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Abstract

We propose using deep learning to perform segmentation on images containing robotic hands. This
serves many applications, e.g. helping the robot with tasks requiring accurate knowledge about the
positioning of the robot’s hands. Detecting its own hands, through vision, is more reliable than using
kinematics because, in the latter, each joint of the arm must be properly calibrated, otherwise small
offsets will propagate and create large errors when estimating the hand’s pose. Maintaining all the
joints properly calibrated is impractical and time consuming. To overcome the challenge of collecting
and annotating large amounts of images, the datasets are generated in simulation, using domain
randomization. We use a model, pre-trained on a large scale dataset, and fine-tune it on our datasets.
We make experiments, with different training datasets and strategies, showing results on different types
of datasets, with images generated in simulation and real indoor environments, with the real robot. From
these experiments we create a final model, trained solely on synthetic images, that achieves an average
IoU of 82% on synthetic validation data and 63, 5% on real validation data. These results were achieved
with only 1000 training images and 3 hours of training time on a single GPU. We do not intend to create
a robust model, but rather develop a methodology requiring low amounts of data to achieve reasonable
performance, on real data, and give detailed insight on how to properly generate variability in the data
and how to fine-tune a complex model to a very different task.
Keywords: Robotic Hands, Segmentation, Deep Learning, Domain Randomization, Indoor environments

1. Introduction

Vision is an important sensing capability that
serves many purposes in modern robots. For a
robot to be aware of the position of its own body
and physical boundaries (self-perception), through
vision, it must learn to process and interpret the
images it collects from cameras. Contrary to meth-
ods without visual feedback (e.g. direct kinemat-
ics), vision based methods (e.g. keypoint estima-
tion and segmentation) are not prone to calibration
errors. If the position of an initial joint (e.g. the
shoulder joint) is miscalculated, the error will prop-
agate through all the rest of the joints (until reach-
ing the hand), while with vision feedback this does
not happen, because the position of the hand is
not determined based on the position of the other
joints.

For the purpose of this work, pose/keypoint esti-
mation methods [24, 1] are not enough since they
only provide the position of some keypoints (joints
of the hand) and not the whole hand. While this is
enough for some tasks, e.g. hand gestures recog-
nition, it might not be enough for other tasks that

require full knowledge about the spatial layout of
the hand, e.g. object grasping.

CNNs (Convolutional Neural Networks) recently
started to solve many problems in computer vision,
due to their high efficiency in extracting features
from images. Said features can be used to clas-
sify objects and make bounding box predictions for
each object. One of the latest works in this area,
Mask RCNN [6], achieved great accuracy at these
tasks, while also retrieving a binary mask for each
object. The advantages of using this type of net-
works is that no feature engineering is required
(feature extraction is part of the deep learning pro-
cess). Recent improvements in parallel program-
ming with GPUs (e.g. CUDA 1) make deep learning
algorithms a good choice for many computer vision
problems. Moreover, there are weights available,
pre-trained on large datasets (e.g. COCO [14], Im-
ageNet [21]) that can be used to initialize training,
leading to improvements in generalization, when
comparing to methods that initialize weights using

1CUDA webpage https://developer.nvidia.com/

cuda-zone
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normal distributions, for example.
Considering all this, our goal with this work is

to propose a deep learning method to segment the
hand(s) of a robot from the background. To achieve
this task, we have to overcome a few major chal-
langes, namely: (i) how to collect large amounts
of training data without any pre-existent datasets,
and (ii) how to fit a model, pre-trained on COCO, to
our specific domain (indoor cluttered domain, with
robotic hands and large amount of background ob-
jects). In order to solve challenge (i), we propose
to use and explore domain randomization [23], a
method that relies on training a model with exclu-
sively simulated data and retain most of the perfor-
mance, in real data. With this method, we gener-
ate the training samples, without the need to collect
and annotate images manually. To overcome chal-
lenge (ii), we fine-tune the pre-trained weights and
the hyperparameters.

2. Background
Our work builds upon recent successes in deep
learning methods that predict the class of each
pixel in an image [20, 12, 6, 17]. All these meth-
ods are end-to-end trainable, meaning that they re-
quire no pre or post-processing of data and fea-
ture extraction is a part of the learning process,
and are built upon the FCN [22] architecture. The
downside of these characteristics is that these net-
works require large amounts of training data and
pre-existent datasets are not always available or
easy to create.

2.1. Fully Convolutional Network
A FCN (Fully Convolutional Network) [22] is a
state-of-the-art CNN that, to our knowledge, out-
performs current methods in pixel-wise classifica-
tion tasks (segmentation), without the need for any
pre or post-processing (e.g. superpixels, propos-
als, like in [3, 5]). This method extends previous
classification networks to the task of semantic seg-
mentation by up-sampling final layers to match the
input image size, using deconvolutional layers [2].
These layers do not need to be fixed to perform bi-
linear interpolation, instead they can learn how to
up-sample optimally.

2.2. Semantic segmentation
The task of semantic segmentation consists in as-
signing a label for each class present in the input
image. Different instances of the same class get
assigned with the same label.

U-Net [12] is an architecture built to perform this
type of task. It takes an image as input, down-
samples it to lower dimensions through convolu-
tion and max pooling operations in order to convert
the original image into feature vectors and is fol-
lowed by up-sampling paths that apply transpose

convolutions [2], in order to recover and map the
results back to the dimensions of the original im-
age. This is similar to the original architecture of a
FCN [22], but with the important modification that
in the up-sampling part, a large number of feature
channels is used, which allows the network to prop-
agate context information to higher resolution lay-
ers. This type of network was designed, having in
mind biomedical applications (e.g. segmentation
of moving cells), making it an ideal choice to seg-
ment images with low background clutter and clear
boundaries between different objects (no overlap-
ping), but it is not enough for our application due to
the lack of pre-trained models in data distributions
similar to our target domain.

RefineNet [20] is a multi-path network, i.e. it ex-
ploits features at multiple resolutions and not only
the resolution of the input image, in order to achive
high-resolution semantic segmentation. Also, this
network uses ResNet [7] models, pre-trained on
ImageNet [21], as the fundamental building block
to extract features for further classification. Al-
though this architecture seems appropriate for our
application, it does not solve the more complex
problem of instance segmentation.

2.3. Instance segmentation

Instance segmentation differs from semantic seg-
mentation in the sense that labels are also
instance-aware, meaning that different instances of
the same class get assigned with different labels.
This type of problem requires not only making pre-
dictions for each pixel but also separate each in-
stance present in the image and classify them sep-
arately.

Recent deep learning approaches to this prob-
lem [18, 17, 6] rely on making candidate object pro-
posals and then classify each proposal separately.
In the methods proposed in [18, 17], segmenta-
tion precedes recognition, which is slower and less
accurate, according to more recent studies in [6].
Instead, the Mask RCNN, proposed in [6], is di-
vided into two stages. The first stage is called the
RPN (Region Proposal Network) where it follows
a method, first proposed in [4], to generate can-
didate object proposals by generating anchors of
different sizes and ratios, centered in every pixel of
the feature map and classify each anchor as back-
ground or foreground. Each anchor classified as
foreground is accepted for the second stage, which
consists in assigning each anchor its final class,
making a bounding box regression that predicts a
delta that is applied to the anchor (for the bounding
box prediction) and retrieving a the binary mask of
the object present in the anchor. These three tasks
are done in parallel, in order to increase speed.

To our knowledge, Mask RCNN [6] is, overall, the
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most successful state-of-the-art deep learning ar-
chitecture, for tasks of both object recognition and
instance segmentation, showing clear improve-
ments of previous methods, both in speed and in
accuracy. Also, Mask RCNN models pre-trained
on COCO [14] are available online for download,
making this the architecture upon which we build
our work.

3. Related work
The problem of segmenting a hand, through vision,
has been mainly focused on human hands, and not
the robot’s hands or arms. The main differences
between these two problems are: (i) many human
hand segmentation methods rely on skin-color in-
formation [9, 8], which perform poorly on cluttered
domains with different lighting effects, and (ii) there
is a wide variety of human hand datasets available
and already annotated [10] whilst, to our knowl-
edge, there is no pre-existent annotated dataset of
humanoid robotic hands, in first person view.

In [11], J. Leitner et al. propose a method to
detect the hands of two different humanoid robotic
models. The authors also propose two approaches
for detection: (i) detect the finger tips of the robots’
hands, and (ii) detect the full hand. The second
task is more desirable, since it provides more in-
formation, but it is described as a more compli-
cated task, requiring ten times more training time,
to reach the best solution, than the first approach.
However promising, this work does not present nu-
merical results due to the lack of suitable datasets,
making it hard to compare with our work.

4. Methodology
In this work, we propose to extract the bounding
box and a binary mask of the instances of hu-
manoid robotic hands, present in an input image.
For the neural network architecture, we use Mask
RCNN [6] with the ResNet-101-FPN [7, 13] back-
bone, i.e. the feature extraction process.

First, to disambiguate some important terms, we
define hyperparameters as any parameter related
to the training process, that can be tuned man-
ually without having to make any change in the
network’s architecture and are not changed during
training (e.g. learning rate, loss functions, num-
ber of train/val epochs). Also, we define model pa-
rameters or weights as the parameters that are ad-
justed during training through backpropagation, to
decrease the training loss (e.g. the kernels/filters
weights). Finally, a model is the name given to an
instance of the network trained with a given train
and validation dataset and with the selected set of
hyperparameters.

Our methodology can be divided into three es-
sential processes. The data generation is where
we describe the methods used to generate train-

ing and simulated validation images and the corre-
sponding groundtruth data, i.e. the bounding boxes
and masks, to feed the network during training.
The learning process can be seen as the strate-
gies that can be used to train a model pre-trained
on another dataset, to perform a different classifi-
cation task, with significant changes in the domain.
We also give an overview of the architecture used
for this process and explain some of the choices
made in this part. The last process is the evalua-
tion, where we evaluate the loss and accuracy of
trained models, using appropriate metrics and real
validation datasets that will be defined in Section
5. For a better overview of this methodology, we
provide a pipeline, in Figure 1.

Figure 1: Overview of the methodology pipeline, using the ar-
chitecture of Mask R-CNN [6].

4.1. Data generation
To our knowledge, there is no pre-existent
dataset of humanoid robotic hands with annotated
groundtruth masks, available for research. Con-
sidering the large amount of time required to col-
lect and annotate enough training and validation
images, we propose to use a different approach.
We build our own custom dataset in simulation, us-
ing a 3D model of a humanoid robotic hand and
domain randomization [23] to generate a dataset
with enough variability to overcome the reality gap,
i.e. to achieve reasonable performance when vali-
dating a model, trained only with simulated images,
on real images.

In the simulation domain, we can randomize
properties of the scene related to the background,
foreground, the camera and lighting effects. In this
work, we will focus largely on randomizing back-
ground and foreground properties because these
show greater improvements for the overall accu-
racy, in the real domain.

For the background, we consider two compo-
nents, distractor objects and background wall. For
the distractor objects, we generate four types of 3D
parametric objects (ellipsoids, parallelepipeds, el-
liptic cylinders and spherocylinders) with random-
ized shapes, sizes and colors (solid colors only). In
respect to the background wall, we generate three
types of walls, solid random colors, Perlin noise
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[16] and real backgrounds.
In the foreground component, we randomize the

properties of the 3D hand model. This includes the
position and orientation of the arm (which contains
the hand and wrist), relative to the world frame, and
the orientation of the hand relative to the arm.

The most important camera properties are its
position and orientation, but since we already ran-
domize the position and orientation of all the ob-
jects in the scene, we do not randomize the camera
properties. As for the lighting effects, we generate
3 lights and randomize the position and orientation
of each light.

The target domain (real domain) of our work may
contain high clutter, i.e. high amount of different
colors, overlapping objects, and different lighting
effects, around the objects of interests (the hands).
To help overcome this complexity we also use real
backgrounds, in our training and validation simu-
lated datasets. To do this, we search for a num-
ber of images belonging to the super-category in-
door of the COCO [14] dataset and overlap a ran-
domized instance of the 3D hand model, since the
Mask RCNN architecture is not designed to train
images without, at least, one positive instance. In-
stead, every training image has (implicitly) nega-
tive samples that correspond to regions where the
hand is not present. In figure 2, we provide with
3 examples of images with real backgrounds used
for the training and validation simulated sets.

Figure 2: 3 examples of images using real backgrounds, from
the COCO dataset.

To generate groundtruth data, we automatically
extract a binary mask of the image (where 1 corre-
sponds to hand pixels and 0 to background pixels),
from the simulator. The bounding box coordinates
can be extracted from the mask, so we will only ex-
plain how to extract the mask. In the simulation do-
main we use three cameras (with the same position
and orientation), one to render the 3D hand model,
other to render the background and the third to ren-
der the whole scene. By extracting the depth im-
ages of each camera, we know which pixels (in the
image of the entire scene) belong to the hand and
which belong to the background and we assign the
value 1 or 0, accordingly.

4.2. Learning
During training, the goal is to minimize the error of
the predictions in the train set, while also keeping a
high generalization capacity, i.e. the capacity of re-

taining good results when validated with data that
was not used to adjust the model parameters (e.g.
the validation set). More importantly, the general-
ization capacity must also be extended when the
domain changes substantially, e.g. when we vali-
date with real images. According to J. Yosinski et
al. [25], that can be achieved by using the knowl-
edge of previously trained models in large scale
datasets and by adopting a good training strategy,
i.e. choosing the correct layers to freeze and those
to fine-tune, during the learning process.

In theory, initial layers extract features that repre-
sent more general aspects of the dataset and, as
such, the weights tend to not change much in these
layers, as in deeper layers, even when the dataset
and the classification task are both changed. As
such, initializing the weights to an already trained
(and accurate) values will almost always give good
convergence.

We initialize the network with weights pre-trained
in the COCO [14] dataset, except for the classi-
fication layers that predict the classes, bounding
boxes and masks, because we change the num-
ber of output classes to 2. The training and vali-
dation datasets used are generated in simulation,
following the process explained in Section 4.1. We
sample, approximately, a total of 1000 images from
the simulator, in which 80% are used for training
and the remaining 20% are used for validation. The
training loss is defined as the sum of the five losses
(with equal weights) and, for each learning pro-
cess, we also monitor the sum of the five losses
on the validation set. When the total validation loss
does not decrease for 15 epochs, we stop training,
to avoid overfitting, and choose the model with the
lowest validation loss. We also set a maximum of
150 training epochs, in case the loss does not stop
decreasing.

In the Mask R-CNN [6] architecture, the total loss
is divided into five losses. Two are to account for
the loss when proposing a region of interest that
contains an object, in the RPN [19] stage. The
rpn class loss is for the predicted binary class, ob-
ject/not object, and the rpn bbox loss is for the pre-
dicted bounding box that contains the object. The
three remaining losses account for the predictions
of the final class of the object (mrcnn class loss),
hand or background, the final predicted offsets for
the bounding box (mrcnn bbox loss) and the pre-
dicted binary mask (mrcnn mask loss).

5. Experimental setup

In this section, we will give some details on the plat-
forms used to implement our processes, as well as
defining the metrics used to evaluate the trained
models and the real validation datasets in which
we make these evaluations.
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5.1. Implementation details

To implement the data generation process, we use
Unity 2, a game development platform. The reason
we chose this software is due to its high speed at
rendering textures, allowing it to generate images
at a higher rate than other 3D simulation platforms.
To render the hand in the images, we import a 3D
model of Vizzy [15], a humanoid robot designed
for assistive robotics. Some of the physical restric-
tions of the robot are also implemented in Unity, like
the ranges of angular movements in some joints
(forearm pronation, wrist abduction and wrist flex-
ion, all as specified in [15]). This is done to avoid
unfeasible hand poses that are not coherent with
the ranges of the real domain, which is our target
domain.

As for the parts of Vizzy used in simulation, we
discovered that only using the hand (without a visi-
ble arm attached) leads to poor results in segmen-
tation in the real domain (where there is a visible
arm attached). So, to improve the results, we also
attached the 3D model of the arm to the hand, in
Unity. Since the rest of the body is not (usually)
visible in the real domain, we do not use it in simu-
lation.

For the learning process, we use an implemen-
tation of Mask RCNN 3, that follows the architec-
ture of the original work [6]. This implementation
is open-source and it is the most widely used for
Mask RCNN, from what we found so far.

We have a public github repository 4 with all the
code used and created to implement our methods
and experiments.

5.2. Real validation datasets

To evaluate the accuracy of the models, in the
real domain, we collected and annotated images
of the real robot’s hands, in three different types of
backgrounds: (i) low cluttered backgound, a sim-
ple solid background with different hand positions
and orientations, (ii) medium cluttered background,
where we place some distractor objects on a solid
colored table and we change the poses of the cam-
era, the distractor objects and the hand, and (iii)
high cluttered background, where we change the
pose of the camera and the hand and the light-
ing effects, in an indoor office-like environment with
high number of different objects and patterns. For a
better understanding of the environments, we pro-
vide two images of each dataset, in figure 3

2Unity webpage https://unity.com/
3mask rcnn github https://github.com/matterport/

Mask_RCNN
4Public github repository, with our project https://github.

com/alexalm4190/Mask_RCNN-Vizzy_Hand

Figure 3: Low cluttered, medium cluttered and high cluttered
backgrounds from left to right, respectively.

5.3. Evaluation metrics
The evaluation metric used in the original work
of Mask RCNN is the mAP. This metric is widely
used for multi-classification tasks, where the goal
is to detect as much positive instances as possi-
ble, while maintaining a reasonable accuracy in the
masks and bounding box predictions. In the con-
text of our work, this metric cannot be used, since
the priorities are switched. We typically only have 1
or 2 positive instances in each image and we want
to have the highest accuracy possible when pre-
dicting the mask and the bounding box for each
instance.

We use three main metrics, IoU, precision and
recall. Each metric is calculated for each image
and averaged across all the images, in the valida-
tion datasets. Given a predicted mask of a positive
instance and its corresponding groundtruth mask,
all these metrics can be calculated as follows:

IoU =
TP

TP + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
, (3)

where TP , FP and FN are the true positives,
false positives and false negatives as shown in fig-
ure 4

Figure 4: Visualization of the true positives, false positives
and false negatives, given a predicted mask and its groundtruth
mask.

6. Experiments and results
In this section, a series of experiments are con-
ducted to produce both numerical and visual re-
sults, in order to test our hypotheses and compare
different approaches. These experiments also aim
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to explore, in an empirical way, the effects of differ-
ent training strategies and domain randomization
parameters.

6.1. Domain Randomization results
In this section we show the results of training the
model with different datasets generated in Unity.
We train the model on six different datasets, to
measure the impact that some of the randomized
aspects of the scene have on the accuracy of the
model when validated with real images.

With these six datasets we evaluate the impact
of the following major aspects: (i) attaching the arm
to the hand in the 3D model of the robot, against
only randomizing the hand position and orientation
without the arm appearing in the images, (ii) Us-
ing Perlin noise to generate a more randomized
and cluttered background, instead of only random-
izing solid colored backgrounds, (iii) The use of
distractor objects to generate partial occlusions of
the hand, (iv) generation of different lighting effects,
and (v) the use of real images as background. In
Figure 5, we show images from each of the six
datasets, generated in Unity. Note that each dif-
ferent feature (except for the arm attachment) is
added to the others and does not replace previous
features, e.g. in the Perlin noise dataset we have
images with Perlin noise backgrounds and images
with solid colered backgrounds. Each dataset has,
approximately, 1000 images.

Figure 5: Datasets generated in Unity, using domain random-
ization.

In Figure 6 we present the results when vali-
dating the models on each real validation dataset,
trained in each of the six datasets, generated in

Unity.
The hand and arm of the robot are very similar

in color and texture, when the back of the hand is
turned to the camera. By training Mask RCNN with
a 3D model of the hand only (dark blue dataset,
in Figure 6) we can achieve a very high recall,
but the precision is very low due to parts of the
arm visible in the image being detected as part of
the hand. To avoid these false positives, the 3D
model of the arm must also be attached to the
hand, in simulation, leading to a substantial im-
provement in precision, with the dataset SolidBg
arm (orange dataset, in Figure 6), on all real valida-
tion datasets. However, this improvement comes
with a small cost in recall, making it harder for the
model to detect the entirety of the hand. In general,
this change is very positive because the average
IoU increases in all real validation datasets.

The Perlin noise effect gives the model a capa-
bility in separating cluttered backgrounds from the
hand. In Figure 6, we can see this effect improves
the average IoU in all real validation datasets, es-
pecially in the most cluttered ones. This capa-
bility can also be extended by two important fea-
tures. First, the addition of distractor objects pro-
vides the training set with images where the hand
is occluded by other objects. This also affects
mostly the medium and high cluttered datasets
which have images with different objects (in size,
shape and color) around and in front of the hand.
Secondly, by adding images with real backgrounds,
in the train set, we achieve the greatest perfor-
mance in IoU for the highest cluttered dataset.

When changing the lighting effects, we do not
have significant differences in performance. We
did not, however, explored many strategies in this
regard. Future works could further explore this fea-
ture by introducing different types of lights with,
for example, spotlight effects and place a different
number of lights in different areas of the scene.

6.2. Transfer learning results
In order to conduct this experiment, we divide the
network into 3 stages, (i) the backbone (ResNet-
101-FPN [7, 13]) is the part with most layers, with
the purpose of learning to extract the most relevant
features from the input images, at different resolu-
tion levels, (ii) the proposal stage (RPN [19]) is the
part that learns to propose bounding boxes con-
taining objects of interest, and (iii) the classification
stage is the part that learns to predict a class label,
a bounding box refinement and a binary mask for
each object predicted in the previous stage.

For training and validation, we use the dataset
with real backgrounds (see Section 6.1) generated
in Unity. For validation on real data, we merge our 3
real validation datasets into a single set and apply
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Figure 6: Results when validating models in different real validation datasets, trained with different simulated datasets.

the evaluation metrics to it.
We train 4 models, each initialized in a differ-

ent way. The goal is to evaluate different combina-
tions of initializations, by transferring weights, pre-
trained on COCO [14], to the given stage(s) and
train the remaining stage(s) from scratch. The re-
sults of inferring the real and simulated validation
datasets on these 4 models are shown in Table 1.

Table 1: Results of inferring 4 models, each trained from dif-
ferent initialization points, on the real and simulated validation
datasets, using the evaluation metrics.

Simulation RealTransferred weights Rec Pre IoU Rec Pre IoU
Backbone. 85,8 88,4 77,5 64,3 71,8 54,4

Backbone and
proposal stage. 90,0 93,5 84,8 62,5 86,9 58,2

Backbone and
classification stage. 89,3 93,8 84,5 55,2 68,1 50,8

All stages. 87,2 92,8 82,0 72,2 79,5 63,4

Furthermore, we divide the backbone into 4
blocks of layers, where the last layer of each block
is the feed-forward connection to a different level of
the FPN [13] which, after a series of convolutional
layers, results in 4 different feature map levels, to
be used for region proposals and classification.

We train 5 different models, each with a differ-
ent number of backbone stages (or blocks) frozen
(during training). After this process, we apply the
evaluation metrics (just the IoU, because now we
are only interested in measuring the accuracy) to

each model, when inferring the real and simulated
validation sets. The results of this experiment can
be seen in Figure 7.

Figure 7: Results (average IoU) of inferring the real and simu-
lated validation sets on 5 different models, each trained with a
number of backbone stages (or blocks) frozen.

6.3. Instance segmentation results
In order to test our final model’s capacity to gener-
alize to data that was neither used in training nor
in validation, we collected and annotated 21 more
images, with the real robot, in an environment sim-
ilar to the one in which the high clutter dataset was
collected. We inferred these images on our final
model, yielding an average IoU of 56, 3%. When
comparing to the results of inferring the high clut-
ter dataset in this model (which yielded an average
IoU of 55, 4%), we can conclude that our model
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has the capacity of generalizing to unseen data,
that was not used in the process of adjusting the
methodology. These results can be visualized in
Figure 8.

Figure 8: Visualization of the predicted masks, bounding boxes
and class scores, for 6 images of the real test dataset.

We show, in Figure 9, results of inferring images
where both the real robot’s hands are visible.

Figure 9: Visualization of instance segmentation results.

The model used to obtain these results was
trained on a training set where each image only
contains 1 positive instance of the robot’s hand (the
3D model of the right hand). We show that, even
when trained with exactly 1 positive instance, in
each training image, the model is able to detect
more than 1 positive instance (left and right hands
of the real robot) when validating with real images,
without any data augmentation. The top images
of Figure 9 even show reasonable results for both
hands, but when their boundaries start to get close
(as we can see in the bottom images) their masks
start to misclassify too many pixels (however, the
bounding boxes are still correctly predicted, in most
cases).

7. Conclusions
With this work, it was intended to give a real robot
the ability to perceive all the points belonging to
its own hand, in an image. This is done by fine-

tuning a pre-trained CNN to extract a binary masks
of the robot’s hand, from images. To do this, we
had to face two main challenges: (i) collect and
annotate enough images, to train a deep CNN, and
(ii) overcome the differences in the domains and
tasks between the pre-trained model and our target
model.

To overcome the challenges inherent to this
work, we developed a process for generating train-
ing and validation images, using Unity and domain
randomization concepts. Also, we applied trans-
fer learning methods to the complex architecture of
Mask RCNN, in order to find a good strategy that
fine-tunes the model to the new task.

With our approach, we were able to create a sim-
ple process for fine-tuning the weights of a complex
model, using only, approximately, 1000 images for
training and validation, each image only containing
1 positive instance (i.e. 1 robotic hand) and simple
scenes, without any need for data augmentation
or other pre-processing methods. When evaluat-
ing our models on some real environments we can
retain most of the performance we get from eval-
uating in simulated environments. However, high
cluttered environments can still affect this perfor-
mance, significantly.

Furthermore, since it is a very time consuming
task to collect and annotate real images, we are
not able to create a real dataset large enough to
make strong conclusions and evaluate the perfor-
mance in many types of environment, with a high
variability in the all the components of the environ-
ments.

Overall, we give a detailed insight on different
learning strategies and data generation methods,
which can be used to train a state-of-the-art net-
work (Mask RCNN) and achieve the objective of
this work, with a good performance.

With respect to the data generation process, fu-
ture work can explore more randomization param-
eters and more suitable configurations for each pa-
rameter.

Concerning the learning process, although the
implementation of Mask RCNN used allows for a
large number of hyperparameters to be tuned, we
only tune the learning rate. If any future work has
the possibility of training the network with several
GPUs, at the same time, we recommend that a
more detailed hyperparameter search is made. Fi-
nally, another important addition to this work would
be to include the information of the robot’s kinemat-
ics, in the region proposal stage, in order to relieve
the burden of generating proposals, from the net-
work.
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