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ABSTRACT
The study of the emergence of cooperation remains an open chal-
lenge for many areas of knowledge. This problem can be conve-
niently formalized through the eyes of game theory and iterated
N-person dilemmas. Here we investigate the learning dynamics
emerging from this type of problems. We simulate decision-making
in non-linear N-person dilemmas with agents portraying different
levels of sophistication concerning their learning method, adopting
a temporal difference learning algorithm as a baseline scenario.
The results show that the combination of a simple Actor-Critic
policy with a state space that allows players to distinguish how
many agents cooperated in the previous round can offer a signif-
icant increase in the overall levels cooperation. These results are
shown to be depend on the the nature of the dilemma, namely on
the size of the group and the minimum contributions needed to
produce a collective return. Cooperation is also shown to increase
with low exploration and learning rates, and to decrease with the
discounting of future rewards. Overall, our results suggest that, for
each dilemma, a proper selection of state space and policy selection
method ensures coordinated efforts within a multi-agent system
made of adaptive self-regarding agents.
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1 INTRODUCTION
Benefits of cooperation are not scarce in nature. One of the reasons
for the early Homo Sapiens have replaced the physically stronger
Neanderthals is the superior social capacities of the first over the
second [4]. Argentinian Ants can work together even from differ-
ent colonies, their high level of cooperation [9] allows them to
beat many other species in competition for resources [3]. But coop-
eration is not something easily achieved, there is an obstacle for

cooperation, which only some species overcome. One model that
illustrates well this dichotomy is the Prisoner’s Dilemma (PD). In
this model there are two people, if both cooperate they split the
rewards equally, if only one cooperates it wastes its efforts and
loses its rewards to the other player, if no one cooperates they have
no gains. Hence, the obstacle to achieve cooperation in this model
is the conflict of what is better for the group and what is best for
the individual. The game where agents play PD repeatedly is called
IPD and NPD is the generalization of IPD for more than two players.
In order to answer what are the factors that enable and increase
cooperation this work proposes a set of experiments with agents
that behave similar to animals in NPD.

One way of approximating animal behaviour is assuming that
they make decisions based on what they learn. They try out differ-
ent approaches and nature punishes or rewards their behaviour and
they use this information to improve future decisions [6, 8]. There
is a class of algorithms inspired by that, that is the Temporal Differ-
ence Reinforcement Learning algorithms. Reinforcement Learning
(RL) means the agents learn through repetition, punishment and
rewards. Temporal Difference (TD) means that decisions made in
the present may impact on the future, those algorithms balance this
by measuring not only the quality of the current action but also if
that action leads to a state where it is possible to get more rewards
in the next iterations. A key aspect for learning through trial and
error is to balance exploration and exploitation. The first is respon-
sible for seeking better alternatives and the other is responsible for
taking advantage of acquired knowledge to get high rewards.

This work merges two different fields of knowledge: Game The-
ory and Machine Learning. The first designs models and tries to
find equilibrium, optimal strategies and real world applications.
Since those models are usually called games, the individuals who
play them are called players. The second studies how machines
learn, since the machines that learn by RL are independent beings
that interact with the environment, they are usually called agents.
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Throughout this work, the terms player and agent mean the same.
With this framework we answer three main questions:

(1) Can RL agents achieve widespread cooperation when
playing NPD? What does it make difficult to achieve?
The environment is composed by the game and the other
players. This question focus on the game parameters in order
to find if there is a combination of them in which the agents
converge towidespread cooperation. Since [5] achieved coop-
eration with RL agents in IPD and [7] improved cooperation
in evolutionary environments with RL, it is expected at least
one configuration with widespread cooperation. After that,
this parameters are tuned to achieve a challenging environ-
ment that highlights the different cooperation rates of the
agents. The two parameters of the game are the number of
players (N ) and the public goods multiplier (f ). The more
players, the harder is to coordinate efforts towards coop-
eration, hence it is expected lower cooperation for larger
groups. The public goods multiplier gives how much re-
sources the game generates with the contribution of the
cooperators, hence a high f creates an environment abun-
dant in resources, that is expected to be easier to cooperate,
a harsher and more competitive environment otherwise.

(2) What is the role of cognition in the emergence of co-
operation among RL playing NPD?
The third question focus on the agent. So, with a selected
harsh scenario, vary how much information the player has
at its disposal and the methodology it uses to make decisions
using these information, one at a time. It is expected that
increasing complexity in both aspects increases cooperation,
since a higher level of cognition could improve coordination
among players. An experiment made with college students,
for instance, shows that increasing the information provided
to players during the game improved cooperation [10]. The
answer to this question includes: if the amount of informa-
tion has impact in cooperation or if is the kind of information
that matters, if the method to choose actions impact coop-
eration, if it is possible to have high cooperation without
giving up to much on exploration, if there is a limit to how
much cognition can improve cooperation.

(3) What RL agents learn when playing NPD?What is the
knowledge acquired by the agents that cooperate the
most?
This item has two goals: explain why the results of previous
question improve cooperation and give an interpretation of
the results that can be translated to real scenarios. Other
work already tried to improve cooperation in NPD so it is
expected that the results of these work corroborate some
of them. It is possible to improve cooperation by having
a number of players in the population whose objective is
to improve cooperation [2]. Since NPD has many players a
subset of them can learn to incentive others to cooperate.
Another approach is to improve cooperation by recognizing
other players intention [1]. Regarding classic game theory
strategies, Tit for Tat (TFT ) and Win-Stay-Lose-Shift (WSLS)
give insights on how to improve cooperation, the first incen-
tive others to cooperate and the other has a mechanism to

recover from mutual defection. This work answer this by
analysing the most frequently learned strategies.

The results show that there is widespread cooperation for high
values of f and low values of N. Reducing f already creates a chal-
lenging scenario where cooperation is improved, neither by only
increasing the amount of information nor by only improving the
policy for choosing actions, but by carefully selecting the right
combination of the two. The most cooperative agent has over 80%
of cooperation and it achieves that by developing a strategy with
a recover mechanism that allows the group to move quickly from
widespread defection to widespread cooperation.

2 MODEL
2.1 Defining the Game
The model to approximate the emergence and evolution of coop-
eration is NPD. In this game each player may choose to cooperate
C or defect D. When a player chooses to cooperate, it donates and
amount p of its resources to the public good. Then the resources
of all cooperators are summed and multiplied by the public good
multiplier f. Finally, the total amount is divided equally among the
players independently of their actions. Hence the reward function
of cooperating and defecting are very similar, the only difference is
the cost p to cooperate, as appear in

R(D) =
f kp

N
,

R(C) = R(D) − p,
(1)

where k is the number of cooperators. The reward is then added
to the resources the player currently have, if a player runs out of
resources it can not cooperate anymore.

This game is the generalization of PD for many players because
it have the same three possible situations: if all cooperate is the
highest global reward, mutual defection is worst than mutual coop-
eration and, in a mixed pool of actions, the defective players take
advantage of the cooperative players efforts.

2.2 Learning Dilemmas by Experience
The definition of a TD player is a quintuple: a state space S, the
possible actions A, the reward function R, the state transition and
the policy. The reward function and the state transition is given by
the game that the player is playing. The possible actions are C or
D. The policy is the rule by which the learner chooses its actions.
Finally, the state space is the possible states of the environment that
the agent perceive itself into. For example, an agent may operate in a
forest environment or a desert environment, thus it has a state space
S2 = {desert, f orest}, and it can specialize different strategies for
each state. However it cannot differentiate if it is in a boreal forest
or a tropical forest, hence it can not have specialized strategies for
working in each of them, even though being different, if differentiate
this two situations is important we can design a larger state space
S3 = {desert,boreal, tropical} to include this. Because of this, S
can be associated with the information the agent has at its disposal,
when enlarging the state space from S2 to S3 the agent gains the
information that there is two different kinds of forest. In our case,
the environment is the game and the opponents, so the state space
can be designed to convey more or less information about them.
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In [5] and in this work the RL algorithm used is SARSA, as in:

Qst ,at ← Qst ,at + α(Rst ,at + γQst+1,at+1 −Qst ,at ). (2)

This algorithm learns the value of each action in each state, those
values are displaced in a table called q-value table. This table has a
row for each state in S and a column for each action in A. The table
is initialized with zeros. In each time step the agent updates the
value of its current action at for the current state st that is Qst ,at .
First thing is to calculate which action (at ) to take in the current
state st , which is decided by the policy the agent is following. With
at is possible to get the reward from the function Rst ,at . Then, it
is necessary to calculate the quality of the next action in the next
state (Qst+1,at+1 ), in order to do that, we use the transition function
of the TD learner and each action of each player on the last round.
Then we apply the same policy again on st+1 to get at+1. Finally,
to get Qst+1,at+1 value is just to look in the q-value table.

Regarding the parameters: α and γ , the learning rate and the
discounting factor, respectively. Both range from 0 to 1. The first
configures how fast the agent learns, if the agent learns slowly it
takes more iterations to converge and it accumulates the knowledge
for more time, on the other hand, if the agent learns fast it converge
quickly but overwrites old knowledge for newer one. The other
parameter discounts the value of future benefits, the higher γ the
more important is future rewards for the agent.

The starting point for defining the agents for this work is the
agents defined in [5], that are RL agents for IPD. There are three
learning agents with different state spaces: a learner with one state
(TD1); a learner with two states (TD2), that remembers its last
action, and a learner with four states (TD4), that remembers its last
action (at−1) and the opponents last action (āt−1).

2.3 To Perceive More
The state space is not just information, it is also a factor that limits
the strategies the agent can learn. Hence the state space can be
associated with the capabilities of the agents, the larger the state
space the more complex strategies can the agent learn, the higher is
agent’s cognition. In this chapter we define 4 different agents, each
of themwith a larger state space size than the previous:MemoryLess,
MajorTD4, SelflessLearner and LevelLearner.

The two first agents are inspired, respectively, in TD1 and TD4.
MemoryLess and TD1 have |S | = 1 and it is expected to defect always,
since they do not know anything from previous rounds, this agent
is going to be used as a baseline for the other agents. MajorTD4 has
the exact same state space as TD4 {at−1āt−1 : CC,CD,DC,DD},
the difference is that, for TD4, āt−1 is the opponent last action
and, for MajorTD4, āt−1 is the most frequent action executed by
the opponents in the last round, it chooses C over D if tied. Ma-
jorTD4 receives this name thanks to its similarities with TD4 and is
dependence on the majority of opponents’ last actions.

The other two are based on the idea that instead of knowing only
the the majority of opponents’ actions, it is better to know exactly
how many players cooperated last round. The name LevelLearner
comes from this idea of knowing every ’level’ of cooperation, be-
sides how many cooperated, this agent also remembers its last ac-
tion as MajorTD4. As the number of states of LevelLearner increase
quickly with the number of players, we designed SelflessLearner

that, differently from MajorTD4 and LevelLearner, does not know
its own last action and has a space state size between the other two.

The state spaces sizes of MemoryLess and MajorTD4 are inde-
pendent of other parameters, they are, respectively 1 and 4. How-
ever for the other two agents it varies with the number of play-
ers. Since the number of cooperators may vary from 0 to N, the
number of possible states for the SelflessLearner is N + 1. Since
LevelLearner knows its own action, which have two possible values
(C or D), its state space size is 2 ∗ (N + 1). Resuming, for N = 5 the
state spaces sizes of each of these agents are |{0, 1, 2, 3, 4, 5}| = 6
and |{D0,D1,D2,D3,D4,D5,C0,C1,C2,C3,C4,C5}| = 12, respec-
tively.

2.4 To Choose Smarter
SARSA is classified as a on policy algorithm, because it uses the
policy to approximate the rewards of the next state. This means
that the policy has great impact on the algorithm performance and
on what it learns on the q-value table. One commonly used policy
is the ϵ-greedy, that is the policy used in [5]. This policy is greedy
because it chooses the action with greater value for the current
state with probability 1 − ϵ and chooses randomly any other action
with probability ϵ , that is the exploration factor. This policy has
this explicit factor to regulate agent’s exploration. TD4 playing IPD
against another TD4 achieves 60% of cooperation for low values of
ϵ , high values of γ and low values of α .

Formally, the epsilon-greedy policy for IPD and NPD is

πϵ−дr eedy (s) =

{
arдmaxa (Q(s,a)), with probability (1 − ϵ)

arдmina (Q(s,a)), with probability ϵ .

(3)
Since in these games there are only two possible actions, choosing
randomly any other action is just selecting the other one, as show
in equation 3. In the case that the two actions have the same value
in the table for a state, the agent chooses one randomly, including
at the start when the whole q-value table is initialized with zeros.

The exploration factor in epsilon greedy policies is very impor-
tant to the very process of learning, without this factor, TD learners
following ϵ-greedy just stick to what it learned in the first iteration.
Hence, exploration allows the agent to actually use information of
multiple iterations and learn solid knowledge about the game. So it
is urgent to increase cooperation without lowering ϵ so much. One
solution for that is to have a high value of ϵ in the beginning of the
game and decrease the value of epsilon through time. It is possible
to define two other policies with dynamic decreasing ϵ : one decays
by a linear function, the other by a logarithmic one.

The only modification needed in equation 3 is to instead of using
the fixed probability ϵ , use

ϵl in =
ϵ0

NR + 1
(4)

instead, where ϵ0 is the initial value of the exploration factor and
NR is the number of rounds already played.

Similarly, to implement a logarithmic decreasing epsilon greedy
policy is just use

ϵloд =
ϵ0

ln(NR + 2)
. (5)

instead of the static ϵ .
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Another option is to use policies that do not have an exploration
factor (although they allow the agent to explore). One way of doing
that is with probability distribution functions like Boltzmann. That
uses the q-value table to calculate the probabilities of choosing each
action in the current state. These probabilities are calculated by

pa (s) =
eβQ (s ,a)∑

a′∈A eβQ (s ,a
′)
, (6)

where β is a constant that changes the shape of the function. An
agent following this policy sorts its action based on these probabil-
ities at each time step, note that pD + pC = 1 at any time. Since the
q-value table starts with all entries equal to zero, before simulation
starts pD = pC = 0.5, this means that at the beginning the agent
will choose actions randomly like the ϵ-greedy policies.

Finally, the last policy tried out in this work is an Actor-Critic
policy. Actor-critic agents learn two different things while playing,
the first is the critic that is how good an action is for each state,
what is being learned by SARSA, the other is the actor that it learns
how to choose actions given the critic. One simple way of doing
this is to use a bernoulli distribution for each state,

pa,s =

{
ps , i f a = C

1 - ps , i f a = D
(7)

where ps is the probability to cooperate in state s, hence the agent
will learn a vector of probabilities P = (ps1 ,ps2 , ...,psn ), where
n = |S |. To update these values we use the same value used to
update the q-value table. It is possible to rewrite the equation 2 like

Qst ,at ← Qst ,at + αδ ,
δ = rst ,at + γQst+1,at+1 −Qst ,at .

(8)

This δ is then used to update the vector of probabilities with

∆ps = αpδ (y
t − pts ), (9)

where αp is the learning rate of the policy, yt is the value of action
selected in round t (it is 1 if at = C and 0 otherwise) and pts is the
current value of the probability of cooperating in the current state.
This is a linear actor-critic policy, simplified for |A| = 2, specified
in [11].

2.5 Strategy identification and dynamics
At the beginning, agents play randomly, independently of the pol-
icy they are following. However when they start to learn they
start trying out strategies, until they find the best strategy for their
environment. Nevertheless, the other players are part of that en-
vironment, so when a player starts playing a different strategy, it
changes the environment for the others, what may cause them
to change strategy in response. This happens because RL agents
always try to learn the optimal strategy against the other players.
The search for the optimal response for the environment is what
creates these dynamics. First we need to define a strategy, that is
only a sequence of actions, that usually can be translated into a
rule, like always cooperate (ALLC), always defect (ALLD), alternate
defection and cooperation (ALT ), start cooperating then copy op-
ponent’s action (TFT ), defect if the opponent defected twice in a
row and cooperate otherwise (TF2T ), repeat last action if in mutual
cooperation or defected against cooperation and flips last action
otherwise (WSLS). A strategy h1 is optimal against strategy h2 if
there is no other strategy that has greater expected reward playing

against h2 1. Examples of optimal strategies are abundant: ALLC is
optimal against TFT, ALLD is optimal against ALLC, TFT is optimal
against ALLD and ALT is optimal against TF2T. By analysing what
strategies the agents learn at the end of simulation it is possible
to explain why some agent cooperates more than another one and
what is the reasoning about the agent’s decisions. On the other
hand, by checking how many times an agent changes strategy
during learning it is possible to measure how much is the agent
exploring alternative strategies.

To determine what strategy an RL agent is playing at a given
point it is necessary to look at its q-value table. For the greedy
policies and Boltzmann only the q-value gives all the information to
determine how the agent is playing. For actor-critic is necessary to
look at the probabilities learned by the actor. Another thing to notice
is that greedy policies only play pure strategies, while Boltzmann
and actor-critic may play mixed strategies. Pure strategies have
an action associated with each state, while mixed strategies have
probabilities of playing each action for each state. Nevertheless,
it is useful to look at the q-value table and extract the strategy a
greedy policy would have with those values. For simplicity only the
strategies learned by MajorTD4 are analyzed, its state space allows
it to learn any pure memory-one strategy. Those strategies can be
defined by four bits (S = b3b2b1b0), where each bit corresponds to
the action the player chooses in a given state, the possible states
are {at−1āt−1 : CC,CD,DC,DD} and cooperate is represented by
1 while defect is represented by 0. Then, b3 = 1 corresponds to
cooperate in CC, b2 = 0 to defect in CD, b1 = 1 to cooperate in
DC and so on. By generating every possible value, there are 16
possible strategies and many of them were already mentioned, for
example: ALLD = 0000 = S0, ALT = 0011 = S3, TFT = 1010 = S10,
ALLC = 1111 = S15. Hence, to extract a strategy from the q-value
table, it is necessary an empty stream of bits, then for each state in
{CC,CD,DC,DD} concatenate a 0 on the right if the most valuable
action for that state is D, concatenate 1 otherwise.

A measure of exploration is important for assure that the en-
hancements in cooperation do not sacrifice too much exploration.
Themetric formeasuring exploration is the average strategy changes.
In order to take this measure is just to check the strategy the agent
is playing at each iteration and count how much it changes. Those
changes occur whenever an agent reevaluates what is the best
action for a state.

3 RESULTS
To evaluate the improvement in cooperation, it is necessary to
establish a starting configuration from which variations are created
varying one trait at a time. The base configuration is a NPD game
(f = 2) with five MajorTD4, all with the learning step α = 0.05,
the weight on future knowledge γ = 0.9 and the epsilon greedy
with exploration factor ϵ = 0.001 as the policy for selecting actions.
The values for α and γ are based in [5], and, as in NPD is expected
even higher sensibility to the exploration factor, this baseline has a
smaller value of ϵ than the one used in [5], ϵ = 0.01.

1A strategy hi is defined as optimal against a strategy hj if R(hi , hj ) ≥
R(hk , hj ), ∀hk ∈ H . Since a strategy h defines a sequence of actions (a0, a1, a2, ...),
R(hi , hj ) is defined as the expected reward of following strategy hi against an oppo-
nent following strategy hj , formally: R(hi , hj ) = limN→∞

∑N
t=0

R(at ,āt )
N .
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Besides that, there are two fixed parameters for NPD, the starting
resources and the cost of cooperating, the first is fixed in 20 and
the second fixed in 1. Those parameters open a whole new set of
possible experiments, regarding wealth distribution and its impact
on cooperation, for example. However, this work does not measure
the influence of these parameters.

The experiments are arranged in study cases, each of them can
be made of any number of experiments and is driven to answer
a question. All the experiments share some traits: they are made
of 1000 games with the exact same parameters, each game lasts
for 1000 rounds which the N players do not learn, they already
learned previously, each one of the N players learned through
20000 rounds with other N-1 identical and independent players.
The main measure extracted from these experiments is the average
cooperation rate, that is the average cooperation in the last 100
rounds in each game.

There are two studies and an analysis: the Environment Study,
the Cognition Study and the Strategy Analysis. The Environment
Study, checks if the is a scenario where agents cooperate and pro-
poses a challenging one for testing which agent cooperates more.
The Cognition Study tests many agents variations to identify the
role that cognition plays in cooperation among RL agents. Finally,
the Strategy Analysis checks what the agents learned to discuss
the reasoning behind the enhancements in cooperation.

3.1 Environment Study
There are two parameters of the game expected to impact the coop-
eration: the number of players N and the public goods multiplier f.
These two parameters are tuned for setting an environment hard
to cooperate in order to highlight the impact of agents’ cognition
in cooperation.

Figure 1: The percentage of cooperation in the last 100
rounds in NPD with fiveMajorTD4 following epsilon greedy
policy with ϵ = 0.001 for different values of public good mul-
tiplier f.

The results in figures 1 and 2 are as expected. There is coopera-
tion among RL agents in NPD and cooperation rates change with
those parameters. As the number of players increase, cooperation
decreases and as the public goods multiplier increases the coopera-
tion sharply increases. In order to have cooperation, players must
coordinate efforts and it is harder to coordinate a larger group. On

Figure 2: The percentage of cooperation in the last 100
rounds in NPD with fiveMajorTD4 following epsilon greedy
policy with ϵ = 0.001 for different number of players (N ).

the other hand, the public goods multiplier reflects on amount of
resources in the environment and the lesser the harder is to coop-
erate. In a scenario with abundance of resources, high values of f,
even little cooperation generates rewards that surpass the cost of
cooperating, thus the fear of being exploited by other agents in low
cooperation states disappear, what boost cooperation.

The scenario to be used as baseline in other experiments was
f = 2 and N = 5. Because in this configuration is difficult enough
to cooperate and a relatively small number of players make simula-
tions less demanding.

3.2 Cognition Study
Before diving into agents’ cognition there are two parameters that
shape agents behaviour: the learning rate (α ) and the discounting
factor (γ ).

Figure 3: The cooperation rate in the last 100 rounds in NPD
with fiveMajorTD4 following epsilon greedy policy with ϵ =
0.001 for different values of α .

The learning rate sets the pace of learning. The smaller the
more time the agent needs to learn and the more it accumulates
knowledge through time, the higher the faster it learns and more
frequently old knowledge is discarded to make room for new one.
As expected a small α boosts cooperation.

The discounting factor penalizes rewards that are in the future.
An agent with γ close to one prioritize future rewards more than
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Figure 4: The cooperation rate in the last 100 rounds in NPD
with fiveMajorTD4 following epsilon greedy policy with ϵ =
0.001 for different values of γ .

an agent with low values of γ . In other words, the agents cooperate
more when they value long term gains over immediate gains.

Although ϵ appear only in epsilon greedy policies, it has huge
impact in cooperation. As figure 5 shows, independently of the
state space, ϵ impact a lot in cooperation, ranging from less than
10% to almost 80% of cooperation with MajorTD4.

Regarding cognition, TD learners have two traits of interest. The
first is the state space is responsible for the perception of the agent,
the bigger and more detailed state space, the more it perceives from
the environment. While the policy is the methodology to make
decisions based on the state space, what is a form of reasoning.

Figure 5: The cooperation rate in the last 100 rounds in NPD
with five players following epsilon greedy policy for differ-
ent values of ϵ and different agents.

In figure 5 the results of Memoryless and MajorTD4 are expected,
the increase in state space allowed a huge improvement in coop-
eration rates, although at the cost of decreasing the exploration
factor. However the reduction in cooperation from MajorTD4 from
SelflessLearner is not expected. It was expected that the increase in

Policy Strategy
Changes

Algorithm Parameter Average Standard
Deviation

Epsilon Greedy ϵ = 0.01 104.91 142.96
Epsilon Greedy ϵ = 0.001 3.812 14.92
Epsilon Greedy ϵ = 0.0001 1.84 1.90

Linear Dynamic Epsilon ϵ0 = 0.1 1.56 1.32
Log Dynamic Epsilon ϵ0 = 0.01 4.92 22.01

Boltzmann β = 1 7.80 3.50
Actor-Critic αP = 1 2.82 4.32

Table 1: Average number of changes on strategy for 1000
NPD games (f = 2), MajorTD4 and 5 players during learn-
ing for different policies.

state space size would enhance cooperation. Since the agent with
the best results is the MajorTD4, the next experiments tries out
different policies with this agent in order to enhance cooperation
without decreasing exploration significantly.

Decreasing exploration harms the learning process: it makes
the agents more susceptible to stick in sub-optimal states and less
adaptive. One way to measure that is to check in average howmany
times the agent changes the strategy it is playing during learning,
the more changes the more it explored different ways of playing.
The average strategy changes for MajorTD4 and different policies
are in table 1. Notice how the strategy changes decrease when ϵ is
decreased in epsilon greedy policy with static ϵ .

Then, the goal is to find a policy that is better than epsilon greedy
policy with ϵ = 0.0001, in other words, that have higher cooperation
rates without losing exploration. After testing each policy for many
variations of its parameters, the best configurations was selected,
their strategy changes are in table 1 and their cooperation rates in
figure 6.

Figure 6: The cooperation rate in the last 100 rounds in NPD
with fiveMajorTD4 for different policies.

The only policy that strictly increases cooperation and strategy
exploration was the Actor-Critic policy, that stands out as the best
result. Epsilon greedy with linear decreasing epsilon also has coop-
eration improvement but at slightly less exploration. The other two
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policies, the epsilon greedy with logarithmic decreasing epsilon and
Boltzmann, increase exploration at the expense of small decrease
in cooperation rates.

Actor-Critic is the best result with MajorTD4 and this was ex-
pected, because it decreases variation during learning. Since actor-
critic has such good results, we experimented it with the other
agents, the results are in figure 7. The best result is with Level-
Learner, with αP = 0.05, achieved cooperation of 80% and changes
strategy during learning 25.34 ± 8.28 times on average.

Figure 7: The cooperation rate in the last 100 rounds in NPD
with five players following actor-critic policy for different
values of ϵ and different agents.

Those results show how central cognition is to cooperation. It
allowed the improvement fromMemoryLess toMajorTD4, regarding
state space, and again from epsilon greedy to actor-critic, regarding
policy. Although increasing cognition in these two cases improved
cooperation, fixing one state space and varying policies or fixing
a policy and varying the state space does not reveal a steady im-
provement in cooperation. The improvement in cooperation seems
attached to the careful combination of state space and policy.

3.3 Strategy Study
The state space of MajorTD4 has the advantage of being easily
translated into one of the 16 memory-one strategies of IPD. So this
part focus on the strategies learned by MajorTD4 and explores also
the probabilities of cooperating learned by agents playing actor
critic policies.

There are significant difference between the strategies learned
by MajorTD4 when following epsilon-greedy and when following
actor-critic. The first is the number of players that learn TFT. The
second big difference is the number of S05 strategies. S05 is in-
teresting because it is the TFT upside down, instead of copying
the opponent’s last action, it plays the opposite of opponent’s last
action. This means that when few players are cooperating, it co-
operates, when many are cooperating, it defects. The appearance
of this strategy may be responsible for the boost in S15 = ALLC
frequency with actor-critic policy. Besides those differences, both

S0 = 0000 = ALLD S8 = 1000
S1 = 0001 S9 = 1001 = WSLS
S2 = 0010 S10 = 1010 = TFT

S3 = 0011 = ALT S11 = 1011
S4 = 0100 S12 = 1100
S5 = 0101 S13 = 1101
S6 = 0110 S14 = 1110
S7 = 0111 S15 = 1111 = ALLC

Table 2: MajorTD4 strategy mapping to binary with names
of important strategies.

configurations have a low number of ALLD and a high number of
ALLC, although actor-critic the frequency of ALLC is higher.

Figure 8: Strategies learned by five MajorTD4 playing NPD
(f = 2) following epsilon greedy policy (ϵ = 0.0001) through
1000 games.

Nevertheless, actor-critic policy also learns the probabilities of
cooperating in each state. The average results over 1000 games are
shown on table 3 for MajorTD4, on table 4 for SelflessLearner and
on table 5 for LevelLearner. The standard deviations in table ?? and
the strategy distribution in figure 9 indicate a possible specializa-
tion in the group dynamics, that means the reason for those high
standard deviations are that values agents converge for different
strategies that stabilize together. Things become clearer with the
data of SelflessLearner in table ??. The more specific state space
let the agent learn to cooperate with almost 60% frequency when
no one is cooperating and to not cooperate when only one or two
players are cooperating. This shows that the agent learned a re-
cover mechanism, a way of going from a state of no cooperation
to a state of high cooperation, this explains the cooperation rates
of figure 7, LevelLearner also leanrs this mechanism, however with
smaller standard deviations. This mechanism reassembles WSLS,
however during learning agents following actor-critic do not learn
this strategy, it seems they end up differentiating in the case of
MajorTD4 or seeking mixed strategies in the case of SelflessLearner
to create these mechanism.
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Figure 9: Strategies learned by five MajorTD4 playing NPD
(f = 2) following Actor-Critic policy (αP = 1) through 1000
games.

State DD DC CD CC
Average 0.3758 0.3949 0.4280 0.8538
St. Dev. 0.2128 0.2069 0.1923 0.2232

Table 3: Average probability to cooperate and average devi-
ation of MajorTD4 following Linear Actor-Critic policy for
each state of S.

State 0 1 2 3 4 5
Average 0.5949 0.0101 0.0539 0.2350 0.7878 0.6364
St. Dev. 0.0410 0.0224 0.0332 0.2167 0.4016 0.1354

Table 4: Average probability to cooperate and average devi-
ation of SelflessLearner following Linear Actor-Critic (αP =
0.1) policy for each state of S.

State DEF0 DEF1 DEF2 DEF3 DEF4
Average 0.5808 0.0588 0.0159 0.0158 0.0165
St. Dev. 0.0244 0.0275 0.0118 0.0209 0.0568

State COOP1 COOP2 COOP3 COOP4 COOP5
Average 0.1833 0.2439 0.6138 0.9995 0.6033
St. Dev. 0.0625 0.0365 0.0320 0.0041 0.0700

Table 5: Average probability to cooperate and average devia-
tion of LevelLearner following Linear Actor-Critic policy for
each state of S.

Overall, the configuration that have the higher cooperation rates
are the one whose cognition level allowed the agents to develop
mechanism to recover from a state of widespread defection.

4 CONCLUSIONS
Widespread cooperation is possible with RL agents playing NPD,
for high values of f, more than 80% of cooperation is achieved.
However, resource abundant environments are not the rule, usually
individuals have to compete for resources, so we fixed f = 2 and
N = 5 as the harsh scenario. In this environment the problem of
managing exploration appears and sticks throughout this work.

Then we found out that the parameters α , γ and ϵ impact a lot
in cooperation as well. Cooperation increases for high values of
γ and low values of α and ϵ . Those relations can be understood
as principles that favours cooperation: the low values of learning
rate and exploration means that changes must be taken slowly and
not very frequently, to accumulate the knowledge through time
and give time for the environment to adjust; the high value of the
discount factor means that individuals must value long term gains
over short term ones.

Further on, cognition plays a key piece in the search for high
cooperation rates. However the increase in cooperation is not ex-
plained solely by the increase in state space size neither by substi-
tuting the policy for another more complex. The improvement is
due to a combination of the both. Analysing the results, it seems
that for a given S it is possible to vary policies in order to increase
cooperation, however some of them may perform worse than they
are supposed to because of constraints of the state space, if we
upgrade the state space the same policy may perform much better,
this happens with actor critic. We can see that the recover mecha-
nism learned in tables 4 and 5 is only possible because the agent
is capable of differentiate when none player is cooperating from
when only one or two are cooperating, MajorTD4 does not make
this clear distinction. The process is not linear but iterative, fix
the best S and test different policies, then fix the best policy and
improve S and so on.

The last consideration we can take from the Strategy Analysis
is that, beside the recover mechanism, the higher cooperation is
not with all the players. In PD, as in its variations, there are two
reasons to defect: fear of being exploited in case of low cooperation
and exploit the other players to maximize its own gains (free ride).
LevelLearner following actor critic solved the first reason to defect
with the recover mechanism, but did not solve the second, there
is a decrease in cooperation from the state of COOP4 to COOP5,
showing some lenience with a limited number of free riders.

For future work there is lot to be done, ranging from testing
other public goods game, not only NPD, to testing more complex
RL algorithms and policies and implementing this framework in
real life scenarios where NPD naturally appear.
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