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Abstract

This thesis tackles the problem presented by the Ms. Pac-Man vs Ghost Team Competition. This

competition challenges developers around the world to create intelligent agents with the objective of

getting the best score possible in the game Ms. Pac-Man while dealing with partial observability of the

game environment. The approach taken was a Monte Carlo Tree Search algorithm. In the end, two

similar agents were developed, tested and compared. Both achieved satisfactory results, reaching level

2 of the game, and provided great insight into the difficulty of the challenge and possible solutions for

future approaches.
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Resumo

Esta tese aborda o problema apresentado pela competição Ms. Pac-Man vs Ghost Team Competition.

Esta competição desafia developers em todo o mundo a criarem agentes inteligentes com o objetivo

de obter a melhor pontuação possı́vel no jogo Ms. Pac-Man lidando com a observabilidade parcial

do ambiente de jogo. A abordagem escolhida foi um algoritmo Monte Carlo Tree Search. No fim,

foram desenvolvidos, testados e comparados dois agentes semelhantes. Ambos alcançaram resultados

satisfatórios, atingindo o nı́vel 2 do jogo, e providenciaram melhor compreensão sobre a dificuldade do

desafio e possı́veis soluções para abordagens futuras.
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Monte Carlo Tree Search; Inteligência Artificial; Sistemas Inteligentes; Ms. Pac-Man Vs Ghost Team.
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1.1 Motivation

In recent years, Artificial Intelligence (AI) has become the most discussed field in computer science. With

the advances of technology and rising popularity of smart devices, tech companies have focused more

and more resources in the development of products that make use of intelligent agents in different ways.

Names like Amazon’s Echo and Alexa, Google’s Cortana or Apple’s Siri are recognized by basically

anyone. These products were heavily marketed when they first came out as innovative, smart assistants

to everyday tasks and their success was instant. Therefore, it is not surprising that these giants of the

tech world would continue to invest in them for years to come. However, research in the field of AI is

not a recent trend. In fact, after surging in the 1950s, this field has seen a rapid evolution over the last

couple of decades, with a focus on games as a test-bed for research efforts. Games are one of the

main ways to develop AI, in particular intelligent agents, because they are defined by a strict set of rules,

which means the testing environment is more easily understood by the developers and, consequently,

the agents being developed, and they usually provide the agent with a unambiguous way to evaluate its

performance via game score achieved or outcome. In 1997, DeepBlue [1] was able to beat, in a game

of chess, Garry Kasparov, the world champion at the time. More recently, in 2016, AlphaGo [2] beat Lee

Sedol, considered the best Go player in the history of the game, in a match of Go. These two softwares

achieved what are now considered milestones in the field of AI.

In the case of Ms. Pac-Man, several competitions have been held over the last decades, challenging

participants to develop agents that can optimize the playing of the game. Even so, new entries obtain

interesting results every year. In fact, Ms. Pac-Man is a much more complex game than it seems at first

sight: the ghost’s movement is semi-random and unique for each ghost, there are multiple maze layouts

that, after level 4, alternate randomly, the game’s speed increases with each level and, above all, the

game doesn’t end until Ms. Pac-Man dies, which means that ”infinite” playthroughs are, theoretically,

possible.

1.2 Goals

This thesis’ main goal was to develop an agent suited for the international Ms. Pac-Man vs Ghost Team

Competition [3]. Using the competition’s engine and development environment, this thesis focuses on a

Monte Carlo Tree Search (MCTS) based approach to try to achieve the highest in-game score possible.

During development, we ended up with 2 variations of an agent, thus enabling the comparing of a

”standard” MCTS aproach to a more complex one.
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1.3 Organization of the Document

In Chapter 2 of this document, a short introduction to the background of the Ms. Pac-Man vs Ghost Team

Competition is provided, along with an explanation of the Monte Carlo Tree Search standard algorithm

and a look at 2 papers that were essential in the conceiving of the agent developed in this thesis.

In Chapter 3, we will look at the development environment used for this thesis, consisting of the pack-

age provided by the Ms. Pac-Man vs Ghost Team Competition organizers, and the initial development

process of the agent.

In Chapter 4, everything about the agent is explained in detail, from the model of the game and agent

itself to the MCTS algorithm and the adaptation we made to improve the agent’s performance.

In Chapter 5, the results achieved by the agent are presented and discussed.

In Chapter 6, conclusions are drawn and we talk about how this agent could be worked on in the

future and its limitations.
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This chapter serves to integrate both the Ms. Pac-Man vs Ghost Team Competition and the MCTS

algorithm in the context of this thesis.

2.1 Ms. Pac-Man vs Ghost Team Competition

The Ms. Pac-Man vs Ghost Team Competition [3] is a competition organized by the University of Essex

since 2016. It challenges developers to produces intelligent agents that can control either Ms. Pac-Man

or the ghost team in the game Ms. Pac-Man.

Before 2016, the university organized similar competitions, named Ms.

Pac-Man Screen Capture Competition [4] and Ms. Pac-Man vs Ghosts

Competition [5], which had the same objective of challenging developers

but different formats. The previous one provided agents with data about

the game state via screenshots, while the latter one did so using the game

engine itself. The difference between the latter and the current format is

that the more recent one, running since 2016, implements partial observ-

ability for the agent as an element of increased difficulty. This means that

the agents can’t ”see” through walls and, thus, have access to limited infor-

mation about the game state at any point.

These competitions are well-known for the good results obtained by the participants in terms of novel

intelligent agents and continue to be relevant for research in the field of AI.

2.2 Monte Carlo Tree Search

The Monte Carlo Tree Search (MCTS) is a heuristic search algorithm for decision processes in the

context of computational problems. It is based on the original Monte Carlo method, applying it to a

game-tree search, as described by Rèmi Coulon in 2006 [6].

This algorithm is commonly used in decision problems in games. Its first implementation was in the

game Go [2], but it has been used in other board games like chess, games with incomplete information

like poker and, more recently, in video games.

The MCTS algorithm focuses on analysing the most promising moves for a player at a certain mo-

ment in time. By utilizing random sampling to expand the search tree, the algorithm is able to playout

the game many times and, considering the final result of each playout, re-weight the tree nodes so that,

in future playouts, better nodes are chosen more often. The algorithm itself consists of 4 steps:

7



Selection: The first step in the algorithm. In this step, start-

ing from a root node, successive child nodes are selected until a

leaf node is reached. The root node is the current game state,

while leaf nodes are any nodes that haven’t gone through a playout.

Usually, the leaf node selected is the one with highest win rate at this present

time, as shown by the image, but other heuristics can be used to describe

the selection process.

Expansion: After selecting a leaf node, let’s call it node L, one or more

child nodes are created. These child nodes are simply game states reach-

able from L after one step in game time. After creating this child nodes,

one of them is chosen to be played out in the next step of the algorithm. It

is common practice to create all the possible child nodes in order to make

sure that all possible outcomes are evaluated by the algorithm, resulting in

better results overall.

Simulation: Also known as the Playout or Rollout phase, this step

consists of doing one complete random playout from the child node cho-

sen in the Expansion step. This means choosing moves until the algorithm

reaches a game state where the game is decided, i.e. the game is won,

lost or draw. However, some games might be too long or complex or simply

not have a clear game ending state (for example, Ms. Pac-Man if the player

never loses) for this basic approach to work because the tree would never

stop growing and the algorithm would never progress beyond this step. As

such, most implementations of MCTS limit the number of moves executed

in a simple playout. This is called the maximum playout depth. In this case,

the algorithm proceeds to the next step after reaching the maximum playout depth or a game ending

state.

Backpropagation: The final step of the algorithm, simply consists of

updating the information of the nodes from the child node played to the

root node. Usually this means simply updating the weights of the nodes

but in more complex implementations each node might store more relevant

information.

These 4 steps are repeated in each time step of the game, with the

root node changing each time. This guarantees that, ideally, the algorithm

makes the best move in each time step and adapts to changes in the game

environment on the fly

8



Selecting child nodes is the hardest part of the algorithm to implement,

because it requires a good balance between exploration and exploitation. Usually, there is limited time

to make a decision. Thus, it is important to allocate the time available wisely between simulations

of several moves with low playout steps (exploration) and simulating a lot of playout steps for a more

restricted number of initial moves (exploitation). To deal with this problem in a systematic way, the most

common formulas used are UCB and UCT, both based on win-rate calculations to help the algorithm

make the best decision.
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In this chapter, we will look at some agents submitted to the competition in previous years. These

will provide a deeper insight into different approaches developers have taken over time and what results

they achieved.

3.1 Training Pac-Man bots using Reinforcement Learning and Case-

based Reasoning

[7]

This project aimed to create bots for the Ms. Pac-Man game, particularly for the Ms. Pac-Man char-

acter. For this, the authors implemented a reinforcement learning technique with Q-Learning algorithm

for decision making of the agent, replacing the typical Q-table with a case base, which helped deal with

rich game state representation and inject domain knowledge.

This project was developed on a game engine that did not implement partial observability, so the

agent had complete access to game state. This game state was modeled as a graph where each tile

of the game space was represented by a node. For each direction that the agent can move, it saves 4

variables that represent distance to closest pill, closest power-pill, closest non-edible ghost and closest

edible ghost, which means it needs 16 variables to describe the game state. To reduce the amount of

possible game states, these variables can have 1 of 5 values: WALL, VERY CLOSE, CLOSE, MEDIUM,

FAR.

The agent can choose one of the possible four directions to move, but the decision process only

takes place in intersections or when a ghost is nearby. To choose which direction to take, the agent

uses a similarity function to find the case stored most similar and makes the same decision. After each

decision, the new case is stored and the case base is cleaned by removing cases too similar to each

other.

This approach is rather different from the one developed in this thesis. However, it is mentioned here

because it was crucial for the success of our agent, as this is where the idea of adaptation mentioned

further down in this document came from. If the agent developed by these participants only ran the

decision process on intersections, it would not have a way to avoid ghosts, just like our agent wouldn’t

be able to avoid ghosts if we hadn’t worked around the impossibility of the agent to choose to turn

backwards.
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3.2 A Model-Based Approach to Optimizing Ms. Pac-Man Game

Strategies in Real Time

[8]

This project uses a model-based approach to create an AI player for the character Ms. Pac-Man. The

game model is represented in the form of a graph which is updated over time and, like in the previous

example, each node represents one position on the maze. However, the game model is different. In this

case, walls aren’t part of the model. Instead, each node represents one cell and the adjacency of cells

in a maze is represented by edges connecting nodes. Based on this graph, a decision tree is created,

with root in the position of Ms. Pac-Man and each branch representing a sequence of cells that can be

visited by Ms. Pac-Man.

To choose a branch to explore, a profit function was made for Ms. Pac-Man. This function takes into

account the risk of getting captured by a non-edible ghost and the reward from reaching a pill, power

pill, edible ghost or bonus item. This function is used to calculate the overall reward value of a branch,

which is then used to choose the next action. In this process, the agent uses an exponential discount

factor, thus prioritizing short term reward over long term because the game state changes so fast.

This agent achieved good results: it performs better than beginner and intermediate human players.

This showed the value of a well-thought profit function. In our project, we implement something like this

in a method called calculateGameScore, which takes into account the game score, game time and level

of a game state to calculate the value of a branch in the decision process.

3.3 A Simple Tree Search Method for Playing Ms. Pac-Man

[9]

This paper describes a tree-search software agent. Game-tree search is very commonly used in

many games, but this was the first attempt to apply it to Ms. Pac-Man. It was utilized for path finding and

tested in a simulator as well as the original game via screen capture.

For the purpose of testing this agent, the authors of this paper created a Ms. Pac-Man simulator.

This simulator, written in Java, uses the Model-View-Controller design pattern and replicates most of

the features of the original game, albeit with some differences. This also allowed much faster and deep

evaluation of the agent’s performance. They also created a screen capture adapter, which by itself

extracts all the information from the game screen, thus allowing any agent to play in the simulator and

original game without any specific changes to its code.

The agent itself uses a tree to evaluate all the possible paths that can be taken from Ms. Pac-Man’s

current position. This tree is generated every game cycle, using Ms. Pac-Man’s current position node as

14



the root and adding children to the tree until the maximum depth, manually chosen by the developers,

is reached. Each node contains information about that position on the maze such as empty, pill, power

pill, Ms. Pac-Man, ghost or edible ghost. After the tree is created, a tree search algorithm is run to find

out all the possible paths that can be taken. Then, each path is evaluated as safe or not-safe. If a path

has no ghosts and there are no ghosts in the tree, it is considered safe, if there is a ghost in the path it

is immediately considerate unsafe. For cases in which the path being evaluated has no ghosts but there

are ghosts elsewhere in the tree, the algorithm sees if it can reach the first safe node before any ghost.

If yes, the path then the path is considered safe, otherwise it is considered not-safe. After evaluating all

paths, the agent must choose on of the safe paths to take.

For path selection, the developers used 3 different methods: randomly choosing one safe path,

choosing the one with most pills and considering the number of pills and power pills in each path, as

well as the position of the path on the tree. The results of the agent when run on the simulator were as

follows:

Figure 3.1: Results from the Ms. Pac-Man simulator

The Most-Pills-Path strategy was much better than Rand-Safe-Path, due to it being able to clear

levels faster and more often. The Hand-Coded-Set achieved even better results due to the use of the

hand-coded rules mentioned before.

Figure 3.2: Results from the Ms. Pac-Man simulator

The results for the experimentation on the screen capture model were, as expected, much lower.

This is mainly because the information obtained by the agent in this format is less reliable than the one

obtained directly by the simulator. Another small detail that may have caused many deaths that would

not happen in the simulator is that, in the original game, Ms. Pac-Man slows down slightly while eating

pills, while in the simulator it does not.

Overall, the authors were surprisingly satisfied with the results and mention, as the next step to

improve this agent, the implementation of a full game tree or Monte Carlo based tree search.
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3.4 An influence map model for playing Ms. Pac-Man

[10]

As the title suggests, this paper presents an agent for playing as Ms. Pac-Man using an influence

model. The authors tried to make the agent as simple as possible, using only three parameters in the

influence mapping function.

Figure 3.3: Influence map
as a cloud

An influence map is a function defined over the game world representing

the (un)desirability of an area. Game objects and agents exert an influence

around their current location and the influence map is the sum of all these

influences. These can be positive influences, like the ones from pills and

super pills, or negative, like the ones from inedible ghosts. The agent is

then attracted to the positively influenced areas of the map while trying to

avoid the negative ones. An example of an influence map represented as a

cloud on the Ms. Pac-Man game is in 3.3. As we can see, there is a much

higher positive influence on the top-left quarter of the map, where there is a

higher concentration of pills.

For this agent, the influence mapping function considers only 3 param-

eters when assessing the influence value of a point in the maze: the total number of uneaten pills and

power pills, the distance between an uneaten pill and the evaluated position and the number of pills and

power pills that have been eaten already. In each time step, the 4 adjacent positions to Ms. Pac-Man

are evaluated and the one with highest value of influence is chosen as the move to be made.

The agent was able to perform and provided interesting insight into parameter and strategy evalua-

tions. However, when submitted to the 2008 Congress on Evolutionary Computation (CEC) Ms. Pac-

Man competition, it achieved much lower results. The authors attribute this to the disparities between

the testing game environment and the competition’s game environment.

3.5 Monte-Carlo tree search in Ms. Pac-Man

[11]

This paper, unlike other agents, focuses solely on a single aspect of the challenge of playing as

Ms. Pac-Man: to avoid pincer moves of the ghosts, in order to increase the chance of survival for Ms.

Pac-Man.

Pincer moves are defined as game states where Ms. Pac-Man cannot escape, no matter what

direction it takes. According to the authors, these moves are very hard to avoid and were the major

downfall of many of the existing Ms. Pac-Man agents, since the ghosts do have some randomness

associated to their behavior. Thus, by solving this problem, the chance of survival, and thus overall
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score achieved, would be increased drastically. With this in mind, the authors implemented UCT, a

Monte Carlo Tree Search algorithm that had proved successful in games like this previously.

This approach represents the game tree using Ms.Pac-Man’s current position as the root node and

intersections, also called by the authors ”cross-points”, as child nodes. Cross-points are where Ms.

Pac-Man decides its next movement decision, making this points in the maze critical. After generating

the game tree, the UCT algorithm is executed. As the algorithm progresses down the tree, the nodes

are assign a mean reward value using UCB, which gives new nodes a very high mean reward value and

otherwise assigns a value based on the average survival rate of the agent. Additionally, at any point

in time, the agent is following one out of three possible tactics: survival, feeding or pursuit. The tactic

followed by the agent changes over time, adapting to certain events like reaching a certain survivability

threshold or eating a super pill.

In order to evaluate their agent, the authors executed the program according to the Ms. Pac-Man

Competition rules and compared the results of their agent with the ICE Pambush3 agent. The results

were as follows:

Figure 3.4: Results

As you can see, the proposed system outperformed ICE Pambush3 in terms of highest level reached

and average score achieved. However, it also shows a higher value of standard deviation, which means

it is less consistent. Overall, the authors considered the proposed system a success, seen as it improved

the performance of the previously developed agent.

3.6 Pac-mAnt: Optimization based on ant colonies applied to de-

veloping an agent for Ms. Pac-Man

[12]

The aim of this paper was to verify whether ant colony based optimization methods can be effective

in the development of agents for real-time video games, focusing their testing on Ms. Pac-Man. To do

this, the authors had to create some software, like a simulator for the Ms. Pac-Man game.

Ant Colony Optimization (ACO) algorithms have been applied to various combinatorial optimization

problems, including the traveling salesman problem. These can be formalized by graphs where the

objective is to minimize the cost of a route. The agent developed by the authors uses 2 types of ants:

17



collector ants which find paths with points, and explorer ants to find safe paths. To account for limited

computing time for each decision, the maximum distance up to which an ant can explore is limited.

At each times step, both types of ants are launched in all directions from Ms. Pac-Man. Then, if the

distance to a ghost is lower than an established threshold, the agent chooses the best explorer ant.

Otherwise, the best collector ant is chosen.

To optimize the parameters of the ACO algorithm, like the distance threshold mentioned before, the

authors used a genetic algorithm with an evaluation function based on the mean score for each individual

over the total number of games played.

To evaluate their agent, the authors tested it in both the simulator they created, which i mentioned

previously, as well as in the actual game. The results were positive, but the authors point out the difficulty

in extracting game information when testing on the real game and the high variability in the tests run on

the simulator.

3.7 Enhancements for Monte-Carlo Tree Search in Ms Pac-Man

[13]

This paper tests 5 different enhancements for the MCTS algorithm and tests then on the Ms. Pac-

Man game in order to understand which ones work better and why.

The first enhancement tested was a variable depth tree. In this case, the maximum tree depth is

defined by the length of the edges, and subsequently the length of a path, instead of just the number

of edges. This prevents the agent from choosing longer paths when in danger, as it differentiates paths

with the same number of edges by their length.

The second enhancement was to create tactics to guide Ms. Pac-Man’s decisions. These tactics

are based on the three sub-goals of Ms. Pac-Man and, at any point in time, one of the tactics is active.

If edible ghosts are nearby and the survival rate is above a certain threshold, Ghost score tactic is

employed. If there are no nearby edible ghosts, Ms. Pac-Man is safe and the survival rate is above

a certain threshold, Pill score tactic is employed. Otherwise, if the survival rate is under a certain

threshold, Survival tactic is employed. These tactics affect the value used for the selection and back-

propagation steps of the MCTS algorithm.

The third enhancement was to create strategies for Ms. Pac-Man to follow during the playout step.

The authors considered the game to have 2 game ending states: Ms. Pac-Man dying or reaching level

16. Since it was not feasible to run playouts until one of these states was reached, the authors created

4 alternative conditions that stop the playout phase: a pre-set time length has passed, Ms. Pac-Man is

dead, reaching the next maze and Ms. Pac-Man eating a power pill while edible ghosts are active. The

score reached by the agent is then calculated considering if Ms. Pac-Man survived and how many pills
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and ghosts were eaten.

The fourth enhancement was to create long-term goals for the agent. The MCTS algorithm considers

only short-term rewards when running playouts. However, in the game of Ms. Pac-Man, there are

situations that can improve the agent’s performance in the long run. For example, eating edible ghosts

as fast as possible reduces the probability of being trapped, and achieving 10.000 points rewards Ms.

Pac-Man with a live. As such, these can be considered long-term goals. To represent these goals in

the playout phase, the reward of eating a ghost is multiplied by the remaining edible time of said ghost,

ensuring that ghosts earlier rather than later, and the reward value assigned to eating a power pill is set

to zero if no ghosts are eaten in the following edible time, ensuring that Ms. Pac-Man waits for ghosts to

be nearby before eating power pills.

Finally, the fifth enhancement was to employ end game tactics. These are meant to deal with situa-

tions where the density of pills in the maze is low enough that the pill or edible ghost closer Ms. Pac-Man

is outside the search tree’s range. This end-game tactic is made up of a small number of hand-coded

rules that are meant to keep the agent away from defaulting to the survival tactic, seeing as this one is

only useful in endangering situations.

The final agent employed all of these enhancements. As such, to test each of them individually,

the agent was tested 5 times, with each time one of the enhancements being disabled. From all of the

enhancements, the only testing that had a significant drop in performance was the one that implemented

different strategies for the playout stage, which suggests that this enhancement is stronger than the

others.

3.8 Evolution strategy for optimizing parameters in Ms Pac-Man

controller ICE Pambush 3

[14]

This paper describes the application of an Evolutionary Strategy to optimize distance and cost pa-

rameters in a Ms. Pac-Man controller.

For this purpose, the authors use a simplified Evolutionary Strategy using only mutation. Their

reasoning for not using other evolutionary operations like crossover is that each parameter has a specific

role and, thus, mixing them is not suitable. Parameter optimization is divided into two stages; the

first being distance parameter optimization and the second cost parameter optimization. For the first

stage of optimization, the initial values could be set as the original values of the ICE Pambush 3 agent

or as random values. Either distance or cost parameters would be optimized. Then, in the second

stage, the parameters that hadn’t been optimized would be chosen for optimization, resulting in alternate

optimization. As such, 4 different approaches were possible: optimize distance first with initial values
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as the original values, optimize distance first with initial values as the random values, optimize cost first

with initial values as the original values or optimize cost first with initial values as the random values.

To evaluate the different approaches, the authors compared the median score achieved by the agent

by the time the 300th generation was reached. The authors concluded that the optimal setup was to

optimize first the distance parameters with initial values as random and then the cost parameters with

initial values as random values as well, which resulted in improvement of 17% in the performance for the

first game level, compared to their original agent ICE Pambush 3.
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This chapter will provide a clear description of the environment in which this thesis was developed

and the approach chosen to tackle the problem.

4.1 Development Environment

Figure 4.1: File Structure
This agent was completely developed on the package provided by

the Ms. Pac-Man vs Ghost Team Competition organizers, which

is used by all the participants. Since most of the classes utilized

by the engine are pre-compiled and have read-only access, forc-

ing all the participants to use this package is the organization’s

way of making sure that everyone obeys the rules of the compe-

tition and the game. This results in a semi black boxed develop-

ment environment, as the participants can, theoretically, decom-

pile the classes that make up the engine and look at detailed im-

plementations of all the methods they might need or want to use,

but are expected to, instead, use the API available and explained

in the competition’s website (http://www.pacmanvghosts.co.uk).

The package provided is all that is needed to develop an agent

for the competition, along with an IDE (the competition organiz-

ers suggest Eclipse or IntelliJ, in this thesis the latter was used)

with the Java SE Development Kit (JDK) installed. The pack-

age’s file structure is illustrated in figure 4.1. The organizers pro-

vide the participants with several basic agents. These, located

in the ”examples” folder, serve as a basis for the participants to

develop their own agents on, if they choose to do so. However,

one could develop an agent by only opening 2 of these files: My-

PacMan.java (highlighted) and Main.

MyPacMan.java is the file where the participant develops their agent. Initially it simply has a class,

representing the agent, and a method, the one where the participant must place the game logic that will

control the agent during the game. This method is required to return a MOVE and is the basis of the

agent’s behavior. The participant is free to add any sub-classes and methods they want to this class to

support their solution. The code present in this file is as follows:

Listing 4.1: Initial MyPacMan

1 package entrants.pacman.username;
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2

3 import pacman.controllers.PacmanController;

4 import pacman.game.Constants.MOVE;

5 import pacman.game.Game;

6

7 /*

8 * This is the class you need to modify for your entry. In particular, you need to

9 * fill in the getMove() method. Any additional classes you write should either

10 * be placed in this package or sub-packages (e.g., entrants.pacman.username).

11 */

12 public class MyPacMan extends PacmanController {

13 private MOVE myMove = MOVE.NEUTRAL;

14

15 public MOVE getMove(Game game, long timeDue) {

16 //Place your game logic here to play the game as Ms Pac-Man

17

18 return myMove;

19 }

20 }

Main.java comes ready to run. It initiates the basic executor and controller needed to launch the

application. The code present in this file is as follows:

Listing 4.2: Initial Main

1

2 import examples.StarterGhostComm.Blinky;

3 import examples.StarterGhostComm.Inky;

4 import examples.StarterGhostComm.Pinky;

5 import examples.StarterGhostComm.Sue;

6 import examples.StarterPacManOneJunction.MyPacMan;

7 import pacman.Executor;

8 import pacman.controllers.IndividualGhostController;

9 import pacman.controllers.MASController;

10 import pacman.game.Constants.*;

11

12 import java.util.EnumMap;

13

14
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15 /**

16 * Created by pwillic on 06/05/2016.

17 */

18 public class Main {

19

20 public static void main(String[] args) {

21

22 Executor executor = new Executor.Builder()

23 .setVisual(true)

24 .setTickLimit(4000)

25 .build();

26

27 EnumMap<GHOST, IndividualGhostController> controllers = new EnumMap<>(GHOST.class);

28

29 controllers.put(GHOST.INKY, new Inky());

30 controllers.put(GHOST.BLINKY, new Blinky());

31 controllers.put(GHOST.PINKY, new Pinky());

32 controllers.put(GHOST.SUE, new Sue());

33

34 executor.runGameTimed(new MyPacMan(), new MASController(controllers));

35 }

36 }

The method runGameTimed runs the application with a graphical interface so the developer can see

his agent in action.

In terms of development environment, these two files are all the participant needs to develop their

agent successfully.

4.2 Development Process

After having the environment setup, the first step of the development of this agent was to look at the

StarterISMCTS example agent provided in the competition package. One of the interesting properties

of the MCTS algorithm is that one implementation can be easily ported to a different game and work,

since the algorithm doesn’t require any environment specific information to do its job. As such, the first

step in the development process was to analyze the MCTS based agent provided by the competition,

to see how the API was used and which methods from other classes it used. This resulted in a clear

vision on how our solution would be implemented and which other classes had interesting and potentially

useful methods.
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That agent, provided by the competition, implemented information sets along with the MCTS algo-

rithm, which is interesting but not useful for this thesis’ agent. However, the base steps of the MCTS

algorithm were implemented in a simple, concise fashion, so we ended up using those methods as

a base for our own MCTS algorithm. Another method we ported into our agent was the obtainDeter-

minisedState method. This method will be detailed in the next chapter.
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This chapter will take a close look at the agent developed and all the code necessary to make it work.

Here, we will explain how the game state is perceived by the agent, how the MCTS algorithm and tree

associated with it are implemented and a small adaptation added later into the development process to

improve the agent’s performance.

5.1 Overview of the Agent

The agent is composed of 2 classes of objects: a MyPacMan class mentioned earlier in this document

and a Node class that models tree nodes necessary for the implementation of the MCTS algorithm.

5.1.1 MyPacMan

This object is composed of 7 attributes and 3 methods, including a very simple constructor.

Listing 5.1: MyPacMan

1 public class MyPacMan extends PacmanController {

2

3 private Maze currentMaze;

4 private GhostPredictionsFast predictions;

5 private PillModel pillModel;

6 private int[] ghostEdibleTime;

7 protected Game mostRecentGame;

8 protected int maxTreeDepth = 30;

9 protected int maxPlayoutDepth = 250;

10

11 public MyPacMan() {

12 ghostEdibleTime = new int[Constants.GHOST.values().length];

13 }

14

15 public MOVE getMove(Game game, long timeToDecide) {...}

16

17 private Game obtainDeterminisedState(Game game) {...}

18 }

Attributes maxTreeDepth and maxPlayoutDepth are initialized manually because they are values

chosen a priori. These values will be justified in the Evaluation chapter. Maze, GhostPredictionsFast,

PillModel and Game are all classes from the game engine. These are initialized, modified and used in
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the getMove method at each time step. The constructor simply initializes the array ghostEdibleTime with

size equal to the number of ghosts in the game. One could argue that this value could be hard coded

since we know there are always 4 ghosts in a game of Ms. Pac-Man, but this is an easy way to account

for possible changes in the future. The obtainDeterminisedState method is the method that makes it

possible to run a basic MCTS algorithm over a partially observable environment, by creating a copy of

the real game state. It populates the points of the maze that the agent does not have access to based

on probability: places pills where pills are supposed to be and, for ghosts unaccounted for, it assumes

that the ghosts maintain the direction they were last seen taking. This method is used in the getMove

method, which contains all the logic behind the agent’s behavior. These methods are described as al-

gorithms below:

Create GameInfo object from Game object;
Fill in info about Ms. Pac-Man (location and lastMoveMade);
Predict locations of Ghosts;
For each Ghost: Get Ghost’s location;
if location is valid then

Get edibleTime of Ghost;
Get Ghost object with all info;
Fill in info about Ghost (predictedLocation and edibleTime);

else
Get Ghost object with default location;
Fill in info about Ghost (default location and default edibleTime);

end
Place each Pill on the maze;
return Game object created from GameInfo object;

Algorithm 1: obtainDeterminisedState
.

if currentMaze value equals maze from game object then
Do nothing;

else
Initialize currentMaze with maze value from game object;
Initialize predictor and pillModel as null;
Initialize ghostEdibleTime array with default values of -1;

end
Update attributes predictor and pillModel using information from game object;
Run MCTS algorithm;
Update predictor with new observations;
Select and return best move;

Algorithm 2: getMove

5.1.2 Node

This object is composed of 9 attributes and 15 methods, including 2 constructors.
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Listing 5.2: Node

1 class Node {

2

3 private final MyPacMan MyPacMan;

4 private Node parent;

5 private MOVE prevMove;

6 private MOVE[] legalMoves;

7 private Node[] children;

8 private int expandedChildren;

9

10 private int visits;

11 private double score;

12 private int treeDepth;

13

14

15 /* Constructors */

16

17 //Constructor for root node

18 public Node(MyPacMan MyPacMan, Game game) {...}

19

20 //Constructor for child node

21 public Node(Node parent, MOVE previousMove, MOVE[] legalMoves) {...}

22

23

24 /* MCTS methods */

25

26 public Node select expand(Game game) {...}

27

28 public double playout(Game game) {...}

29

30 public void backPropagate(double value) {...}

31

32

33 /* Auxiliary methods */

34

35 protected MOVE[] getLegalMovesNotIncludingBackwards(Game game) {...}

36

37 protected MOVE[] getAllLegalMoves(Game game) {...}
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38

39 protected EnumMap<Constants.GHOST, MOVE> getBasicGhostMoves(Game game) {...}

40

41 private boolean isFullyExpanded() {...}

42

43 public Node expand(Game game) {...}

44

45 public Node selectBestChild() {...}

46

47 private double calculateChildScore() {...}

48

49 private double calculateGameScore(Game game) {...}

50

51 /* Other methods */

52

53 //Method initially used to select the best move

54 public MOVE selectBestMove() {...}

55

56 //The Adaptation

57 public MOVE selectBestMove(Game game) {...}

58 public MOVE getNextMove(Node child, Game game) {...}

59 }

Most of the attributes are simple to understand just by looking at their names. MyPacMan is the

object that represents the agent; parent, children, expandedChildren, visits and treeDepth are common

attributes in tree-search algorithms, they contain essential information for MCTS. score is also a very

important attribute for the decision making algorithm because it is this value that will determine the

weight of each node considered by the selection step of MCTS.

The unique attributes for this context are prevMove and legalMoves. The first one is the last move

made by the agent and it is necessary to advance the game state during the playout step of the MCTS

algorithm. The latter saves all the moves the agent can make in the next time step of the game. It is

necessary not only to advance the game state during the expansion step of the MCTS algorithm but also

to make sure the Move returned to and by the getMove method in MyPacMan is valid, since the agent

can’t walk into walls.

Listing 5.3: Constructors

1 //Constructor for root node
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2 public Node(MyPacMan MyPacMan, Game game) {

3 this.MyPacMan = MyPacMan;

4 treeDepth = 0;

5 this.legalMoves = getLegalMovesNotIncludingBackwards(game);

6 this.children = new Node[legalMoves.length];

7 }

8

9 //Constructor for child node

10 public Node(Node parent, MOVE previousMove, MOVE[] legalMoves) {

11 this.MyPacMan = parent.MyPacMan;

12 this.parent = parent;

13 this.treeDepth = parent.treeDepth + 1;

14 this.prevMove = previousMove;

15 this.legalMoves = legalMoves;

16 this.children = new Node[legalMoves.length];

17 }

The constructors are quite simple, they are used to initiallize attributes that we know the values of,

taking into consideration if we want to create a root node or child node.

Looking back at Listing 4.2, you can see in the other methods, there are 2 methods called selectBest-

Move. As the comments suggest, the first one was used in the initial stage of development of the agent,

but was later replaced by the second because the latter achieved better results overall. Both of these

methods will be explained in the following sections of this chapter and results will be discussed in the

next chapter.

5.2 The MCTS Algorithm

This section will look into the MCTS algorithm implemented in this thesis. In order to avoid a cluster of

code, all the auxiliary methods not present in this section will be in Appendix A.

Our MCTS algorithm is the made up of 3 methods: select expand, playout and backPropagate. In

general, this algorithm is very close to the standard MCTS algorithm used on other games, but there are

some changes we had to make to accommodate the algorithm to the game in question. The game state

is modeled by the class Game, which is part of the package obtained from the competition organizers.

This class is quite complex, so we used it throughout the project as a black box and get everything we

need from it via its public methods or actual objects of that class returned by the obtainDeterminisedState

method.
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Listing 5.4: Selection Expansion

1 public Node select expand(Game game) {

2 Node current = this;

3 while (current.treeDepth < MyPacMan.maxTreeDepth && !game.gameOver()) {

4 if (current.isFullyExpanded()) {

5 current = current.selectBestChild();

6 game.advanceGame(current.prevMove, getBasicGhostMoves(game));

7 } else {

8 current = current.expand(game);

9 game.advanceGame(current.prevMove, getBasicGhostMoves(game));

10 return current;

11 }

12 }

13 return current;

14 }

Firstly, the Selection and Expansion steps are combined in a single method. In fact, there isn’t a

true Selection step. The algorithm is ran, at each time step, on a copy of the game state generated by the

method obtainDeterminisedState, with the current game state being the root node of the decision tree.

As such, during the Selection step of the algorithm, the only node that exists is the root node, meaning

the algorithm always selects that one. However, the expansion step generates all child nodes of this

root node and its child nodes, recurrently, until nodes with treeDepth value equal to maxTreeDepth are

reached, and then selects one of those child nodes, the one with highest calculated score value, so one

can say that there is indeed a selection process. After this process, the game state is advanced, which

means that this child node becomes the root node of the decision tree used from now on.

Figure 5.1: UCT
formula

One small detail to be noticed is that this MCTS algorithm does not implement

UCB/UCT in its Selection step. The classic UCT formula is as shown in 5.1,

where wi stands for the number of wins for the node considered after the i-th

move and ni stands for the number of simulations for the node considered after

the i-th move, Ni stands for the number of simulations for the node considered

after the i-th move by the parent node and c is the exploration parameter. This is

not implemented in our agent because there is no win state in Ms. Pac-Man, since as long as the agent

lives, the game goes on. As such, it didn’t make sense to use such a formula in the agent’s algorithm.

Here is an example of a possible decision tree created during this step of the algorithm through

expansion:
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Figure 5.2: Example of a decision tree

Listing 5.5: Playout

1 public double playout(Game game) {

2 int depth = treeDepth;

3 Random random = new Random();

4 while (depth < MyPacMan.maxPlayoutDepth) {

5 if (game.gameOver()) break;

6 MOVE[] legalMoves = getAllLegalMoves(game);

7 MOVE randomMove = legalMoves[random.nextInt(legalMoves.length)];

8 game.advanceGame(randomMove, getBasicGhostMoves(game));

9 depth++;

10 }

11 return calculateGameScore(game);

12 }

Next, the Playout step is executed. This step is very standard: random moves are made until the

tree depth reaches the maximum playout depth, which is defined in the MyPacMan object. Then, the

score for the game state reached is calculated and returned. It is important to note that this score does

not correspond to the in-game score achieved by the agent. The score mentioned is calculated by the

calculateGameScore method, and takes into consideration not only the in-game score but also the game

time and level reached.

Listing 5.6: BackPropagation
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1 public void backPropagate(double value) {

2 Node current = this;

3 while (current.parent != null) {

4 current.visits++;

5 current.score += value;

6 current = current.parent;

7 }

8 current.visits++;

9 }

Finally, the BackPropagate step: it simply updates the score values of the parent nodes, recursively,

until reaching the root node of the search tree. These values work as the weights of the nodes for all

purposes.

5.3 The Adaptation

As mentioned earlier, in Listing 4.2, we have 2 methods called selectBestMove. This method is ran in

the getMove method after the MCTS algorithm to, like the name suggests, calculate the best move the

agent should make at that time step. Let’s take a look at the first iteration of the method:

Listing 5.7: Initial selectBestMove

1 public MOVE selectBestMove() {

2 Node bestChild = null;

3 double bestScore = -Double.MAX VALUE;

4 for (Node child : children) {

5 if (child == null) continue;

6 double score = child.score;

7 if (score > bestScore) {

8 bestChild = child;

9 bestScore = score;

10 }

11 }

12 return bestChild == null ? MOVE.NEUTRAL : bestChild.prevMove;

13 }

A very simple solution: If there is a best child, keep moving in the same direction. The logic behind

this is that, if this child is the best one, it should continue doing what it was doing before. Overall, this

works. The agent tends to run around the maze looking for pills and super pills. The problem with this
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approach is that, when faced with a ghost in its path, the agent would almost never be able to avoid

death because moving backwards was not considered a legal move. A quick solution for this problem

was to make this move legal. But then the agent would run back and fourth in the same place because it

was safe, there is no chance being confronted with a ghost if we don’t go anywhere and, after all, game

time does matter for game score calculation. That is until one ghost found the agent and then it would

get ran down by the ghost team.

This was the main road block during the development of this agent. To move past it, we had to move

slightly away from the MCTS based solution, so we adapted the selectBestMove method to deal with

this problem and be more successful in this specific game environment. Here is the method:

Listing 5.8: Adapted selectBestMove

1 public MOVE selectBestMove(Game game) {

2 Node bestChild = null;

3 double bestScore = -Double.MAX VALUE;

4 for (Node child : children) {

5 if (child == null) continue;

6 double score = child.score;

7 if (score > bestScore) {

8 bestChild = child;

9 bestScore = score;

10 }

11 }

12

13 if (bestChild == null) {

14 return MOVE.NEUTRAL;

15 } else {

16 return getNextMove(bestChild, game);

17 }

18 }

19

20 public MOVE getNextMove(Node child, Game game) {

21 int[] ghostEdibleTimeMock;

22 MOVE nextMove = child.prevMove;

23 GhostPredictionsFast predictions;

24 ghostEdibleTimeMock = new int[Constants.GHOST.values().length];

25 Arrays.fill(ghostEdibleTimeMock, -1);

26 predictions = new GhostPredictionsFast(game.getCurrentMaze()); //Predicts ghosts' move
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27 predictions.preallocate();

28 for (Constants.GHOST ghost : Constants.GHOST.values()) {

29 if (ghostEdibleTimeMock[ghost.ordinal()] != -1) {

30 ghostEdibleTimeMock[ghost.ordinal()]--;

31 }

32

33 int ghostIndex = game.getGhostCurrentNodeIndex(ghost);

34 if (ghostIndex != -1) { //We see the ghost!

35 predictions.observe(ghost, ghostIndex, game.getGhostLastMoveMade(ghost));

36 ghostEdibleTimeMock[ghost.ordinal()] = game.getGhostEdibleTime(ghost);

37 MOVE ghostDirOpp = game.getNextMoveAwayFromTarget(

38 game.getPacmanCurrentNodeIndex(),

39 game.getGhostCurrentNodeIndex(ghost),

40 DM.PATH

41 );

42 if (Arrays.stream(getAllLegalMoves(game)).anyMatch(ghostDirOpp::equals) &&

43 game.getGhostEdibleTime(ghost) <= 0) {

44 nextMove = ghostDirOpp;

45 }

46 }

47

48 }

49 return nextMove;

50 }

So, instead of instantly returning the child’s previous move like in the first iteration of this method,

we instead call the getNextMove method. Simply put, this method forces the agent to run away from an

inedible ghost when moving towards one.

This is not standard for MCTS approaches but we believe that in this case it was necessary to use

a solution like this to overwrite the basic movement behavior that wouldn’t let the agent turn backwards

even when moving towards certain death.

As the next chapter will demonstrate, this adaptation worked very well and the agent’s performance

improved overall.
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In this chapter, we will look at how the agent was tested and the results obtained. We compared the

performance of both versions of the agent, with and without the adaptation mentioned in the previous

chapter. We also took a quick glance at the results obtained by other participants of the competition in

previous years.

6.1 Evaluation Methodology

To evaluate the agent, we used the runExperiment method in the Main file, instead of the previously

mentioned runGameTimed. This method also belongs to the executor class and is very useful to test

the agent’s performance. It takes in one more argument than runGameTimed which is the number of

times the game should be played. This facilitates batch testing. It also doesn’t run a graphic interface,

so it is less computationally intense for the computer running it, but on the other hand provides the

developer with important stats for evaluating the agent’s performance, specifically average score over

the games played in the batch, minimum and maximum score, standard deviation and standard

error.

Using these values, we calculated the 95% Confidence Interval. In theory, this interval would allow

us to see if a certain version of the agent is clearly better than another. However, as we will see in the

next section of this chapter, these intervals overlap in almost all circumstances.

The batches can be divided in 2 groups. The first group aimed at finding the ideal values for the

maxTreeDepth and maxPlayoutDepth attributes of the MyPacMan object. The second group aimed at

optimizing the calculateGameScore method. This method uses in-game score, game time and level to

calculate the value used as weight for the nodes of the search tree, making it essential for the decision

making process.

All the data will be available in the Appendix B. In the next section we organize some of this data in

order to interpret the results.

6.2 Results

In this section, we will take a look at the results obtained by the agent and relevant information we can

deduce from them.

Firstly we will take a broad look at the results of group 1 tests, which aimed to find the ideal max-

TreeDepth and maxPlayoutDepth attributes for the agent.

As we can see in figure 6.1, for both iterations of the agent, the best combination for (maxTreeDepth,

maxPlayoutDepth), in terms of average score, was (30,250). Confidence intervals aren’t included in this

figure because they were not useful; they overlapped too much to provide insight on which combination
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Figure 6.1: Group 1 test results

of the 2 attributes was ideal.

However, taking that into consideration, the group 2 tests were run using these values for (max-

TreeDepth, maxPlayoutDepth). The results were as follows:

Figure 6.2: Group 2 test results: Initial (Left) Vs Adapted Agent (Right)

These batches tested various weights for the factors in the calculateGameScore method’s formula,

which are by default 1 for in-game score and game time, and 1000 for level. A quick look at the two

side-by-side graphs reveals what was mentioned in the previous chapter: the adapted agent performs

better in almost every test batch and achieves a higher average score in batch 10 than the initial agent

in any of its batches. This is due to what was explained in the previous chapter: Unlike the initial agent,

the adapted agent actively runs away from inedible ghosts, resulting in longer game times and, thus,

overall better scores.

Batches 1 to 6 and 10 experiment with various weights for the in-game score, game time and level

factors of the calculateGameScore method. Overall, there seems to be low variance in terms of results
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from these batches, as the 95% confidence intervals overlap in a big portion of data. The initial agent

obtains the best result by reducing the weight of game time by half and increasing the weight of level to

double, while the adapted agent performs best when multiplying the weight of in-game score by 50 and

the weight of level by 100. In these batches, both agents were able to reach level 2 in the game at least

once per batch, but the adapted agent reached this level more often. The remaining batches are more

interesting.

Batches 7, 8 and 9 experiment with making each of the factors of the calculateGameScore method’s

formula obsolete, one at a time. To do this, batch 7 sets the weight of in-game score to 0, batch 8

sets the weight of game time to 0 and batch 9 sets the weight of level to 0. For the initial agent, we

can see that disregarding one of the factors results in worse performance. In particular, disregarding

game time significantly hinders the agent’s performance. In a way, the game time factor represents how

much the agent prioritizes survival over immediate score. By removing this factor, the agent tends to risk

too much, thus dying faster and obtaining lower scores overall. On the other hand, the adapted agent

doesn’t seem to be affected by using only 2 out of the 3 factors, obtaining results in line with the ones

obtained before. This is because these weights don’t affect the adapted portion of the decision making

process. This portion helps the agent avoid ghosts no matter what, so even when the weight of game

time is set to 0 and the agent risks as much as it can, it still runs away from ghosts when facing them.

The initial agent was able to reach level 2 in batches 7 and 9, but not batch 8, while the adapted agent

managed to reach this level at least once in each batch.

Batches 11, 12 and 13 go a step further, and set 2 out of 3 factors to 0: batch 11 sets the weight of

game time and level to 0, batch 12 sets the weight of in-game score and level to 0 and batch 13 sets the

weight of in-game score and game time to 0. In other words, the agent from batch 11 only cares about

the in-game score so it tries to maximize the number of ghosts eaten per power pill eaten; the agent

from batch 12 only cares about the game time so it tries to survive above all; and the agent from batch

13 only cares about the level so it focuses on collecting all the pills and proceeding to the next level.

As we can see in figure 6.2, there is a dip in performance for the initial agent when focusing solely on

in-game score or level, while focusing simply on game time doesn’t hinder its performance, once again

because it tends to risk too much in the first two cases. However, focusing solely on surviving for as

long as possible seems to be a valid strategy, which makes sense considering that Ms. Pac-Man is an

infinite game: if the agent never dies, the game never ends, thus the score keeps increasing indefinitely.

For the adapted agent, focusing on a one-dimensional strategy results in average scores slightly lower.

The initial agent managed to reach level 2 only in batch 12, while the adapted agent managed to do the

same in every batch.

These results show that strategies balanced between maximizing score and game time result in the

best performance, for both agents, which shows the importance of adaptation in the agent. Also, the
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fact that the adapted agent obtained better results than the initial one reinforces the claim that having a

secondary algorithm to aid MCTS deal with partial observability is very valuable for the success of such

agents.

To further evaluate the agent, it is possible to compare its performance to the performance of some

of the basic agents from the competition’s organizers and submissions from other researchers. The

organizers use these basic agents as a basis for comparison during the competition itself, but only

reveal the average score achieved by the agents. The results from 2018 are presented in the following

graph:

Figure 6.3: Comparison to basic agents from 2018

The StarterNNPacMan and StarterPacManOneJunction are part of the basic agents provided by the

competition’s organizers, the Initial and Adapted Agent are the ones developed in this thesis and the

remaining are submissions made to the competition. It is clear that the agents from this thesis are far

from the submissions to the competition in terms of performance. However, they perform much better

than the basic agents from the competition. Since that was the main objective of this thesis, it can be

considered a success.
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7.1 Conclusions

All in all, we were able to obtain satisfactory results. The agent was able to reach level 2 several times

and almost reached level 3 a couple of times. These results are far from some of the agents submitted

to the competition in the last 2 years, but nonetheless, we were able to improve on the basic agents

provided by the competition and retrieve interesting information about different strategies. The values of

maxTreeDepth and maxPlayoutDepth seem to not have such a big influence on the performance of the

agent as initially thought, since there was found no direct correlation between the varying values tested

for these attributes and the results. Additionally, the tests run with different weights for the factors of the

calculateGameScore method formula showed the value of different strategies. Strategies that focused

solely on maximizing score are slightly less valuable than strategies that tried to balance maximizing

score with surviving. This means that adaptable strategies are better for agents in partially observable

environments, as stricter strategies inhibit the agent’s ability to adapt during gameplay time.

7.2 Solution Limitations and Future Work

In the future, there is definitely room for improvement. The MCTS algorithm developed for this thesis

is particularly bad at dealing with the partial observability factor of the competition’s game environment

and the randomness associated with the movement of the ghosts. These two aspects combined make

it so many of the decisions taken by the agent are based on little information and hinder its performance

massively. A possible fix for this problem would be to have a secondary algorithm coupled with MCTS to

either help the agent deal with lack of information and randomness of the game environment in general

or introduce human experts’ knowledge into the agent to make it smarter overall.
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A
Code of Project

Listing A.1: getMove

1 public MOVE getMove(Game game, long timeToDecide) {

2

3 //We need a model of the game! Do this to set initial state of the maze:

4 if (currentMaze != game.getCurrentMaze()){

5 currentMaze = game.getCurrentMaze();

6 predictions = null;

7 pillModel = null;

8 Arrays.fill(ghostEdibleTime, -1);

9 }

10

11 mostRecentGame = game;

12

13 if (game.gameOver()) return null;
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14

15 if (game.wasPacManEaten()) { //Ms. Pac-Man died and just respawned, she has no memory

16 predictions = null;

17 }

18

19 if (predictions == null) {

20 predictions = new GhostPredictionsFast(game.getCurrentMaze());

21 predictions.preallocate();

22 }

23 if (pillModel == null) {

24 pillModel = new PillModel(game.getNumberOfPills());

25

26 int[] indices = game.getCurrentMaze().pillIndices; //Indices = pill spawn points

27 for (int index : indices) {

28 pillModel.observe(index, true); //Put a pill in each pill spawn point

29 }

30 }

31

32 // Update the pill model with what isn't available anymore

33 // (Because when PM goes through a pill, the pill disappears)

34 int pillIndex = game.getPillIndex(game.getPacmanCurrentNodeIndex());

35 if (pillIndex != -1) {

36 Boolean pillState = game.isPillStillAvailable(pillIndex);

37 if (pillState != null && !pillState) {

38 pillModel.observe(pillIndex, false); //Tell the game that there is no pill

39 }

40 }

41

42 // Get observations of ghosts

43 //and pass them to the predictor (accounts for partial observability)

44 for (Constants.GHOST ghost : Constants.GHOST.values()) {

45 if (ghostEdibleTime[ghost.ordinal()] != -1) {

46 ghostEdibleTime[ghost.ordinal()]--;

47 }

48

49 int ghostIndex = game.getGhostCurrentNodeIndex(ghost);

50 if (ghostIndex != -1) { //We see the ghost!

51 predictions.observe(ghost, ghostIndex, game.getGhostLastMoveMade(ghost));
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52 ghostEdibleTime[ghost.ordinal()] = game.getGhostEdibleTime(ghost);

53 } else { //We do not see the ghost...

54 List<GhostLocation> locations = predictions.getGhostLocations(ghost);

55 locations.stream().filter(location ->

56 game.isNodeObservable(location.getIndex())).forEach(location -> {

57 predictions.observeNotPresent(ghost, location.getIndex());

58 });

59 }

60 }

61 //Now we have the game modeled! Next comes MCTS:

62 Node root = new Node(this, game);

63 while(System.currentTimeMillis() < timeToDecide) {

64 //MCTS can't deal with PO by itself. We give it a copy of the game without PO,

65 //so MCTS thinks it sees everything

66 Game copy = obtainDeterminisedState(game);

67 //Select & Expand

68 Node node = root.select expand(copy);

69 // Play-out

70 double gameScore = node.playout(copy);

71 // Back-propagate

72 node.backPropagate(gameScore);

73 }

74 predictions.update();

75 return root.selectBestMove(game);

76 }

Listing A.2: obtainDeterminisedState Method

1 private Game obtainDeterminisedState(Game game) {

2 GameInfo info = game.getPopulatedGameInfo();

3 info.setPacman(new PacMan(game.getPacmanCurrentNodeIndex(),

4 game.getPacmanLastMoveMade(), 0, false));

5 EnumMap<Constants.GHOST, GhostLocation> locations = predictions.sampleLocations();

6 info.fixGhosts(ghost -> {

7 GhostLocation location = locations.get(ghost);

8 if (location != null) {

9 int edibleTime = ghostEdibleTime[ghost.ordinal()];

10 return new Ghost(ghost, location.getIndex(),
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11 edibleTime, 0, location.getLastMoveMade());

12 } else {

13 return new Ghost(ghost, game.getGhostInitialNodeIndex(), 0, 0, MOVE.NEUTRAL);

14 }

15 });

16

17 for (int i = 0; i < pillModel.getPills().length(); i++) {

18 info.setPillAtIndex(i, pillModel.getPills().get(i));

19 }

20 return game.getGameFromInfo(info);

21 }

Listing A.3: calculateGameScore Method

1 private double calculateGameScore(Game game) {

2 return game.getScore() + game.getTotalTime() + (1000 * game.getCurrentLevel());

3 }

54



B
Result Tables

This appendix contains tables with all the data obtained during the evaluation of the agents. They are

placed here in case the reader wants to look at the data in detail, since they are too big to fit in the

Results chapter without disturbing the flow of text. Each line from tables B.1 and B.3 corresponds to a

bar from 6.1, blue and orange respectively, while each line from tables B.2 and B.3 corresponds to a test

batch from 6.2.
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Table B.1: Group 1 of tests for the initial agent

Average
Score

Min.
Score

Max.
Score

Standard
Deviation

Standard
Error

95% Confi-
dence Lower
Limit

95% Confi-
dence Upper
Limit

Max
Tree
Depth

Max
Play-
out
Depth

1917.67 890 4900 953.17 174.02 1576.5908 2258.7492 40 200
2097 910 4980 928.22 169.47 1764.8388 2429.1612 50 200
1983.67 1120 5120 1039.18 189.73 1611.7992 2355.5408 30 200
2069 180 6160 1265.28 230.82 1643.5928 2548.4072 40 150
1787.67 820 3390 736.07 134.39 1524.2656 2051.0744 50 150
1918 540 6080 1084.39 197.98 1529.9592 2306.0408 30 150
1903.67 840 3760 810.17 147.92 1613.7468 2193.5932 40 250
1785 720 5450 964.06 176.01 1440.0204 2129.9796 50 250
2115.67 790 5410 1210 219.27 1695.9008 2545.4392 30 250

Table B.2: Group 2 of tests for the initial agent (maxTreeDepth=30, maxPlayoutDepth=250)

Average
Score

Min.
Score

Max.
Score

Standard
Deviation

Standard
Error

95% Confi-
dence Lower
Limit

95% Confi-
dence Upper
Limit

Score
Weight

Time
Weight

Level
Weight

2115.67 790 5410 1210 219.27 1695.9008 2545.4392 1 1 1k
2199.33 570 6610 1368.52 249.8 1709.722 2688.938 1 0.5 2k
2130.33 570 5660 1182.83 215.95 1707.068 2553.592 1 0.2 5k
2049 960 4750 899.82 164.29 1726.9916 2371.0084 20 1 5k
2033.33 900 3820 835.71 150.75 1737.86 2328.8 50 0.1 5k
2232.33 1140 5640 1105.96 201.92 1836.5668 2628.0632 50 0.01 10k
1538.33 1060 2840 523.06 95.5 1351.15 1725.51 0 1 5k
1229 430 5000 964.14 176.03 883.9812 1574.0118 1 0 5k
1891.67 750 4290 937.61 171.18 1556.1572 2227.1828 1 1 0
2196.33 850 6250 1247.14 227.7 1750.038 2642.622 50 1 100k
1032.67 410 2630 698.96 127.61 782.5544 1282.7856 1 0 0
1850.33 720 5330 892.63 162.97 1530.9088 2169.7512 0 1 0
759.67 390 2150 370.34 67.62 627.1348 892.2052 0 0 1k

Table B.3: Group 1 of tests for the adapted agent

Average
Score

Min.
Score

Max.
Score

Standard
Deviation

Standard
Error

95% Confi-
dence Lower
Limit

95% Confi-
dence Upper
Limit

Max
Tree
Depth

Max
Play-
out
Depth

2140.33 760 5000 842.78 153.87 1838.7448 2441.9152 40 200
2044.33 650 3570 768.88 140.38 1759.1852 2319.4748 50 200
1949.67 1070 4880 776.14 141.7 1671.938 2227.402 30 200
1928 760 4600 836.07 152.65 1628.806 2227.194 40 150
2020.67 850 3790 853.52 155.83 1715.2432 2326.0968 50 150
2317 730 4710 861.39 136.2 2104.048 2637.952 30 150
2078.75 750 3450 697.2 110.24 1862.6796 2294.8204 40 250
2243.75 990 5290 1036.94 163.96 1922.3884 2565.1116 50 250
2333.75 1220 5530 977.32 154.53 2030.8712 2636.6288 30 250
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Table B.4: Group 2 of tests for the adapted agent (maxTreeDepth=30, maxPlayoutDepth=250)

Average
Score

Min.
Score

Max.
Score

Standard
Deviation

Standard
Error

95% Confi-
dence Lower
Limit

95% Confi-
dence Upper
Limit

Score
Weight

Time
Weight

Level
Weight

2333.75 1220 5530 977.32 154.53 2030.8712 2636.6288 1 1 1k
2287 880 5080 965.34 152.63 1987.8452 2586.1548 1 0.5 2k
1891.25 790 4640 786.68 124.39 1647.4456 2135.0544 1 0.2 5k
2068.75 720 4390 780.91 123.47 1826.7488 2310.7512 20 1 5k
1977.5 670 2990 556.31 87.96 1805.0984 2149.9016 50 0.1 5k
2152.25 920 4290 856.41 135.41 1886.8464 2417.6536 50 0.01 10k
1895.5 680 3540 669.29 105.82 1688.0928 2102.9072 0 1 5k
2101.25 540 5890 1252.29 198 1713.17 2489.33 1 0 5k
2108.5 1030 4020 769.53 121.67 1870.0268 2346.9732 1 1 0
2366 940 5930 1144.05 180.89 2011.4556 2720.5444 50 1 100k
1952.25 400 4360 968.69 153.16 1652.0564 2252.4436 1 0 0
1793 710 3770 615.1 97.26 1602.3704 1983.6296 0 1 0
1860 620 5450 930.84 147.18 1571.5272 2148.4728 0 0 1k
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