
Application of RRT for overtaking in a Racing Car
Simulation

José Guilherme Freitas Gomes

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. João Miguel de Sousa de Assis Dias
Prof. Carlos António Roque Martinho

Examination Committee

Chairperson: Prof. Miguel Nuno Dias Alves Pupo Correia
Supervisor: Prof. João Miguel de Sousa de Assis Dias

Member of the Committee: Prof. Manuel Fernando Cabido Peres Lopes

November 2019

Acknowledgments

Firstly, I would like to thank both of my supervisors, Prof. João Dias and Prof. Carlos Martinho. They

helped me a lot throughout this work, and I regret not asking some questions that sometimes stopped

this work development. It was a privilege to work with them, and I would like to thank you for taking me,

and helping me become a more capable person.

I would also like to thank Samuel Canada Gomes, the author of the work this thesis is based on.

Without any obligation or gain, he helped me with code, some doubts I had about the game and tech-

nique, and even gave me some useful advice. Its fair to say he had a great contribution to this work, and

I wish him the best of luck in his future endeavours.

Next I would like to thank my father Silvestre and my mother Liliana for continuously supporting me.

Even though they were not physically by my side (due to my residence at the time I was studying), they

gave me company and constant care, and without them none of this could have been possible. I hope

someday the person I become can hope to reciprocate all they did and gave to me. I would also like

to thank my grandparents Maria and José, for although not understanding much of what I was doing,

always showed that they were extremely proud of me. Through good and bad results, their support

never wavered. Finally, I would like to thank my sister Cláudia, for taking care of me all this years, and

making me a strong enough person to adventure myself, making this masters far from my zone of confort

possible.

I also need to thank Anabela and Ademar Spencer and their kids Guilherme and Gabriel. They took

me in their home, barely knowing me, trusting and caring for me, just like a son or a brother. They were

my second family throughout these two long years, teaching and helping me overcome my flaws, making

me grow in a way I was not able to do alone. They made this journey a reality and I deeply thank them

for it.

Finally I would like to thank all my friends especially the ones I made in IST. I came to Lisbon knowing

just a long time friend that help me discover this great city, but the people I met in my master’s made it a

place I could call home. They’re all extremely capable and smart, and it is an honour to say I worked with

them. To André, Lourenço, Jan, Gonny, Diogo, Bruno, Mariana, and again Samuel, and all the amazing

people I met in these two years, I have nothing but gratitude. Without them, this project could have been

finished maybe two months earlier, but they made this adventure something I would never regret.

I owe and dedicate the labor of my love, countless caffeine-induced sleepless nights and stress, to

all of these people.

Guilherme Gomes

Funchal, 31st October 2019

ii

Abstract

This document describes the application and development of a TORCS robot that, on a racing scenario,

follows a determined trajectory (referred as racing line) calculated with the K1999 algorithm and, in case

of overtaking, one that is traced by a Rapidly-exploring Random Tree based algorithm called Adapt

and Overtake-RRT (ADOVER for short), working in two different modes that will later be compared. It

is meant to compete against other robots and also humans, having as a requirement maintaining an

acceptable performance throughout its execution. After some testing with static opponents, the robot

was unable to perform the desired task. On the other hand, it showed promising results in terms of

speed and efficiency. Possible improvements are discussed in the last segment.

Keywords

Rapidly-Exploring Random Tree (RRT), The Open Racing Car Simulator (TORCS), Overtaking, K1999,

Adapt and Overtake Rapidly-Exploring Random Tree (ADOVER-RRT)

iii

Resumo

Este documento descreve a aplicação e desenvolvimento de um robô do jogo TORCS que, num cenário

de corrida, segue uma trajetória determinada pelo algoritmo K1999 e, em caso de ultrapassagem, segue

uma trajetória determinada pelo algoritmo Rapidly-Exploring Random Tree (RRT), em dois modos de

funcionamento diferentes que mais tarde irão ser comparados. Este robô destina-se a competir contra

outros robôs e contra humanos, tendo como requisito manter uma performance aceitável durante toda

a sua execução. Após alguns testes com oponentes estáticos, o robô não conseguiu desempenhar a

tarefa que lhe foi atribuı́da. Por outro lado, mostrou resultados promissores em termos de velocidade e

eficiência. Possı́veis melhoramentos são discutidos no último segmento.

Palavras Chave

Rapidly-Exploring Random Tree (RRT), The Open Racing Car Simulator (TORCS), Ultrapassagem,

K1999, Adapt and Overtake Rapidly-Exploring Random Tree (ADOVER-RRT)

v

Contents

1 Introduction 1

1.1 Work’s Goal . 3

1.2 Outline . 4

2 Related Work 5

2.1 Racing AI . 7

2.1.1 Capabilities and behaviours . 7

A – Advanced car control . 7

B – Collision avoidance . 7

C – Overtaking . 8

D – Aggressiveness . 8

2.1.2 Examples . 8

2.1.2.A Roborace Robocar/Devbot (2016) [1] . 8

2.1.2.B rFactor 2 Image Space Incorporated (2013) [2] 9

A – Assetto Corsa Kunos Simulazioni (2014) [3] 9

B – RaceRoom Racing Experience Sector3 Studios (2013) [4] . . . 9

C – Project CARS 2 Sligthly Mad Studios (2017) [5] 10

D – Gran Turismo Sport Polyphony Digital (2017) [6] 10

E – F1 2018 Codemasters (2018) [7] 10

2.1.2.C Comparison table . 10

2.2 Racing Line . 10

2.2.1 Geometric approach . 11

2.2.2 K1999 Path-Optimisation Algorithm [8] . 14

2.2.3 Race Optimal AL © [9] . 15

2.3 Rapidly-Exploring Random Tree (RRT) . 19

2.3.1 Base Algorithm [10] . 20

2.3.2 RRT* [11] . 21

2.3.3 RRT*-Smart [12] . 22

vii

2.3.4 Parallelization . 24

2.3.4.A IPS-RRT applied to TORCS . 24

2.4 Frame rate and algorithm impact . 25

2.5 Discussion . 26

3 Proposed solution 29

3.1 TORCS Track Representation . 31

3.2 K1999 . 31

3.3 ADOVER-RRT . 32

3.3.1 Description . 33

3.3.2 Characteristics . 35

3.4 Path Adjustment . 35

4 TORCS Robot Implementation 39

4.1 Bot Architecture . 41

4.1.1 TORCS Back-end . 41

4.1.2 Racing Line . 41

4.1.3 Retracing . 42

4.1.4 Control Module . 43

4.2 Search State Representation . 44

4.3 ADOVER-RRT applied to TORCS . 44

5 Testing & Evaluation 49

5.1 Proof of concept testing . 51

5.2 Tests . 54

5.3 Discussion . 57

6 Conclusion 59

6.1 Notes for Future Work . 61

viii

List of Figures

2.1 Effect of road inclination on maximum possible vehicle speed. 11

2.2 Racing line arc scheme. Optimal radius c is unknown. [13] 12

2.3 Comparison between trajectories and benefits of following the late apex trajectory. Both

images taken from [14]. 17

2.4 Algorithm 2.1 before (dotted) and after gradient descent (not dotted) [8]. 18

2.5 Control points (red) and resulting racing line (blue) for the Porsche GT3 RS 4.0 at Shang-

hai International Circuit [9]. 19

2.6 TT Circuit Assen - F1 Car - Race Optimal Simulated Lap segment. The higher the colour

temperature, the higher the target speed. Throttle, brake and g-force information is also

shown [9]. 19

2.7 A Naive Random Tree vs. an RRT , each with 2000 vertices [10]. 21

2.8 RRT vs RRT*. Note the smooth branching on RRT*. Image taken from [15]. 22

2.9 RRT*-Smart steps. Images taken from [12]. 24

2.10 Attributes in each IPS-RRT state [16]. 26

3.1 Track segment types in TORCS. 31

3.2 The blue dots represent the cars corners, the dynamic path is represented in green and

the static, optimal path in pink. The agent using the K1999 retraces its current path and

redraws it around the opponent it finds withing look-ahead distance. 32

3.3 Both lines (dynamic in green and static in pink) traced by K1999 at the start of the race. . 32

3.4 Scheme with the K1999 cycle, as implemented in TORCS. The states are numbered

according to the steps enumeration presented at the start of the section. 33

3.5 Effects of branch angle limitation, both with 25000 vertices and same step size. 36

3.6 Considering B being xnear with parent A, D (xstep) can only be extended inside d arch. . 36

3.7 RRT path retracing, with the new trajectory in black, with nodes in red. Notice how the

K1999 then creates a return path to the optimal trajectory, only at the end of the retraced

line. 37

ix

4.1 Solid lines represent continuous transmission, with dashed lines being information sent

once, when the sub module starts. 42

4.2 The red dot is xrand. The closest segment to it is outlined in red, with each segment mid

position marked by a blue dot. Since this position is close enough to the middle of its

segment, it sits in a valid position. 45

4.3 Tree built pre-race, with no angle limitation and 10000 nodes, and step size 6. Notice how

no state is outside of the track and it within track safe margins. 46

4.4 Although having the same step size and number of nodes has the tree in 4.3, it only covers

around half the track and takes much longer to build, due to it having an angle limitation

of 165. 46

5.1 ”E-Track 1” track layout . 52

5.2 Chart comparing mean update times between different step sizes. In Y axis, the average

time a tree expansion takes is in milliseconds. The X axis represent the tree size in

thousands. 53

5.3 Chart comparing mean update times, with track limits. In Y axis, the average time a tree

expansion takes is in milliseconds. The X axis represent the tree size in thousands 54

5.4 Step size comparison, all trees having 5000 nodes, with no angle limitation. 54

5.5 Chart comparing average speed while following the adapted trajectory. For each step size

3 runs were made with their average speed crossing the adapted path being recorded.

Collisions still counted, with them heavily reducing the average speed, consequently the

average of averages (the values presented in this chart). 55

5.6 Step size effect in on-race trajectory tracing. Only initial restrictions applied. 55

5.7 Trajectories adapted with different step sizes and no angle limitation. The player car is

represented with a yellow dot, and this car with a red dot. 56

5.8 Adapted path in a turn. Although smooth, the opponent blocks this path, meaning it cannot

be followed successfully. 56

5.9 Step size effect in on-race trajectory tracing. Only initial restrictions applied. 57

5.10 Step size and angle limitation effect in on-race trajectory. 58

x

List of Tables

2.1 Comparison between different turn angles with the same radius, and resulting max. ve-

locity, using an example turn of 30 meters, and its ideal radius of 80 meters calculated

with formula 2.5, and speed calculated with 2.6. 13

List of Algorithms

2.1 K1999 basic algorithm . 14

2.2 Speed Profile Initialisation . 14

2.3 Speed Profile Optimisation . 15

2.4 Basic algorithm . 20

2.5 RRT* . 22

2.6 RRT*-Smart . 23

2.7 IPS-RRT . 25

3.1 ADOVER-RRT . 34

3.2 Path adaptation . 37

4.1 On-race Path Adaptation . 47

4.2 Off-race Path Adaptation . 47

xi

xii

Acronyms

RRT Rapidly-Exploring Random Tree

TORCS The Open Racing Car Simulator

CPU Central Processing Unit

AI Artificial Intelligence

RSA Randomized Search Algorithms

LIDAR Light Detection and Ranging

ANN Artificial Neural Network

RARS Robot Auto-Racing Simulator

ABS Anti-lock Braking System

RPM Rotations per minute

IPS-RRT Iterative Parallel Sampling RRT

ADOVER-RRT Adapt and Overtake RRT

xiii

xiv

1
Introduction

Contents

1.1 Work’s Goal . 3

1.2 Outline . 4

1

2

Nowadays, Artificial Intelligence (AI) has an increasingly important role in motor racing. “Robots”

(“bots” for short), Central Processing Unit (CPU)-driven cars, expanded their presence beyond offline

game sessions and can now fill empty multiplayer lobbies or be an important part of a training session

of a competitive game. They can also be present in real life races, already existing functional prototypes

that can compete against human drivers. Therefore, they must contribute to their good experience,

behaving in either a realistic way, with human-like actions and capabilities, or in a customizable way, in

which the bot skills can range from amateurish - with slow reactions, some mistakes and easy-to-keep-

up-with pace - to perfect in every way - only preferred by drivers who want to test their skills against

unfair opponents.

These bots must have some degree of competitiveness, characterised by some key behaviours:

following an optimised trajectory, situational awareness, competition awareness, are all part of a quality

racing bot. These are all important to achieve an extremely important capability: overtaking. The

automation of this manoeuvre is still considered one of the toughest challenges in the development

of autonomous vehicles [17], both in road and competitive scenarios, due to the dynamics involved. All

things considered, we thought this was a good problem to tackle.

There is also the need to explore the use of Randomized Search Algorithms (RSA) on kinodynamic

environments, such as the ones found in a racing game, where the optimal path is key to a highly

competitive bot. The one that it is going to be focused is Rapidly-Exploring Random Tree (RRT), a

randomised data structure that is specifically designed to handle nonholonomic constraints and high de-

grees of freedom, capable of solving kinodynamic planning problems, which seems fit to the environment

in context.

1.1 Work’s Goal

This work’s goal is to make the robot perform an overtaking manoeuvre in a competitive setting, and

design, explore and study the use of RRT algorithm to achieve it, or to improve upon an already

implemented technique. This study can be divided in these main aspects:

• Quality of the solution: Can the robot initially avoid a collision with a static object, adapting his

path, to later improve and be able to overtake a dynamic opponent?

• Algorithm performance impact: Can all this be made while maintaining an acceptable game perfor-

mance, meaning, a smooth framerate is achieved, being possible for a human to compete against

it?

A good platform to develop this work is a racing video game that, despite its age (over 20 years old),

continues to be updated and applied to a great range of scientific studies and academic research, is

3

The Open Racing Car Simulator (TORCS) [18]. Its a multi-platform (best compatible with Linux platform)

open source game that presents developers with an API conceived for the development of racing robots.

Programmers have access to core procedures and already implemented robots that can serve as basis,

has a tutorial that details installation and development of a basic car. It still maintains a big community

that holds yearly competitions and a forum with people kind enough to answer developers questions.

Considering the benefits, this game was used as a platform for this work.

1.2 Outline

This thesis is organised as follows: In chapter 2 the present work that exists in terms of racing AI,

racing line calculation, RRT algorithm with improvements, and a brief discussion about frame rates, will

be detailed. In chapter 3 the K1999 will be presented and briefly described (as it is used to calculate

the racing line), and the ADOVER-RRT algorithm will also be explained. Chapter 4 details the bot

architecture, its search state representation, how ADOVER-RRT is applied to TORCS, how the K1999

is calculating and representing the racing line, and how the path traced by the ADOVER-RRT is being

followed. The Chapter 5 firstly details the tests that were made along the development of the robot with a

preceding study about the quality of the returned solutions, concluding with a discussion. The document

ends with the chapter 6 where the general work is evaluated, and some notes for future work that should

improve the results are presented.

4

2
Related Work

Contents

2.1 Racing AI . 7

2.2 Racing Line . 10

2.3 RRT . 19

2.4 Frame rate and algorithm impact . 25

2.5 Discussion . 26

5

6

This section starts with a brief reflection on what makes a racing game robot good, the behaviours

that it should display, and some examples that implement said features. Given this work objective focus

on overtaking, only the behaviours that influence overtaking (and said behaviour itself) will be described.

One real-life and several video game robots are depicted and compared. Only the implementation quality

will be compared, and what is to be learned from each one. It is important to note that these examples

are commercial, meaning that neither the source code nor extensive documentation is available to the

public. Consequently, the behaviour quality assessment will be made through gameplay observation

and, for the real-life example, company citation.

Then, approaches to the racing line calculation will be explained, taking in consideration TORCS

tracks characteristics and how each algorithm described can be applied to it.

The proposed algorithm RRT will be described, along with some variants that try to improve its

performance and/or attempt to parallelize it, with a mention to an application of an RRT variant applied

to it. The solution quality/game performance trade-off and how it should be pondered over when deciding

the technique will also be explained.

A discussion will close this chapter.

2.1 Racing AI

2.1.1 Capabilities and behaviours

Has previously stated, a robot needs to be competitive. Analysing a track, tracing a trajectory through

it and completing it, is a prerequisite for it, but if the robot can only focus and follow the line that it

calculated, it is not competing against the player, just against itself. While more complex behaviours can

be considered, the ones here detailed (if correctly executed) make for a realistic high difficulty robot.

Low level difficulty requires other characteristics that will not be implemented in this work, but will be

addressed as a positive feature in one of the racing game examples. The characteristics that will be

considered are the following [19] [20]:

A – Advanced car control A good robot uses everything that the car has to offer, and the actions

performed by it must not be limited to accelerating , breaking and turning. Correct use of the gear box,

ABS, traction control, understeer and oversteer correction etc.. are techniques that not only improve on

the quality of the solution but also increases its realism.

B – Collision avoidance The robot should be able to avoid obstacles (mainly opponents and track

objects) in order to, not only perform a better time around the track, but also maintain the quality of

interaction with the player. In real life racing (e.g. F1), pilots who intentionally collide with opponents,

7

causing avoidable accidents, or leave the track for no apparent reason, are faced with time penalties,

and in some cases suspensions [21]. This is not always the case, since there are some competitions

that collisions are common (Rally cross), so the robot must be aware of the rules of the simulated

environment.

C – Overtaking When competing, the agent will be faced with a situation that is extremely common

in racing: the opponent on front of him is slower than him, and there’s an opportunity to traverse a

trajectory around this opponent. A good AI must be able to correctly detect this situation, measuring

and analysing the track section that both are currently in, and attempt it if proven worth it, in a way that

respects the rules referred above (although light touches are acceptable).

D – Aggressiveness It’s a positive factor, but too much can negatively impact player experience.

This behaviour will mainly be demonstrated on overtakes. Taking in consideration the situation in which

the robot can, or gets overtaken, a passive agent will maintain his race line while carefully avoiding the

player. This attitude favours a clean but easy race, only adequate to inexperienced or rookie players,

since the robot can be easily ignored and beaten. However, if the AI’s aggressive factor increases, it

may reach a point where it will protect his position or tries to gain one at all costs, meaning that it can

actively try to bump/collide the player making him loose control and going off track. Although it increases

competitiveness, it can break some rules and will deny the player a friendly experience, sometimes even

inciting him to respond with equal degree of aggression, increasing the probability of not terminating

the race due to damage. Given these observations, an ideal agent will protect its position and overtake

when deemed practicable, but will never disrupt other opponents in a “dirty”, violent way. This is a factor

hard to balance, and many times it’s the player’s choice, represented by a difficulty level or by a separate

configuration.

2.1.2 Examples

Considering what was described in the previous section, a real life, and some video game examples

that apply such characteristics are presented. It is explained what can be learned in each case and then

compared their quality of implementation. As cited in the beginning of this section, the main information

source will be observation and gameplay.

2.1.2.A Roborace Robocar/Devbot (2016) [1]

Robocar and Devbot are the platform cars that will be competing on a race, consisting of only similar

cars, the only difference between the competitors being the team-developed algorithms. This car learns

how to traverse a circuit thanks to virtual simulations. A bank of computers simulate the environment

8

physical aspects and previously read Light Detection and Ranging (LIDAR) and ultrasound readings are

replicated. Then, simulated GPS location and virtual machine vision are interpreted and the equipped

Nvidia PX-2 computer processes said information and calculates the optimal path. Besides already

following a close to optimal racing line, overtaking is already being developed, and it was successfully

executed in testing environment. Collision avoidance is a top priority, higher than usual including this

work, due to vehicle cost. This project shows that the work made in video-games can be executed in real

time with physical vehicles, and behaviours that are considered important are the same as this project :

collision avoidance and overtaking.

2.1.2.B rFactor 2 Image Space Incorporated (2013) [2]

A very good example on how to implement racing AI in general, so I’ll consider this the baseline of

this comparison. The behaviours that I am focusing can be easily observed in multi-class racing and

rFactor 2 gets recognition for implementing them correctly in said situation. When different vehicle

classes with very different capabilities compete at the same time, the circuit gets crowded and overtakes

occur frequently. Since this type of racing is one of the main focus of this game, agents in this game

highly prioritise collision avoidance, and overtaking manoeuvres display great quality. They rarely get

delayed by slower opponents. A clean race is very easy to maintain, not because opponents don’t

protect their position, but because they do it without colliding with the player. Talking about overtakes, it

is easily observed the aggressiveness of more powerful cars and the correct behaviour of less powerful

ones. In the first case, faster opponents quickly assess the situations and overtake with barely any

hesitation, efficiently using all the track width and free space. In the second case, while equally powerful

competitors may put up a fight, these just free the needed space and facilitate overtaking. The player

can adjust the difficulty, even having the possibility of giving the bots an unfair advantage (giving their

cars more traction/power), their aggressiveness and their variety, represented by a “AI Limit” percentage,

where a 0 percent means that the bots are not restricted to a small range of values and can display a

great range of performances, and a 100 limit makes them more consistent, making them follow similar

lines. These lines are precalculated for each available track.

A – Assetto Corsa Kunos Simulazioni (2014) [3] Bots display moderate aggression and overall

realistic behaviours but they’re too passive while overtaking. They respect the line that the player is

following but even in situations where overtaking is viable, they slow the pace and do not overtake, only

doing it when it is already too easy (the player went off track or slowed down to much).

B – RaceRoom Racing Experience Sector3 Studios (2013) [4] With Adaptive AI, the agents racing

style and difficulty fit those of the player, improving the experience. Although this adaptation is good, it

9

still needs some improvement. Again, good overall behaviour, but can sometimes get too aggressive,

making clean long sessions hard to achieve. Overtakes are well executed but the consideration in them

is too optimistic, leading to accidents.

C – Project CARS 2 Sligthly Mad Studios (2017) [5] Another strong contender to best AI, has

a slight defect: not always the agents adapts and gets ready correctly for the conditions of the event

(inadequate tires). It is always important to the AI to consider the maximum of factors that may influence

vehicle performance. This will not be compared since it depends on simulation realism, not only AI.

D – Gran Turismo Sport Polyphony Digital (2017) [6] Adaptable difficulty, with high difficulty bots

behaving too perfectly, making no mistakes and maintaining consistency, which is a slight low point. But

in lower difficulties, the AI emulates realistically a rookie driver making similar mistakes, like keeping an

uneven but slower pace and misjudging some turns.

E – F1 2018 Codemasters (2018) [7] Adaptable, too aggressive in high difficulty although realistic,

given current F1 drivers. It is improved over its previous iteration F1 2017, where the aggression was

basically non-existent, again showing that when is to overtake is almost as important as how to do it.

2.1.2.C Comparison table

Title Collision Avoidance Overtaking Notes
rFactor 2 Very good Very good Comparison baseline
Roborace Top priority, well executed In development Real life example
AC Too prioritised Too passive Needs aggression
RaceRoom Line too prioritised Too aggressive Risky
PC 2 Very good Very good Few factors considered
GT Sport Very good Very good Realistic low diff.
F1 2018 Very good Too aggressive Realistic high diff.

2.2 Racing Line

Foremost, the context in which the racing line is drawn and followed is defined as a circuit, or race track.

A circuit is generally a closed path, meaning that a racing robot will start, go around it, and end the lap in

the same segment. In order to achieve the best results, racing line algorithms must take in consideration

the physical characteristics of said track. The more variables and the more precise the information it

collects, the realest the virtual track it can model, meaning it can prepare for more situations and further

optimise the route the robot must go through. It is also important to consider the physical limitations

of the car, most importantly its turn radius (the smallest circle it can describe), torque and top speed,

friction with the road, aerodynamics, and so on. TORCS tracks have a fixed-width, and are generally

10

flat, meaning simpler algorithms can trace a decent racing line, although the aforementioned still holds.

All the information about the cars are also accessible and taken in consideration.

One of the first characteristics of the track that must be considered is its 2-dimensional shape [22] [8].

Not only the angle of its turns but sequence of its segments must be considered for an optimal result.

The width must also be measured, with fixed width segments being the simplest to work with. Important

3-dimensional features include elevation and tilt (also called bank) variation. These are usually present

in physical circuits and they affect the racing line radius and speed profile. Steep hills negatively impact

acceleration and slopes reduce brakes effectiveness, whereas road banking, i.e. the angle in which the

road is inclined about its longitudinal axis with respect to the horizontal, can reduce or increase the effect

of inertia, if inclined towards the inside or outside of the turn respectively, making it possible to turn at

higher speeds, effect shown in Fig.2.1. The speed in which an automobile can make a banked turn is

calculated with formula introduced in the next section.

(a) A bus traversing a sharp banked corner at
about 100km/h [23].

(b) Relation between max. speed and turn bank
angle, with the data from a 20 meter radius
turn, using the formula present in 2.6

Figure 2.1: Effect of road inclination on maximum possible vehicle speed.

This path is important to achieve the maximum possible velocity per segment, making the track

traversal quicker. There have been several ways to trace this desired path, ranging from purely geometric

to Artificial Neural Network (ANN) based techniques, but all of them follow share a basic principle - the

straighter the line, the fastest a car can go through it.

2.2.1 Geometric approach

If we consider the track shape and perform some geometric calculations (considering the formula in

2.5), we can find the maximum radius we can draw around a turn. There are more advanced geometric

approaches, (for example Braghin’s Approach in [22]), but this one is enough to introduce some basic

concepts.

11

Figure 2.2: Racing line arc scheme. Optimal radius c is unknown. [13]

As shown in Fig.2.2 , we want to find c:

c Is the racing line circumference radius, circumscribed by the track limits, with centre at P .

φ Half the turn angle.

a and b Inner and outer turn radius, with centre at O.

A and C Tangential point between the desired line and the track limits.

4OPQ Right triangle where the hypotenuse is lined by P and O.

cosφ =
c− b
c− a

(2.1)

(c− a) cosφ = c− b (2.2)

b− a cosφ = c(1− cosφ) (2.3)

c =
b− a cosφ

1− cosφ
(2.4)

We can then write :

c =
b− a+ a− a cosφ

1− cosφ
=

b− a
1− cosφ

+
a(1− cosφ)

1− cosφ
= a+

b− a
1− cosφ

(2.5)

12

Given the radius of the ideal arch the car has to describe, we can now calculate its desired speed

profile, i.e. the target speed the car has to be. Since we want to complete the lap in the least amount of

time, will be the maximum allowed velocity. Given:

vmax as the maximum velocity an automobile can make the turn.

r the radius of the turn.

g Constant gravitational acceleration.

θ Incline angle, with a positive angle meaning the lowest side is inside the curve.

µs Coefficient of static friction.

vmax =

√
rg(tan θ + µs)

1− µs tan θ
(2.6)

This formula can also be simplified for flat turns:

vmax =
√
rgµs (2.7)

It is important to note that aerodynamics can also be introduced in this formula, by previously adding

the force that air resistance exerts to the one exerted by gravity. Knowing the radius and maximum

speed allowed, we can fill a table with the Fig.2.2 measurements:

µs g(m/s) θ(o) r(m) vmax(m/s)

0.5 9.81 0 30 12.12
80 19.80

15 80 26.37

Table 2.1: Comparison between different turn angles with the same radius, and resulting max. velocity, using an
example turn of 30 meters, and its ideal radius of 80 meters calculated with formula 2.5, and speed
calculated with 2.6.

Analysing the table 2.1 shows that increasing the radius of the arch described by the car allows for

an increased maximum velocity, as well as an increased inclination angle towards the centre of the turn.

Considering this, it is clearly beneficial to follow the optimised path.

Although this technique allows for the optimisation of single segments, it does not take in considera-

tion how the trajectory followed in a segment might affect the one that is to be followed in the preceding

segment. An important thing to consider while taking a corner is the exit speed, the speed that one goes

through at the apex of the turn. Due to acceleration and braking time asymmetry, it might be beneficial

to brake before the recommended point and go through a tighter route, reaching the point of intersection

between the two lines with a higher speed, as demonstrated in Fig.2.3. This leaves room for further

improvement.

13

2.2.2 K1999 Path-Optimisation Algorithm [8]

This is an algorithm that is much more efficient than reinforcement learning techniques [8]. It was

implemented in Robot Auto-Racing Simulator (RARS) and TORCS, and in this second one the car

follows the target trajectory using a servo-control. The resulting path is approximated by a sequence of

points (#»x i)1≤i≤n. The curvature ci of the track at each point #»x i is computed as the inverse of the radius

of the circumscribed circle for points #»x i−1 , #»x i and #»x i+1 . The formula is presented in 2.8.

ci =
2 det((#»x i+1)− (#»x i), (

#»x i−1)− (#»x i))

‖ #»x i+1 − #»x i ‖‖ #»x i − #»x i−1 ‖‖ #»x i+1 − #»x i−1 ‖
(2.8)

The (#»x i)1≤i≤n points are initially set to the centre of the track. The resulting curvature after is positive

for turns to the left, and negative to the right. By repeating the calculation made in 2.8, the path will be

slowly modified, converging to an optimised path. The algorithm is presented in 2.1.

Algorithm 2.1: K1999 basic algorithm
begin

for i = 1 to n do
c1 ←− ci−1
c2 ←− ci+1

Set #»x i at equal distance to #»x i+1 and #»x i−1 so that ci = 1
2 (c1 + c2)

if #»x i is out of the track then
Move #»x i back onto the track

After the path has been traced, the speed profile - in this case the target speed vi - can be calculated.

It is obtained by taking in consideration turn radius and tyre grip, similarly to the geometric approach; if

the norm is inferior to a0, it will not slip. This is done with two procedures: first in 2.2 , si being the speed

value of the current node, is initialised with the maximum vehicle speed. Then in 2.3 the speed is refined

anticipating braking. This second step is iterated, converging to an optimised speed profile.

Algorithm 2.2: Speed Profile Initialisation
begin

for i = 1 to n do
if |ci| > ε then // ε is a small positive constant

si ←−
√
a0/ci

else
si ←−

√
a0/ε

There are already ways to refine this algorithm so it can converge faster, consider security margins,

the asymmetry between car acceleration and braking capabilities and curves inflection. These are

implemented using Gradient Descent and changing the variation of #»x i upon path calculation in the

14

Algorithm 2.3: Speed Profile Optimisation
begin

for i = 1 to n do
N ←− 1

2 (ci−1 + ci)v
2
i // Normal Acceleration

T ←−
√
max(0, a20 −N2) // Tangential Acceleration

v ←− 1
2 (vi + vi−1)

D ←− kv2 // Air drag

t←− || #»x i − #»x i−1||/v
vi−1 ←− min(si1 , vi + t(T +D))

basic algorithm. A path generated using this algorithm, comparing both basic and optimises versions

is shown in Fig. 2.4. With this technique the robot will achieve excellent lap times with no performance

repercussions, but will be rather poor at passing due to it relying to much to the precomputed trajectory.

The algorithm can retrace the route while on race, but will prioritise its path and not an aggressive

overtaking tactic, failing to avoid collisions with immobile vehicles, or getting delayed by staying behind

slower cars that offer clear overtaking possibilities.

2.2.3 Race Optimal AL © [9]

This is a genetic algorithm method that converges to an optimal racing line. It uses real life circuits

models and calculates the speed profile using client-inputted vehicle data. Its lap simulation first step is

similar to the geometric approach, since it only considers the 2D shape of the track, and calculates the

fastest possible speed at every point based on curvature radius. Physical constrains are considered in

the subsequent adjustments: acceleration does not exceed what the tires can handle and engine can

provide, and braking is limited by tire friction and aerodynamic drag. The Race Optimal AL ©pseudo-

algorithm is described as follows:

1. Set up an initial population of solutions with random variations. Each solution will be a path - a

complete trajectory around the track - built with a set of control points (illustrated in Fig.2.5). Typical

population is between 40 to 100 paths.

2. Solutions are bred together to create offspring. These children represent combinations of the

original parents.

3. Apply mutation to the offspring. This means creating random changes on the child path control

points, in order to more thoroughly search all possible racing lines.

4. Considering the fitness criteria for the selection being simulated lap time (said simulation described

very broadly in the beginning of this section), the children and parents are selected, and the

15

best(shortest lap time) will be retained for the next generation. The others “die off” and the end of

this process marks the end of a generation.

5. Repeat from Step 2 until fitness criteria or the minimum number of generations is satisfied.

An example of a full path calculated by the Race Optimal©algorithm is shown in Fig. 2.5 and a path

segment simulation displaying the calculated speed profile, input, and g-force, is shown in Fig.2.6.

16

(a) Comparison between the geometrical line dotted in grey,
and the late apex trajectory, in green.

(b) Benefits of following the late apex trajectory. Comparing
with the geometrical line shown in 2.3(a), the full throttle
segment is longer, allowing a greater exit speed.

Figure 2.3: Comparison between trajectories and benefits of following the late apex trajectory. Both images taken
from [14].

17

Figure 2.4: Algorithm 2.1 before (dotted) and after gradient descent (not dotted) [8].

18

Figure 2.5: Control points (red) and resulting racing line (blue) for the Porsche GT3 RS 4.0 at Shanghai International
Circuit [9].

Figure 2.6: TT Circuit Assen - F1 Car - Race Optimal Simulated Lap segment. The higher the colour temperature,
the higher the target speed. Throttle, brake and g-force information is also shown [9].

2.3 RRT

In this section will be discussed the relevant works that implemented RRT and variants that improve the

performance of the base algorithm.

19

2.3.1 Base Algorithm [10]

Randomised data structure designed to handle nonholonomic constraints (including dynamics) and high

degrees of freedom. It is iteratively expanded by applying control inputs that drive the system slightly

toward randomly selected points. Can also handle kinodynamic environments, which is TORCS case.

It will search for a continuous path in a metric space X, with and initial point xinit to a goal state or

region xgoal. Its state space can be a 2D or 3D world, whereas in kinodynamic planning problems both

configuration and velocity can be encoded in each state. Other interpretations of X are also possible.

A new node cannot be present within Xobs ,an obstacle region with no explicit representation avail-

able. This region may present bounds to configurations, velocity, etc... All states (and therefore the

complete tree and paths) must lie in Xfree, the complement of Xobs. They are connected through state

transition equations of the form ẋ = f(x, u), with u being an input vector, that expresses the non-

holonomic constraints. This control-theoretic representation is powerful enough to encode virtually any

kinematic and dynamical model. By integrating f over a fixed time interval ∆t, new state xnew can be

determined given x and input u, this being the return ofNEW STATE(x, u,∆t). For a given initial state,

xinit, an RRT T with K vertices is constructed as shown in Algorithm 2.4:

Algorithm 2.4: Basic algorithm
begin

T .init(xinit)
for k = 1 to K do

xrand ←− RANDOM STATE()
xnear ←− NEAREST NEIGHBOUR(xrand, T)
u←− SELECT INPUT (xrand, xnear)
xnew ←− NEW STATE(xnear, u,∆t)
T.add vertex(xnew)
T.add edge(xnear, xnew, u)

return T

Let ρ denote a distance metric on the space state. In more detail:

1. The tree starts at xinit, a state within Xfree.

2. In each iteration a random state xrand is picked from X, assumed bounded.

3. xnear is found, this being the closest vertex, i.e. already connected state, in terms of ρ.

4. Then a u that minimises the distance from xnear to xrand is selected, and ensures that xnew∃Xfree.

Collision detection can be performed here.

5. xnew is created and added to T as a vertex.

6. An edge between xnear and xnew is created, with u recorded in said edge, meaning it must be

applied in xnear to reach xnew.

20

This algorithm has several advantages that make it desirable for this application. As stated, it can

handle kinodynamic environments with nonholonomic constraints and high degrees of freedom. It is

heavily biased towards unexplored portions of the state space, unlike naive random trees as showing in

Fig.2.7. Some steps can be changed and further simplified to best fit certain environments constraints

and goals, but in his basis form it is relatively simple to implement and can be further optimised to be

light and iterative. Unfortunately, since the tree stops expanding once it reaches K vertices or its goal,

and the connections between states never change, it is prone to generating jagged paths and never

converges to an optimal solution. We present some improvements that fix these issues.

Figure 2.7: A Naive Random Tree vs. an RRT , each with 2000 vertices [10].

2.3.2 RRT* [11]

RRT* is an incremental sampling based algorithm which finds an initial path very quickly, and later

improves said path, smoothing and making it shorter, as the number of samples increases throughout

its execution. It works very similarly to RRT and inherits all of its properties. However, it introduces two

new features that allow for said improvements: Near Neighbour Search and Rewiring Tree operations.

This is shown in algorithm 2.5.

Each vertex now hold the information of its self travel distance relative to its parent, which will be

referred as edge cost. Before xnew insertion after u is selected, NEAR returns all states (Xnbr) within

the ball with centre in xnew, with radius defined by equation 2.9 , where γ is a planning constant.

k = γ(
log(n)

n
) (2.9)

CHOOSE PARENT returns xmin, theXnbr state that has the least edge cost, and in INSERT NODE

xnew is added to T with it as parent, with the new edge cost added. Finally, REWIRE will rebuild the

tree within the radius of area k, changing connections between states to ensure a minimal edge cost

21

Algorithm 2.5: RRT*
begin

T .init(xinit)
for k = 1 to K do

xrand ←− RANDOM STATE()
xnear ←− NEAREST NEIGHBOUR(xrand, T)
u←− SELECT INPUT (xrand, xnear)
if xnew∃Xfree then

Xnbr ←− NEAR(T, xnew)
xmin ←− CHOOSE PARENT (Xnbr, xnear, xnew)
T ←− INSERT NODE(T, xmin, xnew)
T ←− REWIRE(T,Xnbr, xmin, xnew)

return T

between them, and a smoother path. A comparison between RRT and RRT* between trees can be seen

in Fig.2.8.

Figure 2.8: RRT vs RRT*. Note the smooth branching on RRT*. Image taken from [15].

It has a larger overhead and development complexity, but it manages to slowly converge to the

optimal solution, ensuring asymptotic optimality, although not in a finite time [11]. This is not practical,

so, to overcome this limitation, an improvement over this technique is presented.

2.3.3 RRT*-Smart [12]

As stated previously, RRT*-Smart objective is to overcome RRT*’s convergence time, and it does by

introducing two new key concepts - Intelligent sampling and Path Optimisation. The process is

outlined in algorithm 2.6.

Initially, RRT*-Smart works in the same way. However, once the first path is found, InitialPathFound

22

Algorithm 2.6: RRT*-Smart
begin

T .init(xinit)
for k = 1 to K do

if k = n+ b, n+ 2b, n+ 3b... then
xrand ←− RANDOM STATE(xbeacons)

else
xrand ←− RANDOM STATE()
xnear ←− NEAREST NEIGHBOUR(xrand, T)
u←− SELECT INPUT (xrand, xnear)
if xnew∃Xfree then

Xnbr ←− NEAR(T, xnew)
xmin ←− CHOOSE PARENT (Xnbr, xnear, xnew)
T ←− INSERT NODE(T, xmin, xnew)
T ←− REWIRE(T,Xnbr, xmin, xnew)

if InitialPathFound then
n←− k

(T, directCost)←− PATH OPTIMISATION(T, xinit, xgoal)
if directCostnew < directCostold then

xbeacons ←− PATH OPTIMISATION(T, xinit, xgoal)

return T

returns the iteration number n at which it was found. Then n and a biasing constant b are used to inform

the algorithm on when to start biasing sampling. PATH OPTIMISATION() initially updates the

path directCost, directly connecting the nodes visible to each other, and due to triangle inequality, their

distance shortens, reducing total path cost.

When a shorter path is found by re-iterating the RRT* algorithm, beacons - the basis nodes for in-

telligent sampling - are requested and generated by PATHOPTIMISATION ; else, the old beacons

remain. In xrand ←− RANDOM STATE(xbeacons) samples are being spawned within the radius with

centre in xbeacons. These are generated in locations where the algorithm needs a bigger node con-

centration, aiming to decrease edge cost. After these initial beacons are found, intelligent sampling

is activated, spawning new samples in the previously defined vicinity, with a biasing probability calcu-

lated in 2.10, where B is a programmer dependent constant. This ratio has a trade-off between rate of

convergence and search space exploration. The final result is shown in Fig.2.9

BiasingRatio =
n

xfree
∗B (2.10)

23

(a) Path given by RRT* (b) First path optimisation

(c) Biasing towards beacons. No-
tice the high node concentra-
tion

(d) Optimal path

Figure 2.9: RRT*-Smart steps. Images taken from [12].

2.3.4 Parallelization

There have been various efforts to implement parallelization in RRT, so it could run in real time or more

efficiently. In [24] the constraint check (collision detection and invalid point culling) is parallelized, this

being considered by the author the main application of GPGPU to improve performance, whereas in [25]

the tree generation is paralleled with a method called Sampling-based Roadmap of Trees (SRT). It takes

several samples from the search space, and uses those samples as the initial node of several trees, that

can either find a local solution or be joint to find one. Joining trees is possible through simple paths or

bi-directional planning.

2.3.4.A IPS-RRT applied to TORCS

In [16] the algorithm Iterative Parallel Sampling RRT (IPS-RRT) is used. This is a variation of RRT

that allows parallelization, since it focus on executing several iterations of parallel tree samples. It is

24

very similar to RRT and improves from other algorithms with a parallelization effort. At each iteration, a

number of samples are concurrently generated and checked for constraints, and the valid samples are

synchronised with the global tree at the end of each iteration. The number of iterations and generated

samples can be changed to fit system performance, and if both are the same, the algorithms performs

exactly like RRT. The pseudo code is presented in algorithm [2.7]. IPS-RRT threads generate only

one sample between synchronisations, and global tree updates are seen in each iteration, making this

algorithm suitable for its main purpose, GPGPU. Due to this schedule, IPS-RRT trees are different from

the basis RRT. They expand in breadth, rather than in depth, having their new points closer to the initial

point.

Algorithm 2.7: IPS-RRT
begin

for n = 0 to nIters do
Start nParallelSamples threads executing:

T ′ ←− T
xrand ←− RANDOM STATE()
xnear ←− NEAREST NEIGHBOUR(xrand, T)
xnew ←− APPLY DELTA(xrand, xnew)

if !validPoint(xnew) then

END THREAD()

T ′.addV ertex(xnew)
T ′.addEdge(xnear, xnew)
SY NCHRONISE THREADS(), T ←− all T ′s

return T

Applied to TORCS, this algorithm generated a new point with a predicted position and velocity in each

game iteration (Fig. 2.10). Each state’s input is not calculated on demand, but inferred afterwards by the

control module, that is constituted by the steering and pedals PID controller. In the process of building

the tree, threads do not keep copies of the main tree; instead the neighbours are picked from a constant

memory tree, updated in each iteration. This is practical and efficient, but the GPU memory slow speed

negatively impacts this procedure, limiting tree expansion. This affected the robot performance, that

followed a tree that did not have enough depth, this revealed when it failed to prepare for, e.g., tight

corners that preceded long straights, a big disadvantage in racing.

2.4 Frame rate and algorithm impact

Should a robot compete against a human player, it must not impact the simulation in such a way that the

frame rates goes below what it is deemed acceptable - a value that, although subjective, sits around 24

frames per second, according to [26]. So a frame update cannot take more than ≈ 0.0417 seconds to

25

Figure 2.10: Attributes in each IPS-RRT state [16].

update. This is also noteworthy considering TORCS simulation is frame independent - it only depends

on the real execution time - meaning that interruptions to the came core procedures will display jumps

instead of smooth transitions, negatively impacting game experience.

On the other hand, for the algorithm to be viable, it must cover enough state space, and have a

sufficient information saved in each state, in order to best calculate a good solution. It was already stated

that, given enough time, the racing line and tree algorithms will output the ideal solution, either being the

ideal racing path or the shortest path (we will consider the first the desirable one due to already explained

dynamics). Given that a time limit for each update is now imposed, a sufficient amount of states might

not be reached, and the robot might suffer from complications as the ones shown in IPS-RRT [16]. The

algorithm has enough time before the race starts, but a before-race algorithm can’t adapt to on-race

situations, reducing solution quality.

This trade-off must be considered, and a possible balance will be presented in the following section.

2.5 Discussion

Due to it being documented, supported by an active community, and presenting already implemented

robots that will be used has a basis for this work, TORCS was chosen as the case to study. Its API

provide all the information and procedures needed for the creation of various robots, including this work.

As said before, TORCS is open-source game with already implemented robots, constituted by mod-

ules that will be of great use for this work. One of them is the inferno robot. It implements the K1999 al-

gorithm and it follows its calculated path through an also already implemented servo-motor controller [8].

26

K1999 displays great results and can be adapted to work collectively with another algorithm, so this work

will try improve upon it.

Since we want to find the best overtaking path while racing, we need an algorithm that is light and

easy to adapt, but capable enough to handle the constraints and dynamics of the proposed environment

and task. Also, given that the overtaking path is not always the shortest, but the smoothest and one that

respects the car properties, algorithms like the RRT*-Smart carry too much overhead, are not needed.

The basis RRT fits our needs: it has a small overhead, an easy implementation, and it is possible to

encode the dynamics of the vehicle within each state [27]. A smooth path can be achieved with bézier

lines, or by simply reducing branch jaggedness through angle limitations, as will be shown in chapter 3.

Considering the trade-off explained in the previous section, its flexibility is appealing, enough to trace

the trajectory on-race or pre-built it before the race starts, with small changes. Both alternatives are

tested in this work. This solution can be adapted to fit the states the K1999 algorithm output that the

car controller then receives, meaning he can follow said trajectory if its adapted. This will be detailed in

chapter 4.

27

28

3
Proposed solution

Contents

3.1 TORCS Track Representation . 31

3.2 K1999 . 31

3.3 ADOVER-RRT . 32

3.4 Path Adjustment . 35

29

30

This section details the processes that work together to accomplish this study objective. These

algorithms rely on the available track information, so how the tracks are represented in-game will be

shown here. Since it was picked to trace the initial line the car follows, and the implemented car controller

receives its states in order to guide the car through the track, the K1999 will be briefly detailed in TORCS

context, adding information to what was already detailed.

3.1 TORCS Track Representation

The K1999 and ADOVER-RRT use the track information available through TORCS Back-end, upon

loading before the race starts, to calculate the racing line and then adapt it. According to [18], these

tracks are composed by a limited number of fixed-width segments that can be classified as turns or

straights. Straights have a length, width, and angle between concurrent segments, shown in Fig.3.1(a).

Turns are arch segments, with a turn radius, arch size, width and angle between concurrent segments,

shown in Fig.3.1(b).

(a) Straight track section (b) Turn track section

Figure 3.1: Track segment types in TORCS.

3.2 K1999

Considering the description already presented in chapter 2 and the track structure description previously

described, this technique applied to TORCS (together with some supporting functions) works as follows:

1. When the track gets loaded, its description and each segment physical characteristics get stored.

2. An object of the car class is created, it containing the physical information about the car, its current

situation, and its plan (path).

31

3. The opponents, track, pit, and current situation information are passed to the plan, and the initial

static route is created, with one path segment per track segment.

4. The race starts and the robot starts updating his status and environment situation.

5. With the new information, the dynamic route is updated. It tries to maintain this on-race route as

similar to its static counterpart, since its considered the optimal path.

6. In case it finds an obstacle within a predetermined range, it slowly converges the route to the new

best one, maintaining smoothness.

7. The servo-motor controller receives each path segment information and responds accordingly,

applying input to match the desired car state (speed and position).

The result for the in-game track E-Track 1 is displayed in Fig.3.3. A diagram that shows this algorithm

cycle can be seen in Fig.3.4. The difference between the two traced paths can be seen in Fig.3.2.

Figure 3.2: The blue dots represent the cars corners, the dynamic path is represented in green and the static,
optimal path in pink. The agent using the K1999 retraces its current path and redraws it around the
opponent it finds withing look-ahead distance.

Figure 3.3: Both lines (dynamic in green and static in pink) traced by K1999 at the start of the race.

3.3 ADOVER-RRT

The RRT was the proposed algorithm to work on, so it was developed and adapted to best fit the needs of

this work. As a result a variant of the RRT was created, called Adapt and Overtake RRT (ADOVER-RRT).

32

Figure 3.4: Scheme with the K1999 cycle, as implemented in TORCS. The states are numbered according to the
steps enumeration presented at the start of the section.

The adaptations will be described in this section, with the implementation and further detailing of certain

characteristics in chapter 4.

3.3.1 Description

We want to compare on-race and pre-race situations. On-race refers to the tree being built while the

car (and player, if present) race, meaning the expansion process will be part of the car update cycle.

Pre-race, pre-built, pre-computed and so on, all refer to when the tree is completely expanded after the

track is loaded, before the race starts, meaning the expansion process will not be concurrent to the car

update process. For both, the base algorithm might remain the same, but some parameters change, as

the path adaptation process.

If we want to expand the tree to preferably completely fill the track - connecting two points in either

segment of it - the tree goal (and stopping condition), becomes the tree having a target number of

vertices. Another condition might be acceptable, but we can always ignore the number of iterations it

takes, since it does not impact in race performance. The overtaking trajectory will be bounded between

two vertices that are found while on race.

On the other hand, if we want the algorithm to construct its tree while the robot is racing, we have to

33

look at the other side of the already stated trade-off, and now the number of iterations per state (or how

long it takes to add a new vertex) matters, meaning we have to limit how many executions per frame or

how long it takes to add a new state. The pseudo code is described in algorithm 3.1:

Algorithm 3.1: ADOVER-RRT
begin

T .init(xinit)
for k = 1 to K do

angle←− 0
if (!ON RACE) or (ON RACE and FRAME%FREQ == 0) then

repeat
xrand ←− RANDOM STATE()
xnear ←− NEAREST NEIGHBOUR(xrand, T)
xstep ←− STEP (xnear, xrand, stepsize)

if xstep@Xfree then

continue

if xnear.parent 6= null then

angle←− BRANCH ANGLE(xnear, xstep, xnear.parent)
if angle ≤ angleLimit then

continue

T ←− INSERT NODE(T, xnear, xstep)
A state was added

until state added

return T

This pseudo algorithm works according to the two ”modes” presented as possibilities: with !ON RACE

or ON RACE and once every FREQ FRAMES. The first option makes the tree expand completely

offline, with xinit in the middle of a predetermined track segment, and growing until its size reaches at

least K nodes. The second option is to expand the tree while the robot is racing, starting only when

we want to overtake. xinit and goal will be offsets of the closest opponent position. When the distance

between the last node added and the goal is less than a programmer-set distance, it stops expanding.

Due to ADOVER-RRT being similar to RRT - the tree is never retraced, with distances and connec-

tions between already added vertices never changing - paths traced by this algorithm can possible be

jagged. Since we wanted to avoid this issue without introducing too much overhead, an angle limitation

was added : xnew would have to make an angle, with xnear being the angle vertex, and its parent the

third point, of at least a programmer set angle, visualised in 3.6. If we consider P as the parent of xnear,

N as xnear and S as a proposed xnew ,]PNS angle is calculated with:

arccos ((NS
2

+NP
2

+ PS
2
)/(2 ∗NS2 ∗NP 2

)) (3.1)

34

The effect is shown in 3.5 and its necessity to this project in chapter 5. This angle value was decided

through trial and observation of the subsequent drawn trajectories. It always improves path smoothness

in a pre-race and on-race scenario, but due to it reducing the probability a node is added to the tree,

it takes a toll on the expansion speed, that affect primarily on-race generation. This method of angle

calculation was chosen, simply due to it being the first proposed, implemented and tested, existing other

viable calculation, for example vector dot product.

Although their working frequency and stop conditions are different, both on-race and pre-race trees

share their expansion process:

1. xrand is generated as a random position within map space (inside and outside the racing track).

2. xnear is the tree node that has the least euclidean distance.

3. xstep is a point, stepsize far from xnear, collinear to xnear and xrand.

4. If xstep sits outside Xfree, (Xobs detailed in chap. chapter 4), xstep is rejected and the process

restarts.

5. If xnear has a parent, to measure the angle]PNS. If this angle is less than the steer lock or a

programmer defined angle, xstep is rejected and the process restarts.

6. xstep is added to T , becoming xnew.

3.3.2 Characteristics

The presented algorithm is flexible, light and fast enough to be run on-race, and with enough time it can

completely fill the track with nodes, allowing for a trajectory between any track segments, which fits an

offline process. The algorithm speed may also be attributed to its simple collision detection. There are

some wasted resources due to nodes getting rejected, but the tracing of trajectories too close to the

borders is avoided, as well as some of the tree jaggedness due to the branch angle bounds, shown in

Fig. 3.5.

3.4 Path Adjustment

This process is what ties the racing line calculation algorithm K1999 and the tree building algorithm

ADOVER-RRT. The main reason of its existence is due to the fact that the robot that serves as the basis

for this project, inferno, follows the path K1999 generates with a servo-motor controller, that receives as

target K1999 path segments, each encoded with a desired car position and velocity. This means the

tree algorithm only has to alter the position of these target nodes, and does not have to encode velocity

35

(a) With angle limited to 160 degrees (b) With no angle limitation

Figure 3.5: Effects of branch angle limitation, both with 25000 vertices and same step size.

Figure 3.6: Considering B being xnear with parent A, D (xstep) can only be extended inside d arch.

in its own states. The controller complies with the modified positions, targets them, and adapts the car

speed to properly follow them. This eased development, increased code readability, and reduced tree

expansion overhead. It is also a simple process by itself, with a very low execution time.

The path adjustment is only needed when the car detects it needs to overtake an opponent, and

it does that by checking if the closest opponent is currently at look-ahead distance (a K1999 defined

constant), is slower than him and leaves room for this manoeuvre to be executed (by measuring the

lateral distance between him and the closest track border). If the opponent verifies all these three

conditions, its position is used to find the goal index (n track segments forward) and the start index (n

track segments backwards). With these indexes it is possible to find the respective K1999 optimal path

segment, and the overtaking trajectory will connect these two positions.

It slightly differs between pre-built and on-race trees. If the tree is fully expanded before the race,

the adaptation process starts by the time the car detects it needs to overtake an opponent. The first

node that is copied to the new trajectory vector is the desired goal, and from that vertex until the last

node added sits close enough to the desired start, it will check if the current vertex has a parent and

36

copy said parent to the new vector. This backtracking process is fast but not very reliable, since it does

not consider current opponent position, and that could result in a collision. A possible improvement is

presented in chapter 6.

With on-race expansion, the first node on the new trajectory, which is also xinit, will be the desired

start. The tree will begin to expand at a defined rate and it will only stop when the last node added sits

close enough to the desired goal. When the tree stops expanding, xinit is already connected to xgoal,

so the backtracking that is done with the pre-race tree is also done here, copying every node from xgoal

to xinit. During the expansion, the opponent position is considered, with this tree building impacting

update performance, but better adapting to a dynamic situation.

After either one of these processes are complete, the copied vertices are used as references to the

new path. The K1999 path is retraced with the following algorithm 3.2:

Algorithm 3.2: Path adaptation
begin

foreach vertex element in Path vector do
Find the closest optimal path segment to this element
Change the optimal path segment to position of this element
Change the dynamic path segment to position of this element

These updated segments are then sent to the control module, allowing for the car to follow the new

trajectory. Notice that no velocity information is altered in this process, but the updated path needs to be

smooth enough, else it will not follow these altered states, or will fail to follow any one, loosing control.

An example of path retracing can be seen in Fig.3.7.

Figure 3.7: RRT path retracing, with the new trajectory in black, with nodes in red. Notice how the K1999 then
creates a return path to the optimal trajectory, only at the end of the retraced line.

37

38

4
TORCS Robot Implementation

Contents

4.1 Bot Architecture . 41

4.2 Search State Representation . 44

4.3 ADOVER-RRT applied to TORCS . 44

39

40

This chapter details the implementation of the developed robot using the ADOVER-RRT algorithm.

It has its architecture presented, with each module elaborated, preceded by an explanation of the state

representation, path creation and particularities of the algorithm.

4.1 Bot Architecture

The TORCS bot is composed by several modules, with the developed algorithm functioning in the Re-

tracing Module. These consist of the following:

• TORCS back-end provides all the necessary procedures and information to control the car and it

fully understand its environment.

• Racing line module is where the K1999 Path Optimisation algorithm calculates the racing line.

• Retracing module where the ADOVER-RRT receives information from the racing line, builds a

tree, and retraces its path when needed.

• Control Module uses a servo-motor controller, destined to control every aspect of the car, so to

best match the target state sent by the racing line module to the current state of the car.

The robot is also composed by an information module, a test-only module that displays visual and text

data, collected from the other modules. It will not be detailed in this chapter since it is not essential.

This architecture is represented in the scheme shown in Fig.4.1. It also applies to both of the proposed

on-race and pre-race modes, since their changes are reflected inside the RRT sub-module.

4.1.1 TORCS Back-end

It it composed by 3 main sub-modules; Track, Car and Opponents. The first one sends to the Retracing

and Racing Line modules, after the track is chosen and loaded into the race, a raw description of

the track, containing its size, segment list and description, and others. The Car sub module outputs

the vehicle current information and its constraints, and constantly receives commands, driving the car.

These commands are the gas pedal, the brake pedal, the gear and the steering angle. They are car

dependant, varying on number of gears and steer lock. The Opponents sub-module is very similar to

the Car module (given that they are all cars) but it is restricted to showing information about the current

adversaries in race, most importantly their speed and current position.

4.1.2 Racing Line

Upon receiving the complete track, it traces a static and an initial dynamic path, built as detailed in

chapter 3. In race, it continuously communicates with both the back-end and control module, updating

41

Figure 4.1: Solid lines represent continuous transmission, with dashed lines being information sent once, when the
sub module starts.

the dynamic path information and car situation, outputting the position and velocity the car must reach in

each segment. It actively tries to maintain the dynamic path as close to its static path, as the second one

is considered the optimal, but it is only possible if there are no obstacles in it. To better handle situations

it might face regarding its adversaries, it has a structure that uses the data it gets from the Opponent

sub module. It is filled with useful information, such as which car to overtake, when to do it, where to do

it, and when it is expected to complete it, among others, that are used in the Retracing module.

This module currently operates with the K1999 Path Optimisation algorithm, but since its output are

states that are required to be understood by the Car Control module, it can hold other search algorithms

or racing line calculation techniques that perform the same function. An example is the architecture used

in [16], where the planning is made by the IPS-RRT algorithm.

4.1.3 Retracing

As detailed in chapter 3.4, upon receiving the confirmation that the path needs to be retraced, it outputs

the adapted trajectory. If its working while racing, it constantly receives information about its environment

and competitors, so to know when and where to act. After tree expansion, the trajectory will be traced

between the detected start and goal nodes, and the K1999 algorithm update will be interrupted while the

car is following it. A path adjustment can be seen in Fig.3.7. If off-race, it only retraces when needed,

using the vertices already created.

42

4.1.4 Control Module

The module that controls the car is divided in three sub modules: pedals, steering, and gears. It drives

the car using the functions the TORCS Back-end provides, and has as a target the information it receives

from the Racing line module. It outputs the commands and their values to the Back-end.This module

was not developed in this work, but it will be described so to better understand some decisions made

relating to the other modules.

For the pedals, the actions regulated are acceleration and braking. The car will get up to the maxi-

mum speed allowed by the segment, every time it has a clear path, meaning the acceleration command

car. accelCmd will be at 1. The braking is regulated by a braking coefficient, that considers both track

and tyre friction, a look ahead factor, and the path segment target speed. Its objective is stopping the

car from exceeding the target speed, go out of the path/turn due to his angular velocity, and avoid flying

caused by track pitch. It will use the car. brakeCmd, with its value regulated by an Anti-lock Braking

System (ABS) system, preventing the wheels from blocking and counteracting tire slippage.

With the updated target position, the steer angle will be obtained with the following formula:

targetAngle = arctan(target.y − car.pos.y, target.x− car.pos.x);

targetAngle = car.yaw;

targetAngle = targetAngle ∈ [−π, π];

steer = targetAngle/car.steerLock;

So it is constantly checking for the next path segment position, its angle in relation to it, and steering

the car, maintaining course. It is worth nothing that the vehicle has a limited steering angle, represented

by car. steerLock, meaning that its turn radius is physically limited, with smoother transitions between

segments being favoured. The Retracing and Racing modules both respect this limitation, the first

updating its path segments positions with smoothing operations, the second limiting the tree new branch

angle, ensuring there are no abrupt steering changes in either situation.

Finally, the car. gear changes its gears when needed. It initially stores the car engine red line, which

are the maximum recommended engine Rotations per minute (RPM), setting this value as an upper

bound. In race, it constantly updates on the current RPM, and, if it reaches a percentage limit (usually

around 95%), the gear is changed to a higher existing one. It also considers the car current speed; if

its either too fast or too slow for the current gear, it respectively ups or downs a gear. This maintains

the engine RPM in an acceptable value between an upper and lower bound where the acceleration

capabilities are maximised and the engine is safe from damage.

43

4.2 Search State Representation

As already described, when tracing the optimal static path, the K1999 algorithm takes into account the

track segment description and slowly converges the target velocity to an optimal value for each path

segment. The dynamic path also updates each path segment velocity, re-calculating it by updating the

radius of the offsetted segments. This means it can also adapt to the trajectory changes made by the

Retracing module. This eases development and removes the overhead from velocity calculations, with

the information encoded in each state coming down to just global coordinates. They will always exist

within track boundaries defined by TORCS Back-end, with the later path adjustment process being viable

anywhere in the track.

4.3 ADOVER-RRT applied to TORCS

As stated in section 4.1.3, this is the algorithm that has the function of retracing the path initially cal-

culated by the Racing Line module. Considering its workings description in section 3, the parameters,

processes and output will be explained within TORCS context and depicted. The complete state space

X shares its limits with the map boundaries, with xrand being created within this region. xnear will be

the closest already existing node, and since each state only has the position representation, this vertex

will be the closest in terms of euclidean distance. A collinear point to both of these points is created,

with a fixed step size distance from xnear. This point is then validated, i.e., the algorithm checks if this

point does not lie in Xobs. The invalid state space Xobs is defined by three spaces/conditions that a new

state must not lie on or verify in order to be accepted and added to the tree. The first space is defined

by the distance between the proposed position and the two dimensional coordinates of the middle of the

closest-to-position segment. This is shown in Fig.4.2. While this is not as precise has a boundary check

using segment corner positions, its is simpler to implement and establish a safety margin. Also, due to

segment size, the arches seen around the centre position in Fig.4.2 are negligible. These track margins

can be visualised in Fig.4.3.

The second condition the state must verify is the angle limitation introduced in chapter chapter 3 and

visualised in Fig.3.6. This limits the new branch angle, and results in smoother tree, and consequently

smoother paths. Taking in consideration what can be seen in Fig.4.3, we can compare it to Fig.4.4 to

visualise the impact.

Finally, to better adapt to the situation faced when the manoeuvre starts a third condition applies to

the on-race tree. While expanding, a new state cannot be closer than a programmer-defined constant to

the opponent it wants to overtake. This is to avoid colliding with him and promote a safer trajectory. Any

state that sits too close is discarded.

Having successfully checked all of these conditions, this new state is added to the tree and the

44

Figure 4.2: The red dot is xrand. The closest segment to it is outlined in red, with each segment mid position
marked by a blue dot. Since this position is close enough to the middle of its segment, it sits in a valid
position.

process gets repeated until a stopping condition is reached. If the tree is being built while on race, it

will stop being built once the last state added reaches a minimum programmable distance to the found

goal. Said goal is found similarly to the start of this tree - both are positions that lie a certain number of

segments ahead and behind the opponent we want to overtake. If the tree is built before the race starts,

the root sits in the middle of a pre-determined track segment, and the stopping condition is it having a

minimum K vertices. A better way to determine K could have been developed, but for now it is a simple

integer, so the programmer needs to check manually, using the test module, if the tree reaches every

segment of the track.

The overtaking behaviour starts by detecting a valid candidate. As detailed in chapter 3, this op-

ponent will be closest than a defined distance, will be in a position where is possible to complete the

manoeuvre (meaning its lateral distance to the track borders are enough to fit my car), and its current

speed will be lower than ours. The closest opponent that respects these conditions will be flagged as an

overtakee, as it has been referred until now. When an opponent gets flagged, the tree starts building.

When this process finished, both start and goal positions are found by simply adding and subtracting to

the track segment index the opponent currently is, and since there is one K1999 path segment per track

segment, they both get set to static path segment positions.

The path adjustment then begins being, as stated, a very simple process. While on-race, it first saves

the tree states that directly connect the goal to the root, by copying the current state to a new vector,

changing the current state to its parent, and repeat until it is null, a condition that only root satisfies. Then

the distances between the elements of this new vector, and the static path segments are measured. The

closest path segment of both dynamic and static path is then set to the position of the closest vector,

45

Figure 4.3: Tree built pre-race, with no angle limitation and 10000 nodes, and step size 6. Notice how no state is
outside of the track and it within track safe margins.

Figure 4.4: Although having the same step size and number of nodes has the tree in 4.3, it only covers around half
the track and takes much longer to build, due to it having an angle limitation of 165.

copying it. This information is sent to the control module, making the car follow this new route. This can

be seen in Fig.3.7, and the pseudo-code in 4.1.

If off-race is selected, the tree expansion is first completed and then the path is adapted. This process

is very similar to the previous one. The pseudo-code is shown in 4.2.

46

Algorithm 4.1: On-race Path Adaptation
begin

if overtakee detected and tree has not started then
startIndex←− overtakeeIndex− offset
startSegment←− Optimal Path Segment[startIndex]
xnew ←− startSegment
T ←− INSERT NODE(xnew)
goalIndex←− overtakeeIndex+ offset
goalSegment←− Optimal Path Segment[goalIndex]

if tree started and goal not reached then
EXPAND TREE()
distToGoal←− EUCL DIST (lastTreeNode, goalSegment)
if distToG < constant then

goal reached
adjust path

if adjust path then
Find the closest tree node to goalSegment
BACKTRACK()
PATH ADAPTATION

Algorithm 4.2: Off-race Path Adaptation
begin

if overtakee detected and tree has not started then
startIndex←− overtakeeIndex− offset
startSegment←− Optimal Path Segment[startIndex]
goalIndex←− overtakeeIndex+ offset
goalSegment←− Optimal Path Segment[goalIndex]
adjust path

if adjust path then
Find the closest tree node to goalSegment
repeat

BACKTRACK()
distToStart←− EUCL DIST (lastPathNode, startSegment)

until distToStart < constant
PATH ADAPTATION

47

48

5
Testing & Evaluation

Contents

5.1 Proof of concept testing . 51

5.2 Tests . 54

5.3 Discussion . 57

49

50

This sections describes and discusses the tests made to study the technique speed, efficiency and

quality of results. The tests were made on a modified Toshiba SATELLITE L850-16Q with an Intel®

Core™ i5-3210M @ 2.5GHz, AMD Radeon™ HD 7670M with 2GB VRAM and 8GB RAM running

Lubuntu 18.10. It was programmed in C++ using Microsoft Visual Code and compiled with GNU Make

4.2.1. This setup was chosen due to TORCS having compatibility issues with the latest versions of

Microsoft Visual Studio (as per the date of this document).

Some proof-of-concept tests are presented first, aimed to confirm some expectations about the algo-

rithm performance. Then, taking into account the work’s goals present in section 1.1, these tests will try

to assert if the algorithm is fast enough to trace a trajectory, if its light enough to be run while on-race,

and if the trajectory traced by it can be followed to overtake an opponent. Following a requirement order,

the tests will check if it is possible to:

1. Build the tree while racing, with no restrictions applied;

2. Do the same but limiting the expansion region to the inside of the track, with a safety margin;

3. Cover the entire track with a high enough K;

4. Adapt the path with a previously built tree and a built-on-race tree;

5. Follow this path (no angle limitation introduced);

6. Apply an angle limitation without slowing the algorithm too much;

7. Smooth the path with said limitation, and improve the followed trajectory;

8. Avoid a collision with a static opponent;

9. Overtake the opponent, now while both are moving;

The impact that tree expansion parameters and some optimisations had on execution/task time will

also be evaluated. The quality of the solution will be discussed along with the tests.

Since the algorithm has some parameters that, although possible to be automated, at the moment

are manually inserted to best fit a testing situation, only a track is tested, the ”E-Track 1”. Despite this, it

can theoretically work in any track, since none of them present limitations that could possibly hinder its

working. This track is 15 (fifteen) meters wide and has a long straight section that eases the trajectory

tracing. Its layout can be seen in Fig.5.1.

5.1 Proof of concept testing

In this subsection the initial tests that meant to show that the algorithm was a valid choice are analysed.

These will answer the first five points previously enumerated.

51

Figure 5.1: ”E-Track 1” track layout

As stated in section 2.4, for this algorithm to be viable a state, it cannot slow the frame update so

it takes more than ≈ 0.0417 seconds (41.7 milliseconds), maintaining it at at least 24 FPS. To assert

this, the average time it took to expand the tree by one node while the car was racing was measured.

Different step sizes, the distance between the nearest already connected nodes and the new nodes,

were compared. The values 1, 6 and 12 will be common, since they cover the range between a close-to-

excessive number of nodes per path, to a close to the limit distance the car can go with no target. The

average time increase can be seen in Fig.5.2. The test showed that a tree expansion with no limit can

be made while racing. Please note the time measured is the average time it takes to add nodes to the

tree, and this only a portion of the complete car cycle, meaning that the limit for an expansion must be

(estimated after some tests and frame rate observation) ≤ 11 milliseconds. The cycle time is variable

due to ever-changing conditions, so the upper bound must include a safety margin.

Seeing that the time it took to update was acceptable, even with a high number of nodes, the first

expansion restriction - track limits - was introduced to the test, and the results measured again, shown

in Fig. 5.3.

Due to only allowing states inside the track, generation times increases. Also due to the same fact, it

becomes harder to expand with increased step sizes, explaining the higher average times between the

three tests. Although taking close to 8 milliseconds, to complete the expansions, it still does not impact

the performance enough so that the frame rate drops below the acceptable limit.

For the pre-generated tree, we compared different trees with the same number of nodes but different

step sizes, aiming to find a good combination, and a result to later compare and assert the angle limit

impact on tree reach.

Since each expansion has more reach, it is shown in Fig.5.4 that, has expected, with an increased

step size comes a higher coverage rate. For the pre-built tree, generation time is not an issue (it is not

executed during play time), so the number of nodes generated can be high, with a short step size; but

52

Figure 5.2: Chart comparing mean update times between different step sizes. In Y axis, the average time a tree
expansion takes is in milliseconds. The X axis represent the tree size in thousands.

the path adaptation depend heavily on these parameters, so they can only be asserted after this final

process test. For the on-racing generation, the chart in 5.3 shows that the step size has an impact,

with values of above 8 being avoided, expected to take a longer time to update than step size 6 with no

considerable gain.

This final preliminary test will confirm if the car can follow a path, with only the restrictions already

considered. Different step sizes will be tested, with both modes compared. The test situation will be

the following: a new race will be started with the car that implements this algorithm starting in first, with

a player-controlled car starting in second. This second car will remain immobile, acting has a static

obstacle. The first car will have to leave its optimal path and trace a trajectory around it. The average

speed will be measured, with a higher value being favoured, and each step size will be tested three

times. The chart is present in Fig.5.5.

With this chart we can conclude that adapting the trajectory with an on-race is possible and the step

size matters. Too small (Step 1) and the car will have to break too much due too constant small changes.

Too large (Step 20) and the target will not be updated enough, resulting in a collision. Three different

trajectories can be seen in Fig. 5.6.

For the pre-built counterpart, a higher stability was verified. High speeds were achieved with step

sizes from 0.5 to 15. The same issue was encountered with a step size larger than 20: the nodes were

too far apart, not allowing an effective update, resulting in a collision.

53

Figure 5.3: Chart comparing mean update times, with track limits. In Y axis, the average time a tree expansion
takes is in milliseconds. The X axis represent the tree size in thousands

(a) Step size 1 (b) Step size 6 (c) Step size 12

Figure 5.4: Step size comparison, all trees having 5000 nodes, with no angle limitation.

5.2 Tests

We first tested if the angle limitation was really needed. The previous tests show that for short paths

(100 segments), path jaggedness was not an issue. So we increased the path size to 200 segments

and retested the same situation. In pre-race, although a slight decrease in average speed, the car was

still able to follow the complete trajectory. In on-race, the path took longer too long too build with step

sizes shorter than 6, and the car went further than the start segment, before the path could be adapted.

But due to the fact it finished adaptation before it collided, the car was still able to avoid the opponent by

following the new trajectory midway.

So, instead of increasing the path size again, it got reduced to 100 segments, and the obstacle was

moved to a different location - the apex of the first corner. It blocks the optimal path and the trajectory the

algorithm will need to trace will differ from the close-to-straight lines outputted until now. We proceeded

54

Figure 5.5: Chart comparing average speed while following the adapted trajectory. For each step size 3 runs were
made with their average speed crossing the adapted path being recorded. Collisions still counted, with
them heavily reducing the average speed, consequently the average of averages (the values presented
in this chart).

(a) Step 1 (b) Step 6

(c) Step 15

Figure 5.6: Step size effect in on-race trajectory tracing. Only initial restrictions applied.

to test this new, increased difficulty situation. The tests started with the pre-race generation with no angle

limitation and increasing step sizes. Several tries were made with each step size. Some trajectories can

be seen in Fig.5.7.

As expected, due to the path adaptation ignoring opponent location, trajectory completion was not

guaranteed, and the car failed to overtake its opponent several times. As seen in Fig.5.7(c), the trajectory

jaggedness and nodes location made the car stop. Although applying an angle limitation of 165 degrees

smoothed the path, as shown in Fig. 5.8 it was still too unreliable.

The pre-race method displayed excellent results in terms of performance, with negligible performance

impact. It built the tree and adapted a trajectory with it that the car could follow. But unfortunately, due

to it lacking updated opponent information, it needs to be improved in order to be considered for future

55

(a) Step size 1 (b) Step size 3 (c) Step size 6

Figure 5.7: Trajectories adapted with different step sizes and no angle limitation. The player car is represented with
a yellow dot, and this car with a red dot.

Figure 5.8: Adapted path in a turn. Although smooth, the opponent blocks this path, meaning it cannot be followed
successfully.

testing. With these results it was predicted that it would not be possible to overtake a dynamic opponent

with this technique.

Then the on-race method was tested. As stated in the beginning of this section, it avoided a collision

with the static opponent, even with a longer trajectory. So it was tested in the same scenario as the

pre-race method. NAL in the captions means no angle limit applied.

As shown in Fig. 5.9(a), due to no existing bias, the tree did not finish building before the car collided

with the opponent. The tree would only finish in some tests, this being too unreliable to be considered.

In Fig. 5.9(b), it did, but due to path jaggedness, it had to brake too much on turn entrance and could

not complete the trajectory (due to it being a slight hill). In Fig. 5.9(c) the car was able to complete the

trajectory, but only sometimes. In the situation shown, the velocity was not adequate and it almost left

track.

We then tested with a 160 angle limitation. Higher degree limitations were also tested, but due to

low frame rates on tree building, were considered invalid and ignored. The trajectories are represented

56

(a) Step 1 NAL (b) Step 6 NAL

(c) Step 12 NAL

Figure 5.9: Step size effect in on-race trajectory tracing. Only initial restrictions applied.

in Fig. 5.10.

This resulted in smoother paths that were more reliably followed, still with small performance impact

(frame rate drops were noticeable, but only for a very short moment). Notice that in 5.10(b), the lack of

bias allowed for a tree expansion in the opposite direction of the needed one, meaning a high percentage

of nodes that would not be used were created.

Finally, the primary task was tested : overtaking an opponent. Unfortunately, even with parameter

optimisation, the robot was not able to overtake a moving opponent. The reasons will be discussed in

the final section of this chapter.

5.3 Discussion

In chapter chapter 1 two questions were asked. In this chapter they were tested and in this section they

will be answered according to the test results.

The first question, an objective regarding the quality of the solution, was divided into two objectives.

57

(a) Step 6, angle limitation of 160 (b) Step 12, angle limitation of 160

Figure 5.10: Step size and angle limitation effect in on-race trajectory.

The first objective was to avoid a collision with a static object. The test results show that, as long the

parameters take reasonable values, with step sizes between 1 and 12, and the path adaptation process

considers the position of the obstacle it has to avoid, it could complete said objective. But this could only

be made with a on-race tree; an off-race tree was not stable enough to be considered in future tests.

The second objective in this question, the main task of this work, was to overtake a moving opponent,

which unfortunately was not possible. The main causes observed are:

• The overtaking detection occurred only once, with the desired trajectory start and goal not chang-

ing until the path was completely traced by the vehicle. This meant that, in a race, were the

overtakee position constantly changes, this is not a viable practice. By the time the robot followed

the trajectory, its opponent was already ahead of the goal.

• The robot was able to follow only some trajectories, with many it being either too slow to complete

them, too fast with it ending off track, or too jagged meaning the average speed was too low to be

considered competitive.

• There was no path re-adaptation while the first adapted path was being followed, meaning the

robot could be easily blocked if the overtakee stood in the traced path.

Some possible solutions are discussed in the last chapter.

The algorithm performance impact was also queried, this time showing promising results. With a

light collision detection technique, and even with an angle limitation that smoothed the path, the on-race

tree was built without affecting player gameplay. Some improvements can be made to avoid wasted

resources on nodes built in the wrong direction, presented in the next chapter. As predicted, the off-race

tree expansion had no impact in race performance, neither its path adaptation process, although this

last one needing further improvement.

58

6
Conclusion

Contents

6.1 Notes for Future Work . 61

59

60

The goal for this work was to explore RRT and its uses, and try to execute an overtaking manoeuvre

with it. ADOVER-RRT was designed, an algorithm that, implemented in the base robot present in the

game TORCS inferno, hopefully could achieve this task. Unfortunately it was not able to overtake a

moving opponent. But its performance was promising, with the game being playable while this robot

was running. It is a flexible and light algorithm, able to be run off and on-race, with some flaws that need

to be improved.

Analysing its implementation and test results, the main problem of this technique is its incompatibility

with its task environment: a racing situation, with highly dynamic opponents and a track with a diversity

of segments, needs an equally dynamic algorithm. Robot position and speed, target status, opponent

status, next opponent to overtake, when to overtake, start and goal of the overtaking manoeuvre, are

all variables that are constantly changing while the robot is racing, so the number of constants that are

considered while the tree is being built and the path adapted need to, preferably, be non existent. But

is also important to say that this algorithm approach contributed with an interesting idea, that in our

opinion, should be explored. The combination of the tree building process with a preceding optimal path

tracing, in this works case thanks to K1999 algorithm, meant that the robot built a new path only when

needed, saving a great amount of processing power, and achieving good results when racing alone. It

was proven to be highly beneficial to start the race with an already built optimal path, that although not

always followed, still encoded important information.

We predict that, with the improvements presented in the next section, this algorithm can complete

the objective that was initially given.

6.1 Notes for Future Work

Considering the main flaw pointed in the previous section, the fact that this algorithm uses information

that should not be constant throughout its process, some possible solutions are presented that mainly

tackle this issue, including others.

With the off-race method, its main flaw was clearly not adapting to the situation the car was currently

facing. This can be solved by continuously updating and using the opponent position in the path adapta-

tion process, ignoring the path if blocked, possibly retracing it, or simply searching for another available

branch.

The on-race method needed its generation speed increased. The angle limitation took a too heavy

toll on its performance, and without bias, the tree was not able to connect the desired start and goal

before the robot collided with its opponent. Therefore, an expansion bias could be implemented to

increase its speed, with this also reducing wasted resources. Considering the path adaptation method,

the start and goal that it detects need to better fit the dynamic environment. A better prediction on when

61

the opponent will be completely overtook needs to be made to find a better goal. It also needs to be

changed and the path retraced if needed.

ADOVER-RRT could also improve if, after some overhead tests, improve the base RRT section to

include the RRT* improvements. Paths would be smoother and easier to follow. Path smoothness can

also be achieved with bezier curves or clothoids, but further overhead tests need to be made, considering

that the tree expansion would need more calculations.

Finally, a more advanced car control module could be implemented. The current model present in

inferno, is easy to work with and flexible, but it does not consider behaviours that would give him a

competitive edge, for example, engine breaking.

62

Bibliography

[1] “Global championship of driverless cars.” [Online]. Available: https://roborace.com/

[2] “Studio-397 – Racing Simulation.” [Online]. Available: https://www.studio-397.com/

[3] “Assetto Corsa your racing simulator.” [Online]. Available: https://www.assettocorsa.net/home-ac/

[4] “RaceRoom Racing Experience.” [Online]. Available: http://game.raceroom.com/

[5] “Project CARS 2 - The Cars.” [Online]. Available: https://www.projectcarsgame.com/the-cars/

[6] “gran-turismo.com.” [Online]. Available: https://www.gran-turismo.com/us/products/gtsport/

[7] “F1 2018.” [Online]. Available: http://www.codemasters.com/game/f1-2018/

[8] R. Coulom, “Apprentissage par renforcement utilisant des réseaux de neurones, avec des applica-

tions au contrôle moteur,” p. 169.

[9] R. Vesel, “Race Optimal.” [Online]. Available: https://www.raceoptimal.com

[10] S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” Tech. Rep., 1998.

[11] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal Motion Planning,”

arXiv:1105.1186 [cs], May 2011, arXiv: 1105.1186. [Online]. Available: http://arxiv.org/abs/1105.

1186

[12] F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, “Smart: Rapid convergence implementation

of RRTtowards optimal solution,” in 2012 IEEE International Conference on Mechatronics

and Automation. Chengdu, China: IEEE, Aug. 2012, pp. 1651–1656. [Online]. Available:

http://ieeexplore.ieee.org/document/6284384/

[13] “geometry - Car racing: How to calculate the radius of the racing line through a

turn of varying length.” [Online]. Available: https://math.stackexchange.com/questions/289575/

car-racing-how-to-calculate-the-radius-of-the-racing-line-through-a-turn-of-var

[14] “Home.” [Online]. Available: https://drivingfast.net/

63

https://roborace.com/
https://www.studio-397.com/
https://www.assettocorsa.net/home-ac/
http://game.raceroom.com/
https://www.projectcarsgame.com/the-cars/
https://www.gran-turismo.com/us/products/gtsport/
http://www.codemasters.com/game/f1-2018/
https://www.raceoptimal.com
http://arxiv.org/abs/1105.1186
http://arxiv.org/abs/1105.1186
http://ieeexplore.ieee.org/document/6284384/
https://math.stackexchange.com/questions/289575/car-racing-how-to-calculate-the-radius-of-the-racing-line-through-a-turn-of-var
https://math.stackexchange.com/questions/289575/car-racing-how-to-calculate-the-radius-of-the-racing-line-through-a-turn-of-var
https://drivingfast.net/

[15] “What’s the difference between RRT and RRT* and which one should we use.” [Online]. Available:

https://www.youtube.com/watch?v=JeEk CWcRFI

[16] S. Gomes, J. Dias, and C. Martinho, “Iterative Parallel Sampling RRT for Racing Car Simulation,”

in Progress in Artificial Intelligence, ser. Lecture Notes in Computer Science, E. Oliveira, J. Gama,

Z. Vale, and H. Lopes Cardoso, Eds. Springer International Publishing, 2017, pp. 111–122.

[17] J. E. Naranjo, C. Gonzalez, R. Garcia, and T. d. Pedro, “Lane-Change Fuzzy Control in Autonomous

Vehicles for the Overtaking Maneuver,” IEEE Transactions on Intelligent Transportation Systems,

vol. 9, no. 3, pp. 438–450, Sep. 2008.

[18] “TORCS - The Open Racing Car Simulator - Browse /api-docs/1.3.7 at SourceForge.net.” [Online].

Available: https://sourceforge.net/projects/torcs/files/api-docs/1.3.7/

[19] “Easy Tips for Better AI in rFactor 2 / rFactor 1 / Most Any Racing Game Ever.” [Online]. Available:

https://www.youtube.com/watch?v=3X34Y3s6pSQ

[20] J. Togelius and S. Lucas, “Evolving robust and specialized car racing skills,” in 2006 IEEE

International Conference on Evolutionary Computation. Vancouver, BC, Canada: IEEE, 2006, pp.

1187–1194. [Online]. Available: http://ieeexplore.ieee.org/document/1688444/

[21] “The official home of Formula 1® | F1.com.” [Online]. Available: https://www.formula1.com/

[22] L. Lanzi, I. L. Cardamone, I. D. Loiacono, A. Pietro, B. Matr, A. Pietro, and B. Introduzione, Auto-

matic Racing Lines Generation For High-End Car Games.

[23] “Banked turns.” [Online]. Available: http://dynref.engr.illinois.edu/avb.html

[24] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing the RRT and the RRT,” in 2011

IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2011, pp. 3513–3518.

[25] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki, “Sampling-based roadmap of

trees for parallel motion planning,” IEEE Transactions on Robotics, vol. 21, no. 4, pp. 597–608,

Aug. 2005.

[26] M. Claypool, K. Claypool, and F. Damaa, “The effects of frame rate and resolution on users

playing first person shooter games,” S. Chandra and C. Griwodz, Eds., San Jose, CA, Jan. 2006,

p. 607101. [Online]. Available: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.

1117/12.648609

[27] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,” The International

Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001. [Online]. Available:

https://doi.org/10.1177/02783640122067453

64

https://www.youtube.com/watch?v=JeEk_CWcRFI
https://sourceforge.net/projects/torcs/files/api-docs/1.3.7/
https://www.youtube.com/watch?v=3X34Y3s6pSQ
http://ieeexplore.ieee.org/document/1688444/
https://www.formula1.com/
http://dynref.engr.illinois.edu/avb.html
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.648609
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.648609
https://doi.org/10.1177/02783640122067453

65

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	1 Introduction
	1.1 Work's Goal
	1.2 Outline

	2 Related Work
	2.1 Racing AI
	2.1.1 Capabilities and behaviours
	A – Advanced car control
	B – Collision avoidance
	C – Overtaking
	D – Aggressiveness

	2.1.2 Examples
	2.1.2.A Roborace Robocar/Devbot (2016)noauthorglobalnodate
	2.1.2.B rFactor 2 Image Space Incorporated (2013)noauthorstudio-397nodate
	A – Assetto Corsa Kunos Simulazioni (2014)noauthorassettonodate
	B – RaceRoom Racing Experience Sector3 Studios (2013)noauthorraceroomnodate
	C – Project CARS 2 Sligthly Mad Studios (2017)noauthorprojectnodate
	D – Gran Turismo Sport Polyphony Digital (2017)noauthorgran-turismo.comnodate
	E – F1 2018 Codemasters (2018)noauthorf1nodate

	2.1.2.C Comparison table

	2.2 Racing Line
	2.2.1 Geometric approach
	2.2.2 K1999 Path-Optimisation Algorithmcoulomapprentissagenodate
	2.2.3 Race Optimal AL ©veselracenodate

	2.3 RRT
	2.3.1 Base Algorithm lavallerapidly-exploring1998
	2.3.2 RRT*karamansampling-based2011
	2.3.3 RRT*-Smartislamsmart:2012
	2.3.4 Parallelization
	2.3.4.A IPS-RRT applied to TORCS

	2.4 Frame rate and algorithm impact
	2.5 Discussion

	3 Proposed solution
	3.1 TORCS Track Representation
	3.2 K1999
	3.3 ADOVER-RRT
	3.3.1 Description
	3.3.2 Characteristics

	3.4 Path Adjustment

	4 TORCS Robot Implementation
	4.1 Bot Architecture
	4.1.1 TORCS Back-end
	4.1.2 Racing Line
	4.1.3 Retracing
	4.1.4 Control Module

	4.2 Search State Representation
	4.3 ADOVER-RRT applied to TORCS

	5 Testing & Evaluation
	5.1 Proof of concept testing
	5.2 Tests
	5.3 Discussion

	6 Conclusion
	6.1 Notes for Future Work

	Bibliography

