
 

 

 

Computational Experiments of a Maintenance Scheduling 
Problem 

Carris bus company Case Study 

 

Francisco Manuel de Lemos Custódio Fernandes 

 

Thesis to obtain the Master of Science Degree in 

Mechanical Engineering 
 
 

Supervisors: Prof. António Ramos Andrade 
Prof. José Maria Campos da Silva André 

 
Examination Committee 

Chairperson: Prof. Carlos Frederico Neves Bettencourt da Silva 

Supervisor: Prof. António Ramos Andrade 

Member of The Committee: Prof. Cristina Marta Castilho Pereira Santos Gomes 

 

 

 

 

August 2019 

  



i 

 

Acknowledgements 
 

First of all, I would like to thank my dissertation supervisors, Prof. António Ramos Andrade and 

for his support and availability to aid me with all my questions and concerns. His contribution  and 

his guidance were truly essential for the concretization of this work. And Prof. José Maria André 

for accepting to participate in this project. 

Secondly, I would like to thank Rodrigo Arrais Martins for his previous work which represented 

the ground stone for this dissertation. 

I am thankful to my colleagues António Amaral,  Francisco Monteiro, João Alemão, João Barata, 

Miguel Tavares and Nuno Mendes for their support and companionship along this though road. 

I am also grateful to FICO Xpress software for providing an academic license of FICO Xpress 

Optimization software, that made possible the optimization process and the achievement of 

results.     

Moreover, I should recognize the preparation, of almost six years, that was provided by my 

university, Instituto Superior Técnico, which allowed me to develop personally and technically and 

led me to the concretization of this project. 

Last but not least, I would like to express my gratitude to my family whose patience and support 

were critical during this phase of my life. And to my friends who were always there. 

  



ii 

 

Abstract 
 

In 2018, Rodrigo Arrais Martins developed a Mixed Integer Linear Program model that was 

implemented in FICO Xpress software, in order to optimize the bus maintenance scheduling of a 

bus operating company with the goal of reducing its maintenance costs. The results obtained, 

though improving the company’s current schedule, were no great regarding the optimality of the 

solution and the computational time it took to reach it. The present dissertation searches a way 

to make improvements in those aspects.  

A parallel solving multiple model approach based on the Dantzig-Wolfe decomposition was first 

attempted, resulting in the impossibility to generate results.  

Then an alteration to the original model by introducing new restrictions, in order to guide the solver 

to the solution, was implemented. The results regarding computational time showed great 

enhancement to the original model, but the improvement in terms of optimality was scarce. 

Lastly, a heuristic approach, in which the problem was solved sequentially for one bus at a time, 

was developed. This model showed great improvements such in computational time as in 

optimality. Showing a reduction of 99.7% in computational time and 8.9% in maintenance costs. 

Both the heuristic approach and the alteration to the original model were validated through an 

illustrative example. 

 

Keywords: Optimization, Maintenance Scheduling, Computational Experiment, Bus transport, 

Mixed Integer Linear Programming, Parallel Solving  
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Resumo 
 

Em 2018, Rodrigo Arrais Martins desenvolveu um modelo de Programação Linear Inteira Mista 

implementado em FICO Xpress, com o objectivo de optimizar o planeamento da manutenção 

numa empresa operadora de autocarros, ultimamente reduzindo os custos de manutenção. Os 

resultados obtidos, apesar de apresentarem melhorias em relação às práticas da empresa, 

deixaram a desejar em termos de optimalidade da solução e tempo de computação. A presente 

dissertação procura melhorar esses aspectos. 

Uma abordagem de resolução em paralelo, utilizando multiplos modelos e baseada na 

decomposição Dantzig-Wolfe, foi tentatada não tendo sido conseguido que o modelo gerasse 

resultados, 

Seguidamente, foi implementada uma alteração ao modelo original, onde se introduziram novas 

restriçóes de forma a conduzir o modelo para a solução. Os resultados em termos de tempo 

computacional foram bastante satisfatórios, havendo pouca melhoria no valor da solução. 

Por ultimo, foi desenvolvida uma abordagem heurística do problema, em que o planeamento de 

cada autocarro é resolvido sequencialmente. Este modelo apresentou grandes melhorias à 

solução original, apresentando uma redução de 99.7% em tempo computacional e de 8.9% na 

redução de custos. 

A abordagem heurística assim como a alteração ao modelo original, foram validadas através de 

um exemplo ilustrativo.  

 

Keywords: Optimization, Maintenance Scheduling, Computational Experiment, Bus transport, 

Mixed Integer Linear Program, Parallel solving  
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1. Introduction 
 

This first chapter provides an introduction on the research topic of the present dissertation. First, 

a context on the role of public transport and especially on bus transport is given. Then the 

research objective of this dissertation is introduced. And, finally, the structure of the document is 

presented. 

1.1. Context 

1.1.1. Public transport  

Public Transport has always been seen as a solution, both for the environmental problems 

surrounding the cities’ increasing pollution by CO2 emissions and the overwhelming traffic that 

we see nowadays in most large metropolis. As the Earth’s population grows, the urban population 

grows along, since, according to the European Commission (EC, 2016), "(...) 50% of the world’s 

population lives in cities”. This organization also states that “they are responsible for three-

quarters of the global energy consumption as well as approximately 80% of the global greenhouse 

gas emissions". Looking at the speedy rate that the population is growing (70% in four decades 

according to the United Nations), it is imperative that there are some changes and adaptations in 

the way we move, specially within our cities. There is a need to disrupt the predominance of the 

private car as the preferred choice of transportation, besides urban congestion, it is responsible 

for the emission of gases and the increase in noise pollution.  

 

The solution to this problem is not to expand the road network; this strategy will only result in 

more traffic in the big cities, so other alternatives must be looked upon and conditions for a shift 

towards more sustainable forms of transportation must be provided. Therefore, the improvement 

and optimization of the public transports’ operations will play a key role in facing the changes 

caused by the population and urban concentration growth. 

 

Opportunities to use public transport as a lever towards the evolution of the use of energy in 

mobility are already being explored. The European Commission (EC, 2011) stated that "the 

objective for the next decade is to create a genuine single European transport area by eliminating 

all residual barriers between modes and national systems, easing the process of integration and 

facilitating the emergence of multinational and multimodal operators."  

 

The focus of this dissertation is bus transportation, whose importance in urban mobility is 

undisputed, without reducing the significance of other transports (train, tram, metro, ships, ...) 

within the overall mobility system, towards a more efficient and sustainable mobility system in 

urban areas.  
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1.1.2. The importance of bus maintenance 

Lisbon as a city faces some challenges, such as a decrease in air quality and an increase in the 

number of cars in circulation each day. There are about 370.000 cars per day in the centre of 

Lisbon. CARRIS bus operating company oversees the bus service in Lisbon and, according to 

the National Statistics Institute 2017 Inquiry, it is responsible for around 10% of the city’s trips. 

With the purpose of improving the quality, reliability, safety and life of the vehicle, and thus 

improving the buses’ competitiveness against other solutions, CARRIS bus operating company 

depends on the service provided by its maintenance department. The bus maintenance can be 

divided into three categories: i) daily inspection, ii) corrective maintenance and iii) preventive 

maintenance. 

Daily inspections are performed at the end of each daily run, by the driver or the operator 

responsible for parking the buses in the depot. The problems are recorded and, if necessary, the 

buses are immobilized for observation of the corrective maintenance team. Corrective 

maintenance occurs when buses are unexpectedly damaged. The buses sometimes need to be 

replaced for the remaining hours of their schedule, resulting in large additional expenses, in 

extreme cases, the corrective maintenance team must stop the activities to repair another vehicle. 

Preventive maintenance covers regular inspections for pre-specified mileage or time intervals. 

These inspections are scheduled as general interventions, and some worn out components can 

be replaced. The problem under analysis will focus on preventive maintenance and it will be 

provided a way to build a maintenance schedule for preventive maintenance.  
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1.2. Research Objective 

 

The present dissertation follows a previous work conducted by my former colleague Rodrigo 

Arrais Martins who addressed this problem in 2018. As stated by Martins (2018), the objective of 

his dissertation was to develop a decision model that was able to minimize the cost of 

maintenance by bus companies; specifically, his goal was to create a technical maintenance plan 

that would minimize the total cost of preventive maintenance. The developed maintenance 

scheduling model was then adapted to the CARRIS, a Lisbon-based bus operating company, 

case study. 

The following secondary objectives were also investigated to address the previous issue: 

- Increase the availability of the buses;  

- Increase the percentage of occupation of the facility;  

- Sensitivity analysis of the cost of bus unavailability;  

- Identify the resource limit between the number of elements in a maintenance crew and 

the size of the facility;  

- Evaluation of the optimal maintenance plan as a support to the decision maker.  

As it will be discussed in chapter 3, the results achieved by Martins proved that his approach was 

able to achieve a feasible solution for this type of problems, but it presented a large optimality 

gap, which is the relative difference between a best known solution and a value that bounds the 

best solution possible, for a long computational time. Therefore, the goal of this dissertation is to 

improve those results conducting several computational experiments with various approaches 

and trying different solving mechanisms, namely by restricting more the problem under analysis. 

In order to achieve this objective, three different methods were tried: 

- The Dantzig-Wolfe decomposition (parallel solving); 

- Heuristic approach; 

- Adding constraints to the original problem; 

- These will be the targets of this investigation, and the results of this research work will be 

provided and analysed throughout the document.  

In order to achieve these goals, the following steps were pursued:  

- Literature review on parallel solving mechanisms;  

- Development of a new decision model based on parallel solving;  

- Development of a heuristic approach to solve approximately the problem; 

- Improvement of the Martins’ model through restriction introduction; 

- Comparison between the results obtained with the Martins’ and the improved model; 

- Conclusions, limitations and future research;  
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1.3. Document Structure 

 

The present dissertation is structured in five chapters:  

1. Introduction - The first chapter introduces the context of the problem, the importance of buses 

and public transportation, and the basis of this research. The objectives and methodology are 

presented and finally, the dissertation structure is outlined.  

 

2. Related work – State of the art - In chapter 2, a summary of the most relevant papers, which 

were studied during this dissertation, is presented. It introduces the bus maintenance scheduling 

area, but it also provides a brief review of some of the parallel solving and improving options 

related to the goal of this project.  

 

3. Martins model (2018), heuristic approach, Danztig-Wolfe decomposition and restriction 

introduction - Chapter 3 explores the methodology and the associated implementation. Section 

3.1 provides a presentation of the Martins original model used as a basis of study for this project, 

and an illustrative example validating the model is given in section 3.2. Section 3.3 introduces the 

different approaches addressed in this dissertation. Section 3.3.1 describes briefly how the 

implementation of the model in the Mosel language of the FICO® Xpress Optimization software 

was made. In section 3.3.2, a heuristic approach is explained, and its implementation is briefly 

described. Lastly, in section 3.3.3 it is presented an approach where new restrictions to the 

original problem are introduced. An illustrative example is presented for all the approaches which 

were validated. 

 

4. Computational experiments and model implementation (CARRIS case study) - In chapter 

4, the experiments made to improve the previous models and its implementation and adaptations 

are discussed. In section 4.1, an exhaustive breakdown of the computational experiments made 

with the Dantzig-Wolfe problem is presented. Then, in section 4.2, the heuristic approach and its 

results are analysed. Section 4.3 provides a thorough analysis of the “introducing new restrictions 

to the original problem” approach. Finally, in section 4.4, the results of the two last approaches 

are compared between them and with the previously achieved results for the case study. The 

results are discussed afterwards. 

 

5. Conclusion, Limitations and Further Research - this final chapter provides the conclusions 

of the research, identifies some limitations and points out further steps of improvements and 

enhancements to the research here conducted.  
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2. Related work – State of the Art 
 

This dissertation follows the research conducted by Rodrigo Arrais Martins in 2018 and represents 

a continuation of his work. After a careful research, no relevant and recent articles on the subject 

addressed by Martins (2018) were found. Therefore, the research conducted in the present 

document also relies on his state of the art on topics such as: the bus maintenance planning and 

scheduling, and maintenance optimization in transport systems. This section will summarize the 

contribution of these articles and other relevant ones related to the computational experiments 

conducted in this dissertation. 

 

2.1. Bus maintenance planning and scheduling, and 

maintenance optimization in transports  

 

Bus maintenance and scheduling 

 

Haghani and Shafani (2002) focused on finding a way to respond to the problem of scheduling 

bus maintenance. Based on bus operation schedules, maintenance and inspection needs, their 

goal is to design the daily supervision for buses that should be inspected, mostly during their idle 

time, to reduce the number of hours the vehicle is out of service, i.e. reduce unavailability. The 

optimization program suggests a solution to this problem, which returns the maintenance 

schedule for each bus that should be inspected, as well as the minimum number of maintenance 

lines that are used for each type of inspection, during the scheduled period.  

Haghani et al. (2003) studied the feasibility and cost of three scheduling models of bus transit 

vehicles (Haghani, et al., 2003). The first two models used a single depot and the others multiple 

depots. All models were analysed using two factors: i) deadhead speed and ii) the maximum 

allowed block time. They tested several objective functions: first objective was to minimize the 

number of vehicles (which means reducing the fixed investment costs in the fleet cost of capital), 

the second was to decrease the total deadhead time and cost of operations, and the third was to 

decrease the combination of two previous objectives. 

Zhou et al. (2004) proposed a multi-agent system model to solve a bus maintenance scheduling 

problem (Zhou, et al., 2004). The problem was divided into predictive and reactive scheduling. 

The optimized schedule was performed for all agents, with mutual collaboration between agents. 

This article provided relevant information for the construction of the constraints of the model 

proposed by Martins (2018).  
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Adonyi et al. (2013) developed a solution for the bus maintenance planning problem in public 

transportation (Adonyi, et al., 2013). In their model, it is ensured that there are enough buses 

available for the scheduled service and that maintenance and repair tasks can be applied in the 

bus's downtime during its service day, and thus avoiding maintenance only at night (which entails 

higher cost per hour). The model also manages to reduce maintenance costs because buses will 

only be repaired if required.  

Kamlu and Laxmi (2016) considered that the Vehicle Scheduling Maintenance (VSM) could be 

affected by these three aspects: different terrain, amount of mileage and variable load and 

associated uncertainties (Kamlu & Laxmi, 2016). The VSM is designed through a fuzzy model, 

and the three previous aspects are used as a basis. The fuzzy model combines the uncertainties 

associated with each of the three factors to arrive at the best VSM and is also able to predict in 

advance which type of maintenance is required, and thus, it allows for adaptation and better 

planning of tasks. Furthermore, it reduces the stock of spare parts planned for each maintenance, 

consequently leading to a reduction in overall cost. This approach provides an exciting way to 

deal with uncertainty associated with these three different aspects associated with vehicle 

maintenance.  

Through a real-life crew scheduling problem of public bus transportation, Öztop et al. (2017) 

studied the ideal number of crewmember drivers to perform a specific set of tasks with minimal 

cost (Öztop, et al., 2017). The most relevant point of this paper is the presentation of two 

constraints: i) drivers cannot exceed the maximum limit of total work time and ii) different crew 

capacities for different types of vehicle.  

 

Maintenance optimization in transports 

 

Sriram and Haghani (2003) studied how to minimize maintenance costs and how to minimize the 

cost associated with redistributing aircrafts to flights that were not originally intended (Sriram & 

Haghani, 2003). A mathematical formulation is used to solve the aircraft maintenance scheduling 

problem, as well as a heuristic method since it can obtain feasible solutions in a reasonable 

computing time. The optimization program provides a schedule with the different flights and 

information on which aircraft is assigned. The main point is to analyse the possibility of performing 

maintenance during flight inactivity, usually between the end of the night and the beginning of the 

next morning, considering the different types of maintenance (type A and B), the heterogeneity of 

aircrafts in the fleet, the location of the maintenance bases for different types of aircraft, amongst 

others.  

Bazargan (2015) presented a maintenance optimization at a flight training school (Bazargan, 

2015). A mixed-integer linear programming (MILP) model was introduced to uncover a strategy 

that minimizes total maintenance cost during the planning period and increases aircraft 
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availability. Then, the optimization solutions were compared with different performance evaluation 

planning criteria, such as: closest to maintenance; furthest to maintenance; random maintenance; 

cheapest next maintenance; equal utilization. The non-optimized strategies mentioned above 

have, as the main advantage, their simplicity and ease of implementation, which are factors that 

are of interest to companies. Finally, a plan with a smaller number of maintenance activities was 

tested, which, despite having a higher associated cost, obtained better availability indicators, and 

thus becoming the chosen solution.  

Doganay and Bohlin (2010) suggested a solution based on a MILP to answer the problem of 

optimizing maintenance scheduling with spare parts (Doganay & Bohlin, 2010). The goal is to 

minimize the cost of train maintenance, shunting work, extra work and used life on the horizon. 

The authors have concluded that by including the costs of the spare parts, they can significantly 

reduce total costs. They were also able to optimize the entire fleet of trains and at the same time 

preserve their constraints.  

Pour et al. (2017) proposed a hybrid framework that uses feasible solutions generated by 

Constraint Programming, and then uses a mixed-integer programming approach to optimize 

those solutions (Pour, et al., 2017). The chosen model is intended to solve the programming issue 

of the preventive signal maintenance team in the Danish railway system. The objective function 

guarantees: i) the minimization of the number of business days to complete the plan, ii) all tasks 

are completed within the planning horizon and iii) the minimization of the penalty associated with 

assigning workers a task on non-consecutive days. It is important to highlight that, in this type of 

problem, there are several practical restrictions related to the type of tasks, the crew schedule, 

the daily management of tasks, crew competences, amongst others. 

These were the articles that served as a basis for the Martins research (2018), which is the study 

object and the starting point to the present dissertation. Then, Martins (2018) developed a MILP 

model that tried to optimize the maintenance costs of a single Lisbon depot from a bus operating 

company. The model featured restrictions related to the crew availability, bus availability and 

maintenance line availability. The model also focused in bus availability as a major decision factor. 

Finally, it provided a bus maintenance schedule that was able to outperform the system already 

used by that company. The results of this work were used as a comparison basis for the present 

document, and the model itself was the object of the study here conducted. 
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2.2. Computational models and the Dantzig-Wolfe 

decomposition 

 

Dantzig & Wolfe (1959) developed a technique for the decomposition of a linear program that 

permits the problem to be solved by alternate solutions of linear sub-programs representing its 

several parts and coordinating a program that is obtained from the parts by linear transformations. 

The coordinating program generates at each cycle new objective forms for each part, and each 

part generates in turn new activities for the interconnecting program. Such a problem can be 

studied by an appropriate generalization of the duality theorem for linear programming, which 

permits a sharp distinction to be made between those constraints that affect only a part of the 

problem and those that connect its parts. This leads to a generalization of the Simplex Algorithm, 

for which the decomposition procedure becomes a special case. Formally the prices generated 

by the coordinating program cause the manager of each part to look for a sub-program, which 

proposes to the coordinator as the best the coordinating program can do. The coordinator finds 

the optimum 'mix' of sub-programs (using new proposals and earlier ones) consistent with over-

all demands and supply, and thereby generates new prices that again generates new proposals 

by each of the parts, etc. 

Tebboth (2001) evaluated the computational merits of the Dantzig-Wolfe decomposition 

algorithm. He used modern computer hardware and software and have developed an efficient 

parallel implementation of the Dantzig-Wolfe decomposition. His work shows that if a reasonable 

block structure can be found, the decomposition method is worth trying. Dantzig-Wolfe 

decomposition will not rival mainstream techniques as an optimisation method for all LP problems. 

But the Dantzig-Wolfe decomposition has some niche areas of application: certain large-scale 

classes of primal block angular structured problems, and, in particular, where the context 

demands rapid results using parallel optimisation, or near optimal solutions with a guaranteed 

quality. 

Colombani & Heipcke (2011), describe several examples of sequential and parallel solving of 

multiple models with FICO Xpress software and Mosel language. The examples showcase 

different uses of the module mmjobs, such as concurrent execution of several instances of a 

model, the (sequential) embedding of a sub-model into a master, and the implementation of 

decomposition algorithms (Dantzig-Wolfe and Benders decomposition). This article was studied 

to identify possible approaches to improve the model developed by Martins (2018). 

These specific references formed a basis of research on deciding which approach to pursue and 

on how to implement the fundamentals of that approach into the Mosel Language.  
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2.3. Contributions of the references 

 

Table 1 - Summary of the analysis of the papers on the maintenance and scheduling of buses 

References General Topic 
Proposed 
technique 

The contribution of the paper 

(Adonyi, et 
al., 2013) 

Optimal bus 
maintenance plan 

P-graph 
framework 

Minimization of costs in repairing schedules and 
maintenance tasks that allow only the necessary 

buses to be available in each period. 

(Bazargan, 
2015) 

Aircraft 
maintenance and 

availability 

Mixed integer 
linear 

programming 

The trade-off between maintenance cost and 
availability fleet. Comparison between 

optimization and non-optimization solution 

(Doganay & 
Bohlin, 
2010) 

Train 
maintenance plan 
optimization with 

spare parts 

Mixed integer 
linear 

programming 

The influence of spare parts on the maintenance 
total costs 

(Haghani & 
Shafahi, 

2002) 

Bus maintenance 
scheduling 

Mixed integer 
linear 

programming 

Minimize the number of hours buses are taken 
from their scheduled service for inspection and 
maximize utilization of maintenance facilities. 

(Haghani, 
et al., 2003) 

Single depot 
multiple depots 

Mixed integer 
linear 

programming 

The importance of the deadhead speed and the 
maximum allowed block time in the choice of 

single or multiple depots in the vehicle scheduling 
models. 

(Kamlu & 
Laxmi, 
2016) 

Vehicle 
scheduling 

maintenance 

Fuzzy model, GIS, 
MCS 

Analysis of the gap between maintenance 
provided a classification of the type of 

maintenance, which improves the operation and 
reduces the cost of the transport system. 

(Öztop, et 
al., 2017) 

Bus drivers crew 
scheduling 

Binary 
programming 

Crew members with different skills that cover all 
tasks with the lowest possible cost. 

(Pour, et 
al., 2017) 

Preventive 
maintenance crew 

scheduling 

A hybrid 
constraint 

programming/mix
ed integer 

programming 

Distribution, organization, and optimization of the 
crew in order to reduce operational costs of 

preventive maintenance 

(Sriram & 
Haghani, 

2003) 

Aircraft scheduling 
maintenance 

Mixed integer 
linear 

programming 

Maintenance costs and the penalty associated 
with redistributing aircraft to flights that were not 

originally intended 

(Zhou, et 
al., 2004) 

Bus maintenance 
and dynamic 

events 

Multi-agent 
system – linear 
programming 

Ability to generate scheduling of bus maintenance 
tasks within a reasonable time and yet respond 

dynamically to unexpected events. 

(Colombani 
& Heipcke, 

2011) 

Computational 
approaches 

Multiple models 
and parallel 

solving 

Comparison between various parallel solving 
techniques 

(Dantzig & 
Wolfe, 
1959) 

Decomposition of 
linear programs 

Dantzig-Wolfe 
decomposition 

Provided the decomposition on which the first 
approach to the problem relies 

(Martins, 
2018) 

Maintenance 
planning 

Mixed integer 
linear 

programming 

Base model for the experiments and comparison 
term for the results 

(Tebboth, 
2001) 

Computational 
Approaches 

Dantzig-Wolfe 
decomposition 

Algorithm and computational implementation of 
the Dantzig-Wolfe decomposition 

 

The references stated before the table’s division represent the ones studied to develop the 

Martins’ model (2018), while the bottom part of the table represent the specific references that 

were used exclusively for this dissertation.  
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3. Martins model (2018), heuristic approach, Dantzig-Wolfe 

decomposition and constraints introduction 
 

As stated in the introduction of this document, my thesis will focus in the improvement of the 

model developed by my former colleague Rodrigo Martins (2018). 

This chapter will start with a presentation of the Martins’ Model (2018), revealing the indexes, 

sets, parameters, constants, decision variables, objective function and constraints which 

compose the model and an illustrative example of the model will be presented.  

Afterwards, the computational implementation of the experiments made in this dissertation, a 

Dantzig-Wolf based approach, a heuristic approach and an alternative Martins’ Model, will be 

addressed, being an illustrative example also presented for the approaches which were possible 

to validate. 

 

3.1. The Martins’ Model 

 

The main purpose of this dissertation is to computationally improve the model described below, 

in order to apply it to the real case of the Lisbon based bus operating company, Carris, with the 

primary goals of decreasing the computational time it takes to get a reasonable solution and 

improve the value of the objective function obtained by Martins in 2018. With that in mind, a 

description of the model and its goals is presented below. 

The following mathematical model delivers an optimal maintenance schedule that minimizes the 

costs associated with maintenance crew and the costs associated with bus unavailability. The 

formulation is an Integer Linear Programming (ILP) model that assigns workers to certain periods 

of time resulting on the scheduling of the maintenance activities (Martins 2018).  

The optimization model adopts four types of binary decision variables: 

- The first one indicates whether, during a certain time period, a particular bus carries out 

a maintenance task by a specific worker; 

- The second variable indicates whether, for a given time, a specific bus is under 

maintenance; 

- The third variable indicates whether a given worker is assigned during a specific day; 

- The last decision variable indicates whether for a given day, a specific bus is under 

maintenance.  

The decision variables, objective function and constraints of the problem will now be introduced 

and explained. They will be presented following the structure of the optimization model. 
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The mathematical model program implementation in FICO® Xpress Optimization is written in 

the Mosel language and can be divided into five stages: i) the sample declarations section, ii) 

the initialization from data files, iii) the objective function expression, iv) the choice of the 

constraints and v) the creation of files with the output values.  

 

Decision variables 

 

𝑥𝑏𝑚𝑡𝑤 = {
1  if the maintenance type m is performed on bus b at time t by the worker  w

0   otherwise                                                                                                                            

 

 

𝑦𝑤𝑑 =  {
1   if worker w is assigned at day d                                                                             

  
0   otherwise                                                                                                                       

  

 

𝑧𝑏𝑡 =  {
1   if  bus unit b is under maintenance at time unit t                                           

  
0   otherwise                                                                                                                     

  

 

𝑧𝑏𝑑 =  {
1   if  bus b is under maintenance at day d                                                                             

  
0   otherwise                                                                                                                                     

  

 

Objective function 

 

Minimize ∑ ∑ 𝑐𝐷𝑤

𝑑∈𝐷𝑤∈𝑊

. 𝑦𝑤𝑑 + ∑ ∑ 𝑐𝑈. 𝑧𝑏𝑑

𝑑∈𝐷𝑏∈𝐵

                                                                                             (1.1)    

The objective function (1) is composed of two components: i) the crew maintenance costs, 

denoted by O1 in equation 1.2; and ii) the buses’ unavailability costs, denoted by O2 in equation 

1.3. These two components are explained in detail: 

O1  =  ∑ ∑  𝑐𝐷𝑤 ∗ 𝑦𝑤𝑑  
𝑑𝜖𝐷𝑤𝜖𝑊 

                                                                                                      (1.2) 

The parameter 𝑐𝐷𝑤 corresponds to the daily cost of each worker 𝑤. Thus, crew maintenance 

costs (Equation 1.2) can be expressed as the sum of all maintenance costs performed by every 

worker at every day period until the end of the activities. As mentioned before, 𝑦𝑤𝑑 is a binary 

decision variable that indicates whether the worker 𝑤 is assigned on day d (it is equal to one) or 

not (it is equal to zero). 

O2  =   ∑  ∑   𝑐𝑈
𝑑𝜖𝐷𝑏𝜖𝐵

∗  𝑧𝑏𝑑                                                                                                           (1.3) 

The 𝑐𝑈 corresponds to the cost associated with unavailability of buses and it is also an input from 

a data file. It is important to notice that, assigning a value for 𝑐𝐷𝑤 is not an easy job, there are 

many factors that influence the importance of each bus, such as the type of bus, the route it takes 
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and the number of passengers affected, facing this a constant value was attributed to 𝑐𝑈. There 

are also a lot of factors, some really hard to quantify, which affect the size of this value, for 

example the loss of revenues, impacts on passenger’s perceived satisfaction and reliability, the 

opportunity costs and regulatory penalties. Taking this into account one can understand that  O2 

should pose as a heavier weight in the objective function than O1. Preference must be given to 

"making vehicles available in viable and safety conditions for the operations!" (as stated by the 

maintenance director of CARRIS). The parameter O2 (Equation 3), expresses the sum of all the 

unavailability costs per bus unit, for each day out of its regular service. As mentioned before, 𝑧𝑏𝑑 

is a binary decision variable that indicates whether the bus, b, is assigned on day d (it is equal to 

one), or not (it is equal to zero). 

 

Constraints 

𝑧𝑏𝑡 = 0,       ∀ 𝑏 ∈  𝐵, 𝑡 ∈ 𝑇𝑂𝑏                                                                                                                                    (2) 

𝑥𝑏𝑚𝑡𝑤 = 0,      ∀ 𝑏 ∈  𝐵, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇𝑂𝑏 , 𝑤 ∈  𝑊                                                                                                (3) 

∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑚∈𝑀𝑏∈𝐵

  ≤ 1,      ∀ 𝑡 ∈  𝑇, 𝑤 ∈ 𝑊                                                                                                                (4) 

𝐿 ∗ [1 + (𝑥𝑏𝑚𝑡𝑤 −  𝑥𝑏𝑚(𝑡−1)𝑤) ]  ≥  ∑ 𝑥𝑏𝑚𝑡0𝑤
𝑡0∈ 𝑇𝑀𝑏∶(𝑡0>𝑡) 

, ∀ 𝑏 ∈ 𝐵, 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇\{𝑛𝑡}, 𝑤 ∈ 𝑊    (5) 

∑ ∑ ∑ 𝑥𝑏0𝑚𝑡𝑤

𝑤∈𝑊: 𝐶𝐶𝑤=𝑐𝑚∈𝑀𝑏0∈𝐵

≤ 𝑛𝑤𝑐, ∀ 𝑏 ∈ 𝐵, 𝑐 ∈  𝐶, 𝑡 ∈ 𝑇𝑀𝑏                                                                  (6) 

∑ ∑ ∑ 𝑥𝑏0𝑚𝑡𝑤

𝑤∈𝑊𝑚∈𝑀𝑏0∈𝐵

≤  𝑛𝑤, ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇𝑀𝑏                                                                                            (7) 

∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤∈𝑊: 𝐶𝐶𝑤=𝑐𝑡 ∈ 𝑇𝑀𝑏

 ≥  𝑔𝑏𝑚𝑣𝑐 , ∀ 𝑏 ∈ 𝐵, 𝑐 ∈  𝐶, 𝑚 ∈  𝑀, 𝑣 ∈ 𝑉                                                      (8) 

1 − (∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤=3)

 ) +   ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤 ≠ 3) 

  ≤  𝐿 ∗ (1 − ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤=3)

 )   

∀ 𝑏 ∈  𝐵, 𝑡 ∈  𝑇𝑀𝑏 , 𝑚 = 3                                                                                                                                    (9.1) 

1 − (∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤=3)

 ) +   ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤 ≠ 3) 

  ≤  𝐿 ∗ (1 − ∑ 𝑥𝑏𝑚𝑡𝑤
𝑤∈𝑊∶(𝐶𝐶𝑤=3)

 ),   

∀ 𝑏 ∈  𝐵, 𝑡 ∈  𝑇𝑀𝑏 , 𝑚 = 4                                                                                                                                    (9.2) 

∑ 𝑥𝑏𝑚𝑡𝑤
𝑚 ∈𝑀 

 ≤  𝑧𝑏𝑡  ,    ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇𝑀𝑏 , 𝑤 ∈ 𝑊                                                                                          (10) 
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∑  𝑧𝑏0𝑡
𝑏0∈𝐵

 ≤  𝑛𝑚𝑙 ,    ∀ 𝑏 ∈ 𝐵, 𝑡 ∈  𝑇𝑀𝑏                                                                                                           (11) 

∑ ∑ 𝑥𝑏0𝑚𝑡𝑤
𝑚∈𝑀∶(𝑉𝑉𝑏0=2) 𝑏0∈𝐵

 ≤  𝑛𝑠𝑙 ,    ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇𝑀𝑏 , 𝑤 ∈ 𝑊                                                      (12.1) 

∑ ∑ 𝑥𝑏0𝑚𝑡𝑤
𝑚∈𝑀∶(𝑉𝑉𝑏0≠ 2) 𝑏0∈𝐵

 ≤  𝑛𝑚𝑙 − 𝑛𝑠𝑙  ,    ∀ 𝑏 ∈  𝐵, 𝑡 ∈  𝑇𝑀𝑏 , 𝑤 ∈ 𝑊                                     (12.2) 

𝑥𝑏𝑚𝑡𝑤  ≤  𝑦𝑤𝑑  , ∀ 𝑏 ∈ 𝐵, 𝑚 ∈  𝑀, 𝑤 ∈ 𝑊, 𝑑 ∈ 𝐷, {𝑡 ∈ 𝑇𝑀𝑏 ∶   𝑛𝑡𝑑. (𝑑 − 1) + 1 ≤ 𝑡 ≤ 𝑛𝑡𝑑. 𝑑}            (13) 

𝑧𝑏𝑡  ≤  𝑧𝑑𝑏𝑑  , ∀ 𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷, { 𝑡 ∈  𝑇𝑀𝑏 ∶    𝑛𝑡𝑑. (𝑑 − 1) + 1 ≤ 𝑡 ≤ 𝑛𝑡𝑑. 𝑑 }                                   (14) 

𝑥𝑏𝑚𝑡𝑤 = {0, 1}       ∀ 𝑏 ∈  𝐵, 𝑚 ∈  𝑀, 𝑡 ∈  𝑇, 𝑤 ∈ 𝑊                                                                                          (15) 

𝑦𝑤𝑑 = {0, 1}      ∀ 𝑤 ∈  𝑊, 𝑑 ∈ 𝐷                                                                                                                           (16) 

𝑧𝑑𝑏𝑑 = {0, 1}      ∀ 𝑏 ∈ 𝐵, 𝑑 ∈ 𝐷                                                                                                                             (17) 

𝑧𝑏𝑡 = {0, 1}        ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇                                                                                                                               (18) 

 

The constraints were divided into four categories: i) management constraints; ii) crew and 

competences/skills constraints; iii) maintenance yard constraints; and iv) general constraints. The 

division is intended to facilitate understanding, though some constraints could be assigned to two 

or even three groups.  

i. Management constraints: 

Constraint (2) ensures that no bus is under maintenance during the regular service/operation 

time. Constraint (3) indicates that no maintenance activity 𝑚, no bus 𝑏, and no worker 𝑤 can be 

scheduled during the regular service/operation time, i.e. there is no maintenance at any time of 

regular service/operation. Constraint (4) states that all workers at any given time can only perform 

a task at a time. 

ii. Crew and competences constraints  

Constraint (5) ensures that when a bus is under maintenance the same worker performs his/her 

task in consecutive time units, i.e. maintenance tasks cannot be split. Constraint (6) indicates 

that, for all maintenance times, the number of assigned workers with a specific skill (𝐶𝐶𝑤 = 𝑐) 

must be lower or equal than the number of workers with that skill (𝑛𝑤𝑐). Constraint (7) The number 

of workers assigned must be lower or equal to the number of available workers (𝑛𝑤). Constraint 

(8) guarantees, for any bus b and maintenance m, that the total maintenance time for a type of 

worker is at least equal to the amount of scheduled maintenance work (𝑔𝑏𝑚𝑣𝑤) for this type of 

worker, this constrain will be significant in chapter 4.1. Constraints (9.1 and 9.2) are identical and 

specific. When a bus is carrying out maintenance of type 𝑚 = 3 (9.1) or type 𝑚 = 4 (9.2), workers 
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of type 𝑤 = 3  or 𝑤 = 4 must labour alone until they finish, i.e. they must work without the presence 

of any other type of worker. 

iii. Constraints related to the maintenance yard 

Constraint (10) states that if any maintenance assignment is made, the bus must remain in the 

maintenance depot for the time t needed to complete the task. Constraint (11) imposes that, for 

all maintenance times, the number of buses in the depot is lower or equal to the number of 

maintenance lines (𝑛𝑚𝑙). Constraint (12.1) ensures that the number of maintenance activities 

assigned to buses of type two (𝑉𝑉𝑏 = 2) at the same time period cannot exceed the number of 

available maintenance lines capable of receiving that type of vehicle (𝑛𝑠𝑙). Constraint (12.2) limits 

for all the buses that are not of type two (VVb ≠  2), the number of available lines for maintenance 

activities as 𝑛𝑚𝑙 − 𝑛𝑠𝑙, i.e. the difference between the total number of maintenance lines and the 

number of available maintenance lines capable of receiving buses of type two. 

iv. General constraints 

Constraint (13) states the relation between  𝑥𝑏𝑚𝑡𝑤 and 𝑦𝑤𝑑  decision variables, a conversion from 

hours to days that must be made, to determine the workers assigned to each day, which is needed 

in the objective function for component O1. Constraint (14) states the relation between 𝑧𝑏𝑡 and 

𝑧𝑑𝑏𝑑 decision variables, a conversion from hours to days that must be made, to determine which 

buses are unavailable in each day, which is needed in the objective function, namely in 

component O2. Finally, constraint (15) states that 𝑥𝑏𝑚𝑡𝑤 is a binary variable for all bus units, 

maintenance activities, time units and workers; constraint (16) states that 𝑦𝑤𝑑  is a binary variable 

for all workers and days units; constraint (17) states that 𝑧𝑏𝑑 is a binary variable for all bus and 

days units and constraint (18) states that 𝑧𝑏𝑡 is a binary variable for all bus and time units. 

The outputs from the solution:  𝑥𝑏𝑚𝑡𝑤, 𝑧𝑏𝑡, 𝑦𝑤𝑑  and 𝑧𝑏𝑑 will be the primary tool in the analysis of 

the possible solution of the model. Through the results, it is possible to see, if the constraints 

respect the conditions of the case study, as well as if the value of the solution from the optimization 

makes sense, and whether the decision maker found what he/she was seeking. If none of these 

are verified, it will be necessary to modify the model; otherwise, the model can be tested. 
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3.2. Illustrative Example 

 

In this section, an illustrative example is presented. The model is run for a smaller, much simpler 

problem, for which the optimal solution is found. The point of the illustrative example is to validate 

the model, by verifying that its restrictions are not violated, and showing that the solution given by 

the model is optimal. The Martins’ Model has already been validated, thus the point of this section 

is not to prove its validity, but to give a comparison term to the new models presented in this 

document. It is important to highlight that the illustrative problem presented is not the same 

presented by Martins in 2018. In fact, it was adapted, by changing the timeline and the number 

of buses, in order to better illustrate the issues being addressed by the computational experiments 

conducted during the present research. 

The parameters of the reduced problem will now be introduced. 

In Table 2, the value of the constants is presented. The problem was sized to three days, ins 

order to have best illustrated the computational time required to solve the problem. Therefore 𝑁𝐷 

is 3 and 𝑁𝑇 to 72, the other constants are the same as in the Case Study (in the Appendix). 

Table 2 - Constant definition 

 

Secondly, Table 3 represents the periods of time where there are no maintenance activities, for 

these periods of time is then assigned the value of zero to all the relevant decision variables. 

Table 3 - Operation shifts without maintenance 
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In Table 4, the cost per worker per day is shown as a function of the worker’s skills. In this 

problem there are six workers to be assigned, just like in the Case Study (Appendix). 

Table 4 - Worker costs definition 

 

 

Table 5 provides information about the amount of work (in hours) which each type of worker is 

required to do in each bus. That amount of work depends in the conjugation of the vehicle type 

and the maintenance type. There are five types of buses. 

Table 5 - Amount of Work definition 
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Finally, in Table 6, it is shown which buses can go to each maintenance line. As it is noticeable 

only buses of type B (Bus 2) require a special maintenance line (maintenance line 2). 

Table 6 - Maintenance Line definition 

Vehichle Types 
 
 

Maintenance Lines 

A B C D E 

1 1 0 1 1 1 

2 0 1 0 0 0 

3 1 0 1 1 1 

4 1 0 1 1 1 

5 1 0 1 1 1 

6 1 0 1 1 1 

7 1 0 1 1 1 

NML=7   SL=1       

 

With all the relevant date already stated, the validated model results will now be presented, 

starting with the Objective Function , computational time and optimality gap, the factors under 

study. 

Figure 1 - Original model illustrative example results 

 

Figure 1 shows the result from the FICO Xpress software, where it is given that the optimal 

solution for this problem is of 1020 monetary units, which was achieved in 351.8 seconds. 

Although it presents an optimality gap of 0.49%, the solution is considered optimal (as shown 

by the Status message: “Solution is optimal.”).  

These values will be used to validate the other approaches to the problem (if the same optimal 

solution is obtained) and comparing the present optimal solution with the ones obtained using 

the other models/approaches. Some indicators of their performance in a larger problem can 

then be obtained. 

In order to illustrate the results, the scheduling solution given by the model is presented below. 
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Figure 2 - Original model illustrative example scheduling 
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3.3. Other approaches to solve the problem 

Three different approaches were tried to solve the problem: i) an approach based on Dantzig-

Wolf decomposition; ii) a heuristic approach and iii) an approach based on introducing new 

constraints to the original formulation. These approaches are described and tested in subsections 

3.3.1, 3.3.2 and 3.3.3, respectively. 

 

3.3.1. Approach based on Dantzig-Wolf decomposition 

A few methods were considered for achieving a more computationally efficient modelling of the 

problem. At first sight, the one that that seemed more appropriate was the Dantzig-Wolf method. 

It was in fact the main target of the computational experiments described over this research work. 

In this chapter theory and the essence behind this method is addressed. The goal of this section 

is to provide an overall knowledge of the Dantzig-Wolfe algorithm and to present its main 

differences from the original model. A further detailed explanation of the concrete adaptations for 

the present problem, and a discussion of the decisions made when developing the model, will be 

given in section 4.1. 

The Dantzig-Wolfe decomposition, as stated by Colombani and Heipcke in 2011, is a solution 

method for problems where, if a relatively small number of constraints were removed, the problem 

would fall apart into a number of independent problems. This means that it is possible to rearrange 

and decompose the original problem into a series of simpler sub-problems, being sometimes 

necessary to re-organize the constraint definitions, grouping them by common index (sub)sets 

such as time periods, products, plant locations, and so on. 

The constraints (including the objective function) that represent a condition to all the sub-problems 

as a whole and therefore cannot be independently expressed in the sub-problems, are referred 

to as global, linking or master constraints. These constraints are left out of the sub-problems and 

constitute what is called the master problem. The sub-problems are solved as pricing problems, 

coordinated by the master problem. By solving the master problem, a solution to the original 

problem is obtained. Since the master problem has a large number of variables, the goal is to 

restrict the master problem to a small subset of variables. These variables are determined by 

solving the pricing sub-problems. The objective functions for the pricing problems are based on 

the dual values of the restricted master problem, therefore the value of the objective function at 

each extreme point is the price of the master problem variable relevant to that extreme point. 

For minimization problems, such as this one, solving the modified pricing problems generates 

basic feasible solutions of minimum reduced cost. If the objective value at an extreme point is 

negative, then the associated master problem variable is added to the master problem; if the 

minimum objective value over all extreme points is positive, then no master problem variables 

exists to improve the current master problem solution.  
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The main reason as to why this approach was chosen lies in the fact that the Dantzig-Wolfe 

decomposition is able of performing a significant amount of the computational work in the sub-

problems which are close to an order of magnitude smaller than the original problem and thus 

easier to solve. Resulting in a great advantage regarding computational time, since the sub-

problems are independent of each other and may be solved at the same time. 

A potential drawback of the decomposition approach is the huge size of the master problem, it 

has many more variables—though fewer constraints—than the original problem. Furthermore, 

numerical problems may occur through the dynamic generation of variables of the master 

problem. 

When Tebboth (2001) studied the computational applications of this decompositions he came to 

the conclusion that many factors may influence the performance of the decomposition approach, 

so for a particular application, computational experiments are required to find out whether this 

solution method is suitable. As it will be later discovered, this method is not suitable for the present 

problem.  

Experiments with this method included different ways of decomposing a given problem. These 

experiments will be related in further detail in section 4.1.  

As stated above, the original problem is divided into sub-models which solve pricing problems 

and are then linked by the master problem, in order to give a solution to the master problem. The 

pricing problems are linked by being assigned a weight to each proposal, representing each a 

part of the final solution. For the present problem a decomposition of the problem by day was 

used, because using this decomposition only one linking constraint is required. The goal of this 

section is to provide an overall knowledge of the Dantzig-Wolfe.  

The main difference from the original problem is that instead of solving a large LP problem, it 

solves several independent pricing problems at the same time. For these, two models are needed 

i) a Master model, which controls the sub-problems, verifies the general constraints and provides 

a final solution; ii) and a sub-model, which solves a reduced problem. 

i) The Master model starts, as in the original model, by reading data and inputting it into the 

solver. But there some new additions to the previous elements, here it is also necessary 

to define a set of events (Phases, which control the master/sub-model relationship, a 

linear control regarding the linking constrains, the sets in which the proposals from the 

sub-model, and its prices are saved, a number of processes which represent the pricing 

solving, the optimization solving and the final solving, these are need since the model 

consists on several problems and not just one. Also, the sub-problem needs to be called 

upon. Then several iterative loops are created in order to update the pricing of each sub-

problem, one for each process. The first process generates a first infeasible solution, the 

second verifies the feasibility of the linked solutions of the sub-problems, and the third 

one verifies the optimality of the solution and the last one provides the final solution to the 

original problem. 
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ii) The sub-model needs the same inputs as the master model and is where almost all the 

constraints of the original problem are stated. The sub-model communicates with the 

master through receiving event codes informing which process is being solved. It also 

receives information about the pricing updates generated by the master and provides the 

master with proposals having into account these updates. At the first stage the sub-model 

solves a zero linking constraint problem for each sub-problem which is then analysed by 

the master, pricing information is given to the sub-model and the second stage, where 

the first solution is updated, takes action until the master deems the overall solution 

feasible. After that, as stated in i), the master runs an optimality check, again updating 

the prices of the sub-problems now related to optimality and not feasibility, and lastly the 

sub-model provides proposals to those updated prices until the master finds the solution 

optimal. Then it is all up to the master model. 

All the processes will be explained in depth in section 4.1, where an extensive discussion of the 

model implementation will be conducted. 

Also, it was not possible to validate this model, therefore no illustrative example or results are 

provided. The model found the problem infeasible, thus no solution was discovered. Further 

insights on as to why this happens and what can be done to solve this will be presented in section 

4.1 and chapter 5. 
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3.3.2.  Heuristic Approach 

This heuristic approach (as the next one) is highly based in the Martins’ model. The great 

difference is that instead of solving one large ILP, it solves various smaller problems. However, 

instead of solving each smaller problem in a parallel way (as the Dantzig-Wolfe approach), this 

heuristic approach solves them sequentially. The heuristic, its main principles and the model itself 

will be discussed in further detail in section 4.2. This section will focus on the computational 

changes from the Martins’ model, the model validation and the indicators of its behaviour in the 

large-scale problem. 

This approach relies on solving the problem for one bus at a time, locking the solution of the 

previous bus, i.e. the problem is solved for bus 1, the time periods occupied the solution for bus 

1 are withdrawn from the solution possibilities of the next bus and so on, until the problem is 

solved for all the buses. 

Major computational changes come from: i) the introduction of a new set that dictates the order 

in which the buses are solved; ii) the introduction of a loop that annexes the buses orderly to the 

B set, solves and saves the solution to the problem; and iii) a new constraint that prevents a next 

bus from overwriting or substituting previous buses’ allocations.  

i) The new set 𝐺𝑏𝑁𝐵𝑢𝑠 is defined, with values equal to the bus numbers and where 𝑖 is the 

index that defines the order, i.e. 𝐺𝑏1 is the first bus the problem is solved for. It can be 

defined manually by the user or decision maker, or by using a criteria for choosing the 

order. The order criteria defined was based on the amount of work needed for that bus. 

Nevertheless, an explanation on why it is inserted manually is provided in section 4.2. 

ii) Using the “repeat” function of the Mosel language a loop where a new variable called 

𝑁𝐵𝑢𝑠 is created with the value of one and increased by one at each iteration. This variable 

is then used to annex a new bus to the set 𝐵, being 𝐺𝑏𝑁𝐵𝑢𝑠 added to that set. The problem 

formulated by Martins (Martins 2018) is now a procedure and not the only problem. At the 

end of the procedure the solution found is added to a new set 𝑃𝑟𝑜𝑝_𝑥𝑏𝑚𝑡𝑤. This procedure 

happens within the loop, and it stops when the number of iterations (𝑁𝐵𝑢𝑠) is equal to the 

number of buses present in the problem. 

iii) Finally, a new constraint was added: 

𝑃𝑟𝑜𝑝_𝑥𝑏𝑚𝑡𝑤 = 𝑥𝑏𝑚𝑡𝑤 , ∀ 𝑏 ∈ 𝐵\{𝐺𝑏𝑁𝐵𝑢𝑠}, 𝑚 ∈  𝑀, 𝑡 ∈  𝑇, 𝑤 ∈ 𝑊                               (21)         

This restriction states that every solution already obtained must keep the same value, 

and thus preventing the new solutions to be allocated to those time slots. This new 

restriction will be explained in detail in section 4.2. 

 

 



23 

 

Performance of the heuristic approach in the illustrative example 

For the illustrative example, the constants and parameters presented in section 3.2 remain the 

same, but the new 𝐺𝑏𝑁𝐵𝑢𝑠 set also needs to be defined and it is presented below: 

Table 7 – Solving order definition 

 

 

By checking Table 5 in section 3.2, it is noticeable that the order in which the buses are solved 

for this problem follows, from the highest to the lowest, the amount of work needed for each bus, 

i.e. decreasing order in amount of work. The main intuition behind such choice is that “it is easier 

to fill smaller spaces with smaller objects than with bigger ones”. Further details are provided in 

section 4.2. 

Regarding the results obtained with this approach, it does not make sense to present them in the 

same way that they were presented in section 3.2, since there is not one, but five ILP problems 

to be solved. Here, it is not possible to obtain a value for the optimality gap of the overall problem, 

but the solution is obtained from the output and the computational time is also obtainable. They 

are shown in Figure 3. 

 

The solution given by this model is identical to the one provided by the original one, which is 

known to be optimal. Therefore, it is possible to conclude that the solution obtained using this 

heuristic approach is also optimal and thus the model is validated. 

Not surprisingly, the computational time is much lower (99.5% lower), providing a very optimistic 

potential when applied in the large-scale problem. 

Following there is the scheduling proposed by this model: 

Figure 3 - Heuristic approach illustrative example results 
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Figure 4 - Heuristic approach illustrative example scheduling 
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3.3.3. Introducing New Restrictions Approach 

The third approach that was tried is even more similar to the original one than the previous one. 

This third approach is a small variation of Martins’ formulation (2018), in which new restrictions 

are introduced to reduce the number of variables and nodes of the original problem. These new 

restrictions are based on characteristics that an optimal solution would have. 

These new restrictions to the problem are the following: 

∑ ∑ 𝑧𝑑𝑏𝑑

𝑑∈𝐷𝑏∈𝐵

 =  𝑁𝐵                                                                                                                                                  (22) 

 

∑ ∑ 𝑥1𝑚10𝑤

𝑤∈𝑊𝑚∈𝑀

≥ 1                                                                                                                                                (23) 

∑ ∑ 𝑥4𝑚34𝑤

𝑤∈𝑊𝑚∈𝑀

≥ 1                                                                                                                                                (24) 

∑ ∑ 𝑥12𝑚58𝑤

𝑤∈𝑊𝑚∈𝑀

≥ 1                                                                                                                                               (25) 

∑ 𝑧𝑑3𝑑1

𝑑1∈𝐷:𝑑1≤𝑑

 ≥  𝑧𝑑6𝑑 , ∀ 𝑑 ∈ 𝐷                                                                                                                 (26) 

∑ 𝑧𝑑9𝑑1

𝑑1∈𝐷:𝑑1≤𝑑

 ≥  𝑧𝑑10𝑑 , ∀ 𝑑 ∈ 𝐷                                                                                                               (27) 

∑ 𝑧𝑑5𝑑1

𝑑1∈𝐷:𝑑1≤𝑑

 ≥  𝑧𝑑11𝑑 , ∀ 𝑑 ∈ 𝐷                                                                                                               (28) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 10 > 𝑡 ≤ 17                                         (29) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 34 > 𝑡 ≤ 41                                         (30) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 58 > 𝑡 ≤ 65                                         (31) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 82 > 𝑡 ≤ 89                                         (32) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 106 > 𝑡 ≤ 113                                    (33) 

∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥ 𝐿 × ∑ ∑ 𝑥𝑏𝑚𝑡𝑤−1

𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊:  𝐶𝐶𝑤 = 1 ∩ 𝑤 > 1                            (34) 

𝑦𝑤−1  ≤ 𝑦𝑤 , ∀ 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊:  𝐶𝐶𝑤 = 1 ∩ 𝑤 > 1                                                                                     (35) 



26 

 

∑ ∑ ∑ xbmtw

𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw

𝑡 ∈ 𝑇:𝑡≤24w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 34                                                (36) 

∑ ∑ ∑ xbmtw

𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw

𝑡 ∈ 𝑇:25≤𝑡≤48w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 58                                          (37) 

∑ ∑ ∑ xbmtw

𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw

𝑡 ∈ 𝑇:49≤𝑡≤72w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 82                                           (38) 

∑ ∑ ∑ xbmtw

𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw

𝑡 ∈ 𝑇:73≤𝑡≤96w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 106                                        (39) 

∑ 𝑧𝑑b𝑑−1

𝑏 ∈ 𝐵

 ≤ 𝐿 × ∑ 𝑧𝑑b𝑑

𝑏 ∈ 𝐵

, ∀ 𝑑 ∈ 𝐷: 𝑑 > 1                                                                                           (40) 

∑ 𝑦w𝑑−1

𝑤 ∈ 𝑊

 ≤ 𝐿 × ∑ 𝑦w𝑑

𝑤 ∈ 𝑊

, ∀ 𝑑 ∈ 𝐷: 𝑑 > 1                                                                                           (41) 

This new set of restrictions and the reasons behind their construction will be explained in further 

detail in section 4.3. The goal of this section is only to provide enough understanding of the model 

so that the results of the illustrative example can be rightly interpreted, and the model validated. 

Moreover, one may use the performance of this third approach in the illustrative example to 

predict its expected behaviour in the large-scale problem. 

 

Performance of the third approach in the illustrative example 

The constants and parameters of this model are exactly the same presented in section 3.2. 

Therefore, they will not be presented again. Since this model is also a single ILP problem, the 

results can be presented in the same way as the original model. 

Figure 5 – Additional restrictions approach illustrative example results 

 
 

From Figure 5, it is possible to observe that the solution and the optimality gap are exactly the 

same as in the original model, thus clearly validating the model, and reporting in the Status field 

that the “Solution is optimal.”. This was expected since in a problem of such a scale it was likely 

that the solution would be the same due to their similarity. What comes as quite as a surprise is 

the computational time, it was expected to be lower than the original model but regarding the 
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simplicity of the problem a smaller difference in computational time was anticipated, not a drop of 

98.9% in computational time. This presents a good indicator for this approach’s performance in 

the large-scale problem. 

It should be pointed out that from this illustrative example, one can state that the introduction of 

the additional constraints did not increase the objective value, but only improved the 

computational time to achieve the same optimal value. 

Similar to the other approaches, the scheduling solution from this model is also presented below: 

Figure 6 - Restrictions approach illustrative example scheduling 

  



28 

 

 

4. Computational experiments and model 

Implementation  (Carris Case Study) 
 

In this chapter, the computational experiments conducted using an approach based on the 

Dantzig-Wolfe method are explored. Afterwards, an alternative approach based on the 

introduction of new constraints is also explored, conducting a comparison between the original 

model and the final model with the new constraints. The general aspects of the implementation 

of the approach based on the Dantzig-Wolf method were already In the present chapter, a deep 

insight of the implementation details on the application of the Dantzig-Wolf decomposition to our 

problem will be discussed, namely the new parameters, declarations, initializations, objective 

function, decision variables and constraints. All model ingredients already discussed will not be 

fully explained again. The case study is presented in the Appendix A1. 

 

4.1.  Approach based on Dantzig-Wolf decomposition 

 

As a starting point to the following computational experiments, a factory production example 

presented in “Multiple models and parallel solving with Mosel” (Colombani & Heipcke, 2011) was 

chosen to be ideally adapted to include the specificities of the bus maintenance scheduling model. 

However, there were two main differences between the factory production example and the bus 

maintenance scheduling model. The example solves a non-binary maximization problem, while 

the present model is a binary minimization problem. The binary essence of the bus maintenance 

scheduling problem creates difficulties that will be analysed later. 

The first step was to decide how to decompose the problem. There were a the following options:                      

i) decomposing by day, ii) decomposing by time period, iii) decomposing by bus or by worker. 

This would mean solving the scheduling for each day, time period, bus or worker in a parallel way. 

The decomposition by time period can be easily excluded due to the fact that the dimension of 

each problem would be so small that almost all the constraints would be in the master problem, 

which is exactly the opposite of what is the aim of the decomposition. 

At a first glance, one would be inclined to decompose the problem by bus, i.e. to schedule each 

bus. However, this option also raises two problems. First, if one looks at the constraints, one can 

see that there are six associated constraints that will have to be in the master problem, which 

might be doable but certainly not ideal. Nevertheless, this first problem, combined with the fact 

that only one part of the objective function depends directly on the buses, would make the 

implementation of this alternative decomposition very complex in terms of programming. 
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Applying the same argument, one can also notice that the decomposition by worker raises the 

exact same problems. Although these two decompositions make the model more complex, they 

are perfectly good decompositions that are worth being explored. 

The decomposition by day was chosen. By doing such decomposition, each subproblem will be 

big enough and there will be only one associated/linking constraint (8) to be included on the 

master problem, and both components of the objective function depend directly on the days. 

However, not everything is perfect about this decomposition. The associated/linking constraint is 

a minimum limit constraint which is not typical in this type of algorithm and requires some 

adaptations. Moreover, it also depends on different indices than those that the decision variable 

controls, which causes some troubles when generating optimal proposes, as it will mess with all 

the values imposed by the control and not only the ones needed, which will be further explained 

ahead.  

The implementation in FICO Xpress requires: i) a Master model and ii) a sub-model or slave 

model. The master model contains the linking constraints and provides the final solution to the 

original problem, while the sub-model will solve each subproblem (i.e. for each day) 

independently. 

In order to decompose the problem in days a few adaptations to the previous model were made. 

The time T was set to 24 hours and the decision variables 𝑥𝑏𝑚𝑡𝑤 and 𝑧𝑏𝑡 are now 𝑥𝑑𝑏𝑚𝑡𝑤 and  

𝑧𝑑𝑏𝑡. The constraints assigning each time t to each day d are no longer necessary and thus the 

problem for each day is solved separately. 

The linking constraints are the ones that depend on all subproblems and not only on a single one. 

If one looks at the constraints stated in Chapter 3, one can see that the only constraint that 

represents a sum in all the days is constraint number (8), which establishes the minimum amount 

of work (in hours) that should be put in bus 𝑏, maintenance activity 𝑚 and vehicle type 𝑣 by a 

worker with competence 𝑐: 

∑ ∑ 𝑥𝑏𝑚𝑡𝑤

w∈W: CCw=ct ∈ TMb

 ≥  𝑔𝑏𝑚𝑣𝑐 , ∀ b ∈ B, c ∈  C, m ∈  M, v ∈ V                                                       (8) 

All the remaining constraints are stated in the sub-model adapted for each day, by removing the 

∀ b ∈ B  statement where it is applied and the decision variables that previously depended on d 

no longer do, i.e. 𝑥𝑑𝑏𝑚𝑡𝑤  is now 𝑥𝑏𝑚𝑡𝑤, 𝑧𝑑𝑏𝑡 is now 𝑧𝑏𝑡, 𝑦𝑤𝑑 is now 𝑦𝑤 and 𝑧𝑑𝑏𝑑 is now 𝑧𝑑𝑏 in the 

sub-model.  

There are four phases to the solving model, which are controlled by the master model:  

• Phase 0 – where a plausible solution is found; 

• Phase 1 – where a feasible solution is found, starting from the solution of Phase 0; 

• Phase 2 – where the feasible solution found in Phase 1 is optimized; 

• Phase 3 – where the final original is solved 
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Following there is a scheme illustrating the flow of information between the different phases. 

Figure 7 - Dantzig-Wolfe phase communication 

 

 

Phase 0 – where a plausible solution is found 

Although Phase 0 is not strictly necessary, it avoids starting from a random solution. In Phase 0, 

the sub-model will run without verifying the global constraints, its objective function is the same 

as the original problem and the idea is to find an infeasible solution that represents the optimal 

solution disregarding the linking/global constraint. As in this problem the linking constraint is the 

only one that imposes a minimum limit on the amount of work needed for each bus, the perfect 

solution for the problem, which is not controlled by this constraint, will be a solution in which no 

work is needed, and therefore, a solution where all the decision variables are equal to zero. The 

reader should keep in mind that Phase 0 is an optional phase, whose only purpose is to give us 

a starting point that is not completely random. 

Phase 1 – where a feasible solution is found, starting from the solution of Phase 0 
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After a solution for Phase 0 is found, that solution is turned into a proposal for each day, example: 

𝑃𝑟𝑜𝑝_𝑥𝑑𝑏𝑚𝑡𝑤𝑘 and according to each iteration (𝑛𝑃𝑅𝑂𝑃). Then, the goal is for the master problem 

to combine the propositions in a way that the problem becomes feasible. This is achieved by 

assigning weights to each proposal. In Phase 1, the linking constraint is introduced. A linear 

control is created in order to determine which decision variables are in violation of the global 

constraint: 

𝐺𝑥𝑏𝑚𝑣𝑐 ≔ ∑ ∑ ∑ ∑ 𝑃𝑟𝑜𝑝𝑥𝑑𝑏𝑚𝑡𝑤𝑘
× 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑘 +

w∈W: CCw=c𝑘 ∈ 𝑛𝑃𝑅𝑂𝑃(𝑑)t ∈ 𝑇𝑑 ∈ 𝐷

𝑒𝑥𝑐𝑒𝑠𝑠𝑆 ≥  𝑔𝑏𝑚𝑣𝑐                 (42) 

Therefore, the objective function of the Phase 1 for the master model is to minimize a new variable 

called “excessS”. This allows us to determine, in a first approach, if the constraint is being violated 

or not. And if it is not, the result for the excessS will be zero and the problem will go on to the next 

phase. Otherwise, i.e. if it is violated, the solution of the excessS will be larger than zero. 

The analysis of the dual price of the linear control will show where the amount of work is missing, 

or at least where it is missing the most. A solution of the dual price is provided: 𝑃𝑟𝑖𝑐𝑒_𝑥𝑏𝑚𝑣𝑐 and 

it is sent to the subproblem.  

In the subproblem, the objective function at this phase will maximize the number of hours 

assigned in order to fill the needs it got from the Price of the linear control: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑ ∑ 𝑃𝑟𝑖𝑐𝑒_𝑥𝑏𝑚𝑣𝑐 × 𝑥𝑏𝑚𝑡𝑤

w∈W: CCw=c𝑣 ∈ 𝑉𝑡 ∈ 𝑇𝑚 ∈ 𝑀𝑏 ∈ 𝐵

                                                                  (43) 

By doing that, one can notice a disparity between our needs 𝑏𝑚𝑣𝑐, and what it can provide, 𝑏𝑚𝑡𝑤. 

In fact, this was one of the issues mentioned above associated with this decomposition. However, 

at this stage, it is not critically relevant yet, though it will become later in Phase 2. 

After this maximization, the needed working hours discovered in the master problem are provided. 

But these are the working hours needed by one or some of the 𝑏𝑚𝑣𝑐  combinations, it can also 

be for all of them. The master problem is run again and a new 𝑒𝑥𝑐𝑒𝑠𝑠𝑆 is found, this value will 

always be less or equal than the previous value and the process is repeated for the new-found 

needs. The program keeps doing this until the solution of the 𝑒𝑥𝑐𝑒𝑠𝑠𝑆 is equal to zero, and then 

it goes to Phase 2. 

There is also a crash instruction when in the sub-model a solution to the objective function is 

equal to zero, so that the problem is deemed infeasible in such case. This happens because the 

solution of the sub-model being equal to zero would mean one of two things: i) all the 𝑃𝑟𝑖𝑐𝑒_𝑥𝑏𝑚𝑣𝑐 

combinations are equal to zero or ii) the ones that are different from zero cannot be improved due 

to any constraint of the subproblem. Both situations would mean that there is no room for 

improvement of the previous solution, and knowing that the previous solution is not feasible, one 

can also assume that if it cannot be improved, it will never become feasible. 
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At this point in this Phase, an issue should be discussed as it becomes critical to the technique 

of this model. The prices given in the linear control 𝐺𝑥𝑏𝑚𝑣𝑐 strongly depend on the weights 

assigned to each proposal. In a different problem a weight that is not binary would be acceptable 

because, as stated above we impose the condition that the sum of weights selected for a day 

must be equal to one. While in a different problem that combination of weights multiplied by the 

proposed solution could be handled in a way that the sum of the weights times the proposed 

solutions would have to be an integer number. The issue with this problem is that all the solutions 

proposed are binary, which means that without enough proposals, it would be very often 

impossible to make a combination that gives an integer as a solution.  

For example: let three proposals for 𝑥11411 be equal to: 0, 1 and 1. If a value different from zero 

or one is set for the first proposal, an integer solution will not be achieved. Note that this will 

happen with any number of proposals, any time of the day and in any day, even if only one of the 

zero-valued proposals is given a weight different from zero or one, the solution will not be an 

integer. So far there does not seem to be a problem here, as the weights that are one or zero can 

be chosen and it would work with that. However, the proposals do not cover all the possible 

combinations, as they are generated according to the needs of the amount of work missing. The 

goal here would be to get a little bit of every proposal and join them accordingly to the restrictions, 

but due to the binary properties of the problem, parts of a proposal cannot be selected and ‘glued 

together’ to form a feasible solution. As the proposals must be chosen as a whole, the ones 

chosen at Phase 1 will never cover all the needs of the restriction, because upgrades to the 

proposals are generated as a set and not one by one. It could be done one by one, but this would 

go against one of the purposes of the present work which is to reduce computational time. 

Moreover, as a result of the obligation to choose whole proposals, there will come a point where 

the same set of proposals will be chosen twice in a row (in the present case this happens on the 

second iteration), and thus activating the crashing mechanism due to the lack of improvement on 

the final solution.  

Therefore, using a pure pricing/weight Dantzig-Wolfe decomposition would not be a successful 

option for the present case study. However, a few adaptations/suggestions related to the weight 

scheme are proposed and left for further research. It is crucial to mention that this conclusion was 

reached already in an advanced stage of the present research (after several tests), and therefore 

no time for further experiments with adaptations was left. In fact, alternative approaches were 

pursued in order to get the optimization results in a more efficient way. 

Phase 2 – where the feasible solution found in Phase 1 is optimized 

As the binary issue discussed above was implemented further down the road in the experiments, 

the Phase 2 of the problem had already been developed, not imposing the critical constraint to 

the weights. Although that matter has the exact same effect here has it had on Phase 1. On 

Phase 2, after a feasible (but not optimal) solution was found at the end of Phase 1, the goal is 

to reduce the excess of amount of work assigned in Phase 1. To do that a linear control and a 

new objective function have to be reformulated: 
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𝐺𝑥𝑏𝑚𝑣𝑐 ≔ ∑ ∑ ∑ ∑ 𝑃𝑟𝑜𝑝_𝑥𝑑𝑏𝑚𝑡𝑤𝑘 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑘

w∈W: CCw=c𝑘 ∈ 𝑛𝑃𝑅𝑂𝑃(𝑑)t ∈ 𝑇𝑑 ∈ 𝐷

≥  𝑔𝑏𝑚𝑣𝑐                                    (44)  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑃𝑟𝑜𝑝_𝑐𝑜𝑠𝑡𝑑𝑘 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑘

𝑘 ∈ 𝑛𝑃𝑅𝑂𝑃(𝑑)𝑑 ∈ 𝐷

                                                                                     (45) 

Here the main issue is not about the deficit of work assigned (𝑒𝑥𝑐𝑒𝑠𝑠𝑆), but the concern shifts 

solely to prevent the chosen proposals to go lower the minimum limit. And the objective function 

is now similar to the objective function of the original problem. 𝑃𝑟𝑜𝑝_𝑐𝑜𝑠𝑡𝑑𝑘 is the solution of the 

daily adaptation of the original problem for each day and each proposal. In this phase, the process 

is quite similar to Phase 1, getting the price data for each combination of 𝑏𝑚𝑣𝑐 and sending it to 

the sub-model. But now the sub-model has a different objective function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑂1 + 𝑂2 − ∑ ∑ ∑ ∑ ∑ 𝑃𝑟𝑖𝑐𝑒_𝑥𝑏𝑚𝑣𝑐 × 𝑥𝑏𝑚𝑡𝑤

w∈W: CCw=c𝑣 ∈ 𝑉𝑡 ∈ 𝑇𝑚 ∈ 𝑀𝑏 ∈ 𝐵

)                                        (46) 

Note that the goal is to minimize the difference between the solution of the daily adaptation of the 

original problem and the price data that we are trying to improve. When this value reaches zero 

in all sub-problems it means that there is no more room for improvement and, therefore, the 

solution is optimal. 

And this will be repeated until that difference is equal to zero, and thus the optimal solution is 

reached. 

Adding up to the problem described in Phase 1, here another issue appears. It has nothing to do 

with feasibility but with the increase of computational time in a way that makes no sense to use 

this approach. As pointed out before, the sets that 𝑃𝑟𝑖𝑐𝑒_𝑥𝑏𝑚𝑣𝑐 and 𝑥𝑏𝑚𝑡𝑤 depend on are not the 

same. This means that a change only in the variables needed cannot happen, it will require 

changing all the variables that are associated with that set.  

Take as an example when 𝑃𝑟𝑖𝑐𝑒_𝑥1411 =  1, and one is maximizing this component of the objective 

function. Then, ideally all the 𝑥𝑏𝑚𝑡𝑤 would be changed to one. The problem is that this change 

can be more drastic than wanted. For example for 𝑔1411, 16 ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑤𝑜𝑟𝑘 would be needed, but 

translating it to the 𝑥𝑏𝑚𝑡𝑤 variable one gets 𝑥14𝑡𝑤|𝐶𝐶(𝑤)=1. As there are three workers with 

competence 𝑐 = 1 and there are 8 ℎ𝑜𝑢𝑟𝑠 that fit the time frame (considering the restrictions of the 

subproblem), it will provide 24 ℎ𝑜𝑢𝑟𝑠 (3 × 8) of input work in the variable 𝑥𝑏𝑚𝑡𝑤. 

Due to that reason, it takes much more iterations to reach the value that is needed, and thus it 

significantly expands the computational time. It should be mentioned that the implementation 

process of this decomposition took more time than initially planned. An alternative approach 

(hopefully more straightforward) was pursued to provide comparable results with the original bus 

maintenance scheduling problem. 

Phase 3 – where the final original is solved 
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As stated in the description, the original problem is solved, and the final solution is give. 

 

 

4.2. Heuristic Approach 

 

This alternative approach was idealized with the objective of reducing the decision variables and 

combinations for each solving cycle of the model, and thus reducing the computational time.  

The basic structure of this approach relies in solving the scheduling for one bus, then saving it, 

and solving for the next bus removing the spaces occupied by the previous bus and repeat that 

sequentially until all the buses are assigned. It is as if the model is playing “a game of Tetris” but 

with the buses’ schedule as its figures. In this way the model focuses in solving only one problem 

(for a single bus) at the time for the yet available time periods, instead of solving every 

combination for every bus and every time period available at once. This results on a great 

reduction of computational time. However, although the optimality gap for each problem solved is 

equal to zero, there is no guarantee that the overall solution is optimal. 

The order in which the buses’ scheduling is solved is very significant in this problem. Ideally the 

model would run every possible combination of ordered buses and choose the one with the best 

result. This would result in running 13!, 6,23 × 109, different combinations. Making an estimate 

and spoiling some of the results, for one combination it takes 37 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, so that many 

combinations would take 2,3 × 1011 seconds which are 6,4 × 107 hours, and since through this 

method the solution is always found, and only after all the combinations are run, it goes against 

the main goal of this dissertation, that it would pursue an approach that is already known to take 

more computational time. Moreover, the solution found does not have certain optimality. 

To tackle this problem, it was decided to establish the order in which the model would schedule 

the buses based on a criteria. The order chosen was from the bus with the most need in 

maintenance hours to the one with the least. This choice is justified by the fact that it is much 

easier to allocate a small number of hours to an almost filled up time table than otherwise. A 

problem found was that, in the first buses, the model would assign some of them to different days, 

resulting in doubling the cost of a stopped unit, as it was saving on workers, not knowing it was 

going to need them anyway for the not yet assigned buses. This, though computationally 

accurate, would not result in the best solution. As it is known from Chapter 3, it is preferred that 

the buses stay the least time possible in the depot. We also know from Chapter 3 that the value 

of the cost per stopped unit in Martins’ model (2018) was set arbitrarily and the value was chosen 

in order to show that preference. It is clear that, in the model here discussed, that privilege is not 

shown. So, in order to fix this issue, a new value for 𝑐𝑈, that represents its importance, was 

attributed. The value chosen was 260 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠, one notices that this is the cost of having 

all the workers assigned to a new day, thus affirming, undoubtably, the importance of this 
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component of the objective function. For comparison purposes all the final values are presented 

with the 𝑐𝑈 equal to 100, as it was in the Martins’ model (2018). Otherwise, comparisons with the 

original models would not be straightforward.  

The heuristic approach results in a sequential model that solves thirteen problems (one for each 

bus). The problem solved for each bus is almost the exact same problem of the Martins’ model 

(2018), same variables, same restrictions plus one and same objective value. First, the order in 

which the buses will be scheduled is established. For this problem, as stated before, they were 

ordered by the amount of work needed. Then a loop is established, and the 𝐵 array is created. 

The 𝐵 array starts only with one element and gains one more at each iteration of the loop.  

The first subproblem is solved, this is the original problem for only one day, after that the 

𝑃𝑟𝑜𝑝_𝑥𝑏𝑚𝑡𝑤 array is created and the values of the decision variable 𝑥𝑏𝑚𝑡𝑤 are saved in there. For 

the second iteration, second bus, there is a new restriction to the problem which locks the values 

of 𝑥𝑏𝑚𝑡𝑤 previously assigned: 

𝑃𝑟𝑜𝑝_𝑥𝑏𝑚𝑡𝑤 = 𝑥𝑏𝑚𝑡𝑤 , ∀ b ∈ B\{𝐺𝑏𝑁𝐵𝑢𝑠}, m ∈  M, 𝑡 ∈  𝑇, 𝑤 ∈ 𝑊                                            (47)             

Where, 𝐺𝑏 is an array containing the number of the bus by the defined order and 𝑁𝐵𝑢𝑠 represents 

the iteration number. It is required to take that element from the array because, as mentioned 

before, the increment of the 𝐵 array was already done, and thus it is necessary to withdraw the 

bus being scheduled from the ones being “locked”. 

The process is repeated until all the buses are scheduled, so that the result of the last sub-problem 

(scheduling the last bus with all the others already assigned) is the final solution to the original 

problem. 

Furthermore, it was tried to optimize the solution given by the model described above through 

some iterative approaches. The first was to make the problem go back to the first scheduled bus 

and repeat the loop until no better solution was found. Secondly, it was tried to do exactly the 

same but by changing two and then three buses at a time. None of these approaches resulted in 

a better final value for the objective function, and they, actually, significantly increased the 

computational time. Therefore, they were discarded. 

The results obtained with this approach were very satisfactory. The solution was validated with 

an illustrative example for which the optimal solution was known, section 3.3.2. 

As known a great improvement in the computational time was shown, even for a small problem 

as the illustrative example. For the whole case study this approach reached a minimum cost value 

of 2295 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠 in a surprising time of 36.7 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. This represents a massive 

improvement of the Martins’ solution (2018), as his model reached a minimum value of 

2520 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠 after a computation time of 11003.9 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. This represents a reduction 

of 8.93% in terms of costs and 99.7% in terms of computational time. These results are shown in 

Figure 8. 
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Given these results, it is fair to say that the main goal of these experiments, which was to optimize 

the maintenance costs and to drastically reduce the computational time was achieved mainly with 

a simple heuristic approach. 

In Figure 9 the scheduling proposed by this approach is shown. 

Figure 9 - Heuristic approach case study scheduling 

 

  

Figure 8 - Heuristic approach case study results 
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4.3. Introducing New Restrictions to the Original Problem 

 

The main goal of introducing new restrictions to the original problem is to limit the research space 

of the problem, and thus having the model to test much less combinations in the search for the 

optimal solution. 

This is achieved by “shaping the solution”, i.e. by pointing out some aspects (ones more obvious 

than others) that would be very likely to be present in the optimal solution and allowing the solver 

to only test such solutions. These aspects or characteristics are inserted in the form of restrictions 

in the formulation of the problem. 

The following restrictions were added to the Martins’ model (2018) based on what is expected for 

the solution provided by that same model: 

∑ ∑ 𝑧𝑑𝑏𝑑

𝑑∈𝐷𝑏∈𝐵

 =  𝑁𝐵                                                                                                                                                  (22) 

which states that all the buses are assigned to only one day; 

∑ ∑ 𝑥1𝑚10𝑤

𝑤∈𝑊𝑚∈𝑀

≥ 1                                                                                                                                                (23) 

∑ ∑ 𝑥4𝑚34𝑤

𝑤∈𝑊𝑚∈𝑀

≥ 1                                                                                                                                                (24) 

∑ ∑ 𝑥12𝑚58𝑤

𝑤∈𝑊𝑚∈𝑀

≥ 1                                                                                                                                               (25) 

These restrictions make sure that the three buses with the greatest need in terms of amount of 

work are scheduled in different days (which day is irrelevant) i.e. 𝐵𝑢𝑠 1 is scheduled for 𝑑𝑎𝑦 1 

which starts at 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 10; 

∑ 𝑧𝑑3𝑑1

𝑑1∈𝐷:𝑑1≤𝑑

 ≥  𝑧𝑑6𝑑 , ∀ 𝑑 ∈ 𝐷                                                                                                                 (26) 

∑ 𝑧𝑑9𝑑1

𝑑1∈𝐷:𝑑1≤𝑑

 ≥  𝑧𝑑10𝑑 , ∀ 𝑑 ∈ 𝐷                                                                                                               (27) 

∑ 𝑧𝑑5𝑑1

𝑑1∈𝐷:𝑑1≤𝑑

 ≥  𝑧𝑑11𝑑 , ∀ 𝑑 ∈ 𝐷                                                                                                               (28) 

These restrictions define the order in which the buses that are due to the same maintenance 

activities and are the same type of vehicle, and therefore are interchangeable, are scheduled. 

The goal is to, instead of letting the model test and decide which goes first, decide for the model, 

avoiding that step, and in this way, reducing the size of potential feasible solutions to test. 
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∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 10 > 𝑡 ≤ 17                                         (29) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 34 > 𝑡 ≤ 41                                         (30) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 58 > 𝑡 ≤ 65                                         (31) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 82 > 𝑡 ≤ 89                                         (32) 

∑ ∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥  ∑ ∑ ∑ 𝑥𝑏𝑚𝑡−1𝑤

𝑤 ∈ 𝑊𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇: 106 > 𝑡 ≤ 113                                    (33) 

These restrictions, one for each day, define that the model should assign the work starting from 

the beginning of the day.  

∑ ∑ 𝑥𝑏𝑚𝑡𝑤

𝑚 ∈ 𝑀𝑏 ∈ 𝐵

 ≥ 𝐿 × ∑ ∑ 𝑥𝑏𝑚𝑡𝑤−1

𝑚 ∈ 𝑀𝑏 ∈ 𝐵

, ∀ 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊:  𝐶𝐶𝑤 = 1 ∩ 𝑤 > 1                           (34)  

In this restriction the workers with capacity  𝐶𝐶𝑤 = 1 are being assign in a predefined order, again 

saving computational time; 

𝑦𝑤−1  ≤ 𝑦𝑤 , ∀ 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊:  𝐶𝐶𝑤 = 1 ∩ 𝑤 > 1                                                                                     (35) 

A second worker 𝑤 with competence 𝑐 is only assigned on day 𝑑 if the previous worker 𝑤 with 

competence 𝑐 is already assigned on that day 𝑑; 

∑ ∑ ∑ xbmtw

𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw

𝑡 ∈ 𝑇:𝑡≤24w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 34                                                (36) 

∑ ∑ ∑ xbmtw

𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw

𝑡 ∈ 𝑇:25≤𝑡≤48w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 58                                          (37) 

∑ ∑ ∑ xbmtw

𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw

𝑡 ∈ 𝑇:49≤𝑡≤72w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 82                                           (38) 

∑ ∑ ∑ xbmtw

𝑤 ∈ 𝑊𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

≥  𝐿 × ∑ ∑ ∑ ∑ xbmtw

𝑡 ∈ 𝑇:73≤𝑡≤96w ∈ W𝑚 ∈ 𝑀

 

𝑏 ∈ 𝐵

, 𝑡 = 106                                        (39) 

There are only activities assigned for a determined day if the previous day already has activities; 

∑ 𝑧𝑑b𝑑−1

𝑏 ∈ 𝐵

 ≤ 𝐿 × ∑ 𝑧𝑑b𝑑

𝑏 ∈ 𝐵

, ∀ 𝑑 ∈ 𝐷: 𝑑 > 1                                                                                           (40) 

∑ 𝑦w𝑑−1

𝑤 ∈ 𝑊

 ≤ 𝐿 × ∑ 𝑦w𝑑

𝑤 ∈ 𝑊

, ∀ 𝑑 ∈ 𝐷: 𝑑 > 1                                                                                           (41) 

A bus 𝑏 (…) or a worker 𝑤 (…) is only assigned to day d, if it was already assigned for the previous 

day. 
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With the introduction of all these new restrictions, a simplification to the problem is accomplished, 

by guiding the solver to the configuration of an optimal solution.  Therefore, by following such an 

approach, some decisions are made for the model, in some of them the answer is being given to 

the model, such as in restriction (22). And in others, where either choice results in the same 

outcome, the choice is made for the model avoiding many combinations being tried when it is 

known that the outcome would be the same. 

The results of this approach were positive. A better solution was found in a much smaller 

computational time, and with a smaller optimality gap. The solution found was of 

2510 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠, which results in a reduction of 0.4% from the 2520 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠 found 

by Martins (2018). This solution was found in 1287.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, a decrease of 88.3% in 

computational time when compared to the 11003.9 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 from 2018. Regarding the optimality 

gap the values presented now was of 16.14%, minus 5.06% than the 21.20% obtained before. 

 

Inserir prints do Mosel e o scheduling obtido 

 

Atribuir numeros às restrições 

 

Figure 11 - Restrictions approach case study scheduling 

 

  

 Figure 10 - Restrictions approach case study results 
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4.4. Comparison of Results 

In this section an analysis of the results obtained in both the approaches is executed by comparing 

them to the ones obtained by Martins (2018). A review of the analysis done by Martins (2018) to 

his results showed that when the model was ran with a 𝑐𝑈 greater than 250 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠, 

despite the objective value being higher, the optimization of the problem promised a better 

allocation of the elements. As in the heuristic approach an update of the 𝑐𝑈 was made to 

260 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠 in the solver, although the result exhibited was adapted to 

100 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠, it was deemed relevant to provide an analysis cadent of the same adaptation 

to the Martins model (2018). Therefore, the results from the model ran for 𝑐𝑈 equal to 260 and 

275 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠, the best looking of the ones Martins (2018) tested, were included in this 

analysis. Those results were examined with the 100 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠’ adaptation. 

Firstly, an analysis of the final solution, computational time and optimality gap is conducted, 

followed by an analysis of the weight of the cost components. After that statistics regarding the 

bus unavailability, the days in which maintenance activities were assign, and the total working 

days of each type of worker, are presented. Lastly, the money loss in working hours vs paid hours 

is evaluated. 

Table 8 - Objective value, computational time and optimality gap analysis 

Model 
Objective Value 

(cU=100, 
adapted) 

Improv to 
Original 

Comp 
Time (s) 

Improv to 
Original 

Optimaility 
gap 

Improv to 
Original 

Martins 2520 - 11003.9 - 21.20% - 

Restrictions 2510 0.40% 1287.5 88.30% 16.14% 5.06% 

Martins 
(cU=260) 

2465 2.18% 7373.1 33.00% 12.11% 9.09% 

Martins 
(cU=275) 

2295 8.93% 6840.6 37.83% 5.16% 16.04% 

Heuristic 2295 8.93% 36.7 99.67% 5.16% 16.04% 

 

From Table 8 it is observed that both the Heuristic approach and the Martins (𝑐𝑈 = 275) present 

the best solution to the problem with a value of 2295 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠. The optimality gap from 

Martins (𝑐𝑈 = 275) suggests that this solution is close to optimal, and since the Heuristic approach 

presents the same value it is fair to assume that this applies to it too. This value represents an 

improvement of 8.93% from the original model and the optimality gap is reduced by 16.04%. 

But where the Heuristic approach comes as an isolated champion in the computational time 

category, an astonishing reduction of 99.67% representing a value of 36.7 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 makes this 

approach the most efficient one. It is important to notice that both the approaches developed in 
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this dissertation presented great reductions in computational time even when compared with 

adapted Martins models. This was one of the main goals of this research. 

It is also relevant that both the 𝑐𝑈 adaptations of the Martins model (2018) present better solutions 

than the original one. 

Table 9 - Cost component weight analysis 

Cost 
Component 

Martins Restrictions 
Martins 

(cU=260) 
Martins 

(cU=275) 
Heuristic 

Value 
% 

total 
Value 

% 
total 

Value 
% 

total 
Value 

% 
total 

Value 
% 

total 

𝑂1 1120 44.4% 1210 48.2% 1085 45.5% 995 43.4% 995 43.4% 

𝑂2 1400 55.6% 1300 51.8% 1300 54.5% 1300 56.6% 1300 56.6% 

Regarding the cost components, considering the analysis performed by Martins (2018), an 

increasing of the 𝑂2  component’s weigh should evolve with the increase of the solution’s 

optimality. This is not visible in Table 9 from the Martins model (2018) to the Restrictions 

approach, this is due to a leap from 14 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑏𝑢𝑠𝑒𝑠 (one is repeated) to 13, this is evident in 

Table 10. Although, from the Restrictions approach forward it is possible to identify the evolution 

described above. It is also interesting to notice that the 𝑂2 component plays a heavier role in all 

these models. 

Table 10 - Bus availability and worker assignment 

Aproach 

Number of 
times the 
buses are 

unavailable 

Number of 
Days 

Number of work days by competence 

mec (3) lub ele bw 

Martins 14 5 12 5 4 5 

Restrictions 13 5 13 5 5 5 

Martins 
(cU=260) 

13 5 12 5 5 5 

Martins 
(cU=275) 

13 4 11 4 4 4 

Heuristic 13 4 11 4 4 4 

In Table 10 it is evidenced the leap addressed above. The information provided allows an 

understanding of effects of the optimization, by the number of days and the work days by 

competence it is possible to observe that the best solutions present a more compact scheduling. 

It is also noticeable that if a new restriction to the restriction model, imposing that the solution only 

had four days, was added, a better solution could be achieved. 
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Table 11 - Money loss, working hours vs paid hours 

Worker 

D
a
y 
1 

D
a
y 
2 

D
a
y 
3 

D
a
y 
4 

D
a
y 
5 

working 
hours/ 
week 

paid 
hours/
week 

hours 
lost % 

cDw 
monetary 

units 

cost/week 
monetary 

units 

money 
loss/week 
(monetary 

units) 

Original Model 

mec1 7 6 8 8 8 37 40 7.50% 45 225 16.88 

mec2 6 4 8 8 0 26 32 18.75% 45 180 33.75 

mec3 5 0 8 8 0 21 24 12.50% 45 135 16.88 

lub 3 3 6 6 4 22 40 45.00% 35 175 78.75 

elect 5 3 4 4 0 16 32 50.00% 45 180 90.00 

bw_mec 6 6 6 6 2 26 40 35.00% 45 225 78.75 

Restrictions            Total 1120 315.00 

mec1 6 8 7 7 8 36 40 10.00% 45 225 22.50 

mec2 5 4 7 5 7 28 40 30.00% 45 225 67.50 

mec3 8 6 6 0 0 20 24 16.67% 45 135 22.50 

lub 5 5 5 3 4 22 40 45.00% 35 175 78.75 

elect 3 3 3 3 4 16 40 60.00% 45 225 135.00 

bw_mec 4 4 4 6 8 26 40 35.00% 45 225 78.75 

 Martins (cU=260)  Total 1210 405.00 

mec1 8 6 5 8 0 27 32 15.63% 45 180 28.13 

mec2 7 7 7 8 0 29 32 9.38% 45 180 16.88 

mec3 7 7 8 0 6 28 32 12.50% 45 180 22.50 

lub 6 5 5 4 2 22 40 45.00% 35 175 78.75 

elect 4 3 3 4 2 16 40 60.00% 45 225 135.00 

bw_mec 6 4 4 8 4 26 40 35.00% 45 225 78.75 

 Martins (cU=275)  Total 1165 360.00 

mec1 0 8 8 8 8 32 32 0.00% 45 180 0.00 

mec2 0 7 8 8 7 30 32 6.25% 45 180 11.25 

mec3 0 7 8 0 7 22 24 8.33% 45 135 11.25 

lub 0 5 7 4 6 22 32 31.25% 35 140 43.75 

elect 0 3 5 4 4 16 32 50.00% 45 180 90.00 

bw_mec 0 4 8 8 6 26 32 18.75% 45 180 33.75 

  Heuristic Total 995 190.00 

mec1 0 8 6 8 0 22 24 8.33% 45 135 11.25 

mec2 0 8 8 7 8 31 32 3.13% 45 180 5.63 

mec3 0 8 8 7 8 31 32 3.13% 45 180 5.63 

lub 0 6 6 6 4 22 32 31.25% 35 140 43.75 

elect 0 4 4 4 4 16 32 50.00% 45 180 90.00 

bw_mec 0 6 6 6 8 26 32 18.75% 45 180 33.75 

                  Total 995 190.00 

Table 11 provides some interesting data, though no pattern is identified, the two best solutions, 

the most “compact”, as seen on Table 9, present the lower value of money loss per week. This 

value, 190 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠, represents a 39.7% drop in relation to the original value, 

315 𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑢𝑛𝑖𝑡𝑠. 
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After analysing all these results, it is concluded that the heuristic approach is superior to all the 

other studied models and is by far superior when compared to the original model, presenting great 

improvements in relation to it, especially regarding computational time.  
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5. Conclusions and Further Research 
 

This final chapter presents the main conclusion of the dissertation, identifies several limitations 

and looks at possible future steps for further research. 

 

5.1. Conclusions 

 

The main objective of the present dissertation was to optimize in terms of computational time, 

optimality gap and final solution, the model created in 2018 by my former colleague Rodrigo Arrais 

Martins (2018) on the bus maintenance scheduling and applied to the Carris case study. As stated 

in Chapter 3, previous results in Martins (2018), though satisfying and ground breaking, still 

exhibited a large margin for improvement. The reported optimality gap of 20.15% after a 

computational time of 13 ℎ𝑜𝑢𝑟𝑠 is far from being ideal, and the present research work had the 

challenge to try to improve the computational time, optimality gap and final solution. 

The initial idea was to work with parallel solving mechanisms in order to save computational time. 

A model was created from scratch, though it was based on the Factory Production example 

(Colombani & Heipcke, 2011) and using the constraints, decision variables and objective function 

proposed by Martins (2018), as well as the Dantzig-Wolfe decomposition for parallel solving. 

Other types of parallel solving mechanisms were considered, as its characteristics were 

seemingly aligned to those of the present problem, the Dantzig-Wolfe was the selected 

mechanism. The implementation of this model was a long process and was not possible to 

validate it for neither the illustrative example nor the real case. As it was explained in section 4.1. 

Upon reaching this conclusion and given that creating a new model for a different mechanism 

would take possibly the same amount of time as for the Dantzig-Wolf decomposition, two different 

approaches were proposed. The first one used a heuristic approach and restructured the Martins’ 

model (2018) in a way that it would reduce the amount of free decision variables and combinations 

to test. This approach was explained in detail in section 4.2. The second one consisted of 

introducing new constraints to Martins’ model (2018) based on characteristics of the optimal 

solution that could be expected a priori, and thus reducing the number of nodes the solver had to 

go through in the branch and bound algorithm, while improving the computational time. This 

alternative method was described in section 4.3. Both these new models using alternative 

formulations were then validated for the illustrative example and for the real case study, achieving 

a better final solution in a shorter computational time than Martins’ original model.  

Regarding the second approach, though this would not be the ideal way to approach the problem, 

one can conclude that the goal of this dissertation was achieved, as it was shown that it is possible 

to improve Martins’ solution. Its results and discoveries will be very useful for next researchers 

who approach this subject. Moreover, it is important to mention that the way the additional 
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constraints were generated can be easily adapted to other maintenance scheduling problems, 

and thus they serve as a basis for further improvements in other problems. 

As for the first approach, the results were much more satisfactory, there was a significant 

improvement in the two main aspects of this dissertation, especially regarding the computational 

time. As for the optimality of the solution, diverging from the Martins’ model (2018) and the 

previous approach where it is known that the solutions are not optimal, here one cannot know for 

sure, as it is a heuristic method. Nevertheless, it is known that for the present problem, there has 

not been found a solution better than the one obtained with such heuristic. Moreover, for the 

illustrative example, the optimal solution was achieved using the proposed heuristic approach.   

 

5.2. Limitations 

 

There are a few limitations that should be discussed in this work. The three conducted approaches 

presented limitations of their own. One of them, though could, actually, improve the optimality gap 

and computational time, is far from ideal. Other has some limitations regarding programming, 

which made it impossible to be validated. And the last one has no way to prove its optimality.  

One important limitation with the approach of introducing more constraints (discussed in more 

detail in section 4.3) is the fact that it relies completely on the experience of the maintenance 

planners and knowledge, expectations and assumptions of the programmer. This means that its 

adaptation to other problems, different from the one studied in this paper, would require some 

testing and evaluation, prior to its implementation, in other words, the solution found would not be 

very useful for different problems with different characteristics. Nevertheless, the spirit and 

arguments behind the creation of additional constraints can be adapted to other problems. 

Another limitation of the final approach is that there are options that are disregarded which could 

represent a better solution than the one found. It is known that for the illustrative example the 

solution is optimal, because the same optimal value as the Martins’ model is achieved, and in 

less computational time. But for the case study there is no way to know if this is true. Similarly, 

there is no way to know that this is not true, even if the optimality gap is really close to zero. It is 

only known that the new solution found is better than the one found by Martins (2018), and it is 

largely based on it. What would be ideal is to have a solution that relies only on the constraints 

and restrictions one can identify prior to the knowledge of any solution. These are mainly the 

restrictions in the Martins’ model. 

Although in the present document the Dantzig-Wolfe decomposition algorithm was first perceived 

as a solution to this problem, it presented its own limitations, which were discussed in section 4.1. 

They were mainly related to the fact that the problem had binary decision variables and that the 

linking/associated constraint did not vary in the same way as the decision variables. Due to these 
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issues, it was not possible to validate this approach to the bus maintenance scheduling problem 

formulated by Martins (2018). 

The heuristic approach presents a big limitation, which is to know whether the solution found is 

optimal. Contrary to all the other approaches (except for the restrictions’ one) there is no 

mechanism that guarantees the optimality, or not, of the solution. In the Martins’ model it can be 

assured by the optimality gap, which is also why it is known that the one found in 2018 is not 

optimal. In the Dantzig-Wolfe decomposition there is Phase 2 to assure optimality. In the 

restrictions’ approach, it can be assured through the optimality gap, one just needs to be aware 

that not all options were explored. But for the heuristic approach there is no mechanism proving 

the optimality of the solution. It is only possible to assure that the solutions found for each bus, 

within the spaces available for each one, were optimal. 

 

5.3. Further Research 

 

There are several ways in which further research on this topic can be pursued. The model 

developed in the first approach can potentially be modified in order to be feasible when working 

with problems with binary variables. This can be achieved by disregarding the weights approach 

and by developing a new mechanism to generate parts of every proposal without compromising 

its integer nature. A possibility would be to develop a mechanism which can grab any variable 

from any proposal, while guaranteeing that every restriction from the subproblem is fulfilled. There 

is a chance that the pricing data to evaluate which variables need to change can still be used, but 

in case it does not fully work, an option where the slack of the linear control is evaluated, and the 

“Pricing” value assigned to the variables whose slack is zero, could be a potential option.  

Regarding the problem with changing variables, a relation between the constraint and the decision 

variable 𝑥𝑏𝑚𝑡𝑤 should be studied in order to adapt the constraint, or even, if needed, the variable 

to achieve a more straightforward adaptation of the variables needed and a much better 

computational time. It is possible to use an adaptation of the Dantzig-Wolfe Decomposition in this 

problem, though there is no evidence that supports the claim that this new model will be more 

efficient than the one developed by Martins (2018). 

Another way to continue improving the solution of this problem would be to try other 

decomposition types, either within the Dantzig-Wolfe technique, decomposing by bus or worker 

as discussed before, or a new mechanism of parallel solving. Trying another mechanism might 

be the best option. After a dead end was reached in the Dantzig-Wolfe algorithm, other ones were 

considered, though not fully pursued. For example, the Cutting Plane Algorithm (Colombani & 

Heipcke, 2011) seems to be a well-suited choice for this problem as well. This algorithm identifies 

the violated inequalities and adds them as cuts to the problem, in a Cut-and-Branch kind of way. 

Moreover, it seems to avoid the problems encountered in the computational experiments 
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described in this dissertation, though other ones might arise. It also might be interesting to explore 

other parallel solving mechanisms.  

Regarding the second approach to the problem, other directions for further research would be 

adding restrictions to the reformulated model. There are obviously a lot of possibilities here, some 

of the most general ones that will eliminate most nodes have already been applied, but more 

specific ones can be added. However, as more specific they are, it might not only guide the 

problem to a solution that is already known to be a good one, but the chances of the model to 

improve the solution might be extremely low. There are other limitations to this approach as stated 

in the previous section. Improvements to this approach should be pursued if the research is 

related with this exact same case study. Otherwise, it might still work, but new restrictions will 

have to be found related specifically to the characteristics of the solution to the problem under 

analysis.  

Regarding the heuristic approach, it is imperative that a mechanism to verify the optimality of the 

solution is implemented. An idea would be to keep trying different types of iterative approaches 

to optimize the previous result. 

Although these experiments were conducted only for the bus maintenance scheduling problem, 

formulated and solved by Martins (2018), it should be highlighted that that case study only referred 

to one depot. The bus operating company operates other depots in the Lisbon area, and an 

implementation of the parallel solving mechanisms, including the Dantzig-Wolfe, could be more 

advantageous and less complex in terms of adaptations. An interesting way to decompose the 

problem would be by depot and the global constraints could represent bus interactions and 

personnel exchanges between depots. In this way, the binary problems would be solved within 

the sub-models avoiding one of the limitations stated above. In terms of computational time, this 

would be a much more complex problem, with many more variables and it would be more difficult 

to get a good solution within a shorter amount of time. 
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7. Appendix 
 

A1 – CARRIS Case Study information 

 

1 - The buses that will perform preventive maintenance 

b  Bus name  Bus Type  Bus model  Maintenance 
Type  

1  4238  Mercedes Benz 
OC 500  

Standard  R5 C2  

2  1629  Volvo B7L  Standard  R4  

3  1706  Volvo B7R  Standard  R3  

4  1757  Volvo B7R MKIII  Standard  R5 C2  

5  4248  Mercedes Benz 
OC 500  

Standard  R3  

6  1705  Volvo B7R  Standard  R3  

7  4221  Mercedes Benz 
OC 500  

Standard  R4  

8  1707  Volvo B7R  Standard  R4  

9  1758  Volvo B7R MKIII  Standard  R4  

10  1748  Volvo B7R MKIII  Standard  R4  

11  4245  Mercedes Benz 
OC 500  

Standard  R3  

12  4264  Mercedes Benz 
OC 500  

Standard  R5 C2  

13  4625  Mercedes Benz 
Citaro G  

Articulated  R4  

 

2 - Maintenance tasks performed by preventive maintenance team at the Musgueira facility 

Maintenance 
activities  

Period  Performed tasks  

R3  Every 15.000 km  The tasks are limited to checks (fluid levels, leaks, gaps, 
wear, condition) to the various systems, usually without 
disassembly.  

R4  Every 30.000 km  In addition to that considered in R3, it includes the 
replacement of engine oil, filters (air and fuel), lubrication 
and brake test  

R5  Every 60.000 km  In addition to that considered in R4, it also involves the 
replacement of oil and gearbox, differential and the 
hydraulic steering circuit, tuning of engine valves, the 
pneumatic brake system dehumidifier and the drive belt of 
the air conditioning.  

R5C2  Every 120.000 km  In addition to that considered in R5, it also considered the 
replacement of the alternator belts, coolant system liquid 
and wheel hub verification (with disassembly).  
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3 - Amount of work for preventive inspections per vehicle type, worker competence, and type of maintenance 

 

 

 

4 - Sets of the mathematical model 

Sets  Values  

B  {1, …, 13}  

M  {1, …, 4}  

D  {1, …, 5}  

T  {1, …, 120}  

V  {1, …, 5}  

W  {1, …, 6}  

C  {1, …, 4}  

 

 

 



52 

 

 

5 - Number of work hours required for the different bus and competence units 

Bus 
unit  

1  2  3  4  5  6  7  8  9  10  11  12  13  

Bus 
name  

4238 1629  1706  1757  4248  1705  4221  1707  1758  1748  4245  4264  4625  

𝐯_𝐭𝐲𝐩
𝐞𝐯  

OC  
500  

B7L  B7R  B7R 
III  

OC 
500  

B7R  OC 
500  

B7R  B7R 
III  

B7R 
III  

OC  
500  

OC5
00  

Articu
la ted  

𝐦𝐚_𝐭𝐲
𝐩𝐞𝐦  

R5 
C2  

R4  R3  R5 
C2  

R3  R3  R4  R4  R4  R4  R3  R5 
C2  

R4  

𝐜_𝐭𝐲𝐩
𝐞𝒄  

The amount of work hours 𝑮𝒃𝒎𝒗𝒄 

Mec  16  6  2  14  4  2  4  4  4  4  4  16  4  

Lub  4  1  1  4  1  1  1  1  1  1  1  4  1  

Elect  2  1  1  2  1  1  1  1  1  1  1  2  1  

Bw  2  2  2  2  2  2  2  2  2  2  2  2  2  

 

6 - Information about unavailable work window for the 5-day planning period 

 

 

7 - Information about preventive maintenance crew 

w  𝐰_𝐭𝐲𝐩𝐞𝐰  𝐜𝐃𝐰  𝐍𝐖𝐭𝒄  
1  Mechanic_1  40  

3  2  Mechanic_2  40  

3  Mechanic_3  40  

4  Lubricator  35  1  

5  Electrician  50  1  

6  Bodywork Mechanic  50  1  

 

8 - Constants of the mathematical model 

Constants  Description  Units  Values  

cU  Bus unavailability costs  Monetary units  100  

NT  Total number of hours  Working hours  120  

ND  Number of days  Working days  5  

NW  Number of workers  -  6  

NML  Number of maintenance lines  -  7  

SL  Number of special lines (Bus 
type Articulated)  

-  1  
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A2 - Technical planning of the case study of CARRIS (Martins) 

Day 1 10 11 12 13 14 15 16 17 Day 2 34 35 36 37 38 39 40 41 

mec1                 mec1                 

mec2                 mec2                 

mec3                 mec3                 

lub                 lub                 

elect                 elect                 

bw_mec                 bw_mec                 

                                    

Day 3 58 59 60 61 62 63 64 65 Day 4 82 83 84 85 86 87 88 89 

mec1                 mec1                 

mec2                 mec2                 

mec3                 mec3                 

lub                 lub                 

elect                 elect                 

bw_mec                 bw_mec                 

                                    

Day 5 106 107 108 109 110 111 112 113   Bus 1     Bus 8         

mec1                   Bus 2     Bus 9         

mec2                   Bus 3     Bus 10         

mec3                   Bus 4     Bus 11         

lub                   Bus 5     Bus 12         

elect                   Bus 6     Bus 13         

bw_mec                   Bus 7               
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A3 - Technical planning of the case study of CARRIS (Martins 260) 

Day 1 10 11 12 13 14 15 16 17 Day 2 34 35 36 37 38 39 40 41 

mec1                 mec1                 

mec2                 mec2                 

mec3                 mec3                 

lub                 lub                 

elect                 elect                 

bw_mec                 bw_mec                 

                                    

Day 3 58 59 60 61 62 63 64 65 Day 4 82 83 84 85 86 87 88 89 

mec1                 mec1                 

mec2                 mec2                 

mec3                 mec3                 

lub                 lub                 

elect                 elect                 

bw_mec                 bw_mec                 

                                    

Day 5 106 107 108 109 110 111 112 113   Bus 1     Bus 8         

mec1                   Bus 2     Bus 9         

mec2                   Bus 3     Bus 10         

mec3                   Bus 4     Bus 11         

lub                   Bus 5     Bus 12         

elect                   Bus 6     Bus 13         

bw_mec                   Bus 7               
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A4 - Technical planning of the case study of CARRIS (Martins 275) 

Day 1 10 11 12 13 14 15 16 17 Day 2 34 35 36 37 38 39 40 41 

mec1                 mec1                 

mec2                 mec2                 

mec3                 mec3                 

lub                 lub                 

elect                 elect                 

bw_mec                 bw_mec                 

                                    

Day 3 58 59 60 61 62 63 64 65 Day 4 82 83 84 85 86 87 88 89 

mec1                 mec1                 

mec2                 mec2                 

mec3                 mec3                 

lub                 lub                 

elect                 elect                 

bw_mec                 bw_mec                 

                                    

Day 5 106 107 108 109 110 111 112 113   Bus 1     Bus 8         

mec1                   Bus 2     Bus 9         

mec2                   Bus 3     Bus 10         

mec3                   Bus 4     Bus 11         

lub                   Bus 5     Bus 12         

elect                   Bus 6     Bus 13         

bw_mec                   Bus 7               

 


