroposals )) DO(

(IF (́ winningVoteCount < ( voteCount (́ proposals !́p))) THEN

ẃinningVoteCount ::= voteCount (́ proposals !́p);;

ẃinningProposal_out ::= ṕ ELSE Skip );;

ṕ ::= ṕ + 1))))"

definition

winnerName ' :: loc com

where

winnerName ' ≡ INIT(

call_wp winningProposal ';;

ẃinnerName_out ::= name (́ proposals !́r))

%2 - modifying the initialization of p + adding a require

definition

winningProposal2_com :: loc com

where

winningProposal2_com ≡ INIT(

REQUIRE ( length ṕroposals > 0);;

(́ winningProposal_out ::= 0;;

ẃinningVoteCount ::= voteCount ṕroposals !0;;

ṕ ::= 1;;

( WHILE (́p < ( length ṕroposals )) DO(

(IF (́ winningVoteCount < ( voteCount (́ proposals !́p))) THEN

ẃinningVoteCount ::= voteCount (́ proposals !́p);;

ẃinningProposal_out ::= ṕ ELSE Skip );;

ṕ ::= ṕ + 1))))"
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definition

winnerName2 :: loc com

where

winnerName2 ≡ INIT(

call_wp winningProposal2 ;;

ẃinnerName_out ::= name (́ proposals !́r))

overloading fncts ≡ fncts

begin

definition

fncts == [( winningProposal , winningProposal_com ),

( winningProposal ', winningProposal '_com),

( winningProposal2 , winningProposal2_com )]

end

% auxiliary lemmas

primrec

max ' :: nat list ⇒ nat

where

max ' [] = 0 |

max '(x#xs) = max x (max ' xs)

lemma

aux1_1 : l=li@[ls] =⇒ ( butlast l = li ∧ last l = ls)

apply(simp)

done

lemma

aux1_2 : l 6= [] =⇒ max ' l = max (max ' ( butlast l)) (last l)

apply( induction l)

apply(auto)

done

lemma

aux1: li@[l] 6= [] =⇒ max ' (li@[l]) = max (max ' li) l

apply(simp add: aux1_1 aux1_2 )
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done

lemma

aux_true :
∧

x. (p x) < length ( proposals x) ∧ ( proposals x) 6=[] ∧

( winningVoteCount x) < voteCount (( proposals x)!(p x)) ∧

winningVoteCount x = max ' (take (p x) (map voteCount ( proposals x)))

=⇒ max ' (take (Suc (p x)) (map voteCount ( proposals x))) =

voteCount (( proposals x)!(p x))

apply (simp add: take_Suc_conv_app_nth )

apply (simp add: aux1)

apply (auto)

done

lemma

aux_false :
∧

x. (p x) < length ( proposals x) ∧ ( proposals x) 6=[] ∧

¬( winningVoteCount x) < voteCount (( proposals x)!(p x)) ∧

winningVoteCount x = max ' (take (p x) (map voteCount ( proposals x)))

=⇒ max ' (take (Suc (p x)) (map voteCount ( proposals x))) =

(max '( take (p x) (map voteCount ( proposals x))))

apply (simp add: take_Suc_conv_app_nth )

apply (simp add: aux1)

apply (auto)

done

lemma

aux2:
∧

pr p. p < length (pr) =⇒ pr 6= []

apply (auto)

done

lemma

aux3: l 6= [] =⇒ Suc 0 ≤ length l

apply ( induct l, auto)

done

lemma

aux4: l 6= [] =⇒ (l ! 0) = max ' (take (Suc 0) l)

apply( induct l, auto)

done
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lemma

aux5:
∧

x. ( proposals x) 6= [] =⇒

voteCount ( proposals x ! 0) = (( map voteCount ( proposals x))!0)

apply(simp)

done

% PROOFS

% original function - the verification doesn 't finish due to the empty

%list case , the list selector function is not defined for the empty list

lemma

winnerName_proof :

shows Γ,Θ ` ⦃proposals 6= []⦄ winnerName

⦃max ' (map voteCount ṕroposals ) = (map voteCount ṕroposals )!́r ∧

ẃinnerName_out = name (́ proposals !́r)⦄,
⦃proposals 6= []⦄

apply( unfold winnerName_def )

apply( unfold INIT_def , rule init_exec , rule ballI)

apply(rule Seq ')

apply(rule Upd)

apply( unfold call_wp_def )

apply(rule Call ')

apply(rule allI , rule allI , rule Upd ', rule subset_refl )

apply simp

apply(rule allI , unfold winningProposal_com_def )

apply( unfold INIT_def , rule init_exec , rule ballI)

apply(rule Seq ')

apply(rule While ' [ where P = ⦃ (0 ≤ ṕ) ∧ (́p ≤ ( length ṕroposals )) ∧

ẃinningVoteCount = max ' (take ṕ (map ( voteCount ) ṕroposals )) ∧

ẃinningVoteCount =

(map ( voteCount ) ṕroposals )!(́ winningProposal_out )⦄])

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule If ')

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule Upd ', rule subset_refl )

apply(rule Skip ', rule subset_refl )

prefer 3

apply(rule Seq ', rule Upd ', rule subset_refl )
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apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule Upd ', rule subset_refl )

apply( simp_all )

apply(rule subsetI )

apply( clarsimp )

apply(simp add: aux2 aux_false )

apply(simp add: aux2 aux_true )

apply(clarsimp , rule subsetI )

apply(simp add: aux3)

apply(simp add: aux4 aux5)

sorry

%1 - modifying the initialization of p + condition in the precondition

lemma

winnerName ' _proof :

shows Γ,Θ ` ⦃proposals 6= []⦄ winnerName '

⦃max ' (map voteCount ṕroposals ) = (map voteCount ṕroposals )!́r ∧

ẃinnerName_out = name (́ proposals !́r)⦄,
⦃proposals 6= []⦄

apply( unfold winnerName '_def)

apply( unfold INIT_def , rule init_exec , rule ballI)

apply(rule Seq ')

apply(rule Upd)

apply( unfold call_wp_def )

apply(rule Call ')

apply(rule allI , rule allI , rule Upd ', rule subset_refl )

apply simp

apply(rule allI , unfold winningProposal ' _com_def )

apply( unfold INIT_def , rule init_exec , rule ballI)

apply(rule Seq ')

apply(rule While ' [ where P = ⦃ (1 ≤ ṕ) ∧ (́p ≤ ( length ṕroposals )) ∧

ẃinningVoteCount = max ' (take ṕ (map ( voteCount ) ṕroposals )) ∧

ẃinningVoteCount =

(map ( voteCount ) ṕroposals )!(́ winningProposal_out )⦄])

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule If ')

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule Upd ', rule subset_refl )
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apply(rule Skip ', rule subset_refl )

prefer 3

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule Upd ', rule subset_refl )

apply( clarsimp )

apply(simp add: aux2 aux_false )

apply(simp add: aux2 aux_true )

apply(clarsimp , rule subsetI )

apply(simp add: aux3)

apply(simp add: aux4 aux5)

done

%2 - modifying the initialization of p + adding a require

lemma

winnerName2_proof :

shows Γ,Θ ` ⦃prop = ṕroposals ∧ chair = ćhairperson ∧ vtrs = v́oters⦄
winnerName2

⦃max ' (map voteCount ṕroposals ) = (map voteCount ṕroposals )!́r ∧

ẃinnerName_out = name (́ proposals !́r)⦄,
⦃proposals = prop ∧ ćhairperson = chair ∧ v́oters = vtrs ⦄

apply( unfold winnerName2_def )

apply( unfold INIT_def , rule init_exec , rule ballI)

apply(rule Seq ')

apply(rule Upd)

apply( unfold call_wp_def )

apply(rule Call ')

apply(rule allI , rule allI , rule Upd ', rule subset_refl )

apply simp

apply(rule allI , unfold winningProposal2_com_def )

apply( unfold INIT_def , rule init_exec , rule ballI)

apply(rule Seq ')

apply(rule While ' [ where P = ⦃ (1 ≤ ṕ) ∧ (́p ≤ ( length ṕroposals )) ∧

ẃinningVoteCount = max ' (take ṕ (map ( voteCount ) ṕroposals )) ∧

ẃinningVoteCount =

(map ( voteCount ) ṕroposals )!(́ winningProposal_out )⦄])

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule If ')
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apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule Upd ', rule subset_refl )

apply(rule Skip ', rule subset_refl )

prefer 3

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule Seq ', rule Upd ', rule subset_refl )

apply(rule Require ')

apply(simp)

apply(rule subset_refl )

prefer 2

apply clarsimp

apply clarsimp

apply(simp add: aux2 aux_true )

apply(simp add: aux2 aux_false )

apply clarsimp

apply(simp add: aux3)

apply(simp add: aux4 aux5)

done

end
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