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Abstract 

The present dissertation aims to determine the musculoskeletal loading conditions during gait motion 

for two studied patients and compare these findings with in vivo data and literature. In a context of 

multibody dynamics, a three-dimensional biomechanical model for the lower limb based on a 

comprehensive dataset is presented. The biomechanical model consists in a lower limb representation 

for human motion analysis with small influence of the upper limbs. The anatomical articulations are 

approximated by ideal mechanical joints and the muscles are included in the system as two-point 

actuators. 

A gait analysis is conducted using the kinematic and kinetic data for two patients using instrumented hip 

prosthesis that measure in vivo forces. The muscle and joint contact forces are calculated using inverse 

dynamic optimization. A static optimization technique is used to find the solution for the redundant 

muscle force sharing problem. The optimization consists on the minimization of a cost function that 

represents a physiological criterion. 

The relative contribution of the energy-related terms included in the energy-based criterion is evaluated 

by using the in vivo measurements of hip contact forces. The contribution of each term is discussed so 

that the optimization can lead to a closer match between the obtained forces and the experimental 

measurements. The muscle forces and activations patterns are also evaluated and compared with 

literature. This comparison attempts to evaluate the accuracy of the biomechanical model and to identify 

what alterations can be made to obtain more accurate predictions of hip contact forces. 

 

Keywords: Musculoskeletal Model, Hip Contact Forces, Inverse Dynamics, Metabolic Energy Rate, 

Optimization Criteria, Gait Analysis. 
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Resumo 

A presente dissertação determina as condições de carga musculosquelética, durante a marcha, para 

dois pacientes e compara esses resultados com dados medidos in vivo e com a literatura. No contexto 

de dinâmica multicorpo, é apresentado um modelo biomecânico tridimensional para o membro inferior 

com base num conjunto de dados. O modelo biomecânico consiste numa representação do membro 

inferior para a análise do movimento do corpo humano, com pequena influência dos membros 

superiores. As articulações anatómicas são aproximadas a juntas mecânicas e os músculos são 

incluídos no sistema como atuadores. 

Uma análise de marcha é realizada utilizando dados cinemáticos e cinéticos de dois pacientes 

implantados com próteses de anca instrumentadas, que medem forças in vivo. As forças musculares e 

de contato nas juntas são calculadas utilizando otimização de dinâmica inversa. O problema 

indeterminado da redundância muscular é resolvido utilizando otimização estática. A otimização 

consiste na minimização de uma função objetivo que representa um critério fisiológico. 

A contribuição relativa dos termos presentes na função objetivo utilizada, baseada no consumo 

energético muscular, é avaliada com base nas forças de contato medidas in vivo. A contribuição de 

cada termo é discutida de forma a que a otimização permita o cálculo de forças de contacto o mais 

próximo do in vivo possível. As forças e ativações musculares são também avaliadas e comparadas 

com a literatura. A comparação tem como objetivo avaliar o desempenho do modelo biomecânico e 

identificar quais são as alterações a realizar para obter previsões mais corretas das forças de contato 

na anca. 

 

Palavras-Chave: Modelo Musculosquelético, Forças de Contacto na Anca, Dinâmica Inversa, Taxa de 

Energia Metabólica, Critério de Otimização, Análise de Marcha 
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1. Introduction 

1.1. Motivation 

The human locomotion system is able to perform a wide variety of movements and, for every motion, 

the central nervous system selects a combination of muscles to activate in order to rotate the bones 

around the articulations (Carbone, 2016) to achieve the desired action. Biomechanics is defined as the 

science that describes, analyses and assesses the physiology of living structures and animals using the 

laws of mechanics. The human motion is one of the objects of study in biomechanics (Winter, 2009). 

Important biomechanics research tools that helps to understand how the human body works include 

biomechanical models, consisting on a mathematical reproduction of the musculoskeletal biological 

systems in which the bones, articulations and muscles are included in the form of mechanical elements 

(Horsman, 2007). In this field, lower limb musculoskeletal models have enabled a wide variety of medical 

applications such as clinical post-operative follow-up for patients with prosthesis (Wren et al., 2011), 

clinical gait diagnosis, and treatment of patients with orthopaedic or neurological disabilities. These 

models also help to assess the consequences of medical intervention (Delp et al., 1990) and contribute 

to non-medical applications such as improvement of athletic performance (Pfister et al., 2014) and 

equipment design. A variety of human biomechanical models have been proposed, among which 

recently Horsman (2007) presented a complete dataset collected from a single embalmed specimen 

containing all the necessary information for a correct modelling of the human lower limb.  

Musculoskeletal models can be applied not only to investigate the theoretical principles of the motion 

and control of biological systems but equally to applied research. They are used to estimate joints and 

muscles load forces taking place under given motions, since direct measurement of this data is strongly 

limited by the need of instrumented prostheses, a practice usually restricted to pathological patient 

cases. Hereupon, the knowledge of musculoskeletal loading is still limited (Yamaguchi et al., 1995; 

Carbone, 2016) i.e. the actual forces occurring in vivo, such as articular compression forces and 

muscular forces, are hardly accessible, since these forces arise from a complex interaction between the 

central nervous and musculoskeletal systems, owing to the redundancy of the muscle apparatus (Silva 

and Ambrósio, 2003). Computational biomechanical models combined with proper optimization 

techniques allow solving the musculoskeletal force redundancy and offer tools to estimate in vivo forces 

during motion  (Yamaguchi et al., 1995; Heller et al., 2001; Praagman, 2008). 

The preferred approach to solve the muscle-force sharing problem is an inverse dynamic analysis, 

where external forces and motion trajectories are the inputs of the optimization process. Therefore, 

kinematic and kinetic data must be collected beforehand using three-dimensional motion capture 

systems and force platforms. An important requirement to perform an inverse dynamic analysis is the 

definition of a cost function which best represents the physiological criteria adopted by the central 

nervous system to generate the muscular activation patterns needed to achieve a given motion  
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(Rasmussen et al., 2001). Different cost functions have been proposed in the literature (Tsirakos et al., 

2017).  As expected, the optimal solution found must also satisfy the equations of motion applied for the 

biomechanical system (Silva and Ambrósio, 2003). However, the development of more refined 

optimization criteria that better represents the in vivo process is still an ongoing field on research.  

The meaningfulness of the results of the computational biomechanical models is a key issue, as most 

of the results cannot be measured experimentally. Two standard forms of validation are used in 

musculoskeletal models. A common approach is to compare the activation patterns obtained from the 

dynamic simulation and compare the results against electromyography (EMG) measurements. However 

this method does not allow full quantitative comparison of the forces (Heller et al., 2001). Moreover, the 

non-invasive application, i.e. the surface EMG, can only be applied to superficial muscles. Alternatively, 

when possible, invasive instrumented prostheses allow in vivo joint contact forces measurements. The 

OrthoLoad project (Bergmann, 2008) provides a comprehensive dataset containing hip contact forces 

(HCF) measured in vivo for a number of daily activities, as well as kinematics and ground reacting forces. 

This data repository allows to evaluate the model accuracy by comparing the forces obtained 

computationally, when using the measured kinematics and GRF as an input, with in vivo measurements 

(Bergmann et al., 2016; Fregly et al., 2012). 

The first objective of the work now presented is to validate the Lisbon Lower Limb Model (LBL), a model 

based on the comprehensive dataset published by Horsman (2007). The musculoskeletal model is 

solved in optimization environment to find the solution for the so-called “redundant muscle force sharing 

problem”, using an inverse dynamics approach. The model HCF predictions for gait motion of two 

OrthoLoad patients are compared with the respective in vivo measurements. Also, the muscle 

activations patterns and the forces developed are evaluated and compared with those presented in 

literature. This comparison attempts to evaluate the accuracy of the biomechanical model and to identify 

upgrades that can be implemented to obtain more accurate predictions of HCF. The main objective of 

the present work is to evaluate the relative contribution of the muscular energy consuming processes 

included in muscle load sharing cost function proposed by Praagman et al. (2006). The aim is to estimate 

the relative contribution of the processes included in the cost function, i.e. ion pumping and cross-

bridges cycling, that can lead to a closer match between hip forces predicted by the model obtained 

forces and the experimental measurements. 

1.2. Literature Review 

Scientific literature dedicated to studying animal motion dates back to 384-322 B.C., when Aristotle 

introduced the concept of locomotion and movement on his work ‘’De Motu Animalium’’. Later, 

Erasistratus (304-250 B.C.) described the muscle as a contractile element. Galen of Pergamum (129-

200 A.C) made one of the most important contributions when writing works ‘’De Usu Partium’’ and ‘’De 

Moto Musculorum’’ describing the human musculoskeletal system, which were the main references for 

related studies for over 1300 years. Galileu Galilei (1564-1642) considered by many the father of 

biomechanics, studied the animal motion from a mechanical point of view, followed by Giovanni Borelli 

(1608-1679) who firstly used a geometric method to characterize and analyse human movement. Isaac 
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Newton (1642-1727) laws revealed fundamental for the kinematics and dynamics analysis of 

mechanical systems. The 18th century was marked by the constant emergence of new ideas, especially 

in the field of mathematics. More recently, Étienne Marey (1830-1904) implemented the first 

biomechanical laboratory, were he developed methods and technologies for motion capture. Major 

technological advances took place in the 20th century, were science developments like video motion 

capture systems, electromyography, advance biomechanical models and mechanical descriptions of 

muscles were presented, such as the Nobel awarded Archibald Hill (1886-1977) work on mathematical 

modelling of muscles. 

1.2.1. Gait Analysis 

Gait is the natural mode of human locomotion. Consequently, many studies have focused on the 

identification of normal and abnormal gait patterns (Gage, 1993; Sutherland, 1997; Perry and Burnfield, 

2010; Chambers and Sutherland, 2002).  Innovative three-dimensional motion capture systems made a 

radical contribution in gait assessments, allowing the detailed measurement and interpretation of human 

kinematics. The present section presents the main principles of gait motion analysis and how they can 

be useful for the validation of the proposed biomechanical model and optimization procedures.  

The gait cycle can be defined as the time period between two identical repeating events during bipedal 

human locomotion (Gage, 1993). Likewise, one step can be defined as the time between the heel strike 

of one leg and the heel strike of the contralateral leg, and one stride as the time between two consecutive 

heel strikes of the same foot. In more detail, the gait cycle can be divided into two phases: stance and 

swing. The stance phase is defined as the period where the reference foot is contacting the floor.  

Human motion is controlled by muscles and their activity is governed by characteristic average activation 

patterns (Ivanenko et al., 2004). Clinical techniques such as electromyography have provided a more 

comprehensive insight into muscle behaviour during gait. The muscle activations obtained from an 

inverse dynamic analysis of a biomechanical model can be compared against characteristic activation 

patterns. In this study, the criteria used by the central nervous system to activate the set of muscles 

needed for a given motion is simulated by a cost function that attempts to mimic the rationales of the 

central nervous system. Accordingly, the generated activation numerically patterns may differ from the 

actual in vivo patterns.  Improvements in computational predictions may be achieved through further 

advances in the description of the musculoskeletal systems, the cost functions considered and, 

eventually, by better constraining the problem. 

1.2.2. Biomechanical Models 

Several musculoskeletal models have been developed to study the biomechanics of human locomotion. 

Human biomechanical models can cover the whole body (eg. Silva and Ambrósio, 2003) or only a part 

of the human body. The present work focus on the validation of a lower limb model that is used to study 

human movements in which the influence of the upper limbs is neglectable, such as gait, stair climbing 

or cycling. The simpler 2D models proposed in the literature are used to study the general properties of 

gait and other activities. However, these models only allow studying gait in the sagittal plane, missing 
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some spatial movement characteristics. Moreover, they cannot be used to study the complete muscular 

activity since the complete muscular apparatus cannot be considered. To provide a better description of 

the complex musculoskeletal system of the human body, 3D models comprising full dimensional articular 

joints with multiple degrees of freedom and including musculo-tendon actuators that consider the 

muscular force generating properties have been proposed (e.g. Anderson and Pandy, 2001; Silva and 

Ambrósio, 2003). The proposed 3D models have usually been originated from anatomical studies 

containing anthropometric information, such as muscle parameters and joint locations (e.g. Chandler et 

al., 1975). However, in most of these anatomical studies the respective datasets are not comprehensive, 

meaning that a complete musculoskeletal modelling can only be assembled by combining distinct 

datasets, and finding parameters by estimation/extrapolation. 

The lower limb model applied in the present work is developed using the musculoskeletal dataset 

published by Horsman (2007). The authors developed a complete and consistent dataset embracing 

data on joint kinematics, muscle parameters and geometrical data measured from a single embalmed 

specimen, which contains all the necessary data for state-of-the-art musculoskeletal modelling of the 

lower limb. The implementation of the data presented aims to improve the estimation of internal forces, 

for a better biomechanical investigation. However, quantitative validation of biomechanical models 

based on this dataset is still on-going research (Fraysse et al., 2009; Modenese and Phillips, 2012; 

Carbone, 2016)  

Biomechanical models can be driven by two different kinematic drivers: joint actuators and muscle 

actuators (Silva and Ambrósio, 2003). With joint actuators, the degrees of freedom (DOF) of the model 

associated with the joints are driven based on experimental obtained data, which can be considered to 

perform a kinematic analysis to obtain the complete model kinematics. The moments of force acting on 

the joints are calculated via an inverse dynamic analysis. The muscle actuators must be used when the 

objective is to evaluate muscle forces: the muscles are included in the biomechanical system in the form 

of individual actuators, each simulating the muscular force with its intrinsic muscular dynamic properties 

(Horsman, 2007). 

To simulate the muscle contraction dynamics, a number of mechanical muscle models have been 

proposed in the literature (Yamaguchi, 2001). Due to a lower computational complexity and a more 

accurate representation of the macroscopic muscle contraction properties, the Hill-type muscle model 

is mostly used in biomechanical studies (Zajac, 1989). The application of the model only requires a set 

of parameters that can be easily extracted from anthropometric datasets. The Hill-type muscle model is 

described by means of passive and active elements representing the contractile properties of the muscle 

tissue and the elasticity of the muscle fibres and tendon. Because tendon elasticity is especially critical 

for fast movements and large tendon actuators, many studies consider the tendon component as a rigid 

element for the sake of computational simplicity (Quental et al., 2018). In effect, since the gait motion 

under analysis, in this work, does not involve fast movements, the tendon deformation is neglected. 
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1.2.3. Experimental Work 

The biomechanics of motion is often studied using inverse dynamics approaches. The aim is to predict 

all the driving/reaction forces arising in the biomechanical model that materialise in a specific dynamic 

response. This analysis has great value when approaching the human locomotion system since the real 

forces that move the system, i.e. the muscular forces, are hardly accessible by experimentation.  

In order to perform an inverse dynamic analysis, the system kinematics and kinetics, in particular the 

externally applied forces, must be acquired in advance and processed to guarantee kinematic 

consistency with the biomechanical model (Silva and Ambrósio, 2002). The kinematic data can be 

obtained from three-dimensional motion capture systems, measuring the trajectory of reflective markers 

placed on the patient’s skin. Afterwards these data are used for reconstruction of the human movement. 

The OrthoLoad project (Bergmann, 2008) provides a comprehensive data set containing the three-

dimensional marker trajectories, captured for implanted patients, needed for the full lower limb motion 

reconstruction and the relative ground reaction forces. The main advantage of this dataset is the 

inclusion of in vivo joint contact forces data, measured using instrumented implants and provided for the 

set of movements, allowing a cycle-to-cycle comparison with numerical results. 

The estimation of muscular and internal contact forces developed in musculoskeletal models requires 

solving an optimization problem due to the redundancy of the muscular apparatus (Yamaguchi et al., 

1995), i.e. the biomechanical model has more muscle actuators than mechanical degrees of freedom, 

i.e. the system is underdetermined. The optimization procedure consists on the minimization of a 

physiological criteria, in the mathematical form of a cost function that simulates the decision criteria 

taken by the central nervous system to recruit muscles. Several cost functions have been proposed in 

the literature (Tsirakos et al., 2017), most of which are mechanical cost functions based on muscle force 

(Collins, 1995; Crowninshield and Brand, 1981). However, more recently, an energy-related cost 

function representing the two major energy-consumption processes in the muscles was proposed by 

Praagman (2008). This cost function, composed of three additive terms, two related with the 

reabsorption of calcium ions and another with cross-bridges detachment, seems to provide more 

physiologically realistic results. Since the optimal relative contribution of each term in the cost function 

is still unknown (Nikooyan, 2011), this study aims at identifying them based on physiological 

quantification. 

1.3. Thesis Organization 

In the first Chapter of the present thesis, the context of this work is introduced and a review of the current 

developments in musculoskeletal modelling, gait analysis and dynamic analysis of biomechanical 

models are presented.  In Chapter 2 the biomechanical model anatomical data, specifically the geometry 

of the joints, muscular parameters and geometrical parameters are presented for a correct 3D 

musculoskeletal model construction. The principles for the implementation of the biomechanical model 

using a multibody formulation are presented in Chapter 3. In this chapter the formulation and the 

equations required for a kinematic and dynamic analysis are also presented. 
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Chapter 4 describes the data acquisition processes, and how the data is processed to reconstruct the 

movement captured from OrthoLoad (Bergmann, 2008) patients and how to ensure its consistency with 

the musculoskeletal model. The LLEM motion is evaluated and compared with that reported in the 

literature. The chapter concludes with the description of the kinematic data used in the dynamic analyses 

and in the validation of results, i.e. the in vivo joint contact forces data. 

Chapter 5 focuses on the description of the muscular redundancy problem in the human locomotion 

system. An overview of inverse dynamic analysis is presented, followed by the description of the muscle 

actuators, in a multibody formulation, and the muscle tissue dynamic properties, which are included in 

the biomechanical model to mechanically represent the muscle apparatus. Afterwards, the muscle force-

sharing optimization problem formulation is presented, which is followed by a detailed description of the 

cost function used.  

The optimization problem formulated in Chapter 5 is solved in detail in Chapter 6, starting with a standard 

solution using the cost function proposed in the literature and followed by an identification of the optimal 

cost function parameters. The HCF is the dataset used to support the function parameters identification. 

An evaluation of the obtained muscle activations and force patterns is also obtained in the process. In 

the final chapter, Chapter 7, the conclusion and future developments regarding this work are addressed. 

1.4. Novel Aspects of the Work 

The present thesis uses background knowledge concerning the modelling of the LLEM and a computer 

code with the optimization procedure to solve indeterminate problem using inverse dynamic analysis. 

The aim of this study is to quantify the difference in muscle forces and joint contact forces estimated by 

the LLEM while performing an optimization procedure using the cost function proposed by Praagman 

(2008). In addition, the study assesses modelling aspects related to the musculoskeletal model and the 

cost function that impact the performance of the biomechanical model.  

Considering a two-level optimization in which the contribution of the various terms of the objective 

function are optimized, a cost function with different weight parameters that can lead to a closer match 

between calculated HCF and in vivo measurements is presented. Also, the relative contribution of the 

cost function terms is discussed in the framework of a more accurate physiological behaviour of the 

biomechanical model.  

Biomechanical muscle modelling improvements are discussed in order to have a more accurate 

representation of the muscle apparatus. This is demonstrated by the evaluation of the obtained muscle 

activation patterns and forces and their comparison with patterns presented in literature. 
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2. Biomechanical Model 

A biomechanical model of the human lower limb consists on a mathematical reproduction of the 

musculoskeletal systems in which the bones, articulations and muscles are included in the form of 

mechanical elements. The modelling is done based on anthropometric data, definitions of the different 

anatomical segments, assumed rigid bodies, and their relative mobility. Horsman (2007) proposed a 

unique comprehensive dataset containing all information on the modelling parameters for the lower 

extremity measured on a single specimen, which is used in this work. In the current chapter the LLEM, 

based on the dataset of Horsman (2007), is described. All information required for constructing the 

musculoskeletal model is presented, including the anthropometric measurements kinematic structure 

and a description of the muscle apparatus. 

2.1. Anthropometric Measurements 

Horsman (2007) measurements were performed on a male specimen embalmed at the age of 77, with 

weight 105 kg and height 1.74 m. The dataset measurements were performed for the right lower 

extremity of the male cadaver. Data for the left lower extremity was obtained by mirroring the data from 

the right lower extremity. The biomechanical model proposed is composed of 11 segments, including 

the pelvis and 5 segments for each lower limb, i.e. femur, patella, tibia, foot and hallux, assumed as rigid 

bodies. Figure 1 illustrates the skeletal structure of the biomechanical model resulting from using the 

aformentioned datased. 

 

Figure 1: Biomechanical model rigid bodies description. 

   

1

2 7

4 9

5 10

6 11

3 8

ID Rigid Body

1 Pelvis

2 Right Femur

3 Right Patella

4 Right Tibia

5 Right Foot

6 Right Hallux

7 Left Femur

8 Left Patella

9 Left Tibia

10 Left Foot

11 Left Hallux
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The parameters used for modelling the biomechanical model presented are estimated using the 

Horsman (2007) comprehensive dataset. Some adjustments and modifications are done in the 

anthropometric measurements of the model body segments, in particular mass and inertia, following the 

Dumas et al. (2007) recommendations. The anthropometric measurements of the biomechanical rigid 

bodies are presented in Table 1.  

 

Table 1: Anthropometric measurements of the biomechanical system. The ID corresponds to the 
numeration adopted in Figure 1. The centre of mass of each body are for the pelvis coordinates 
system (x,y,z) for a biomechanical model position close to the anatomical reference position and 

moments of inertia are defined in the principal inertia axis according to (Dumas et al., 2007) .  

Rigid 

Body 

 

ID 

Mass 

(kg) 

Centre of Mass in global frame (m) Principal Moments of Inertia 

x y x Iξξ Iηη Iζζ 

HAT 

(pelvis) 
1 15.3300 -0,0505 0,0487 -0,0905 0.1862 0.2044 0.1689 

Femur 2 / 7 12.9150 0,0025 -0,1752 0,0093 0.1791 0.0479 0.1917 

Patella 3 / 8 0.0862 0,0988 -0,3731 0,0353 0 0 0 

Tibia 4 / 9 5.0400 0,0530 -0,5683 0,0021 0.0641 0.0082 0.0641 

Foot 5 / 10 1.0434 0,1121 -0,8532 0,0275 0.0001 0.0030 0.0028 

Hallux 6 / 11 0.2166 0,1747 -0,9401 0,0472 0 0 0 

 

2.2. Description of the Kinematic Structure 

The biomechanical model is composed of 11 rigid bodies connected by 10 mechanical joints and 2 

inextensible ligaments. The unilateral model, i.e. one of the lower limbs, includes 5 joints, namely the 

hip, ankle, femur-patella, ankle and metatarsophalangeal and 1 ligament between the patella and tibia. 

The hip is modelled as a ball and socket joint, i.e. spherical, meaning that the connected bodies have 3 

DOF. The knee, ankle and metatarsophalangeal are modelled as hinge, i.e. revolute, joints with one 

degree of freedom. Finally, the patella is connected to the tibia by the patellar ligament, assumed to be 

inextensible, and to the femur in the form of a hinge joint, representing the approximate circular path of 

the patella around the femur. Thus, the movement of the patella is totally restricted by the connected 

bodies. The same approximation is found in literature (Modenese et al., 2011).  

While the knee and metatarsophalangeal articulations are hinge joints that allow only flexion and 

extension of the connected bodies, constraining the other DOF, the biological ankle joint is a combination 

of three articulations: the talocrural joint, permitting the dorsiflexion and plantarflexion, the subtalar and 

the tibiofibular joint, which allow the pronation and supination of the foot (Mansfield and Neumann, 

2019). However, for the sake of simplicity only the talocrural joint is modelled as a revolute joint since 

dorsiflexion and plantarflexion define the main ankle kinematics associated with gait motion. 
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The biomechanical model has 18 degrees of freedom, which are the orientation and positions of the 

pelvis with respect to the global frame with 6 DOF, together with the rotation of the knee, ankle and 

metatarsophalangeal hinge joints, for 6 DOF, and the hip joint, which account for the remain 6 DOF. The 

exploded view of the lower limb model is illustrated in Figure 2, with the 18 DOF represented as arrows. 

For clarity, only the right leg joints are numbered. 

 

Figure 2: Exploded view of the lower limb biomechanical model. The DOF are represented as 
arrows for identification. The patella rotation around the femur is not represented. 

 

The coordinates presented in Horsman (2007) dataset are expressed in the pelvis coordinate frame, 

considered the global frame. However, the current work uses a Cartesian coordinate formulation, to be 

presented in Chapter 3, to model the system. In this alternative formulation, the joint locations and other 

reference points are defined in relation to body-fixed coordinate frames (ξ,η,ζ). The origin of the local 

bodies reference frame is located at each body centre of mass and the corresponding orientations of 

the (ξ,η,ζ) axis are defined according to the ISB recommendations (Wu et al., 2002) using the bony 

landmark locations measured by Horsman (2007).  

Table 2 and 3 detail the data for the anatomical joints according to the numbering presented in Figure 

2, where Body i and Body j denotes the bodies connected by a joint. Table 2 describes the centre of 

rotation of the joint in the local reference of each body. The hip joint can be fully described by its rotation 

centre since no constraints exist on rotation. However, when two bodies are connected by a hinge type 

joint, the bodies rotate about a given axis that must be known. The direction of the rotation axis for the 

hinge joints is presented in Table 3. Note that this axis, representing a direction, must cross the rotation 

centre point presented in Table 2. The information concerning the inextensible patellar ligament is 

presented in Table 4. 

 

1

2

3

4
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Table 2: Centre of rotation local coordinates of the joints of the lower limb musculoskeletal 
model. The ID of the joints is consistent with Figure 2. The joint topology, third column, is 

explored in detail in Chapter 3. All coordinates are described in the respective body’s local 
reference frame. 

 

Table 3: Joint’s axis of rotation. The ID of the joints is consistent with Figure 2. All coordinates are 
described in the respective body’s local reference frame. 

 

Table 4: Patellar ligament an respective origin and insertion on the respective bodies. 

 

2.3. Muscle Apparatus Structure 

A total of 38 muscles were measured by Horsman (2007). Because some muscle lines of action have a 

large curvature, due to underlying bones and high muscular volume, two methods are used to describe 

the change in muscle force directions. Bony contours which characterise mathematically the geometry 

of underlying structures (van der Helm et al., 1992) are used to define the muscle line of action of the 

gastrocnemius around the femur condyle and the iliopsoas around the pubis of the pelvis. For 19 

muscles, via points are used to split the muscles in a series of shorter muscle segments (Delp et al., 

1990) as an attempt to better reproduce the muscle path and the different muscle sections behaviour. 

Joint ID Type Body i Body j 

Rotation axis on Body i 
(m) 

Rotation axis on Body i 
(m) 

ξ η ζ ξ η ζ 

Hip 1 Spherical Pelvis Femur 0,0505 0,0505 -0,0487 0,0905 0.0167 0.1742 

Knee 2 Hinge Femur Tibia 0,0031 0,0031 -0.2353 -0.0038 0.0142 0.1605 

Ankle 3 Hinge Tibia Foot 0.0284 0.0284 -0.2482 -0.0142 -0.0378 0.0213 

Metatarsopl. 4 Hinge Foot Hallux 0.0800 0.0800 -0.0329 0.0054 -0.0298 0 

Patella-Fem. 5 Hinge Femur Patella 0.0055 0.0055 -0.2125 0.0015 -0.0652 -0.0029 

Joint ID Type Body i Body j 

Rotation axis on Body i 
(m) 

Rotation axis on Body i 
(m) 

ξ η ζ ξ η ζ 

Knee 2 Hinge Femur Tibia -0.1004 -0.0589 0.9932 0.5108 -0.1097 0.8527 

Pat.-Femur 3 Hinge Femur Patella -0.0087 0.0613 0.9981 -0.0887 0.0613 0.9981 

Ankle 4 Hinge Tibia Foot 0.2441 -0.1884 0.9513 -0.2949 0.0735 0.9527 

Metatarsopl. 5 Hinge Foot Hallux -0.2481 0 0.9687 0 0 1 

Ligament Type Body i Body j 

Insertion on Body i 
(m) 

Insertion on Body i 
(m) 

ξ η ζ ξ η ζ 

Patellar lig. Inextensible Patella Tibia 0.1020 -0.3970 0.0360 0.0850 -0.4550 0.0380 
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The 38 muscles are divided in 57 parts, containing up to 6 bundles, resulting in a total of 163 muscle 

actuators, as proposed in the Horsman (2007) dataset. The Appendix A presents the physiological and 

geometry properties of the 38 muscle used in the LLEM. The physiological parameters comprised are: 

the physiological cross-section area PSCA, defined as the muscle volume divided by the optimal fibre 

length, the optimal muscle length L0, the tendon length Ls and the pennation angle α, defined as the 

angle between a fascicle's orientation and the tendon axis. The geometric parameters comprise the 

origin and insertion of the muscle. These parameters are needed for modelling the muscle as a 

mechanical element, e.g. Hill-type  

  



12 
 

  



13 
 

3. Multibody Dynamics Review 

A multibody system is defined as a collection of bodies connected to each other by joints that constrain 

their relative motion (Nikravesh, 1988). This formulation can be applied in biomechanical modelling, in 

general, and in musculoskeletal systems in particular. The rigid bodies correspond to the bones and the 

articulations to the joints. The biological joints are complex structures, and thus their computational 

implementation can be elaborated. To simplify their modelling, equivalent kinematical mechanical joints 

that represent the in vivo motion are used. In this chapter the multibody dynamics formulation used for 

the kinematics and dynamics of the multibody biomechanical system is presented. These methods are 

then applied to the three-dimensional musculoskeletal model of the lower limb to reconstruct the 

kinematics and evaluate the muscular and inter-segmental forces in the human lower limb. The 

formulation applied is based on Cartesian coordinates and the notation used by Nikravesh (1988).  

3.1. Cartesian Coordinates 

The position of a general point P located on body i in a three-dimensional fixed reference frame can be 

defined as: 

 ri
P=ri+Ais

´
i
P
 (1) 

where 𝐫𝑖 is the global position of body i, si
’P is the relative position of point P in body i and Ai is the 

rotational transformation matrix from  body i reference frame to the global reference frame. 

 

Figure 3: Rigid body position definition on a global reference frame  

 

The position of a body in the three-dimensional space can be defined by three translational coordinates, 

which normally locate the body centre of mass in a fixed global reference frame, and three rotational 

coordinates that specify the rotation of the body reference frame in relation to the global reference. 

However, the use of three coordinates to specify the angular rotation of a body can originate complex 

mathematical formulations (Nikravesh, 1988). Euler parameters are an attractive alternative as there 
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are no singularities associated with these parameters and the transformation matrix is more efficiently 

computed. The Euler parameters define the body position resorting to four parameters (e0, e1, e2, and 

e3) that describe the rotation of a vector in three dimensions associated with a rotation matrix. Note that 

these parameters are coupled by one constraint equation, i.e. they are not independent.  A body position 

in the three-dimensional space can be then fully defined using vector qi, written as: 

 qi=[x,y,z,e0,e1,e2,e3]=[ri,pi] (2) 

When describing a multibody system with n bodies, one can express its configuration using one global 

position vector q: 

 𝐪 = [𝐪i, … , 𝐪n] (3) 

In general, the coordinates contained in vector q are not independent being their relations described by 

kinematic constraints. 

3.2. Kinematic Constraints 

The biomechanical model of the lower limb described in Chapter 2 is composed only of a subset of joint 

types, namely revolute and spherical joints.  Hence, for the sake of brevity, only these mechanical joints, 

together with driver constraints that guide the bodies through space, are formulated next. For a more 

detailed information about the multibody formulation of joints, including Jacobian matrices and 

formulations of the velocity and acceleration equations, the interested reader is directed to the reference 

(Nikravesh, 1988). 

3.2.1. Rigid Linear Element 

A rigid linear element connects point Q on body i to point P in body j by a link having a constant length 

L. This joint only constraints one DOF of the bodies, which is written in the form: 

 Φ(rle,1)=dTd- L2 (4) 

where 

 d=rj+Ajs
´
j
Q
− ri − Ais

´
i
P
 (5) 

being r the global position vector of a body, s’Qi and s’Pj the position of point Q and P relative to the 

associated body, and A the rotation matrix of the a body from the body coordinates frame to the global 

frame. Equation (4) denotes that the point Q and P must always be separated by a distance L. 
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3.2.2. Spherical Joint 

A spherical joint connects two bodies in a way that 3 degrees of freedom are eliminated. Mathematically, 

this is expressed by: 

 Φ(s,3)=ri+Ais
´
i
P
- rj-Ajs

´
j
P
=0 (6) 

where r is the global position vector of a body, s’ is the position of point P in the body fixed coordinate 

system. Equation (6) denotes that the point P, positioned at the joint centre, must always have a constant 

position in bodies i and j, local reference frames, being their local position defined by the vectors si
’P and 

si
’P. As a result, even if the shared joint centre point P can move in space, only three relative rotational 

movements between the two bodies are allowed. The joint is presented in Figure 4. 

 

Figure 4: Spherical Joint. The two bodies share the centre of rotation P. 

 

The hip articulation, represented in Figure 5, is a ball-and-and-socket joint, where the head of the femur 

is free to rotate inside the cup-shape acetabulum (Byrne et al., 2010). Therefore, a spherical joint is 

used to model the hip joint of the lower limb biomechanical model, since it is assumed to be a suitable 

approximation of the biological articulation (Arnold et al., 2010; Heller et al., 2001; Modenese et al., 

2011). The point P corresponds to the joint centre of rotation presented in Table 2. 

 

Figure 5: Hip, or acetabulofemoral joint. An analogy can be made to the mechanical spherical 

joint. 

Acetabulum

Ball

Femur

MC1
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3.2.3. Revolute Joint 

The revolute joint constrains the same relative motions between two bodies as the spherical joint plus 

two DOFs associated with relative rotations. Therefore, a revolute joint allows only two bodies to rotate 

around a single axis. The constraint equations of the revolute joint are: 

 Φ(r,5)=[

Φ(s,3)

si1
T sj

si2
T sj

]=𝟎 (7) 

The first three equations are equivalent to the spherical joint, while the two additional equations imply 

that the vectors si1 and sj, and the vectors si2 and sj, must remain perpendicular. This ensures that 

vectors si and sj remain parallel so that the bodies can only rotate around a single axis. The revolute 

joint is presented in Figure 6. 

  

Figure 6: Revolute Joint. The two connected bodies can rotate around an axis that connects 
point P to Qi (or Qj). 

 

This formulation is used to model the knee, ankle and metatarsophalangeal articulations. The point P is 

equivalent to the respective joint centre of rotation presented in Table 2 and the vectors sj and si are 

assembled using the joint rotation axis in Table 3. 

3.2.4. Prescribed Motion Constraint 

To guide the position and orientation of a body along time, a driver constraint equation is applied: 

 Φ(pmc,7)=qi-qi
m(t)=0 (8) 

P
is
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The equation states that body position qi must follow a desired trajectory qi
m(t). Since the scope of this 

work is the study of the lower limb, this constraint is applied to guide the pelvis of the biomechanical 

model, according to the data obtained experimentally. 

3.2.5. Rotational Driver 

When the objective is to guide the relative orientation of two bodies connected by a joint, the rotational 

driver constraint is applied: 

 Φ(rd,1)=uTv- cos (θ(t)) (9) 

where u and v are unitary vectors fixed on body i and j local reference frames and the angle 𝜃(𝑡) is a 

function of time, obtained by evaluating the system’s desired motion, acquired in the biomechanics 

laboratory. The process of obtaining the time dependent functions q(t) and 𝜃(𝑡) for this work is discussed 

in Chapter 4.  In Figure 7 the rotational driver is represented as a joint actuator. 

 

Figure 7: Rotational drive as a biomechanical joint actuator.  

 

Note that, in the context of this work, the rotational driver substitutes the action of the muscles, acting 

upon the system as joint actuators. When the aim is to study the muscular forces, rotational drivers 

should not be considered. Instead, the muscle actuator formulation, presented in Section 5.2, must be 

included. 

3.3. Kinematic Analysis 

A kinematic analysis consists in determining the positions of the system bodies considering the 

restrictions of the joining components and driving constraints. This analysis must be done to ensure that 

the motion reconstructed is consistent with the biomechanical system model. Considering 𝚽 the vector 

of kinematic constraints, the following expression must hold for all time frames: 



18 
 

 Φ(q,t)=0 (10) 

The solution of Equation (10) in terms of q provides the kinematically consistent positions of the 

multibody system. Since Equation (10) is a set of non-linear equations, the solution can only be obtained 

numerically, using, for example, the Newton-Raphson method. This method is an iterative process 

based on the first order Taylor series expansion of Equation (10). The best approximation to the root of 

the function Φ(q,t) is reached when the residual Δqi is lower than a given tolerance. This can be 

mathematically expressed as: 

 Φ(q,t)≈Φ(qi,t)+
∂Φ(qi,t)

∂q
(q-qi)=Φ(qi,t)+Φq∆qi (11) 

 where 𝚽𝑞   is the Jacobian matrix of the constraints, defined as the constraint system of partial 

derivatives with respect to the vector of generalized coordinates q, and expressed as: 

 Φq=

[
 
 
 
 
∂Φ1

∂q1
⋯

∂Φ1

∂qnb
⋮ ⋱ ⋮

∂Φnc

∂q1
⋯

∂Φnc

∂qnb ]
 
 
 
 

 (12) 

where nc and nb represent the number of constraints and bodies, respectively. In each iteration: 

 qi+1 = qi −  ∆qi (13) 

The kinematic consistent velocities q̇ and accelerations q̈ can be obtained by differentiating Equation 

(11), yielding the following expressions: 

 Φ̇(q,q̇,t)=
∂Φ(q,t)

∂t
+
∂Φ(q,t)

∂q
q̇=0⇔Φqq̇=ν (14) 

 Φ̈(q,q̇,q̈,t)=Φqq̈+(Φqq̇)q-ν̇(t)⇔Φqq̈=γ (15) 

The Jacobian matrix and right hand side vectors of the velocity ν and acceleration γ equations are 

obtained by differentiation the constraint equations. Details can be seen in Nikravesh (1988). 

3.4. Dynamic Analysis 

A multibody dynamic analysis consists on the study of the system motion subjected to externally applied 

forces and taking into account the inertial characteristics of its components. When applied to 

biomechanical systems this analysis provides the joint reaction forces, joints moments-of-force and 

muscle forces.  
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3.4.1. Reaction Forces 

Internal forces are generated in the system in order to fulfil the kinematic constraints. The relation 

between the constraint equation and the respective reaction forces can be obtained using the Lagrange 

multipliers method (Haug and Yen, 1992; Nikravesh, 1988). 

 𝐠c = −𝚽q
T𝛌 (16) 

where 𝐠c denotes the vector of internal constraint forces, 𝚽𝑞
𝑇 is the Jacobian matrix and λ is the vector 

of Lagrange multipliers, each associated with a reaction force developed to satisfy to the respective 

kinematic constraint.   

3.4.2. Equations of Motion 

For a general multibody system, i.e. a system of n constrained bodies, the equations of motion are 

written as (Nikravesh, 1988): 

 Mq̈=g+gc⇔ Mq̈+ Φq
Tλ=g (17) 

where g is the vector of externally applied forces, such as gravitational forces and externally applied 

forces, obtained by assembling local forces and moments to which each body is subjected. The matrix 

M denotes the global mass matrix containing the individual body mass and moments of inertia. In an 

inverse dynamic analysis, the kinematics of the system, i.e., positions, velocities, and accelerations, is 

known in advance, e.g. obtained experimentally, as to be discussed in Chapter 5. In this case, the only 

unknowns of Equation (17) are the Lagrange multipliers (Silva and Ambrósio, 2003), which represent 

the internal forces of the biomechanical system. 
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4. Data Acquisition and Processing 

This study focuses on evaluating the human gait since walking is the major means of locomotion for 

the human being. In general, gait presents common patterns among different individuals. 

Experimental biomechanical analysis can be used to evaluate gait from several perspectives 

(Bonnefoy-Mazure and Armand, 2015) playing a key role in identifying motor impairments, in 

postoperative clinical follow-up, and also in other fields such as improvement of athletic performance 

(Pfister et al., 2014).  

Three-dimensional motion capture systems offer an accurate tool for supporting the study of 

locomotion and, as a result, for evaluating the human system kinematics. These systems allow 

collecting the kinematic data necessary to perform an inverse dynamic analysis. The kinematics data 

is complemented with kinetic data from which the externally applied forces must be computed in 

advance.  

In this work, the data reported by the OrhoLoad database (Bergmann, 2008), containing experimental 

measurements of gait kinematics using three-dimensional motion capture systems (eg. Vicon Motion 

Capture Systems), is used. The data is processed and provided as input to the LLEM for motion 

reconstruction. Ground reaction forces are to complement the dataset required for the dynamic 

analysis, thus allowing a direct comparison of calculated and experimental HCF values. The 

reconstructed motion is further compared with literature for validation 

4.1. Kinematic Data 

The Charité in Berlin (Bergmann, 2008) measured the loads developed in human joints directly by 

using instrumented implants in several anatomical joints of different individuals, with hip or knee 

implants on those related to gait. These measurements were done for a number of daily activities, 

including gait. OrhoLoad (Bergmann, 2008) supplies not only the in vivo loads but also the kinematic 

data and the ground reaction forces. The kinematic data provided consists on the trajectory of bony 

landmarks. This data was obtained using 10 synchronized cameras recording the trajectory of 

reflective markers placed on the subject skin with a sampling frequency of 120 Hz. 

The gait kinematics data of two patients using instrumented hip implants, reported by OrthoLoad 

(Bergmann, 2008), is processed to set up kinematic simulations. The general anthropometric 

characteristics of the studied subjects are presented in Table 5. 

A total of 18 markers are used to track the lower limb motion. The reflective markers placement follows 

the recommendations of the ISB (Wu et al., 2002), which certifies the necessary data quality. The 

evaluation of the anatomic points positions enables to define the positions of the anatomical segments 

and the joint centres. The marker set locations used to describe the motion of the lower limb in this work 

is illustrated in Figure 8.  
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The kinematic data is filtered using a 2nd order low-pass filter, since high frequencies are not related to 

the kind of movements that are under analysis, to eliminate noise. The cut-off frequencies selected are 

calculated using residual analysis (Winter, 2009). 

 

 

Figure 8: Location of the eighteen markers placed on the subject’s skin used to 
identify the biomechanical model body segments. The markers were placed 

according to the ISB recommendations. The markers acronyms are also presented, 
followed by the complete anatomical position description. 

 

Table 5: General anthropometric data of the two studied patients. 

Patient Gender Affected Leg 
Age 

(year) 

Weight 

(kg) 

Height 

(cm) 

Time post op. 

(months) 

H2R male right 62 78 172 12 

H1L male left 55 73 178 13 

 

4.2. Motion Reconstruction 

Once the kinematic data processing is finished, kinematic consistency must be ensured between the 

data provided and the model developed (Silva and Ambrósio, 2002). Note that the motion acquisition 

instrumentation introduces errors in the system that may lead to the violation of the biomechanical 

1 2
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12 13

14 15
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1 RASIS right anterior superior iliac spine

2 LASIS left anterior superior iliac spine

3 RPSIS right posterior superior iliac spine

4 LPSIS left posterior superior iliac spine

5 RMCO right medial condylus femoris

6 RLCO right lateral condylus femoris

7 RMMA right medial malleolus

8 RLMA right lateral malleolus

9 RHEEL right calcaneal tubercle

10 RMET01 right metatasale I

11 RMET05 right metatasale V

12 LMCO  left medial condylus femoris

13 LLCO left lateral condylus femoris

14 LMMA left medial malleolus

15 LLMA left lateral malleolus

16 LHEEL left calcaneal tubercle

17 LMET01 left metatasale I

18 LMET05  left metatasale V
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system constraints.  Furthermore, the LLEM does not have the same anthropometric measurements as 

the subjects under motion analysis, which leads to inconsistencies when matching the markers 

trajectories with the biomechanical body trajectories. 

When reconstructing the motion in the LLEM, the angles related to the DOF of each joint, designated 

as driving angles, and the global position of the base body, i.e. the pelvis, are considered. The driving 

angles measurements starts with the identification of the joints centres. Most joint centres are defined 

as the midpoint between two reflective markers. In the case of the hip joint, implemented as a spherical 

joint, the joint centre cannot be found by palpation since it is not a superficial anatomical landmark. 

Accordingly, its location is estimated.  

The location of the HJC is a crucial aspect of a kinematic analysis since it will be the origin point for hip 

rotation angles and, consequently, it has a strong repercussion in the accuracy of the contact forces 

calculated (Hara et al., 2016), to be discussed in Section 6.2.1, which are the thoroughly used for 

validation in this work. The HJC location is usually calculated using functional or predictive methods. 

The former consists on optimization procedures aiming to determine the centre of the limb spatial 

rotation (eg. Piazza et al., 2001) which can be challenging as it requires the recording of additional 

motions. Alternatively, predictive methods, consisting in regression equations based on anthropometric 

measurements, offer a simpler implementation while delivering good results. Hara et al. (2016) proposes 

a set of regression equations using the leg length, measured as depict in Figure 9, as a single predictor. 

 

Figure 9: Leg length as the distance from anterior superior iliac spline (ASI) to medial malleolus 
(MMA) markers passing throw the medial femur epicondyle (MCO). 

Hara et al. (2016) rational is that the leg length measurement is less affected by the soft tissues thickness 

than the pelvic depth and pelvic width, used in former HJC prediction equations (e.g. Harrington et al., 

2007). In consequence, Hara et al. (2016) equations are selected in this work to predict the HJC of the 

subjects, i.e. in local pelvis body coordinates the location of the HJC is given by: 

MMA

ASI

MCO
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𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 − 𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛:        𝐻𝐽𝐶𝑥 =  11 −  0.063 𝐿𝐿 

 𝑚𝑒𝑑𝑖𝑎𝑙 − 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛:                𝐻𝐽𝐶𝑦 =  8 +  0.086 𝐿𝐿     (18) 

𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 − 𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛:         𝐻𝐽𝐶𝑧 = − 9 −  0.078 𝐿𝐿  
 

where the leg length LL is in millimetres and the x,y and z correspond to the directions used to define 

the pelvis coordinate system in accordance with ISB (Wu et al., 2002). 

From the positions of bony landmarks, each anatomical segment coordinate frame is computed following 

the recommendations of the International Society of Biomechanics (Wu et al., 2002). The evolution of 

the angles between anatomical segments associated with the DOF of the biomechanical system are 

measured by processing the reflective markers acquired kinematics. Subsequently, the angles 

measured are prescribed in the LLEM by using rotational drivers. The angles measured correspond to 

the time dependent terms qi
m(t) of the prescribed motion constraint Equation (8) and 𝜃(𝑡) of the rotational 

driver constraint Equation (9). To ensure total consistency so the Equations (10), (14) and (12), 

described in Section 3.3 must be solved. 

The hallux marker is not present in the OrthoLoad kinematic data. However, its trajectory is considered 

important for a correct prediction of the internal forces since there are several muscles whose insertion 

point is located at the toe. Note that the motion of the toes may influence the moment arm of these muscles 

and, therefore, influence the internal forces developed. To reproduce the halluces kinematics, the motion 

of the toes is measured from a different subject in the Lisbon Biomechanics Laboratory (LBL) and is then 

prescribed for the OrthoLoad kinematic data. This approach is selected since the gait kinematics is 

considered as a standardized motion (Kadaba et al., 1990; Sheffler and Chae, 2015). 

4.3. Application to the Gait Analysis Study 

The gait stride can be divided into two phases: stance phase (ipsilateral foot contacting the ground) and 

swing phase (ipsilateral foot not contacting the ground). The stance phase can be divided into sub-

phases: (1) the initial foot contact with the ground, heel strike, (2) the mid-stance phase that ends when 

the centre of gravity is over the ipsilateral foot, entering (3) the terminal stance when the heel is taking 

of the floor and ending in (4) the pre-swing phase in which the anterior foot is still contacting the floor. 

The swing phase can be sub-divided in three categories: (1) initial swing from the toe off until the foot 

passes the adjacent feet entering (2) the mid-swing phase that ends with vertical tibial position and 

finally, (3) the terminal-swing that ends when the heel strike (Bonnefoy-Mazure and Armand, 2015; 

Sheffler and Chae, 2015). Gait is characterized by alternating periods of double support and single 

support, as shown in Figure 10. 

In the interest of confirming the validity of the computed kinematics, the driving angles measured for the 

two OrthoLoad subjects are compared against the data of Kadaba et al. (1990). The referred literature 

describes several gait analyses for a number of patients using the clinical reflective markers procedure, to 

evaluate the angular motion of the lower limb joints. In Error! Reference source not found., the joint 
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angles obtained for both patients are compared with Kadaba et al. (1990) measurements, presented in a 

grey shadowed region.  

 

Figure 10: Gait cycle and respective phases. Image from (Sheffler and Chae, 2015). 

 

Despite some minor differences existing, the results obtained are, overall, in good agreement with literature 

(Arnold and Delp, 2011; Kadaba et al., 1990). It is important to notice that the HJC is defined differently in 

Kadaba et al. (1990), which is shown by the authors to have a noticeable influence in the hip angles 

measured. The knee axis of rotation may also impact the joint angle measurements.  Additionally, note 

that the joint angle ranges and patterns are highly sensitivity to the patients’ age and gender (Sutherland, 

1997). Thus, the direct comparison of data obtained from the older subject, in OrthoLoad, with that from 

younger subjects (Kadaba et al., 1990) is expected to reflect some of these differences.  

 

Figure 11:  Joint angles measured for the patients H2R (solid line) and H1L (dash line). The shaded 
area corresponds to the joint angle ranges reported by Kadaba et al. (1990). These joints angles were 

prescribed in the LLEM kinematic simulation. 
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Figure 11: (cont.)  
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4.4.  Kinetic Data by OrthoLoad 

The ground reaction forces are the contact forces transmitted between ground and feet during the stride 

phase. Together with the gravitational forces, they represent the externally applied forces in the 

biomechanical system during normal gait and represent the total forces acting on the lower limb system. 

OrhoLoad measures the GRF and their point of application using 6 DOF force plates (AMTI, Watertown 

Ma). The data provided comprises the magnitude of the forces in the three related directions of the 

reference frame and the moments-of-force in relation to the force plate coordinate system, which allows 

the calculation of the centre of pressure (COP) and subsequent force point-of-application. The force-

plates referential is depicted in Figure 12. 

 

Figure 12: Ground Reaction Forces representation and respective reference frame. 

 

The GRF, for both studied subjects, is presented in Figure 13. Only the GRF on the instrumented leg 

are presented for the stride phase, for a better visualisation. The generation of the GRF begins at the 

instant when the foot contacts the ground, in the double support phase. At the same time the force 

magnitude rises rapidly since the body weight is being transferred from the contralateral leg to the new 

supported leg, attaining a force peak due to the impact force of the contacting foot. After the first peak, 

the force tends to decrease, since in this phase the contralateral leg is in the swing phase, helping the 

movement of the body, and the ipsilateral is in a stable position. The next phase is characterized by a 

further increase in strength, while the heel lifts away from the ground and the system is on double 

support once more (Bonnefoy-Mazure and Armand, 2015). This gives origin to a typical force magnitude 

pattern having a double bump that can be observed in Figure 13, characterized by a dominant z direction 

component. The forces reported are in agreement with those presented in the literature (Winter, 2009). 

Fgrf

COP
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Figure 13: Representation of the three components (x,y,z) and total 
magnitude of the GRF for the subjects H2R and H1L during  the 

stance phase. 
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The COP can be obtained from the moments-of-forces reported, considering that: 

 
𝐶𝑂𝑃𝑥 = −

𝑀𝑦

𝐹𝑍
   ;     𝐶𝑂𝑃𝑦 =

𝑀𝑥

𝐹𝑍
       (19) 

The COP calculated is used to determine the GRF point of application. The position calculated is 

obtained in the force-plate reference frame, being a transformation of coordinates to the global reference 

frame performed to check if the COP is consistent with the position of the metatarsals. The force may 

be applied on the foot or on the toes. The identification of the body in which the force is applied is 

important for the assemblage of the global forces vector g (Sheffler and Chae, 2015). 

Being the HCJ one of the results of the inverse dynamic analysis, the major advantage of the OrthoLoad 

data is to allow the comparison of these findings with the measured contact joint forces, provided for the 

captured and reconstructed motion of the subject. This comparison can determine if the predicted HCF 

are within the range of those found in vivo and help validating the lower limb model. In addition, they 

also serve as a reference to identify improvements in inverse dynamics optimization, when assessing 

the related parameters. The HCF measured by OrthoLoad are represented in Figure 14, being the x 

direction correspondent to lateral direction, y the anterior-posterior and z the inferior-superior, based on 

the femur based coordinate system proposed by the ISB (Wu et. al. 2002). 

 

 

Figure 14: Hip contact force reported by OrthoLoad (Bergmann, 2008) in the three components 
of the force-plate reference frame (x,y,z) and total magnitude. 
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5. Inverse Dynamic Analysis of 

Indeterminate Biomechanical Systems  

The dynamics of a multibody system is simulated by solving either a forward or an inverse dynamic 

analysis. The former is performed when the aim is to predict the system motion when the applied forces 

and torques are known. However, when studying biomechanical systems where the developed internal 

forces and torques are difficult to measure directly and are usually the object of study, an inverse 

dynamic analysis can be a more suitable approach (Quental et al., 2016).The analysis consists in 

obtaining the joint reaction and driving forces that the biomechanical model must produce to be 

mechanically consistent with a pre-defined dynamics response, i.e. a given motion under the action of 

externally applied forces. 

In the first section of this Chapter, an overview of an inverse dynamic analysis procedure is presented. 

Next a description of the muscle actuators, which are included in the biomechanical model to mechanically 

represent the muscle apparatus, is presented. In the third section, the dynamic properties of the muscle 

tissue are discussed. The following section describes the muscle force sharing problem, and finally, in the 

last section, the cost function, whose study constitutes one of the objectives of this work, is described. 

5.1. Inverse Dynamic Analysis  

An inverse dynamic analysis requires consistent kinematic data as input, as described in Chapters 3 

and 4. For this analysis, the equations of motion, expressed in Equation (17), are solved using the 

consistent kinematic data, the global biomechanical system mass matrix, and the vector of externally 

applied forces measured using force plates (see Section 4.4). 

When considering only the kinematic joint constraints, the equations of motion include n equations for 

m unknowns, i.e. m-n degrees of freedom, so a solution cannot be obtained. One approach to solve the 

system equations is to consider joint actuators, using the rotational driver described in Section 3.2.5, 

and introducing in the system m-n equations so that the problem becomes determinate. Consequently, 

the equations of motion can be computationally solved. The solution obtained, i.e. the Lagrange 

multipliers, is not related to the actual muscular forces but to joint torques needed to perform the studied 

motion. This formulation is known as a determinate inverse dynamic analysis. 

An alternative approach, representative of the musculoskeletal system, is to consider the muscles as one 

or several two-point actuators. The contribution of each muscle is added to the system as a constraint 

equation. Because the number of muscles is much larger than the number of DOF, the problem becomes 

indeterminate since there are more unknowns m than equations n. This formulation, known as 

indeterminate inverse dynamic analysis, is explained in detail in the following sections. 

In the present work, the muscles of the leg under study, that is, the leg comprising the instrumented 

prosthesis, are considered as two-point actuators in order to estimate correct hip joint reaction forces. 
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In the contralateral leg, joint rotational drivers are considered for the sake of computational simplicity. 

The upper limb musculoskeletal structure is disregarded (Arnold et al., 2010; Heller et al., 2001; 

Modenese et al., 2011; Moissenet et al., 2014). 

5.2. Muscle Actuators 

In order to estimate muscle forces, muscles are included in the biomechanical system as two-point 

kinematic driver actuators, with a constraint equation associated to each muscle. The driver constraint 

equation is expressed as a straight line, with an origin Pi of a rigid Body i, and an insertion Pj of a rigid 

Body j, as depicted in Figure 15, being its length allowed to change in time (Nikravesh, 1988; Silva and 

Ambrósio, 2003). Mathematically, this muscle constraint is expressed as: 

 
ϕ(ma,1)=(dTd)

1
2 -Lm(t) (20) 

where Lm(t) is the muscle length variation over time that is obtained experimentally by analysing the system’s 

kinematics and d is the global vector between the muscle origin Pi  and insertion Pj, expressed as: 

 d=rj+Ajs
´
j
P
− ri − Ais

´
i
P
 (21) 

where ri and rj are the global position of bodies i and j, respectively, and s’P
i and s’P

j are the local 

coordinates of the origin and insertion on the respective bodies, multiplied by the rotation matrices Aj 

and Ai. 

 

 

Figure 15: Muscle actuator with vector d from the origin Pi to the insertion Pj. 
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The Jacobian matrix, right-hand side of the velocity and acceleration kinematic equations can be 

obtained by deriving the constraint Equation (20). The interested reader is referred to the reference 

(Quental, 2013) for a more detailed description of the process. 

Muscles with a complex path require more than a single actuator for an accurate representation. They are 

modelled as a sum of two-point actuators connecting intermediate points of the muscles, called via points, 

that represent the muscle’s wrapping around the bones and contacting muscle (Garner and Pandy, 2000).  

Each muscle actuator is associated with a Lagrange multiplier, linked with a muscle force. The constraint 

equation in added to the system of motion equations, expressed by Equation (17), resulting in a higher 

number of elements that transmit forces than equilibrium equations. Consequently, the problem becomes 

indeterminate, i.e. it has more unknowns than equations, thus having an infinite number of solutions. 

5.3. Dynamics of the muscle tissue 

The muscular force is produced when muscle contraction is stimulated by electrical impulses, emitted 

by the central nervous system, leading to calcium ions pumping from the sarcoplasmic reticulum. These 

calcium ions interact with the troponin and tropomyosin proteins that change the shape of the myofibril 

bundles, and allow myosin to bind with actin, forming a cross-bridge. The myosin heads then tilts, pulling 

the actin, causing the muscle to contract (Hall, John E. ; Guyton, 2016). Cross-bridges are established 

sequentially to generate force. The process briefly explained here corresponds to the sliding filament 

theory, the most widely acceptable theory on how muscles contract (Cooke, 2004). 

 

Figure 16: Sliding filament theory of muscle contraction. The actin filaments slide over myosin 

filaments. and form cross-bridges. Figure adapted from (Dicarlo et al., 1999). 

 

The total force produced by a muscle includes two components: the passive tension and the active 

tension. The first component is related with the muscle tissue elasticity and is produced when the muscle 

length is greater than its resting length, 𝑙𝑚
0 , being proportional to the fibre length. The active force is the 

actual force generated by the muscle’s contractile mechanism following the establishment of cross-

bridges. The active force that a muscle produces is related not only with its length but also with its 

velocity of contraction. This force is maximal at muscle lengths proximal to the optimal muscle fibre 

length, since the maximum overlapping of actin and myosin filaments originating cross-bridges is 

Relaxation Contraction

(start)

Contraction

(finish)

actin myosin cross-bridges
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achieved in this position. With large deviations from this position, shortening or extending the muscle, the 

number of cross-bridges falls, decreasing the magnitude of the active-force (Quental, 2013). When the 

contracting muscle reaches half of its resting length 𝑙𝑚
0  it is not physiologically capable of further contracting 

and therefore cannot generate active force (Arnold et al., 2013). The same behaviour is observed when 

the muscle is extending and reaches a length superior to one and a half of its resting length, 𝑙𝑚
0 . The 

muscle property described, known as force-length relationship, is illustrated in Figure 17. 

 

Figure 17: Force-length property. 

  

When the muscle is not changing length, i.e. in an isometric contraction, the maximum force developed is 

the so-called maximum isometric force 𝐹𝑚
𝐼𝑆𝑂. In the case where muscle is shortening, i.e. in a concentric 

contraction, as velocity increases the force that the muscle can produce decreases due to the protein 

reduced capacity to establish cross-bridges (Quental, 2013). When the muscle is extending, in an eccentric 

contraction, the force produced is increasing with velocity until it reaches a new maximum, that can be 

higher than the maximum isometric force. Figure 18 illustrates this muscle property known as force-velocity 

relationship. 

 

Figure 18: Force-velocity property.  
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To model the muscle tissue, two different types of dynamics can be considered: activation dynamics and 

contraction dynamics. The activation dynamics describes the delay between the emission of the neural 

excitation signal by the central nervous system and the corresponding muscle activation. The 

contraction dynamics describes the transformation of the activation state into mechanical force 

development, a biological process that is described in the beginning of this section. A schematic 

representation of these processes is illustrated in Figure 19. 

 

Figure 19: Dynamics of the muscle tissue, based on (Silva and Ambrósio, 2003).  

 

To simulate the muscular contraction dynamics several mathematical models have been developed to 

represent the muscle-tendon mechanical behaviour and relate the muscular force to the movement of 

the musculoskeletal model system. In this study, the muscle is modelled using the Hill-type model 

presented in Silva and Ambrósio (2003) that proposes an arrangement of three active and passive 

mechanical elements, as shown in Figure 20 . 

 

Figure 20: Muscle Model used to simulate the contraction dynamics (Hill-type) 

 

The model consists in a contractile element (CE) that generates active force, in parallel with a passive 

element (PE) that represents the muscle fibres elasticity, and a non-linear elastic element (SEE) which 

represent the tendon. The pennation angle α is the angle between a fascicle's orientation and the tendon 

axis.  
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The Hill-type muscle model requires four parameters to determine the curves for active and passive 

force generation: optimal fibre length 𝑙𝑚
0 , maximum isometric force 𝐹𝑚

𝐼𝑆𝑂, pennation angle α and tendon-

slack length 𝑙𝑡. These parameters are shown in the dataset used for modelling the biomechanical model 

(presented in Chapter 2). 

The SEE element is associated with the non-linear stiffness of the tendon. Tendon elasticity is mainly 

critical for muscles with large tendons, like some of the muscles of the lower limbs. However, the 

complexity introduced in the system makes the computational procedure associated to the inverse 

dynamic analyses significantly less efficient. While studying the influence of the muscle model 

complexity on the muscle force sharing problem of the shoulder, Quental et al. (2018) reported that the 

simulation of tendon elasticity increased the computational time by more than 2000%. In force of the 

motion scenarios considered in this work, the elasticity of the tendons of the lower limb are neglected. 

Note that most studies also neglect tendon elasticity, supporting the suitability of this assumption.  If the 

tendon does not vary its length, the muscle length can be directly calculated from the kinematic data, 

knowing the tendon slack length and considering that the tendon shortening velocity is null.  Attending 

to Figure 20, the muscle length 𝑙𝑚 is given by: 

 
𝑙𝑚(𝑡) =

𝑙𝑚𝑡(𝑡) − 𝑙𝑡
cos 𝛼

 (22) 

where 𝐿𝑚𝑡 corresponds to the total length of the musculo-tendon complex.  

The production of force with the CE is related with the overlapping of the contractile proteins actin and 

myosin. The force generated in the CE is a function of the maximal isometric force 𝐹𝑚
𝐼𝑆𝑂, force-length 

relationship 𝑓𝑙(𝑙𝑚),
 force-velocity relationship 𝑓𝑣(𝑙𝑣)

  and activation 𝑎𝑚(𝑡), expressed as:  

 
𝐹𝑚
𝐶𝐸 =

𝑓𝑙(𝑙𝑚) ∙ 𝑓𝑣(𝑙𝑣)

𝐹𝑚
𝐼𝑆𝑂

𝑎𝑚(𝑡) (23) 

The force-length 𝑓𝑙(𝑙𝑚)
, and force-velocity 𝑓𝑣(𝑙𝑣)

  dependencies proposed by Kaplan (2000), based on 

experimental results, are considered here. 

The PE element only produces force when the muscle length is greater than a given resting length 𝑙𝑚
0 , 

i.e. the muscle is stretched, and therefore does not depend on muscle activation. This means that its 

force can the calculated directly by analysing the biomechanical model motion, using (Kaplan, 2000): 

 

𝐹𝑚
𝑃𝐸(𝑙𝑚(𝑡)) =

{
 
 

 
 0, 𝑙𝑚

0 > 𝑙𝑚(𝑡)  

8𝐹𝑚
𝐼𝑆𝑂 (

𝑙𝑚
𝑙𝑚
0
− 1)

3

, 1.63𝑙𝑚
0 ≥ 𝑙𝑚(𝑡) ≥ 𝑙𝑚

0

2𝐹𝑚
𝐼𝑆𝑂, 𝑙𝑚(𝑡) > 1.63𝑙𝑚

0

 (24) 

The total muscle force Fm is computed by adding the contributions of the PE and CE element. 
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5.3.1. Muscles length during the gait cycle 

The force-length and force-velocity relationships of a muscle are of extreme importance when evaluating 

muscle dynamics, since the force generated by the muscles is highly dependent on these quantities. 

When considering the tendon rigid, the muscle velocity and length can be directly measured by 

analysing the biomechanical system kinematics: the tendon slack length is considered constant and so 

the muscle fibre length only depends on the origin and insertion locations. Therefore, these properties 

are also evaluated and compared with literature (Arnold et al., 2013; Arnold and Delp, 2011). Figure 22 

Figure 23 presents the normalized fibre length for both patient’s gait cycles for the 20 muscles 

considered to take part in gait motion.  

The majority of results are in accordance with the literature (Arnold et al., 2013; Arnold and Delp, 2011). 

The tibialis anterior, extensor digitorum longus and biceps femoris LH present a slight offset from the 

literature data. Nonetheless, the observed deviation should not be linked with an incorrect force 

prediction since the feasible operating region is located close to the plateau region of the force-length 

curve, as described in Figure 17, where the muscle is able to develop its maximum force. The soleus, 

semimembranosus and semitendinosus muscles present less consistent results since these muscles 

seem to operate in different regions of the force-length curve. In these cases, the muscle loses the 

capability to produce force when it is supposed to be important for an accurate gait motion. However, it 

is important to mention that the biomechanical model used in the literature does have differences with 

the model used in this work.  

 

Figure 21: Normalized fibre length for the H2R patient gait cycle. For some muscles, several 
lines are plotted because they represent the behaviour of the different muscle bundles into 

which the muscle is discretized. 
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Figure 22: (cont.) 

 

Figure 23: Normalized fibre length for the H1L patient gait cycle. For some muscles, several 
lines are plotted because they represent the behaviour of the different muscle bundles into 

which the muscle is discretized. 
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5.4.  Redundant Muscle Force Sharing Problem 

From a biological point of view, the indeterminacy of the musculoskeletal system means that any given 

movement can be achieved by recruiting different combinations of muscles, sets of muscles, or by 

applying different activation levels. In this respect the human locomotion system is redundant, i.e. 

different activation patterns can result in the same force moments acting on the biological joints. The 

muscle recruitment criteria is controlled by the central nervous system which, depending on the motion 

or posture to be achieved, selects the appropriate activation patterns. 

The indeterminate problem described, usually referred in literature as ‘’the redundant muscle force-

sharing problem’’ (Yamaguchi et al., 1995), is generally solved using optimization procedures, which 

select the optimal solution from the infinite set of solutions. This solution minimizes a given cost function 

while satisfying the equations of motion and other physiological constraints.  

The objective function is a mathematical expression that attempts to simulate the muscle recruitment 

criteria adopted by the central nervous system. However, presently, it is still uncertain how the exact 

control mechanism occurs in vivo. Therefore, the cost functions adopted in the literature are based on 

several assumptions. Different physiological criteria have been studied and presented in literature. 

Unfortunately, the majority of studies present purely mechanical cost functions that ignore the 

physiological capability and do not calculate the energy consumption (Tsirakos et al., 2017). On the 

contrary, it is now assumed that the main criterion of the central nervous system is to minimize the 

energy consumption (Alexander, 1997), and cost functions that take energy into account are expected 

to provide more realistic activation patterns.  

The optimization problem described can be formulated as  (Quental et al., 2015). 

 minimize 𝐽𝐸   

 subject to  𝑓𝑚𝑡 = (𝐌�̈� + 𝚽q
T𝛌 − 𝐠)

𝑡
= 0 (25) 

 𝟎 ≤ 𝒂 ≤ 𝟏 

where JE denotes the objective function to be minimized, discussed further in Section 5.5, fmt denotes 

the equations of motion that must always be fulfilled, and 𝒂 the vector of the muscles activations. The 

inequality constraints ensure that the physiological properties of the muscles are also satisfied, in 

particular the activation range. 

5.5. Cost Function 

In the present work the muscle recruitment criterion adopted is an energy-related cost function based 

on physiological parameters proposed by  Praagman (2008). This function, expressed in Equation (26), 

considers two biological processes that are assumed to be the major energy consuming mechanisms 

in the muscles: (1) the cross bridges detachment and (2) the calcium re-uptake.. 
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𝐽𝐸 = ∑�̇�𝑚𝑖 = ∑(�̇�𝑓𝑖 + �̇�𝑎𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

 (26) 

The first process is related to the contraction dynamics, i.e. the activation state transformation into 

mechanic muscle force. This process is related to the distribution of attached cross-bridges in relation 

to the cross-bridge length and can be expressed as a product of the muscle force and muscle fibre 

length. This process is linearly related with muscle force generation. Longer muscle fibres have more 

sarcomeres in series and a higher number of cross-bridges can be established. Therefore, longer 

muscle fibres are associated with higher forces. The energy needed for the detachment of cross-bridges 

is assumed to be linearly dependent of muscle force. The quantity Ėf  is expressed as: 

 
�̇�𝑓~𝑙𝑚𝐹𝑚 = 𝑉𝑚

𝐹𝑚
𝑃𝐶 𝐴𝑚

 (27) 

where Vm is the muscular volume and PSCAm the physiological cross-sectional area.  

The second energy consuming process is related to the activation dynamics, defined as the 

phenomenon that occurs between the neural signal being developed in the central nervous system and 

the activation state of the muscle. The active state is associated with the absorption/reabsorption of 

calcium ions in the sarcoplasmic reticulum by a calcium pump and is proportional to the product of the 

total muscle volume and the active state. This quantity is related with the ratio of the muscle force to the 

maximal isometric force at the optimal fibre length, multiplied by the normalised force-length and force-

velocity relationships, that is: 

 
�̇�𝑎~𝑉𝑚𝑎𝑚(𝑡)~𝑉𝑚

𝐹𝑚
𝐹𝑚
𝐼𝑆𝑂𝑓𝑙(𝑙𝑚)𝑓𝑣(𝑙𝑣)

 (28) 

The energy required for the calcium re-uptake is not exactly known. However, it is assumed to be a non-

linear relationship with muscle force. This assumption is made based on in vitro studies where it is found 

that this energy is linearly related with the stimulation frequency. On the other hand, muscle force is not 

linearly related with stimulation frequency (Blinks et al., 1978). The higher the muscle frequency, the 

greater is the difficulty of calcium ions to bind with actin and therefore the higher is the energy consumed. 

Hereupon, using a polynomial approximation of second order, the quantity Ėa can be rewritten as: 

 
�̇�𝑎 = 𝑎0 + 𝑎1𝑉𝑚

𝐹𝑚
𝐹𝑚
𝐼𝑆𝑂𝑓𝑙(𝑙𝑚)𝑓𝑣(𝑙𝑣)

+ 𝑎2𝑉𝑚 (
𝐹𝑚

𝐹𝑚
𝐼𝑆𝑂𝑓𝑙(𝑙𝑚)𝑓𝑣(𝑙𝑣)

)
2

 (29) 

The energy-related cost function proposed by Praagman (2008) is the sum of the two processes, and 

can be written as follows: 

 
�̇�𝑚 = �̇�𝑓 + �̇�𝑎 = 𝑐1𝑉𝑚

𝐹𝑚
𝑃𝐶 𝐴𝑚

 + 𝑐2𝑉𝑚
𝐹𝑚

𝐹𝑚
𝐼𝑆𝑂𝑓𝑙(𝑙𝑚)𝑓𝑣(𝑙𝑣)

+ 𝑐3𝑉𝑚 (
𝐹𝑚

𝐹𝑚
𝐼𝑆𝑂𝑓𝑙(𝑙𝑚)𝑓𝑣(𝑙𝑣)

)
2

 (30) 
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where the values of the constants c1, c2 and c3 are weight values that determine the contribution of each 

term in the process. The proposed cost function comprises two linear terms and one quadratic term.  

According to the literature (Crowninshield and Brand, 1981; Praagman, 2008), non-linear cost functions 

lead to muscle synergy, i.e. co-activation of muscles.  

Although the energy consuming processes are thoroughly described in Equation (30), the rational for 

selecting the weights of each one of them, c1, c2 and c3, are not reported. One of the goals of this work 

is to find a rational for their selection, being this discussed in Chapter 6 of this thesis. 
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6. Solution of the muscle force sharing 

problem 

The discussion on the muscle load sharing problem, and the detailed description of an energy-related 

cost function used to solve the indeterminacy, has been done in Chapter 5. The present chapter focuses 

on an evaluation of the contribution of the weight values that quantify the relative contribution of the 

processes incorporated in Praagman (2008) cost function. The aim is to estimate the contribution of the 

weight factors for solving the muscle force sharing problem that can lead to improved HCF predictions, 

i.e. closer to those measured in vivo.  

In the first section, the muscle force sharing problem implementation details are discussed, as well the 

details concerning the procedures adopted for the identification of the improved weight factors. In the 

second section the solution of the indeterminate problem solved using the cost function with the weight 

factors defined according to Praagman (2008) recommendations, herein called standard parameters, is 

discussed. The individual contribution of each cost function term is discussed. Next, the sharing force 

problem is solved for different combinations of the weight factors by performing a grid search where the 

parameters are varied within a selected range. Considering a two-level optimization approach, further 

detailed later, new weight factors are sought by minimizing the error between the computational and 

experimental HCF. Next, the weight factors optimization results are discussed. In the last section of the 

present Chapter, the muscle force and activation patterns obtained are also presented and discussed. 

6.1. Muscle Force Sharing Problem Simulations 

Details 

Knowing that the muscle force redundant problem can be solved by minimizing the energy-related cost 

function proposed by Praagman (2008), which is parametrized with three weight factors, Equation (30) 

is re-written in such way that the relative contribution of the terms is determined only by two weight 

factors (Nikooyan et al., 2013). The cost function can be normalized by one of the weight factors and 

the physical solution obtained, i.e. minimum muscular energy consumption, remains unchanged: 

 �̇�𝑚 =
𝑐1
𝑐1
𝑙𝑚𝐹𝑚  +

𝑐2
𝑐1
𝑉𝑚𝑎(𝑡) +

𝑐3
𝑐1
𝑉𝑚(𝑎(𝑡))

2 ⇔ (31) 

 �̇�𝑚 = 𝑙𝑚𝐹𝑚  + 𝑤𝑓1𝑉𝑚𝑎(𝑡) + 𝑤𝑓2𝑉𝑚(𝑎(𝑡))
2 (32) 
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Because the first term of the objective function is much larger than the remaining terms, a scaling factor 

of 106 is considered to allow all terms to present similar orders of magnitude. Thus, in the following 

sections, for simplicity, the contributions of ω1 and ω2 are discussed, instead of the non-scaled weight 

factors wf1 and wf2, where: 

𝑤𝑓1,2 = 𝜔1,2 ∙ 10
6 

The indeterminate muscle force sharing problem is solved for subjects H2R and H1L using the optimization 

formulation presented in Equation (25) while minimizing the objective function described in Equation (32). 

A static optimization procedure is selected to solve the problem, meaning that the muscle load sharing 

problem is solved for each frame individually. When solving the problem using the standard parameters 

the problem is solved for every instants of time, i.e. for a time period of 0.01 s. However, in Sections 

6.3.2 and 6.3.3, the muscle force sharing problem is solved multiple times. Thus, for lower computational 

time, when carrying the grid search and the two level optimization only one in each 4 time frames are 

evaluated, meaning a time period of 0.04 s.  

When modelling the muscle tissue, the tendon is considered rigid, as discussed in Chapter 5, and the 

activation dynamics is neglected, for the sake of computational efficiency. In fact, when considering 

static optimization, is it not possible to simulate activation dynamics since this is a time dependent 

physiological process. To account for activation dynamics, the problem must be solved using dynamic-

like optimization methods, incurring more computational cost. Nevertheless, for normal gait, the dynamic 

optimization approach is expected to have little influence on the results ( Anderson and Pandy, 2001). 

In contrast, the force-length and force-velocity properties are included in the modelling, to provide a 

better representation of the muscle tissue, given that they do not require a large computational cost. 

The numerical HCFs are normalized by the LLEM total body weight while the HCF measurements are 

normalized by the subject’s weight. To quantify the similarities between the numerical HCF curve shape 

and that measured in vivo, three indicators are used: (1) root mean square error (RMSE), (2) relative 

deviation between force peaks (RDP), equivalent to the difference between the numerical and measured 

HCF at maximum peaks, and (3) the Fréchet distance (FD), which is another measure of similarity 

between two curves1. 

The RMSE is calculated between the model-estimated HCF and the in vivo measurements. The RDP is 

defined as the difference between calculated and measured force, normalized to measured force. These 

two indicators are used in other studies (Heller et al., 2001; Modenese et al., 2011; Nikooyan et al., 

2013). The FD indicator is not found in previous studies concerning HCF comparison, but being a 

measure of similarity between curves its an interesting goodness-of-fit measurement between numerical 

and measured HCF. 

                                                      
1 The Fréchet distance between two curves is the maximum distance that a point on the first curve must travel as this curve is 

being continuously deformed into the second curve. The interest reader can consult the mathematical formulation and other 
aspects in (Alt and Godau, 1995) 
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6.2.  Standard Problem Solution 

In this section, the weight values used, ω1 and ω2, are obtained following the recommendations proposed 

by Praagman (2008), which states that weights factors should lead to an equal distribution of the linear 

and non-linear terms, at 50% of activation. This recommendation results in the following weight factors: 

𝜔1 = 0.33     ;       𝜔2 = 0.66 

The HCF obtained in the model are compared to those measured in vivo, as depicted in Figure 24.  

 

Figure 24: HCF obtained when using the standard parameters in dark line for the model of the (a) H2R 
patient and (b) H1L patient during a gait cycle and in vivo measurement in grey line. 

 

The comparison revealed good agreement both in pattern and magnitude for the obtained and measured 

HCF. The deviations in shape between the forces in the model and those obtained in vivo are consistent 

with those presented in the literature (Heller et al., 2001; Modenese et al., 2011; Stansfield et al., 2003). 

In particular, the second force peak, presented at 55% of the gait cycle, is over-estimated for both 

patients studied. Table 6 presents the three goodness-of-fit indicators obtained considering the standard 

weight factors. 

 

Table 6: RMSE, RDP and FD for H2R and H1L patients forces predictions for cost function using the 
standard parameters.  

Subject RMSE  [%BW] RDP  [%Exp. peak] FD [%BW] 

H2R 63,3 25,9 94,7 

H1L 68,8 30,5 112.8 
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6.2.1. Sensitivity of HCF to modelling assumptions 

The numerical HCFs present some irregularities and peaks that do not occur in vivo, as depicts in Figure 

24. The same is also found in other computational studies in the literature (Fraysse et al., 2009; Heller 

et al., 2001; Modenese et al., 2011; Moissenet et al., 2014; Rane et al., 2019; Stansfield et al., 2003). 

This behaviour is also observed in the muscle activation patterns and forces. In order to study the impact 

of the modelling assumptions on the HCF predictions, different modelling conditions, regarding the 

optimization method and the muscle properties, were compared. Considering the data of the subject 

H2R, the following modelling conditions were evaluated: 

(1) RT, SO and disregard of force-length and force-velocity property and ignoring activation 

dynamics 

(2) Similar conditions as in (1), but the force-length property is considered. 

(3) The tendon element remains rigid but both force-length and force-velocity relationships are 

considered. Static optimization is used to solve the force load sharing problem. This 

corresponds to the modelling conditions used in last and following sections. 

(4) Similar conditions as in (3), but the Window Moving Inverse Dynamics Optimization 

(WMIDO) method is used to solve the force load sharing problem (Quental et al., 2016). 

The WMIDO solves the indeterminate muscle force sharing problem simultaneously for n 

instants of time considering a window of n frames that moves forward iteratively. This 

method allows the use of time-dependent physiological criteria and constraints. 

(5) Similar conditions as in (4), but the activation dynamics is simulated.  

The HCFs predicted considering all these modelling conditions are presented in Figure 25. 

 

Figure 25: HCF prediction for the different modelling conditions described. The numbering 
corresponds to the same used for listing the different conditions. The in vivo forces are 

illustrated using a red line. 
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The rapid changes in magnitude are observed for all the simulations, as observed Figure 25, even when 

considering the most complex model, i.e. dynamic simulation and considering activation dynamics. The 

modelling aspects don’t have an impact on the numerical HCF irregularities. Therefore, no clear 

conclusions are drawn for the origin of the peaks.  

A parameter that shows evidence to have a considerable impact on HCF predictions is the location of 

the HJC. Previous studies have shown that changes in hip joint geometry and location have an influence 

on the kinematics and kinetics of the biomechanical system (Lenaerts et al., 2008). For example, a 3 

cm misallocation of the HCF has been shown to lead to a 50% difference in mean flexion-extension hip 

moment, producing a significant difference in the predicted HCF (Stagni et al., 2000). Figure 26 

compares the HCF obtained for the same subject when using two different HJC prediction methods. 

Harrington et al. (2007) proposed a set of regression equations relating the pelvic depth and pelvic width 

with HJC. Nevertheless, since these equations are based of magnetic resonance imaging evaluation, 

their claimed accuracy may not translate to the clinical reflective markers setting because of the soft 

tissues thickness between the anterior superior iliac spine (ASI) and posterior superior iliac spine (PSI) 

bony landmarks. Hara et al. (2016) propose another set of regression equations using the leg length as 

a single predictor. Hara et al. (2016) rational is that this measurement is much less affected by the soft 

tissues thickness, as supported by their study in which different regression equations were evaluated. 

The method by Hara et al. (2016) predicted that the coordinates of the right HCJ of the H2R subject are 

[-0.0432, -0.0796, 0.0820], expressed in the pelvis reference frame. Considering the standard weight 

factors, this prediction of the HCJ leads to a HCF with an RMSE of 64,10% with respect to the in vivo 

data. The equations proposed by Harrington et al. (2007) predicted the coordinates of the HJC to be 

[0.00612, -0.0963, 0.1013], giving origin to contact forces with a RMSE of 112,18%. The application of 

the predictive method of Harrington et al. (2007) results in a 75,02% increase in RMSE. Considering 

that the method proposed by Hara et al., (2016) generates a system kinematics and measured driving 

angles with better agreement with the literature (Arnold and Delp, 2011; Kadaba et al., 1990), that can 

be observed in Figure 27, which also seems to allow a better estimation of the HCF, this method seems 

to be superior to that of Harrington et al. (2007). Considering these results, the predictive equations of 

Hara et al. (2016) are adopted. When the regression equations of Harrington et al. (2007) are applied 

in this work, the HJC prediction lead to inconsistent motion. When the angles measured are directly 

prescribed the trajectory of the model feet interfere with each other, leading to an unrealistic overlap of 

the anatomical segments. Despite not being addressed, note that muscle forces are also sensitive to 

the modelling decision concerning the location of the HJC, being further investigations on this issue 

required. Additionally, it is important to notice that the hip arthroplasty affects the HJC placement in the 

implanted patients, affecting not only the moments developed but also the muscular behaviour (Delp et 

al., 1996). However, the prediction equations considered are based on non-implanted patients, which 

can lead to a HCF misallocation, and thus affect the hip contact force predictions.  
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Figure 26: HCF prediction when using two different methods for estimate the HJC. 

 

 

Figure 27:  Hip joint angles obtained when using the two distinct HJC prediction methods. The shaded 
area corresponds to the joint angle ranges reported by Kadaba et al. (1990), for comparison. 
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6.3. Identification of the metabolic energy model 

In the work of Praagman (2008), the weight factors are selected arbitrarily. This opens the possibility to 

the fact that a more informed choice of the weight factors may result in more accurate muscle and joint 

forces predictions. To explore this hypothesis, the influence of each cost function term is analysed by 

comparing the hip joint forces predicted by the model and those measured in vivo using instrumented 

prostheses. In other words, the aim is to quantify the relative contribution of the energy terms, one 

related with the detachment of cross-bridges and the other two connected to calcium-pumping, as 

proposed by Praagman (2008), to the prediction of the hip joint forces. The first approach to the problem 

is done by analysing the individual contribution of each term, by running simulations where the cost 

function used is composed by only one of the three cost function terms at a time. Next, a grid search is 

performed for multiple combinations of the weight factors, varied within a selected range. The last 

approach consists on a two-level optimization where the inner optimization consists on the muscle force-

sharing problem formulation, described in Chapter 5, and the outer optimization consists in the 

identification of weight factors that lead to a closer match between the model and the in vivo HCF. A 

schematic visualization of the problem formulated is presented in Figure 28.    

 

Figure 28: Cost function weight factors identification as a two-level optimization problem. 

  

6.3.1. Weight factor’s individual contribution  

In order to draw some conclusions on the weight factors contribution, it is interesting to study the 

individual contribution of each term. Three simulations for each subject are carried by simulating each 

term of the objective function at a time, while the others have null contribution. The hip contact forces 

estimated by these simulations are presented in Figure 29. The results show that when considering only 

one of the linear terms, i.e. either the first or the second term of Equation (32), the force predictions are 

similar, presenting only minor deviations. The individual contribution of these terms seems therefore to 
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represent similar muscle recruitment criteria. The non-linear term leads to more unrealistic force 

predictions, which is especially highlighted by the over-estimation of the second peak of the HCF. Non-

linear cost functions are believed to lead to muscle synergy, i.e. muscle load sharing (Praagman, 2008). 

Therefore, the increase in the numerical contact forces is related to a higher number of active muscles, 

producing a higher hip contact force. The three indicators considered for comparing the similarity in HCF 

between the numerical predictions and in vivo data for the performed simulations are detailed in Table 7. 

 

Figure 29: HCF considering individually each term of the energy-based cost function for (a) H2R 
patient and (b) H2R patient. The solid, dotted, and dashed lines represent the data obtained 
considering the first linear term, the second linear term and the non-linear term, respectively. 

 

Table 7: Goodness-of-fit indicators for the HCF obtained for standard and individual contribution of 
each cost function term. 

Subject Term 
RMSE 

[%BW] 

RDP 

[%Exp.Peak] 

FD 

[%BW] 

H2R 

First Linear Term 62,7 24,2 85,6 

Second Linear Term 63,4 24,3 86.0 

Non-linear Term 83,9 32,4 128,4 

H1L 

First Linear Term 58,1 29,6 107,4 

Second Linear Term 58,0 29,6 107.3 

Non-linear Term 73,5 35,0 134,3 
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6.3.2. Grid Search Identification 

The initial approach to assess the relative contribution of the cost function terms is to perform a grid 

search, where simulations are run for different combinations of weight factors ω1 and ω2, varying within 

given ranges. The search range for each weight factor is selected so that the final contribution of the 

associated terms in the final objective function may differ up to four orders of magnitude. The objective 

is that the three energy terms are considered in the muscle recruitment criteria, even it with a lower 

contribution. The weight factors ω1 and ω2 are varied between 0.01 and 100, considering a 

logarithmically spaced vector of 50 values, resulting in a 50x50 grid, i.e. 2500 weight factors 

combinations. For each subject, the grid search results, i.e. the goodness-of-fit indicators chosen for 

evaluation (RMSE, RDEP and FD) for each weight factor combination are presented visually in Figure 

30 using a colour-map where the dark blue means best fit. The best weight factors for each indicator, 

i.e. the combination of weight factors that presents the minimum value for each goodness-of-fit indicator 

is presented in Table 8.  

 

 

Figure 30: Grid search results for the three indicators of similarity between in vivo and numerical 
forces. The results for (a) patient H2R and (b) H1L. The colour map depicts the value of the 

indicator (RMSE, RDP and FD) in the respective weight factors combination, where dark blue 
means best fit. 
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Table 8: Grid search best results for both patients. The range of values for the three indicators of 
similarity for all grid search points is presented, as well as the combination of weight factors that 

lead to the best result, i.e. lower value, for the respective indicator. 

 

 

The combinations of the weight factors associated with the best goodness-of-fit measurements differ 

from those originally recommended in the literature, resulting in improvements of the hip joint force 

predictions. However, no unique combination exists, i.e., different goodness-of-fit indicators may point 

towards different combinations, as observed for patient H1L. Moreover, note that for a given range of 

weight factors, differences between solutions are negligible, suggesting that many different weight factor 

combinations may lead to similar HCF predictions. Note that, in Figure 30, the dark blue area embraces 

multiple combinations of weight factors, for both patients. In fact, the HCF predictions obtained for the 

various weight factors combinations contained in the dark blue area, where similar. 

To obtain a single solution considering all three indicators, the weight factors minimizing a combination 

of these three indicators may be sought. Table 9 presents the weight factors that minimize the sum of 

all three indicators normalized by their corresponding maximum. For comparison purposes, the standard 

solution is also presented. 

 

Table 9: Goodness-of-fit indicators for the weight factors presenting the lowest sum of all three 
indicators, normalized by their maximum value, and the standard weight factors. 

Subject  w1 w2 
RMSE 

[%BW] 

RDP 

[%Exp.Peak] 

FD 

[%BW] 

H2R 

Lowest Sum 100 12.64 60,8 21,7 76,3 

Standard 0.33 0.66 63,3 25,9 94,7 

Relative Difference 3.9% 16.2% 19,4% 

H1L 

Lowest Sum 39,07 0.03 63,3 28,1 101,9 

Standard 0.33 0.66 68,8 30,5 112.8 

Relative Difference 8.0% 7.9% 9.7% 

 

Subject 

RMSE 
range 

[%BW] 

Min. RMSE 
RDP range 

[%Exp.Peak] 

Min. RDP 
FD range 

[%BW] 

Min. FD 

w1 w2 w1 w2 w1 w2 

H2R 61-84 100 12.65 22-32 100 12.65 75,9-129,0 100 15.26 

HIL 63,3 - 78,9 39.07 0.03 28,1 - 34,4 100 0.07 101.8-132.1 100 1.93 
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The results for both subjects seem to point towards the same direction. Overall, a small weight factor ω2, 

lower than 20, and always smaller than ω1, leads to more realistic force predictions. For the H2R patient, 

weight factors ω2 smaller than 10 are not satisfactory as well. The worst results, e.g. maximum RMSE, 

have a lower contribution of ω1 in relation to ω2. Still, it is important to evaluate the results in relation to the 

ratio between the linear and non-linear terms of the cost function. The best force predictions have a lower 

relative contribution of the non-linear term of the cost function, i.e. <13% of the total energy contribution. 

The HCF prediction curves, illustrated in Figure 31, are under-estimated during initial stance and over-

estimated during the late stance and swing phases for both patients. A high peak, much greater than in 

vivo, is observed at 50% of the gait cycle, i.e. at the end of the stance phase. Despite impacting the solution 

of the load sharing problem, the variation of the weight factors did not vary much the prediction of HCF, as 

highlighted in Figure 31. Note that the grey shadowed region represents the variation in HCF resulting 

from the application of the different weight factors considered. In any case, the optimization of the weight 

factors still leads to better force predictions. 

 

Figure 31: HCF for the (a) patient H2R and (b) patient H1L. The shaded grey area represents the 
range of the HCF predictions for all grid search simulations.  

 

6.3.3. Two Level Optimization 

When performing a grid search analysis, the parameters are evaluated only on discrete intervals and 

not on their entire domain. Therefore, a third approach is performed for a more detailed identification of 

the weight factors. The optimization of the weight factors is done using the patternsearch algorithm 

available in MATLAB. The algorithm consists on a numerical optimization method that does not use 

gradients for finding local minima. The objective of the optimization is only the minimization of the RMSE. 

The search was performed in the range of [0.01 100], as in Section 6.3.2, by creating upper and lower 

bound constraints. Due to possible existence of local minima, the pattern search is run 10 times, starting 

from different initial conditions, i.e. different initial weight values, chosen arbitrarily.  

For the H2R patient, the 10 simulations converge to close combinations of the weights factors, 

presenting only slight variations, but the RMSE value is identical, within the given tolerance. The 
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simulations carried for the H2R converged to different local minima, presenting slight different values of 

RMSE for the HCF predicted. Table 10 presents the minimum found for the 10 simulations. The values 

obtained for each patternsearch iteration can be found on Appendix B. 

 

Table 10:Optimal weight factors and respective RMSE. The results for the standard weight factors are 
also presented for comparison. 

Subject  W1 W2 
RMSE 

[%BW] 

H2R 

Standard 0,33  0,66 63,3 

Optimal Weight Factors 87,40  11,09 60,8 

Relative Deviation 3,9% 

H1L 

Standard 0,33 0,66 68,8 

Optimal Weight Factors 47,7 0,04 63,3 

Relative Deviation 8,0% 

 

6.3.4. Discussion of the Results 

The identification of the optimal objective weights is not straightforward. The goodness-of-fit indicators 

point towards different solutions, even though all of them resulted in improvements in relation to the 

standard weight factors. For some different combinations of weight factors, differences between HCF 

predictions are negligible. The cost function weights considerer in the muscle load force sharing problem 

have a low influence on HCF.  

Nonetheless, a clear conclusion can be drawn: for both subjects, the error associated with the HCF 

predicted increased when increasing the non-linear term (ω2). Similar results were obtained by Nikooyan 

et al. (2013), even though the authors study the influence of the weight factors on the glenohumeral joint 

contact forces. Still, it is interesting to notice that the predicted contact forces for the upper limb are 

underestimated, while, in the present work, the lower limb contact forces were overestimated. Pragmaan 

(2008) reports that introducing a non-linear term in the cost function should lead to more physiologically 

realistic results since only-linear cost functions predict sequential muscle recruitment instead of force 

sharing. In other words, the non-linear term leads to synergy (Crowninshield and Brand, 1981). In the 

present work, the non-linear term does lead to muscle synergy: for higher contributions of ω2, the 

number of active muscles for each stride phase increased, discussed further in Section 6.4. When 

analysing the individual contribution of each term, as presented in Table 7 and Figure 29, the application 

of only the non-linear term led to an increased overestimation of the HCF. The force peak increased, on 

average, 8% under this condition. The reason behind this phenomenon is that the muscle-imposed 

synergy is causing more muscles to be active, increasing the total muscle force. Although muscle load 
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sharing is physiologically relevant and is recommended to be included in the muscle recruitment criteria, 

its contribution for the estimation of HCF was therefore not positive in this study. 

When evaluating the relative contribution of the linear terms, it is challenging to draw clear conclusions. 

When the individual influence of the linear terms is evaluated, as presented in Section 6.3.1, the 

solutions, i.e. HCF, obtained for the first and second terms are similar, which suggests that the two terms 

might be solving the muscle force-sharing problem in an analogous way. In vitro studies report that 25% 

to 40% of the total energy consumption is related with the reabsorption of calcium (de Haan et al., 1986; 

Lou et al., 1997). Accordingly, for a more realistic function, future studies may consider this percentage 

in the definition of ω1. However, one of the linear terms may possibly be disregarded without 

compromising the HCF predictions. 

6.4. Evaluation of the muscles behavior 

The individual muscle activations and total muscular are also an interesting object of study. Being the 

muscle activation patterns typical for gait motion, several studies have been dedicated to studying the 

typical muscle activity (Bonnefoy-Mazure and Armand, 2015; Ivanenko et al., 2004). The gait motion is 

achieved by the combined action of several muscles, each one with a specific role. Table 11 summarizes 

the overall muscle role and period of activity for the lower limb muscles most relevant for gait motion.  

The muscle activations and total force are presented in Figure 32 for the H1L patient for the standard 

weight factors and also for the weight factors identified in Section 6.3.3. The muscle activations are also 

compared with literature. 

When considering the new identified weight factors, i.e. ω1=47.7 and ω2=0.04, some muscle activations 

are in agreement with the literature, e.g. Rectus Femoris, Soleus, Tibialis Anterior, i.e., the activation 

period corresponds to the time during which these muscles are expected to be activated. However, 

some peak irregularities on the activations were encountered. Other muscles present an active state in 

periods where their physiological contribution is not expected, e.g. Gluteus maximus. In some other 

cases, the muscles are not activated during a period in which they have individual importance, e.g. 

Tibialis Posterior. The same is observed for the standard parameters. 

The activations obtained for the standard parameters are comparable to those obtained by literature 

(Modenese et al., 2011; Modenese and Phillips, 2012) when using biomechanical models based on 

Horsman (2007) dataset and non-linear cost functions. However, the activations obtained for the new 

identified parameters, having low contributions of the non-linear term, are not comparable with literature 

once they present continuous maximum activation for a range of muscle.  
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Table 11: Principal muscles for gait motion, including their respective action and period of activity 
(Silva and Ambrósio, 2003; Sheffer and Chao, 2015) 

Muscle Name Muscle Action Period of activity 

Adductor longus 
Adducts and flexes the thigh; helps to laterally rotate the 

hip joint. 
Mid and terminal stance. 

Bicepts Femoris 

LH 

Flexes the knee and also rotates the tibia laterally, also 

extends the hip joint. 

Heel stride and terminal 

swing. 

Bicepts Femoris 

SH 
Flexes the knee and also rotates the tibia laterally. 

Heel stride and terminal 

swing. 

Extensor Digitroum 

Longus 
Extend toes 2–5 and dorsiflexes ankle. 

Heel stride, pre-swing 

and swing. 

Flexor Hallucis 

Longus 

Flexes great toe, helps to supinate ankle, and is a very 

weak plantar flexor of ankle. 
Mid and terminal stance 

Gastrocnemius 

(lateral and medial 

head) 

Powerful plantar flexor of ankle. Mid and terminal stance. 

Gluteus maximus 

Major extensor of hip joint, helps to laterally rotate hip; 

superior fibres help to abduct hip, inferior fibres help to 

tighten iliotibial band. 

Heel stride. 

Gluteus medius 
Major abductor of thigh, anterior fibres help to rotate hip 

medially, posterior fibres help to rotate hip laterally. 

Heel stride and mid-

stance. 

Gracilis 
Flexes the knee, adducts the thigh, and helps to medially 

rotate the tibia on the femur. 
Initial swing. 

Iliacus Flex the torso and thigh with respect to each other. Initial swing. 

Peroneus longus 
Everts foot and plantar flexes ankle, also helps to support 

the transverse arch of the foot. 
Mid and terminal stance. 

Rectus femoris Extends the knee. 
Heel stride, pre-swing 

and initial swing. 

Sartorius 
Flexes and laterally rotates the hip joint and flexes the 

knee. 
Initial swing. 

Soleus Powerful plantar flexor of ankle. Mid and terminal stance. 

Tibialis anterior Dorsiflexor of ankle and invertor of foot. Heel stride and swing. 

Tibialis posterior 
Principal invertor of foot; also adducts foot, plantar flexes 

ankle, and helps to supinate the foot. 
Mid and terminal stance. 

Vaslus 

(intermedius, 

lateralis, medialis) 

Extends the knee. 
Heel stride and mid-

stance. 
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Figure 32: Activation patterns and total muscle forces for the muscles considered relevant during gait. 
The data were estimated for the H1L patient considering the (a) the standard parameters and (b) the 
new identified parameters. For some muscles, several lines are plotted because they represent the 

behaviour of the different muscle bundles into which the muscle is discretized. 
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Figure 30: (cont.) 

 

For the parameters identified in the two-level optimization, the muscles Adductor Longus, Flexor hallucis 

longus, Flexor digitorum longus, Gluteus medius (anterior), Gluteus maximus (superior), and illiacus 

(mid.) present continuous maximum activation that is not expected for typical gait motion (Simpson et 

al., 2015). Gait is a natural human movement that does not imply great physical effort. However, for the 

standard parameters, i.e. higher contribution on the non-linear term, only the muscle Gluteus medius 

presents maximum activation. In fact, the third term of the energy consumption function introduces 

muscle synergy, promoting load sharing between muscles, as well as antagonistic load. The lower 

contributions of the non-linear term cause sequential recruitment: the muscle with minimum cost tends 

to be activated, and the other muscles are only activated when the first reaches his maximum force. 

This causes the continuously maximum activations patterns observed in Figure 30 for example in 

Adductor Longus for the new identified parameters. 

The parameters identified in last section, i.e. the parameters that minimize the error between numerical 

and experimental forces, lead to low muscle synergy. The muscle synergy is not advantageous for the 

proposes of this work and result in worst predictions of the HCF. Nevertheless, muscle synergism is 

important for a correct simulation of the muscle recruitment criteria and should be included. The human 

motion is achieved via co-activation of muscles, instead of activating each muscle independently (Zajac 

et al., 2002). The optimization result, i.e. optimal parameters having low contributions of the non-linear 

term, suggests that there are other aspects limiting the contribution of this term to the result. One 
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example is the incorrect modelling of some muscles, such as the gluteus muscles, that are introducing 

errors in the HCF prediction.  

The Gluteus group force results are critical since they are maximally activated during mid and terminal 

stance, producing forces about 500N in a stride period in which these muscles are reported not 

contribute to any specify gait task in vivo (Sheffler and Chae, 2015; Silva and Ambrósio, 2003). The 

same issue is reported in the literature (Modenese et al., 2011; Modenese and Phillips, 2012) when 

using biomechanical models based on Horsman (2007) dataset. Note that the Gluteus are muscles with 

large attachment areas, that are being included in the LLEM as several independent straight-line units 

with different origin and insertion points. Modelling these muscles as straight lines may lead to an 

underestimation of the muscle moment arms with respect to the HCJ, so that a higher force is needed 

to equilibrate the intersegmental moments, causing high activation levels. This aspect is further 

aggravated because these muscles are introducing unrealistic moments in the biomechanical systems 

that need to be compensated by other muscles, further contributing to over-estimated forces. The 

modelling of these muscles should be reviewed, and the inclusion of wrapping surfaces might be 

considered for a more accurate representation. In fact, Carbone et al. (2015) proposes a new 

comprehensive dataset for biomechanical modelling where wrapping surfaces were added to model the 

Gluteus maximus to ensure more realistic level arms. For the same musculoskeletal model, De Pieri et 

al. (2018) even proposes a different wrapping surface for each Gluteus maximus segment. 

A series of studies used different criteria for solving the muscle load sharing problem: Crowninshield 

and Brand (1981) minimized the sum of muscle stress cubed, Heller et al. (2001) minimized the sum of 

muscle forces with upper bound constraints, Modenese et al. (2011) minimized a polynomial function of 

the muscle forces, where multiple powers were studied. The use of different criteria resulted in different 

activation patterns, especially when comparing linear to non-linear criteria (Pedersen et al., 1987).  

Nevertheless, all these methods, including the one presented in this work, could predict contact forces 

comparable with those measured in vivo. This observation is in agreement with the study of Stansfield 

et al. (2003), who stated that the criterion used for solving the muscle redundancy has an effect on 

muscle loading but a less obvious influence on joint contact forces. 
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7. Conclusions 

The first objective of the present work is to validate the LLEM, a musculoskeletal model based on the 

comprehensive dataset published by Horsman (2007). The redundant muscle force sharing problem is 

solved using inverse dynamics. The muscle recruitment criteria is simulated by an energy related cost 

function proposed by Praagman et al. (2006). The main objective of the present work is to evaluate the 

relative contribution of the muscular energy consuming processes included in muscle load sharing cost 

function. The aim is to estimate the relative contribution of the processes included in the cost function, 

i.e. ion pumping and cross-bridges cycling, that can lead to a closer match between hip forces predicted 

by the model obtained forces and the experimental measurements. For that, the inverse dynamic 

simulation is repeated for a variety of different combinations of weight factors and the model-simulated 

HCF are compared to those measured in vivo. Also, new parameters are identified using a two-level 

optimization approach, where the objective is to find the combination of weight factors that lead to a 

lower RMSE. Also, the muscle activations patterns and the forces developed are evaluated to assess 

the accuracy of the biomechanical model and to identify upgrades that can be implemented to obtain 

more accurate predictions of hip contact forces. 

A three-dimensional biomechanical model based on the comprehensive dataset published by Horsman 

(2007) is presented with the objective of studying the internal musculoskeletal loading for a gait cycle. 

The kinematic and kinetic data provided by OrthoLoad (Bergmann, 2008) for two patients is properly 

treated and used as input for inverse dynamic analyses. A kinematic analysis is successfully performed, 

and kinematic consistency was ensured. The driving angles prescribed for the simulation are 

comparable with those published in the literature (Arnold and Delp, 2011; Kadaba et al., 1990). 

The energy related cost function proposed by Praagman (2008) is used to solve the redundant muscle 

force sharing problem for the lower limb. The authors validated the performance of the cost function 

under isometric conditions for an upper limb model. Nonetheless, the proposed cost function has also 

been shown to provide good estimations of the muscle energy rate for lower limb models (Ravera et al., 

2019). The relative contribution of the energy-related terms included in the energy-based criterion 

proposed by Praagman (2008) are evaluated by comparing the obtained HCF with in vivo 

measurements. The musculoskeletal model of the lower extremity presented in this work is shown to 

allow the prediction of hip contact forces that compare well, both magnitude and pattern, to those 

measured in vivo, for different weight parameters.  

The individual contribution of the two linear terms of the cost function, one related with the detachment 

of cross bridges and another with calcium pumping, lead to similar HCF predictions. This suggests that 

the solution for minimum energy consumption might the similar for the two energy terms, and one of the 

linear terms may possibly be disregarded without compromising the HCF predictions. 

The model overestimates the HCF for late stance and swing phase, especially for the second peak of 

the HCF. For higher contributions of the non-linear term of the cost function, the synergism between 

muscles increases, and so does the magnitude of the calculated hip contact forces. This phenomenon 
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can be explained by the activation of a larger number of muscle actuators.  Therefore, for the context of 

this work (i.e. predict the joint contact forces as close as possible to in vivo), the non-linear term high 

contribution is not advantageous since the forces are more over-estimated, increasing the error. 

Nevertheless, the muscle synergism is important for a correct simulation of the muscle recruitment 

criteria and should be included.  

A set of new weight factors is identified for each subject, based on a two-level optimization approach. 

This newly identified parameters result in improvements in the model numerical HCF, but the new weight 

factors differ for the two subjects. Considering that local minima exist in the problem formulated, further 

investigation is necessary to find if a common set of parameters is possible to be defined for different 

subjects.  

The force over-estimation may be related with the inappropriate description of some muscles. More 

precisely, the gluteus muscle group presents activation patterns that do not compare well with literature. 

These muscles, and others, present unrealistic activations, generating unrealistic moments on the 

biomechanical model that must be counteracted by other muscles, which further worsens the 

overestimation of the force. The modelling of these muscle should be reviewed, and the use of additional 

wrapping surfaces might have to be considered. Note that the present model only presents wrapping 

surfaces for two muscles: gastrocnemius and iliopsoas. Recently, Carbone et al. (2015) proposed a 

lower limb model including wrapping surfaces for eight muscles (including the gluteus maximums), and, 

based on this model, De Pieri et al. (2018) proposed more wrapping surfaces for another three muscles. 

A series of studies used different criteria for solving the muscle load sharing problem. The use of different 

criteria resulted in different activation patterns, especially when comparing linear to non-linear criteria  

(Pedersen et al., 1987). Nonetheless, differences in predicted contact forces are limited, which is in 

agreement with the study of Stansfield et al. (2003), who stated that the criterion considered in the 

muscle load sharing problem has an effect on muscle loading but a less obvious influence on joint 

contact forces. This suggest that optimize/identify the relative contribution of the energy terms based on 

the reproduction of joint contact forces may not be the best approach. The optimization should also 

include muscle information. 

7.1. Future work  

Even if the lower limb model, together with the optimization techniques proposed, provide new 

opportunities for musculoskeletal estimations, this study still presents several limitations. For example, 

future work should include a larger number of subjects to allow a generalization the results.   

When simulating the motion of the biomechanical model, the measured driving angles for the subjects 

performing a gait cycle was directly prescribed. However, a scaling procedure to adapt the model to the 

individual patient anatomy should be considered. A number of linear and non-linear scaling procedures 

have been proposed in the literature (Correa and Pandy, 2011; Lund et al., 2015; Nolte et al., 2016) to 

enable subject-specific simulations and increase the accuracy of the biomechanical model.  
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The present work showed that the HJC prediction has a considerable impact on HCF prediction. Two 

studied predictive methods positioned the HJC in dissimilar distances, which lead to considerable 

differences in the numerical HCF. Previous studies have also shown that changes in hip joint geometry 

and location have a high influence on the HCF predictions of the biomechanical system (Lenaerts et al., 

2008). Therefore, further investigation on how to accurately track the HJC is fundamental. 

The predicted contact forces present some peak irregularities that do not occur in vivo, but that are also 

found in other computational studies in the literature (Fraysse et al., 2009; Heller et al., 2001; Modenese 

et al., 2011; Moissenet et al., 2014; Rane et al., 2019; Stansfield et al., 2003). Although different 

simulations were performed to gain insight into the possible origin of these irregularities, no clear 

conclusions could be drawn. Consequently, further analyses are required. 

In the present work, the two-level optimization approach was done using a pattern search algorithm. 

This procedure was chosen because optimization methods using gradients involve a high computational 

time if the gradients are not provided. However, future work should focus on using different optimization 

methods, such as genetic algorithms, for a more general search of the global optima. 

Even though the non-linear term leads to synergy, the accuracy of the muscular agonist/antagonistic 

activity is not guaranteed. The in vivo coordination of the agonist and antagonist muscles is still an 

ongoing field on research (Lundberg et al., 2016; Yoo et al., 2016). Hurwitz et al. (2003) showed that the 

level of agonistic/antagonistic muscle activity affects the HCF prediction on biomechanical models. The 

muscle synergy predicted by the model did not lead to a correct HCF prediction since the numerical 

contact forces are mostly over-estimated. A possible limitation to correct synergy performance may be 

linked to incorrect representation of some of the muscles. Future studies should focus on including an 

accurate representation of the muscle synergy. For example, a constraint could be added in the muscle 

load sharing problem to ensure that the agonist/antagonism pairs must be active at the same time. 

An analysis of the muscle moment arms developed in the biomechanical model should be performed to 

identify the critical muscles that are introducing inconsistent forces in the system (responsible for the 

over-estimation of the HCF). The geometry and modelling of the identified muscles should be modified 

to a better representation of the muscle apparatus, e.g. introduce wrapping surfaces. 

Another important aspect is that there are other muscular energy-consuming processes that have not 

been accounted for in the cost function proposed by Praagman (2008). Some studies have shown that 

a percentage of the muscular energy consumption is related with sodium and potassium pumping 

(Barclay et al., 2007; Clausen, 2003). Therefore, a more accurate physiologically criterion should 

consider this process in the cost function (Nikooyan et al., 2013). 
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 :  Muscle Apparatus 

The following Tables A1 to A38 present the Lower Extremity Muscle Apparatus included in the LLEM. 

The physiological parameters presented are: the physiological cross-section area PSCA, defined as the 

muscle volume divided by the optimal fibre length, the optimal muscle length L0, the tendon length Ls 

and the pennation angle α, defined as the angle between a fascicle's orientation and the tendon axis. 

The geometric parameters comprise the origin and insertion of the muscle in the respective rigid bodies 

local reference frame (ξ,η,ζ). The parameters presented are needed for modelling the muscle as a 

mechanical element. The representative images of each muscle are from the University of Washington 

"Musculoskeletal Atlas: A Musculoskeletal Atlas of the Human Body" by Carol Teitz, M.D. and Dan 

Graney, Ph.D. The images are reproduced with the permission of the authors. 

Table A1: Adductor Brevis physiological parameters. 

Adductor Brevis Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Prox.1 1.900 0.0950 0.0340 0.0000 Pelvis 0.0967 -0.0617 0.0213 

     Femur -0.0025 0.0936 0.0140 

Prox.2 1.900 0.0950 0.0418 0.0000 Pelvis 0.1012 -0.0619 0.0193 

     Femur 0.0011 0.0811 0.0131 

Mid.1 1.750 0.1040 0.0369 0.0000 Pelvis 0.0962 -0.0669 0.0144 

     Femur 0.0030 0.0685 0.0125 

Mid.2 1.750 0.1040 0.0467 0.0000 Pelvis 0.0998 -0.0671 0.0127 

     Femur 0.0039 0.0555 0.0119 

Dist.1 1.600 0.1120 0.0409 0.0000 Pelvis 0.0891 -0.0744 0.0071 

     Femur 0.0046 0.0426 0.0107 

Dist.2 1.600 0.1120 0.0493 0.0000 Pelvis 0.0914 -0.0745 0.0060 

     Femur 0.0061 0.0298 0.0084 

 

Table A2: Adductor Longus physiological parameters. 

Adductor Longus Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 2.517 0.1060 0.0768 0.0000 Pelvis 0.1030 -0.0579 0.0241 

     Femur 0.0148 -0.0011 0.0009 

2 2.517 0.1060 0.0860 0.0000 Pelvis 0.1049 -0.0603 0.0216 

     Femur 0.0152 -0.0133 -0.0015 

3 2.517 0.1060 0.0959 0.0000 Pelvis 0.1062 -0.0624 0.0186 

     Femur 0.0161 -0.0258 -0.0032 

4 2.517 0.1060 0.1060 0.0000 Pelvis 0.1068 -0.0643 0.0154 

     Femur 0.0171 -0.0384 -0.0047 

5 2.517 0.1060 0.1162 0.0000 Pelvis 0.1066 -0.0660 0.0120 

     Femur 0.0178 -0.0509 -0.0065 

6 2.517 0.1060 0.1262 0.0000 Pelvis 0.1055 -0.0675 0.0085 

     Femur 0.0177 -0.0632 -0.0090 
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Table A3: Adductor Magnus physiological parameters. 

Adductor Magnus Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Dist.1 8.833 0.1080 0.2103 0.0000 Pelvis 0.0295 -0.1197 0.0420 

     Femur 0.0074 -0.1923 -0.0486 

Dist.2 8.833 0.1080 0.2148 0.0000 Pelvis 0.0354 -0.1158 0.0348 

     Femur 0.0074 -0.1923 -0.0486 

Dist.3 8.833 0.1080 0.2261 0.0000 Pelvis 0.0526 -0.1065 0.0202 

     Femur 0.0074 -0.1923 -0.0486 

Mid. 1 3.683 0.1040 0.0649 0.0000 Pelvis 0.0226 -0.1177 0.0411 

     Femur 0.0129 -0.0259 -0.0017 

Mid. 2 3.683 0.1040 0.0646 0.0000 Pelvis 0.0255 -0.1155 0.0452 

     Femur 0.0129 -0.0259 -0.0017 

Mid. 3 3.683 0.1040 0.0957 0.0000 Pelvis 0.0293 -0.1147 0.0352 

     Femur 0.0142 -0.0575 -0.0083 

Mid. 4 3.683 0.1040 0.0958 0.0000 Pelvis 0.0318 -0.1129 0.0387 

     Femur 0.0142 -0.0575 -0.0083 

Mid. 5 3.683 0.1040 0.1303 0.0000 Pelvis 0.0380 -0.1108 0.0281 

     Femur 0.0164 -0.0893 -0.0114 

Mid. 6 3.683 0.1040 0.1306 0.0000 Pelvis 0.0399 -0.1094 0.0307 

     Femur 0.0164 -0.0893 -0.0114 

Prox. 1 1.250 0.1070 0.0320 0.0000 Pelvis 0.0691 -0.0937 0.0131 

     Femur 0.0097 0.0673 0.0040 

Prox. 2 1.250 0.1070 0.0281 0.0000 Pelvis 0.0544 -0.1020 0.0229 

     Femur 0.0115 0.0466 0.0022 

Prox. 3 1.250 0.1070 0.0486 0.0000 Pelvis 0.0618 -0.0979 0.0180 

     Femur 0.0134 0.0258 0.0004 

Prox. 4 1.250 0.1070 0.0706 0.0000 Pelvis 0.0691 -0.0937 0.0131 

     Femur 0.0151 0.0051 -0.0013 

 

Table A4: Biceps Femoris Long Head physiological parameters. 

Biceps Femoris CL Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 27.200 0.0850 0.3362 0.5219 Pelvis 0.0127 -0.1096 0.0734 

     Tibia 0.0305 0.1169 0.0485 
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Table A5: Biceps Femoris Short Head physiological parameters. 

Bices Femoris CB Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 3.933 0.0910 0.1482 0.0000 Femur 0.0043 -0.0187 0.0067 

     Tibia 0.0305 0.1169 0.0485 

2 3.933 0.0910 0.1042 0.0000 Femur 0.0073 -0.0646 -0.0011 

     Tibia 0.0305 0.1169 0.0485 

3 3.933 0.0910 0.0565 0.0000 Femur 0.0098 -0.1136 -0.0010 

     Tibia 0.0305 0.1169 0.0485 

 

Table A6: Extensor Digitorum Longus physiological parameters. 

Ext. dig.long Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 1.800 0.0600 0.4139 0.1449 Tibia 0.0225 0.0546 0.0391 

     Toes 0.0274 -0.0067 0.0173 

2 1.800 0.0600 0.4522 0.1449 Tibia 0.0336 0.0940 0.0374 

     Toes 0.0274 -0.0067 0.0173 

3 1.800 0.0600 0.4767 0.1449 Tibia 0.0435 0.1189 0.0351 

     Toes 0.0274 -0.0067 0.0173 

 

 

Table A7: Extensor Hallucis Longus physiological parameters. 

Ext. hal.long. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 2.033 0.0600 0.2549 0.2513 Tibia 0.0178 -0.0963 0.0286 

     Toes 0.0183 0.0003 -0.0365 

2 2.033 0.0600 0.3068 0.2513 Tibia 0.0164 -0.0418 0.0318 

     Toes 0.0183 0.0003 -0.0365 

3 2.033 0.0600 0.3602 0.2513 Tibia 0.0193 0.0132 0.0358 

     Toes 0.0183 0.0003 -0.0365 

 

 

Table A8: Flexor Digitorum Longus physiological parameters. 

Flex. dig.long. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 2.200 0.0380 0.4437 0.4974 Tibia 0.0114 0.0184 -0.0078 

     Toes 0.0233 -0.0150 0.0137 

2 2.200 0.0380 0.3907 0.4974 Tibia 0.0125 -0.0348 -0.0122 

     Toes 0.0233 -0.0150 0.0137 

3 2.200 0.0380 0.3498 0.4974 Tibia 0.0119 -0.0757 -0.0106 

     Toes 0.0233 -0.0150 0.0137 
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Table A9: Flexor Hallucis Longus physiological parameters. 

Flex. hal.long. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 10.367 0.0260 0.4382 0.5253 Tibia 0.0085 -0.0167 0.0399 

     Toes 0.0244 -0.0134 -0.0366 

2 10.367 0.0260 0.3847 0.5253 Tibia 0.0084 -0.0705 0.0347 

     Toes 0.0244 -0.0134 -0.0366 

3 10.367 0.0260 0.3304 0.5253 Tibia 0.0085 -0.1256 0.0295 

     Toes 0.0244 -0.0134 -0.0366 

 

Table A10: Gastrocnemius physiological parameters. 

Gastrocn Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

 Lat. 24.000 0.0570 0.4438 0.4433 Femur 0.0072 -0.2049 0.0043 

     Foot -0.0935 -0.0304 0.0229 

Med 43.800 0.0600 0.4552 0.1885 Femur 0.0061 -0.1958 -0.0362 

     Foot -0.0938 -0.0388 0.0201 

 

 

Table A11: Gemellus physiological parameters. 

Gemellus Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Inf. 4.100 0.0340 0.0774 0.0000 Pelvis -0.0145 -0.0892 0.0619 

     Femur 0.0082 0.1837 0.0391 

Sup. 4.100 0.0340 0.0734 0.0000 Pelvis -0.0051 -0.0401 0.0403 

     Femur 0.0146 0.1748 0.0293 

 

 

  



75 
 

 

Table A12: Gluteus Maximus physiological parameters. 

Glut. Max. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

 Sup.1 8.283 0.1200 0.0135 0.0000 Pelvis -0.0285 0.0290 0.0748 

     Femur 0.0221 0.2340 0.0694 

Sup. 2 8.283 0.1200 0.0370 0.0000 Pelvis -0.0392 0.0064 0.0559 

     Femur 0.0169 0.2039 0.0741 

Sup. 3 8.283 0.1200 0.0550 0.0000 Pelvis -0.0459 -0.0214 0.0404 

     Femur 0.0103 0.1740 0.0793 

Sup. 4 8.283 0.1200 0.0397 0.0000 Pelvis -0.0407 0.0404 0.0637 

     Femur 0.0375 0.2293 0.0645 

Sup. 5 8.283 0.1200 0.0644 0.0000 Pelvis -0.0527 0.0190 0.0436 

     Femur 0.0330 0.1989 0.0690 

Sup. 6 8.283 0.1200 0.0799 0.0000 Pelvis -0.0588 -0.0093 0.0286 

     Femur 0.0257 0.1692 0.0745 

Inf. 1 3.750 0.1510 0.0201 0.0000 Pelvis -0.0569 -0.0570 0.0153 

     Femur -0.0240 0.1096 0.0507 

Inf. 2 3.750 0.1510 0.0145 0.0000 Pelvis -0.0482 -0.0636 0.0174 

     Femur -0.0224 0.0960 0.0459 

Inf. 3 3.750 0.1510 0.0142 0.0000 Pelvis -0.0400 -0.0743 0.0170 

     Femur -0.0146 0.0714 0.0371 

Inf. 4 3.750 0.1510 0.0150 0.0000 Pelvis -0.0520 -0.0503 0.0219 

     Femur -0.0240 0.1096 0.0507 

Inf. 5 3.750 0.1510 0.0099 0.0000 Pelvis -0.0433 -0.0569 0.0240 

     Femur -0.0224 0.0960 0.0459 

Inf. 6 3.750 0.1510 0.0111 0.0000 Pelvis -0.0360 -0.0687 0.0225 

     Femur -0.0146 0.0714 0.0371 

 

 

Table A13: Gluteus Minimus physiological parameters. 

Glut. Min. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Ant. 10.000 0.0380 0.0661 0.0000 Pelvis 0.0498 0.0302 0.1236 

     Femur 0.0282 0.1520 0.0491 

Mid. 8.100 0.0340 0.0773 0.0000 Pelvis 0.0280 0.0268 0.1078 

     Femur 0.0282 0.1520 0.0491 

Post. 7.400 0.0370 0.0807 0.0000 Pelvis 0.0103 0.0164 0.0912 

     Femur 0.0282 0.1520 0.0491 
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Table A14: Gluteus Medius physiological parameters. 

Glut. med. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Ant. 1 6.317 0.0380 0.0614 0.0000 Pelvis 0.0546 0.0461 0.1351 

     Femur 0.0162 0.1741 0.0530 

Ant. 2 6.317 0.0380 0.0597 0.0000 Pelvis 0.0649 0.0416 0.1361 

     Femur 0.0241 0.1711 0.0521 

Ant. 3 6.317 0.0380 0.0543 0.0000 Pelvis 0.0755 0.0332 0.1331 

     Femur 0.0314 0.1691 0.0510 

Ant. 4 6.317 0.0380 0.0737 0.0000 Pelvis 0.0599 0.0508 0.1427 

     Femur 0.0135 0.1662 0.0574 

Ant. 5 6.317 0.0380 0.0734 0.0000 Pelvis 0.0686 0.0449 0.1414 

     Femur 0.0206 0.1611 0.0577 

Ant. 6 6.317 0.0380 0.0677 0.0000 Pelvis 0.0787 0.0360 0.1377 

     Femur 0.0278 0.1591 0.0566 

Post. 1 10.133 0.0450 0.0739 0.2775 Pelvis 0.0118 0.0700 0.1156 

     Femur 0.0041 0.1868 0.0438 

Post. 2 10.133 0.0450 0.0746 0.2775 Pelvis -0.0096 0.0528 0.0864 

 
    Femur 0.0003 0.1870 0.0398 

Post. 3 10.133 0.0450 0.0675 0.2775 Pelvis -0.0176 0.0234 0.0674 

     Femur -0.0035 0.1864 0.0377 

Post. 4 10.133 0.0450 0.0922 0.2775 Pelvis 0.0025 0.0859 0.1112 

     Femur 0.0041 0.1868 0.0438 

Post. 5 10.133 0.0450 0.1070 0.2775 Pelvis -0.0228 0.0754 0.0802 

     Femur -0.0017 0.1828 0.0483 

Post. 6 10.133 0.0450 0.1034 0.2775 Pelvis -0.0335 0.0506 0.0599 

     Femur -0.0055 0.1819 0.0467 

 

Table A15: Gracilis physiological parameters. 

Gracilis Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 2.450 0.1810 0.2544 0.0000 Pelvis 0.0670 -0.0975 0.0166 

     Tibia 0.0167 0.0850 -0.0242 

2 2.450 0.1810 0.2715 0.0000 Pelvis 0.0872 -0.0833 0.0107 

     Tibia 0.0167 0.0850 -0.0242 
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Table A16: Iliacus physiological parameters. 

Iliacus Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Lat. 1 2.200 0.1030 0.1167 0.4625 Pelvis 0.0211 0.0836 0.1180 

     Femur -0.0091 0.1265 0.0023 

Lat. 2 2.200 0.1030 0.0953 0.4625 Pelvis 0.0393 0.0661 0.1197 

     Femur -0.0091 0.1265 0.0023 

Lat. 3 2.200 0.1030 0.0797 0.4625 Pelvis 0.0472 0.0514 0.1183 

     Femur -0.0091 0.1265 0.0023 

Mid. 1 4.333 0.0520 0.1753 0.0000 Pelvis -0.0052 0.0867 0.0908 

     Femur -0.0091 0.1265 0.0023 

Mid. 2 4.333 0.0520 0.1477 0.0000 Pelvis 0.0074 0.0616 0.0884 

     Femur -0.0091 0.1265 0.0023 

Mid. 3 4.333 0.0520 0.1214 0.0000 Pelvis 0.0198 0.0374 0.0867 

     Femur -0.0091 0.1265 0.0023 

Med. 1 2.533 0.0890 0.1286 0.0000 Pelvis -0.0021 0.0788 0.0515 

     Femur -0.0091 0.1265 0.0023 

Med. 2 2.533 0.0890 0.1092 0.0000 Pelvis 0.0039 0.0590 0.0554 

     Femur -0.0091 0.1265 0.0023 

Med. 3 2.533 0.0890 0.0850 0.0000 Pelvis 0.0138 0.0326 0.0544 

     Femur -0.0091 0.1265 0.0023 

 

 

Table A17: Obturator Externus physiological parameters. 

Obt. Ext. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Inf. 1 2.750 0.0690 0.0521 0.0000 Pelvis 0.0501 -0.0970 0.0230 

     Femur -0.0179 0.1246 0.0335 

Inf. 2 2.750 0.0690 0.0704 0.0000 Pelvis 0.0694 -0.0882 0.0107 

     Femur -0.0179 0.1246 0.0335 

Inf. 1 8.200 0.0280 0.1140 0.0000 Pelvis 0.0893 -0.0664 0.0103 

     Femur -0.0007 0.1659 0.0238 

Inf. 2 8.200 0.0280 0.1030 0.0000 Pelvis 0.0716 -0.0813 0.0133 

     Femur -0.0007 0.1659 0.0238 

Inf. 3 8.200 0.0280 0.0900 0.0000 Pelvis 0.0501 -0.0920 0.0218 

     Femur -0.0007 0.1659 0.0238 
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Table A18: Obturator Internus physiological parameters. 

Obturator int. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 8.467 0.0210 0.1463 0.0000 Pelvis 0.0283 -0.0268 0.0486 

     Femur 0.0114 0.1793 0.0343 

2 8.467 0.0210 0.1352 0.0000 Pelvis 0.0307 -0.0452 0.0413 

     Femur 0.0114 0.1793 0.0343 

3 8.467 0.0210 0.1397 0.0000 Pelvis 0.0412 -0.0615 0.0315 

     Femur 0.0114 0.1793 0.0343 

 

Table A19: Pectineus physiological parameters. 

Pectineus Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 1.700 0.1150 0.0141 0.0000 Pelvis 0.0852 -0.0349 0.0392 

     Femur -0.0024 0.1002 0.0116 

2 1.700 0.1150 0.0218 0.0000 Pelvis 0.0902 -0.0384 0.0357 

     Femur -0.0021 0.0914 0.0113 

3 1.700 0.1150 0.0294 0.0000 Pelvis 0.0952 -0.0420 0.0322 

     Femur -0.0018 0.0826 0.0110 

4 1.700 0.1150 0.0211 0.0000 Pelvis 0.1002 -0.0455 0.0287 

     Femur -0.0024 0.1002 0.0116 

 

Table A20: Peroneus Brevis physiological parameters. 

Peroneus brev. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 6.333 0.0270 0.2811 0.4032 Tibia 0.0139 -0.0365 0.0398 

     Foot 0.0047 -0.0154 0.0532 

2 6.333 0.0270 0.2342 0.4032 Tibia 0.0126 -0.0833 0.0359 

     Foot 0.0047 -0.0154 0.0532 

3 6.333 0.0270 0.1888 0.4032 Tibia 0.0119 -0.1286 0.0317 

     Foot 0.0047 -0.0154 0.0532 

 

Table A21: Peroneus Longus physiological parameters. 

Peroneus brev. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 7.967 0.0340 0.3664 0.2758 Tibia 0.0234 0.0788 0.0470 

     Foot -0.0133 -0.0053 0.0426 

2 7.967 0.0340 0.3289 0.2758 Tibia 0.0189 0.0415 0.0447 

     Foot -0.0133 -0.0053 0.0426 

3 7.967 0.0340 0.2917 0.2758 Tibia 0.0147 0.0046 0.0422 

     Foot -0.0133 -0.0053 0.0426 
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Table A22: Peroneus Tertius 

Peroneus tret. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 2.067 0.0430 0.1967 0.3334 Tibia 0.0179 -0.1182 0.0278 

     Foot 0.0512 -0.0196 0.0484 

2 2.067 0.0430 0.2473 0.3334 Tibia 0.0178 -0.0667 0.0320 

     Foot 0.0512 -0.0196 0.0484 

3 2.067 0.0430 0.2984 0.3334 Tibia 0.0184 -0.0150 0.0351 

     Foot 0.0512 -0.0196 0.0484 

 

Table A23: Piriformis physiological parameters. 

 
Bundle 

PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 8.100 0.0390 0.1022 0.0000 Pelvis -0.0502 -0.0256 0.0163 

     Femur -0.0006 0.1868 0.0264 

 

Table A24: Plantaris physiological parameters. 

Plantaris Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 2.400 0.0480 0.4393 0.0000 Femur 0.0076 -0.2129 0.0209 

     Foot -0.0875 -0.0302 0.0063 

 

 

Table A25: Popliteus physiological parameters. 

Popliteus Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 5.350 0.0240 0.0952 0.0000 Femur 0.0070 -0.2374 0.0290 

     Tibia 0.0090 0.0558 -0.0094 

2 5.350 0.0240 0.0597 0.0000 Femur 0.0070 -0.2374 0.0290 

     Tibia 0.0019 0.0976 -0.0012 
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Table A26: Psoas physiological parameters. 

Psoas Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Minor 1 1.100 0.0590 0.2145 0.0000 Pelvis 0.0000 0.2041 0.0344 

     Femur 0.0247 0.1546 -0.0271 

Major 1 6.500 0.0990 0.2064 0.2339 Pelvis -0.0068 0.1777 0.0349 

     Femur -0.0091 0.1265 0.0023 

Major 2 6.500 0.0990 0.1596 0.2339 Pelvis 0.0215 0.1357 0.0309 

     Femur -0.0091 0.1265 0.0023 

Major 3 6.500 0.0990 0.1218 0.2339 Pelvis 0.0225 0.0933 0.0317 

     Femur -0.0091 0.1265 0.0023 

 

Table A27: Quadratis Femoris physiological parameters. 

Quadratis Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 3.650 0.0340 0.0834 0.0000 Pelvis 0.0415 -0.0985 0.0275 

     Femur -
0.0149 

0.1556 0.0335 

2 3.650 0.0340 0.0742 0.0000 Pelvis 0.0351 -0.1011 0.0355 

     Femur -
0.0153 

0.1477 0.0341 

3 3.650 0.0340 0.0652 0.0000 Pelvis 0.0288 -0.1037 0.0436 

     Femur -
0.0155 

0.1397 0.0346 

4 3.650 0.0340 0.0566 0.0000 Pelvis 0.0225 -0.1063 0.0516 

     Femur -
0.0158 

0.1318 0.0351 

 

Table A28: Rectus Femoris physiological parameters. 

Rectus fem.- Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 14.450 0.0780 0.3403 0.3840 Pelvis 0.0808 -0.0060 0.1108 

     Patella -0.0010 0.0229 0.0006 

2 14.450 0.0780 0.3390 0.3840 Pelvis 0.0808 -0.0060 0.1108 

     Patella -0.0017 0.0237 0.0122 
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Table A29: Sartoris physiological parameters. 

Sartorius Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Prox.1 5.900 0.3470 0.1851 0.0000 Pelvis 0.0826 0.0262 0.1255 

     Tibia 0.0190 0.0892 -0.0260 

Dist.1 5.900 0.3470 0.1827 0.0000 Pelvis 0.0826 0.0262 0.1255 

     Tibia 0.0190 0.0892 -0.0260 

 

 

Table A30: Semimembranosus physiological parameters. 

Semimemb Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 17.100 0.0810 0.3034 0.4363 Pelvis 0.0225 -0.1148 0.0702 

     Tibia -0.0254 0.1316 -0.0082 

 

 

Table A31: Semitendinosus physiological parameters. 

Semitend Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 14.700 0.1420 0.3011 0.0000 Pelvis 0.0102 -0.1094 0.0627 

     Tibia 0.0093 0.0743 -0.0218 
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Table A32: Soleus physiological parameters. 

Soleus Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Med.1 31.433 0.0240 0.2731 0.4939 Tibia 0.0149 -0.0143 -0.0176 

     Foot -0.0890 -0.0352 0.0089 

Med.2 31.433 0.0240 0.3039 0.4939 Tibia 0.0129 0.0174 -0.0161 

     Foot -0.0890 -0.0352 0.0089 

Med.3 31.433 0.0240 0.3277 0.4939 Tibia 0.0086 0.0423 -0.0119 

     Foot -0.0890 -0.0352 0.0089 

Lat.1 28.633 0.0260 0.3073 0.4939 Tibia 0.0092 0.0253 0.0416 

     Foot -0.0935 -0.0304 0.0229 

Lat. 2 28.633 0.0260 0.3343 0.4939 Tibia 0.0108 0.0521 0.0437 

     Foot -0.0935 -0.0304 0.0229 

Lat. 3 28.633 0.0260 0.3737 0.4939 Tibia 0.0121 0.0914 0.0484 

     Foot -0.0935 -0.0304 0.0229 

 

Table A33: Tensor Fascia Lata physiological parameters. 

Tensor fasc.l. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 4.400 0.1150 0.3296 0.0000 Pelvis 0.0789 0.0312 0.1381 

     Tibia 0.0553 0.1810 0.0224 

2 4.400 0.1150 0.3396 0.0000 Pelvis 0.0743 0.0414 0.1418 

     Tibia 0.0553 0.1810 0.0224 

         

 

Table A34: Tibialis Anterior physiological parameters. 

Tibialis ant Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 8.867 0.0460 0.3506 0.1676 Tibia 0.0448 0.0996 0.0103 

     Foot 0.0314 -0.0143 -0.0179 

2 8.867 0.0460 0.3228 0.1676 Tibia 0.0423 0.0724 0.0044 

     Foot 0.0314 -0.0143 -0.0179 

3 8.867 0.0460 0.2710 0.1676 Tibia 0.0305 0.0201 0.0019 

     Foot 0.0314 -0.0143 -0.0179 
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Table A35: Tibialis Posterior physiological parameters. 

Tibialis post. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Med.1 7.200 0.0240 0.3331 0.2391 Tibia 0.0211 0.0669 0.0090 

     Foot -0.0149 -0.0017 -0.0156 

Med.2 7.200 0.0240 0.2847 0.2391 Tibia 0.0184 0.0186 0.0056 

     Foot -0.0149 -0.0017 -0.0156 

Med.3 7.200 0.0240 0.2219 0.2391 Tibia 0.0176 -0.0442 0.0027 

     Foot -0.0149 -0.0017 -0.0156 

Lat.1 7.200 0.0240 0.2956 0.2391 Tibia 0.0192 0.0253 0.0347 

     Foot -0.0149 -0.0017 -0.0156 

Lat.2 7.200 0.0240 0.2229 0.2391 Tibia 0.0160 -0.0482 0.0288 

     Foot -0.0149 -0.0017 -0.0156 

Lat.3 7.200 0.0240 0.1552 0.2391 Tibia 0.0169 -0.1197 0.0240 

     Foot -0.0149 -0.0017 -0.0156 

 

Table A36: Vastus Intermedius physiological parameters. 

Vastus interm. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

1 6.350 0.0770 0.0813 0.2059 Femur 0.0458 -0.0602 -0.0069 

     Patella -0.0010 0.0229 0.0006 

2 6.350 0.0770 0.1378 0.2059 Femur 0.0397 -0.0043 0.0024 

     Patella -0.0010 0.0229 0.0006 

3 6.350 0.0770 0.1991 0.2059 Femur 0.0324 0.0554 0.0168 

     Patella -0.0010 0.0229 0.0006 

4 6.350 0.0770 0.0783 0.2059 Femur 0.0439 -0.0626 0.0050 

     Patella -0.0017 0.0237 0.0122 

5 6.350 0.0770 0.1346 0.2059 Femur 0.0375 -0.0073 0.0165 

     Patella -0.0017 0.0237 0.0122 

6 6.350 0.0770 0.1960 0.2059 Femur 0.0307 0.0530 0.0277 

     Patella -0.0017 0.0237 0.0122 
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Table A37: Vastus Lateralis physiological parameters. 

Vastus lat. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Lat. 1 1.783 0.0910 0.0249 0.0000 Femur 0.0116 -0.1199 0.0043 

     Patella -0.0017 0.0237 0.0122 

Lat. 2 1.783 0.0910 0.0629 0.0000 Femur 0.0124 -0.0741 0.0055 

     Patella -0.0017 0.0237 0.0122 

Lat. 3 1.783 0.0910 0.1051 0.0000 Femur 0.0112 -0.0287 0.0098 

     Patella -0.0017 0.0237 0.0122 

Lat. 4 1.783 0.0910 0.1491 0.0000 Femur 0.0083 0.0161 0.0174 

     Patella -0.0017 0.0237 0.0122 

Lat. 5 1.783 0.0910 0.1939 0.0000 Femur 0.0036 0.0605 0.0282 

     Patella -0.0017 0.0237 0.0122 

Lat. 6 1.783 0.0910 0.2395 0.0000 Femur -0.0029 0.1043 0.0423 

     Patella -0.0017 0.0237 0.0122 

Sup. 1 29.500 0.0910 0.2752 0.0000 Femur 0.0163 0.1432 0.0542 

     Patella -0.0017 0.0237 0.0122 

Sup. 2 29.500 0.0910 0.2856 0.0000 Femur 0.0298 0.1580 0.0373 

     Patella -0.0017 0.0237 0.0122 

 

Table A38: Vastus Medialis physiological parameters. 

Vastus med. Bundle 
PCSA 
(cm2) 

L0 

(m) 
LS 

(m) 
α 

(rad) 

Origin 

Insertion 

ξ 

(m) 

η 

(m) 

ζ 

(m) 

 

Inf.1 4.900 0.0760 0.0316 0.0000 Femur 0.0181 -0.1231 -0.0150 

     Patella -0.0010 0.0229 0.0006 

Inf. 2 4.900 0.0760 0.0265 0.0000 Femur 0.0280 -0.1225 -0.0197 

     Patella -0.0010 0.0229 0.0006 

Mid. 1 11.600 0.0760 0.0686 0.0000 Femur 0.0218 -0.0778 -0.0102 

     Patella -0.0010 0.0229 0.0006 

Mid. 2 11.600 0.0760 0.0656 0.0000 Femur 0.0315 -0.0772 -0.0146 

     Patella -0.0010 0.0229 0.0006 

Sup. 1 26.900 0.0830 0.1136 0.0000 Femur 0.0214 -0.0255 -0.0023 

     Patella -0.0010 0.0229 0.0006 

Sup. 2 26.900 0.0830 0.1116 0.0000 Femur 0.0303 -0.0250 -0.0064 

     Patella -0.0010 0.0229 0.0006 

Sup. 3 26.900 0.0830 0.1660 0.0000 Femur 0.0184 0.0273 0.0068 

     Patella -0.0010 0.0229 0.0006 

Sup. 4 26.900 0.0830 0.1642 0.0000 Femur 0.0273 0.0278 0.0027 

     Patella -0.0010 0.0229 0.0006 

Sup. 5 26.900 0.0830 0.2319 0.0000 Femur 0.0188 0.0941 0.0164 

     Patella -0.0010 0.0229 0.0006 

Sup. 6 26.900 0.0830 0.2311 0.0000 Femur 0.0234 0.0944 0.0142 

     Patella -0.0010 0.0229 0.0006 
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 :  Pattern Search Results 

The solutions found for each iteration of the pattern search is presented in Table B1. All the solutions 

minimize the RMSE between numerical and in vivo HCF. The combinations of weight factors found for 

each iteration is presented, as well the associated RMSE. 

Table B1: Local minimums found for each iteration of the pattern search. 

Subject  It. W1 W2 
RMSE 

[%BW] 

H2R 

Standard 0,33  0,66 63,25 

Optimal Weight Factors 

1 87,40  11,09 60,80 

2 87,46 11,10 60,80 

3 87,41 11,10 60,80 

4 87,42 11,10 60,80 

5 87,42  11,10 60,80 

6 87,47 11,10 60,80 

7 87,51 11,10 60,80 

8 87,43 11,09 60,80 

9 87,44 11,10 60,80 

10 87,13 11,06 60,80 

H1L 

Standard 0,33 0,66 68,82 

Optimal Weight Factors 

1 47.74 0.04 63,27 

2 2.10 0.10 63,32 

3 1.98 0.09 63,32 

4 42.54 0.04 63,27 

5 1.29 0,07 63.33 

6 0.76 0.01 63,27 

7 0.77 0,01 63,27 

8 47.74 0,04 63,27 

9 2,10 0,10 63,32 

10 1,98 0,09 63,32 
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