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Resumo

No método de Volume Finito, o termo temporal da equação tem de ser integrado no espaço com a

mesma precisão que os esquemas convectivo e difusivo de alta ordem. Este problema é ultrapassado

através de valores computacionais como médias do volume de controlo. Outra formulação é considerar

um novo operador que converte valores computacionais pontuais em médios, o que permite resolver

problemas transientes usando valores pontuais. Uma vantagem destes esquemas é o número baixo de

contribuições quando comparado com os esquemas baseados em valores médios.

No espaço bidimensional, este operador usa o método de mı́nimos-quadrados para calcular polinómios

locais e quadratura de Gauss para integrar os vários momentos de inércia das células. O código foi

verificado para quarta, sexta e oitava ordens em malhas cartesianas e não-estruturadas, quando o

esquema temporal Crank-Nicolson é usado. Ambas condições de fronteira Dirichlet e Neumann foram

verificadas com sucesso. Como métrica de eficiência dos esquemas de alta ordem implementados,

foi estudada a evolução do erro numérico espacial com o tempo de execução e com a memória. Os

esquemas de alta ordem permitiram obter resultados mais rápidos e com uma maior precisão do que os

esquemas de segunda ordem. Para reduzir o número de avanços temporais, os esquemas BDF foram

verificados e estes revelaram uma redução do tempo de execução quando combinados com esquemas

espaciais de alta ordem.

Palavras-Chave: Esquemas de alta ordem, Simulações transientes, Método de volume

finito, mı́nimos-quadrados ponderados, malhas poliédricas não-estruturadas, Diferenças finitas regres-

sivas.
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Abstract

With the finite volume method (FVM), the temporal term of the equation must be integrated in space with

the same accuracy order as the convection and diffusion schemes. One classic way to solve this issue is

to consider average computational values in FVM. Another approach is to consider a new operator that

converts pointwise values to mean ones, which enables high-order convection and diffusion schemes of

the pointwise framework in unsteady problems. One advantage of these schemes is the low number of

contributions to the coefficient matrix when compared to the mean-value counterpart.

In the 2D space, this mean operator uses the weighted least-squares method to compute local polyno-

mials and the Gauss quadrature to integrate cell inertial momentums (up to the desired order). The code

was verified for fourth, sixth and eighth orders in both Cartesian and unstructured meshes when using

the Crank-Nicolson time discretization. Dirichlet and Neumann boundary conditions were also success-

fully verified. Additionally, the numerical spatial error evolution with the solver runtime and the required

memory are studied as efficiency metrics of the implemented high-order schemes. High-order spatial

schemes provided faster and more accurate results than the second-order counterpart. To reduce the

number of required time steps, high-order backward differentiation formula (BDF) schemes were verified

and lead to considerable time savings when using high-order spatial schemes.

Keywords: High-order schemes, Transient simulations, Finite volume method, Weighted least-

squares, Polyhedral unstructured grids, Backward differentiation formulas.
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Chapter 1

Introduction

CFD was first attempted by Richardson et al. [1] for weather predictions, who left us an unconditionally

unstable time-centred diffusion scheme. Stability was later addressed by Courant, Friedrichs and Lewy

[2]. Their discoveries would just prove fruitful with the appearance of the first programmable computer.

In the beginning progress was achieved in US laboratories for weapons research, namely the violent

flow caused by an atomic bomb. In these early times codes were always modelled after Von Neumann-

Richtmeyer method which had a first-order accuracy [3].

During the sixties, second- and higher-order methods were proposed, such as Lax-Wendroff scheme

[4], but they were not suitable for strong shocks or even the advection of water vapour. Subsequently, in

the early seventies Boris et al. [5] and Van Leer [6] introduced the non-oscillatory higher-order methods.

During the seventies, computational aerodynamics lead to potential-flow models. In the eighties, with

vector computers it was possible to compute solutions of Euler equations in two and three dimensions.

Huge advances were achieved in shock capturing simulations. Three-dimensional Euler solutions were

computed using second-order Finite Volume methods, such as by Jameson, Schmidt and Turkel [7]. In

the end of the same decade aerospace sciences were able to solve Euler equations in unstructured

meshes.

CFD has always been strongly steered by the evolution of modern computers when it comes to faster

computing, larger memory or in the way numerical algorithms are designed, for example, its possibility to

be parallelized [8]. Therefore, in the nineties with the increase in computers’ speed and memory capac-

ity, it was possible to perform simulations using Reynolds averaged Navier-Stokes (RANS) equations.

Until today, RANS is essentially limited to steady attached flows. NASA CFD Vision 2030 Study (2014)

[9] also states that the current methods are still unable to predict turbulent-separated flows. RANS can-

not predict reliably separated and unsteady flow phenomena such as buffet. So wind tunnel testing is

still cheaper than a very large number of RANS calculations [10].

Vector computers changed the paradigm of CFD in the eighties as the number of flops per second in-

creased drastically and kept gradually improving. However, in the early 2000s the bandwidth did not

keep up its rate and it is seen as a major issue nowadays to overcome [11]. LES simulations require ex-

ascale computing to design a whole aircraft’s fuselage [12]. Although some hybrid RANS-LES methods
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are commonly used in simulations where swirls and intentionally detached flows are present, methods

combining near wall RANS and far field LES are still in its infancy [9].

Especially as most computation time is spent solving the equations near-wall, designing new numerical

methods such as higher-order schemes may be a way to reduce the number of flops in a simulation,

increasing its speed.

1.1 Motivation

CFD is based on numerical analysis and provides insight into fluid dynamics. Therefore one of its main

goals is to achieve the most accurate results and in the fastest way possible. This thesis concerns with

the numerical solution of 2D transient convection-diffusion equation in unstructured grids. Its applicabil-

ity might range from the medical field to the aerospace engineering one.

In the biomedical field different approaches to kill the tumour through hyperthermia are still being

considered such as Magnetic Fluid Hyperthermia [13]. In this treatment patients are subjected to local

heating leading to tumour cells’ destruction. Simulations are important to minimize the unnecessary nor-

mal cells’ death and better predict the needed time exposure to radiation. The play of nanoparticles in

hyperthermic cancer treatment is largely modelled with Pennes’ bio-heat equation [14], which describes

the capability of a tissue to remove heat by conduction or to its surrounding blood. According to Sawicki

et al. (2014) [15] temperature rise may be much faster than expected and a high-order temporal dis-

cretization alongside high spatial order method may provide faster and more accurate results.

Fractional differential equations describe accurately the anomalous diffusion phenomena present in

glasses, polymers, proteins or organisms. These systems are not described by the exponential time

function and are therefore considered sub-diffusion [16]. It also helps predicting the spread of diseases,

especially useful to depict diseases in which the patient’s recovery rate is dependent on time since in-

fection [17]. The present thesis may be extended to solve fractional derivatives using fractional power

series as basis functions in the local spatial polynomial reconstruction [18].

According to Ekaterinaris, second-order FV schemes do not compute accurately vorticity in aerody-

namic simulations [19]. He suggests that applying higher-order and low-diffusive numerical schemes

counteract this present deficiency. High-order schemes also have the potential to provide more accurate

results for eddy simulations of separated flows which are highly unsteady.
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1.2 Background

The development of high-order methods in CFD is essentially motivated by the need to reduce the com-

putational cost and memory usage to achieve a required accuracy [20]. Unstructured grids are highly

flexible at discretizing 2D and 3D complex domains [21]. These methods impose new considerations

and justify the ongoing research. High-order FV methods are a natural extension to current commercial

software, such as Fluent and Star-CCM++, which uses second-order FV schemes, and opensoftware

like OpenFOAM.

Solving convection-diffusion equations using FV methods was introduced in the sixties by Tikhonov

and Samarskii [22] and revived in the eighties by Patankar [23]. Barth and Frederikson (1990) [24] in-

troduced a quadratic reconstruction to solve Euler equations and more recent efforts led to schemes up

to fourth-order by Ollivier-Gooch et al. [25, 26, 27] and sixth-order schemes on unstructured grids by

Clain et al. [28, 29, 30]. A comparison study by Nogueira et al. [31] showed that, for the same accuracy

level, FV schemes require four times less degrees of freedom than its FEM counterpart when solving

the Navier-Stokes equations. To avoid oscillations near discontinuities more recent techniques such as

essentially non-oscillatory (ENO) [32] and weighted essentially non-oscillatory (WENO) [33] were devel-

oped for high-order schemes. Ollivier-Gooch et al. [34] used a fourth-order FV scheme to solve a flow

around a NACA 0012 airfoil, which showed improvements in accuracy and Jalali et al. [35] presented

another one for highly-anisotropic grids, which can be used in simulations for turbulent boundary layers.

The present Thesis expands on the work of Vasconcelos [36] and Diogo [37], who developed convection-

diffusion schemes (up to eighth-order) for steady cases on unstructured grids.

In the case of high-order temporal schemes, three popular families are linear multistep methods,

Runge-Kutta method and Lax-Wendroff method. In the case of multistep methods the Adams-Bashforth

[38], Adams-Moulton [39] and BDF schemes can be considered sub-families.

BDF schemes are general linear methods, which were first mentioned by Curtis and Hirschfelder (1952)

[40]. These schemes were dismissed by Farnell (1962) [41] as they were less accurate than Adams-

Moulton, which is true for non-stiff equations. BDF schemes up to sixth-order are stable for stiff problems

and allow larger timesteps than explicit schemes. BDF2 is L-stable and very popular, it is even used in

software such as COMSOL. BDF3 is not A-stable and it performs inconsistently [42]. Therefore extended

BDF (EBDF) [43] and modified EBDF (MEBDF) [44] were developed and they are A-stable up to fourth-

order. The two implicit advanced step-point (TIAS) method is A-stable up to sixth-order [45].

Implicit Runge-Kutta methods are stage-based. While fully-implicit schemes have been focus of

research [46], diagonally-implicit Runge-Kutta schemes demand more evaluations to reach the same

accuracy but stages equations are not solved simultaneously. Singly-diagonally implicit Runge–Kutta

methods (SDIRKs) are very popular since its creation during the seventies [47] and SIMPLE by Nørsett et

al. (1984) [48]. Unfortunately implicit SSP schemes’ properties are only assured under a finite timestep

and it is not much larger than its explicit scheme counterpart.
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Lax-Wendroff schemes [4] are an alternative to the ones presented before. They use the Taylor

series expansion in order to increase its order of accuracy while replacing the time derivatives with the

usage of the PDE and its differentiated versions. Contrary to SSP Runge-Kutta, it only needs one upwind

phase per timestep and allows for more compact stencils [49]. The original work was a second-order

scheme [4] and recently it has been extended to fourth-order by Li et al. [50] with WENO spatial scheme.

1.3 SOL Code

Sol code was first developed in 2003 by Magalhães during his PhD work [51]. It is programmed in C

language and the goal was to create an in-house code. Several authors’ contributions may lead to an

ever increasing and common code which solves complex cases in the CFD field.

Magalhães developed and implemented numerical solutions on adaptative grids. The current coordina-

tor, Albuquerque [52], created a system to import grids, reviewed aspects which were already imple-

mented and extended the second-order schemes to unstructured and adaptative grids. The code was

extended to solve immersed boundary problems by Pereira [53] and Martins [54], and to turbulent jet

flows with LES modelling by Leite [55].

This thesis directly extends the work of Vasconcelos [36] who created a high-order diffusion scheme

and Diogo [37] who followed it with the addition of a high-order convection scheme and a new stencil

algorithm. Both works were verified up to eighth order of accuracy in 2D unstructured grids.

Currently it is possible to import unstructured grids both from STAR CCM+ and the open-source Open-

FOAM through ASCII files. Both options allow to test new grids in different numerical schemes as well

as new implemented approaches.

1.4 Stationary Convection-Diffusion Scheme in SOL code

For the convection-diffusion schemes, Gooch (2002) [25] uses a Taylor series that respects the mean

value. In this framework the local reconstruction around point i for each cell point j of the stencil is given

by:

φj =
1

Vj

∫
Vi

φRi dV = φi +
∂φi
∂x

(xj + (xj − xi)) +
∂φi
∂y

(yj + (yj − yi)) +
1

2

∂2φi
∂x2

(x2
j + 2xj(xj − xi)

+(xj − xi)2) +
∂2φi
∂xy

(xyj + xj(yj − yi) + yi(xj − xi) + (xj − xi)(yj − yi)) + ...

(1.1)

In SOL code it was implemented a pointwise framework, which can be represented by:

φj = φi +
∂φi
∂x

(xj − xi) +
∂φi
∂y

(yj − yi) +
1

2

∂2φi
∂x2

(xj − xi)2 +
∂2φi
∂xy

(xj − xi)(yj − yi) +
∂2φi
∂y2

y2
i + ...

(1.2)
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By comparing both Taylor series, it is noticeable that the number of required terms for each derivative

starts to increase in the mean framework, while it does not happen in the pointwise counterpart.

For example for the mean Taylor series the seventh derivative with respect to x requires the compu-

tation of eight terms while in the pointwise requires only one. The following equation from Gooch [25]

shows why the increasing number of terms happens for the successive derivatives:

∂φi
∂xn∂ym

x̂nymij =
∂φi

∂xn∂ym

m∑
l=0

n∑
k=0

(
m

l

)(
n

k

)
(xj − xi)k(yj − yi)lxn−kym−l (1.3)

To advance in time the mean values must be computed up to the desired spatial accuracy order.

Therefore a conversion of the pointwise to mean values must be performed according to:

φi =
1

Vi

∫
Vi

φidV = φi +
∂φi
∂x

xi +
∂φi
∂y

yi +
1

2

∂2φi
∂x2

x2
i +

∂2φi
∂xy

xyi + ... (1.4)

This type of mean operator is only centred in the cell centroid. So, it only demands one inertia-related

term per each spatial derivative, which allows the round-off error to be less significant, due to the lower

number of algebraic calculations. Also purely-odd cell-centred inertial momentums are null. Subse-

quently, the previous equation can be further shortened:

φi =
1

Vi

∫
Vi

φidV = φi +
1

2

∂2φi
∂x2

x2
i +

∂2φi
∂xy

xyi +
∂2φi
∂y2

y2
i (1.5)

which is the formula used for the fourth-order schemes.

The proposed schemes in the pointwise framework imply computing an additional sparse matrix

but requires a much smaller number of algebraic computations and it is easily scalable, which leads

ultimately to a better accuracy.

1.5 Objectives

This thesis has the following purposes:

1. The development and implementation of a time operator based on the weighted least-squares, ca-

pable of maintaining accuracy orders up to eighth, for the 1D and 2D unsteady convection-diffusion

equation, both with Cartesian and unstructured meshes.

2. Implementation of high-order temporal schemes (BDF) up to sixth-order accurate for 1D and 2D

spaces.

To achieve these goals the following steps were followed:

1. Creation of a high-order cell-centred scheme based on the WLS method to develop an operator which

can convert cell pointwise values to mean cell values.

2. Develop a time discretization using the Crank-Nicolson scheme to compute 1D unsteady convection-
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diffusion equation and verify its overall order of accuracy.

3. Verification of the different spatial accuracy orders in the proposed conversion for both Dirichlet and

Neumann boundary conditions.

4. Extending the mean operator and overall discretization to 2D unstructured grids.

5. Comparison among all spatial schemes and grid types regarding time and memory costs for different

error levels.

6. Implementation of high-order temporal schemes and verification of its temporal accuracy order.

7. Comparison among all temporal schemes efficiency by analysing the Solver Runtime.

1.6 Present contributions

Vasconcelos (2017) [36] and Diogo (2019) [37] developed a 1D Matlab code, which was capable of

solving the high-order steady convection-diffusion equation.

To solve unsteady cases, the Author created a 1D high-order mean operator, which converts pointwise

values to mean ones, and built the overall unsteady global system which is solved in each timestep using

Crank-Nicolson or the implicit time discretization. To obtain high-order temporal order, BDF schemes

were developed up to sixth-order for uniform grids using Dirichlet BCs.

Analogously to 1D, the 2D Matlab code was adapted to unsteady cases by creating of a 2D high-order

mean operator and implementing the Crank-Nicolson time scheme. Temporal and spatial orders were

verified using Cartesian grids with both Dirichlet and Neumann BCs. The global system was adapted to

high temporal order using BDF schemes.

In the SOL code, the 2D high-order mean operator was designed to unstructured grids and the global

system of equations using CN time discretization was developed.

1.7 Thesis Outline

This Thesis is divided by four chapters. The first one includes the Thesis’ motivation, a literature review

of the state-of-art, the Author’s objectives and present contributions.

The second chapter describes the proposed schemes of Finite Volume discretization to the unsteady

convection-diffusion equations in the one dimensional space and explains all implementation details. It

also shows the obtained results with 1D grids and the verification of its implementation by computing the

accuracy order of the schemes.

The third chapter extends the previous schemes to the two dimensional space. By using the weighted

least-squares to minimize local interpolation error when building the mean operator. The implementation

on Matlab for Cartesian grids is presented as well as a comparison among different grid types on SOL

code that used the unstructured grids framework.

Finally, in the fourth chapter conclusions regarding the work’s results and future steps are stated and

explained.
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Chapter 2

High order transient schemes in One

Dimensional Space

This chapter describes the proposed high-order schemes for unsteady transport equation in 1D space.

First the construction of the temporal term operator will be explained, followed by the solution of the

unsteady transport equation. Three types of time discretization will be compared: implicit Euler, Crank-

Nicolson (CN) and Backward Differentiation Formulas (BDF). Afterwards error norms are explained and

the obtained results are presented. Lastly a comparative study is shown concerning Solver Runtime

(SRT) and Memory Storage (RAM) when combining high order spatial schemes with high-order temporal

schemes.

2.1 Discretization of the unsteady convection-diffusion equation

using Finite Volume Method

2.1.1 General Equation

The general transport equation considered is

∂φ

∂t
= ∇ · (Γ∇φ)−∇ · (Uφ) + ϕφ (2.1)

where φ is the transported unknown, ϕφ is the source term, U is the convection velocity and Γ is the

diffusion coefficient.

Integrating both sides in time and space using an arbitrary Control Volume:

∫
t

∫
CV

∂φ

∂t
dV dt︸ ︷︷ ︸

Transient Term

=

∫
t

∫
CV

( ∇ · (Γ∇φ)︸ ︷︷ ︸
Diffusive Term

− ∇ · (Uφ)︸ ︷︷ ︸
Convective Term

+ ϕφ︸︷︷︸
Source Term

)dV dt (2.2)

Since the convection and diffusion terms were explained in the work of Vasconcelos [36] and Diogo
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[37], high-order convection-diffusion schemes are here presented as the matrix A and source term is

indicated as S. Assuming the mean temporal derivative is available the following equation is obtained:

∫
t

Vp
∂φ

∂t
dt =

∫
t

(Aφ+ Sdt (2.3)

where Vp is the cell’s volume.

Integrating over time analytically on the left side and using generalized Crank-Nicholson on the right

side, it leads to:

Vp(φ
n+1 − φn) = ∆t( (1− α)(Aφn + Sn) + αA(φn+1 + Sn+1)) (2.4)

where α = 0 leads to an explicit Euler time discretization, α = 0.5 leads to the Crank-Nicolson method

and α = 1 leads to an implicit Euler time discretization. Concerning 1D space CV will be reduce to cell’s

length and the transported values will be stored at the cells’ centroids.

If pointwise to mean conversion in the transient term (left side of equation 2.4)is not performed the global

discretization will revert to second order. Since the right side of the equation provides high order spatial

results, the left side must not limit the spatial accuracy order. Therefore it is mandatory to create a mean

operator as accurate as the order being studied (from fourth up to eighth order). This issue is the main

focus of the next section.

2.2 Proposed Transient Schemes

2.2.1 Proposed Mean Operator

A cell-centred stencil should be as balanced and compact as possible because, in PDE, perturbations

propagate over all directions.

Using the Taylor series formulation, a cell-centred reconstruction can provide a n-th order accurate (or

n-1th exact) results:

φRC(x) = φC +
∂φC
∂x

(x− xC) +
1

2!

∂2φC
∂x2

(x− xC)2 + ...+
1

(n− 1)!

∂n−1φC
∂xn−1

(x− xC)n−1 (2.5)

The mean value at the cell’s centroid can be computed by:

φC =
1

VC

∫
CV

φRC(x)dV (2.6)

and using the integral and addition commutativity property, it leads to:

φC(x) =
1

VC
(φCVC +

∂φC
∂x

x+
∂2φC
∂x2

x2 + ...+
∂n−1φC
∂xn−1

xn−1) (2.7)

where xn = 1
n!

∫
CV

(x− xc)n
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Therefore to build a point-to-mean value operator, it is important to compute the n-1 first order deriva-

tives at the cell’s centre and its corresponding inertial momentums. In 1D odd-number powered integrals

can be reduced to zero as reconstruction is done around the cell’s centre.

For each cell it is possible to obtain the local mean operatorMC , as the internal product of derivative’s

array P with inertial momentums array.

MC =
1

VC
Pijxj (2.8)

Local Polynomial Reconstructions

The locally polynomial reconstruction is done once for each cell of the domain (at initialization step).

The local cell-centred polynomial reconstruction is given by 2.5 and the stencil is made up of its closest

neighbour nodes. In 1D the total number of nodes is equal to the order of accuracy. To compute the

required derivatives the following DCx = b system needs to be solved:



1 0 0 . . . 0

1 (xi−1 − xC) 1
2! (xi−1 − xC)2 . . . 1

(n−1)! (xi−1 − xC)n−1

1 (xi+1 − xC) 1
2! (xi+1 − xC)2 . . . 1

(n−1)! (xi+1 − xC)n−1

...
...

...
. . .

...

1 (xns
− xC) 1

2! (xns
− xC)2 . . . 1

(n−1)! (xns
− xC)n−1




φC
∂φC

∂x

...
∂n−1φC

∂xn−1

 =



φC

φn−1

φn+1

...

φns


(2.9)

Derivates can be computed in order to the solution inverting matrix DC such as

P = D−1
C (2.10)

Since DC is square and full its inverse can be computed through Gauss-Jordan Elimination without

increasing memory storage. Matrix inversion was performed with Matlab function Inv.

Boundary Conditions

Stencils for cells close to the boundaries are extended towards inside the domain avoiding the creation

of ghost points. To fully set the problem, solutions will be tested using full Dirichlet and mixed boundary

conditions.

Full Dirichlet BC imposes the analytical solution values on both boundaries. When a boundary node

belongs to the stencil a line must be added to matrix DC such as:

[
1 (xf − xC) 1

2! (xf − xC)2 . . . 1
(n−1)! (xf − xC)n−1

]


φC
∂φC

∂x

...
∂n−1φC

∂xn−1

 =
[
φf

]
(2.11)
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Mixed BC imposes Dirichlet BC on the right boundary node (as presented above in equation 2.11)

and Neumann BC on the left side one i.e. imposes the analytical gradient value. Neumann BC implies

adding a row to matrix DC such as:

[
0 1 (xf − xC) . . . 1

(n−2)! (xf − xC)n−2
]


φC
∂φC

∂x

...
∂n−1φC

∂xn−1

 =
[
∇φf

]
(2.12)

To fully set the problem Dirichlet and mixed conditions on boundaries will be used. The first sets

φ = φf and the second one sets the left boundary as φ = φf and the boundary on the right to∇φ = ∇φf .

Inertial Momentums

Inertial momentums up to n− 1 can be obtained computing the following integral:

xn =
1

n!

∫
CV

(x− xc)n (2.13)

and its discrete form by the Gauss quadrature is given by:

xn =
1

n!

∫ b

a

(x− xc)n =
1

n!

b− a
2

nG∑
k=1

wk(xk − xc)n (2.14)

where nG is the number of nodes within the cell and wk its corresponding gauss weight.

The nodes coordinates xk are computed by

xk = a+
(b− a)

2
(1 + ζk) (2.15)

and the values of ζ and w used by the Gauss quadrature are in table 2.1. The values were taken from

[56].

Accuracy Order nG ζi wGi

4th 2 ±
√

1
3 1

6th 3 0 8
9

±
√

3
5

5
9

8th 4 ±
√

525−70
√

30
35

18+
√

30
36

±
√

525+70
√

30
35

18−
√

30
36

Table 2.1: Coordinates and Gauss weights for a [-1,1] interval used in Gauss quadrature integration

Building Global Mean Operator

The values of each local MC are then gathered in a global mean operator matrix, M . Values which

multiply with cell centroids’ values are stored in matrix Mcells. When a local cell-centred stencil includes

a face boundary, the value which multiplies by the face boundary’s value is stored in a Matrix Mf :
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φcells = Mcells


φ1

...

φncells

+Mf

φf1

φf2

 (2.16)

2.2.2 Transient Transport Equation Discretization

Once the mean operator has been computed it can be implemented in the Transport Equation discretiza-

tion (equation 2.4). This leads to the following global matrix equation:

VpMcells(φ
n+1
cells − φ

n
cells) + VpMf (φn+1

f − φnf ) = ∆t α( Acellsφ
n+1
cells +Afφ

n+1
f + Sn+1)

+∆t (1− α)( Acellsφ
n
cells +Afφ

n
f + Sn)

(2.17)

Rearranging the last equation:

(VpMcells −∆tαAcells)︸ ︷︷ ︸
Global System Matrix

φn+1
cells = (VpMcells + ∆t(1− α)Acells)︸ ︷︷ ︸

Global Matrix for Explicit Multiplication

φncells + ∆t(α(Afφ
n+1
f + Sn+1)+

(1− α)(Afφ
n
f + Sn))− VpMf (φn+1

f − φnf )

(2.18)

For each local mean operator the considered stencil is the union of the set of stencils used in the diffusion

and convection schemes.

Therefore the convection-diffusion and mean operator matrices have the same bandwidth, which means

that the Global System Matrix in equation 2.18 does not have a larger bandwidth than the previous

matrices. If timestep is constant, only global matrices need to be stored.

2.3 Results and Discussion

In this section the accuracy orders of the mean operator and transient results will be verified as well

as the temporal orders. Other features like implicit temporal discretization, non-uniform grids, Peclet

number, runtime and memory costs will be analysed and discussed.

Two examples will be considered as solutions to the following transient transport equation:

∂φC
∂t

+ U
∂φC
∂x

= Γ
∂2φC
∂x2

+ ϕφ U,Γ ∈ R (2.19)

Using as solutions:

Example 1 - the exponential dampening case (with artificial source term):

φ(x, t) = e2x−t, with source term ϕφ = (−1 + 2U − 4Γ)e2x−t (2.20)
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Example 2 - the classical dampening Travelling Wave (without artificial source term):

φ(x, t) = eβx+(Γ(β2−γ2)−βU)t sin (γ(x+ (βΓ− U)t)), β, γ ∈ R (2.21)

The present results were concluded by setting setting PeL = 1 (U/Γ = 1), γ = π and β = 2. Two

types of BC were studied: full Dirichlet BC (blue lines) and Mixed BC (red lines).

In order to effectively verify the code, the order of pointwise to mean conversion is computed, followed

by temporal scheme order and finally the spatial scheme order.

2.3.1 Error Assessment

In order to evaluate the pointwise to mean value conversion using the mean operator, errors are com-

puted comparing the numerical mean value with the analytical mean value such that:

emv = φnumerical − φexact (2.22)

The numerical error is a sum of discretization scheme error, round-off error and iterative error.

Round-off error comes from computer limitations at the binary conversion of values in bytes. In this

present Thesis numerical values are rounded to double precision.

Discretization error, is proportional to scheme’s order of accuray such that

e = φnumerical − φexact = O(∆xn,∆tp) (2.23)

where φ is the cell value , ∆x is the cell’s length, ∆t is the timestep size, n is the spatial accuracy order

and p is the temporal accuracy order.

Pointwise to mean value conversion and discretization scheme error are estimated using the mean

relative error or the norm 1 of the relative error,

‖e‖1 =
(
∑ncells

k=1 |ek|)/ncells
max(|φexact|)

(2.24)

Global scheme discretization error is composed by temporal error and spatial error. Temporal error

is dominant if the size of the timestep is not small enough. Temporal accuracy order can be calculated

as the slope of the graph curves such that

Op =
log10(‖e‖k+1)− log10(‖e‖k)

log10(∆tk+1)− log10(∆tk)
(2.25)

where k is referred to the considered mesh.

In this Thesis the global error is considered to be dominated by the spatial error, ‖esp‖1, when a

timestep refinement leads to less than one percent decrease in global discretization error i.e. saturation

is achieved. Due to this, the spatial error can be obtained by the formula:
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‖esp‖1 = lim
∆t→0

‖e‖1 (2.26)

and the spatial accuracy order is given by:

On =
log10(‖esp‖k+1)− log10(‖esp‖k)

log10(∆xk+1)− log10(∆xk)
(2.27)

The schemes’ performances are also evaluated comparing Solver Runtime (SRT) and Number of

Non-Zeros (NNZ). SRT concerns the time needed for the algorithm to obtain spatial error and NNZ

concerns the number of non-zeros of the sparse global matrices i.e. information regarding memory

storage.

2.3.2 Peclet Number

Peclet number is a dimensionless number. It is defined by the ratio between advection rate and diffusion

rate such as:

Pe =
|U |δx

Γ
(2.28)

where U is the convection velocity, δx is a characteristic length and Γ is the diffusion coefficient. The

domain considered in all case studies is one meter (setting δx = 1 ) so it will be considered and adapted

to the analytical solutions:

PeL =
U

Γ
(2.29)

2.3.3 Pointwise to Mean Value Operator

As stated previously the pointwise on mean operator depends of local derivatives which can be affected

by the spatial error. So they have to computed with the same order as the convection and diffusion

terms.

Therefore the following graphs 2.1 (a) and (b) show the mean operator’s error (or pointwise to mean

conversion error) decay over increasingly refined uniform meshes for the full Dirichlet and mixed BCs for

both Dampening Exponential and Travelling Wave case studies. Spatial accuracy orders are presented

between each mesh refinement.

Figures 2.1(a) and (b) verify the orders of the pointwise to mean operator for all spatial schemes.

For the Dampening Exponential solution ‖emv‖1 decays with the expected orders in both full Dirichlet

and mixed BCs. There is only overall a slight superconvergence behaviour when using the fourth and

eighth-order scheme and subconvergent when using fourth-order ones. The results shown are very

close to their theoretical orders.

For the Travelling Wave case the fourth and sixth-order schemes shows a slight subconvergent be-

haviour.

Oscillations when using the eight-order scheme for the most refined meshes may be due to round-off

and iterative errors becoming dominant.

With these results, the mean value operator is prepared to be used in transient numerical cases.
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Figure 2.1: Mean Operator’s spatial accuracy order for all schemes for the full Dirichlet and mixed BCs
cases

2.3.4 Transient Results

When solving numerically unsteady PDEs the global error is the sum of the spatial and the temporal

errors such that:

|e| = O(∆xn,∆tp) (2.30)

where n is the spatial accuracy order and p is the temporal accuracy order.
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So the goal is to increase the number of timesteps for the given grids until the global error stops

decreasing, i.e., the global error is no longer dependent on temporal discretization and it is dominated

by the spatial discretization.

For both solutions transient results are studied at halftime i.e. time needed for the highest value to

be reduced to its half.

Temporal Order Verification for Crank-Nicolson discretization

In this section temporal discretization is done using Crank-Nicolson (second order accurate scheme).

When timesteps are coarse the global error is expected to be dominated by temporal error discretization

i.e. in this case decaying with ∆t2 over timestep refinements.

To verify the temporal order discretization scheme the following graphs 2.2(a) and (b) show the global

error decay with timestep refinement for full Dirichlet and mixed BCs when using Crank-Nicolson time

discretization and eighth-order spatial scheme. The temporal orders presented are obtained with the

most refined meshes (23 cells for Dampening Exponential case and 35 cells for Travelling Wave case).
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Figure 2.2: ‖e‖1 as a function of timesteps for eighth-order using full Dirichlet (blue lines) and mixed BC
(red lines) and the Crank-Nicolson time discretization

Global error decays with second order with timestep refinements so temporal discretization is verified.

The temporal order is more evident for coarse timesteps since it is when the global is more heavily

dominated by the temporal discretization error and it is observed that the order tends to two when

considering coarser timesteps for both analytical solutions.

These graphs do not show convergence of global error to spatial error although it is noticeable that

coarser meshes start being dominated by spatial error for smaller timesteps.

Spatial Order Verification for Transient Cases

When the timesteps are small enough the global error is dominated by spatial discretization error (solely

when the spatial error is orders of magnitude above the round-off and iterative errors). Obtaining spatial
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errors for different grid sizes it is possible to verify the theoretical order of the transport equation. In this

Thesis the spatial error is obtained when the global error decreases less than one percent with time

refinement i.e. when global error was dominated by spatial error.

The following graphs 2.3 (a) and (b) show the spatial error decaying with the mesh refinement for all

high order spatial schemes using full Dirichlet (blue lines) and mixed BCs (red lines) for both analytical

solutions. The order between each mesh refinement presented concerns the results obtained when

using full Dirichlet BC. Average spatial orders are written in bold and for both solutions the spatial errors

were obtained at halftime.

10
-2

10
-1

∆x

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

||
e
s
p
||
1

4th Dirichlet

6th Dirichlet

8th Dirichlet

4th Mixed

6th Mixed

8th Mixed

7.697

5.801

3.963

4.002

3.988

3.960

3.898

5.797

5.726

5.672

6.102

7.810

7.794

7.689

7.531

(a) Dampening Exponential Analytical case

0.02 0.03 0.04 0.05 0.06

∆x

10
-12

10
-10

10
-8

10
-6

||
e
s
p
||
1

4th Dirichlet

6th Dirichlet

8th Dirichlet

4th Mixed

6th Mixed

8th Mixed

6.198

7.746

3.702

4.052
2.920

4.148

3.974

5.773

6.781

5.488

6.903
6.544

9.051

6.787

8.431

(b) Travelling Wave Analytical case

Figure 2.3: ‖esp‖1 as a function of grid size for all schemes using full Dirichlet and Mixed BCs and its
spatial orders
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For Dampening Exponential analytical case the obtained order is slightly subconvergent for all schemes.

The numerical average orders are close to the theoretical ones. For this solution both full Dirichlet and

mixed BCs provide the very similar results as the curves almost overlap each other.

For the Travelling Wave analytical case curves show some oscillations but overall the average spatial

orders are kept as expected.

2.3.5 Further Considerations

Implicit Temporal Discretization

In the present Thesis the pointwise to mean value conversion prevents any temporal computation without

the use of matrices. Therefore it is inadequate for explicit schemes. Implicit Euler time discretization is

first-order accurate so it demands more timesteps to compute spatial error for the same memory storage

as the second-order Crank-Nichlson scheme. Its presence here only serves as a verification tool and it

will not be further considered in 2D meshes. Figure 2.4 shows the norm-1 of global error decaying with

the timestep size for eighth-order spatial scheme when using different meshes (with 12 cells up to 23

cells) for the Dampening Exponential analytical case.
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Figure 2.4: ‖e‖1 as a function of number of timesteps for Dampening Exponential Solution using implicit
Euler time discretization (α = 1) with full Dirichlet (blue lines) and mixed BC (red lines)

Since the results shown in Figure 2.4 were obtained when using timestep sizes for which the global

error is dominated by the temporal error, so curves for different meshes overlap when using the same

BC. The computed temporal orders are very accurate as implicit Euler is a first-order time scheme.

Comparing these results with the same grids and timesteps considered when using CN ( Figure 2.2(a))

‖e‖1 values are E4 or E5 times higher when using implicit discretization showing therefore a much

weaker accuracy.
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Non-Uniform Grids

To test the current approach’s robustness non-uniform grids with five percent perturbation of its vertices

are considered in this case study. Figure 2.5 shows the results of spatial error decaying with grid size for

the three spatial schemes at study for the Dampening Exponential case with non-uniform grids. Average

spatial orders are written in bold.
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Figure 2.5: Spatial error for all schemes for Dampening Exponential analytical case using Non-Uniform
grids with full Dirichlet (blue lines) and mixed BCs (red lines)

For this analytical case curves show some oscillation as meshes were generated randomly at each

case instead of being successively refined. Therefore its local order is expected to be weaker. For that

reason more meshes for each spatial order scheme were considered.

The average fourth and sixth spatial orders are slightly under the theoretical order and the average

eighth-order is slightly above. Therefore spatial orders are successfully verified when using non-uniform

meshes.

Spatial errors when using full Dirichlet and mixed BCs are very similar as it had been previously observed

when using uniform meshes (figure 2.3).

Peclet Number

Peclet number may impact the stability of the convection scheme [57, 58]. Consequently it will be studied

in this subsection. Since the Dampening Exponential analytical case has an artificial source term, the

Travelling Wave solution will be used instead. The goal is to verify if expected high spatial order still

holds true for a case with high Peclet number.

Figure 2.6 shows the spatial error decay with grid size for the Travelling Wave analytical case when

setting Pe = 100 and Pe = 10000.
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Figure 2.6: Spatial error decay with grid size for the Travelling Wave analytical case for all schemes
setting Pe = 100 and Pe = 10000 using full Dirichlet and mixed BCs

For the Travelling Wave case when setting Peclet number to one hundred fourth-order scheme shows

overconvergence and the sixth and eighth-order schemes subconverge. Numerical average order is

close to expected theoretical one. In this case results for both BCs are very similar and curves overlap.

When setting Peclet equal to one with mixed BCs provided smaller spatial errors than with full Dirichlet

BC for the same grid (Figure 2.3 (b)).

When setting Peclet number to ten thousand conclusions are different from previous figures. When

using mixed BCs fourth- and sixth-order schemes are overconvergent and the eighth-order scheme is

subconvergent but close to theoretical order. On the other hand when using full Dirichlet BCs curves are

linear not showing oscillations which is positive observation but the orders are lower than the theoretical

ones.

Solver Runtime

This subsection focuses on runtime evaluation which is composed by preparation time (computing and

building global matrices) and solver runtime, SRT. In this study only the latter will be considered since

preparation time is negligible when compared to SRT.

Using CN the Global System Matrix is sparse. Since its inverse would be a full matrix MATLAB’s

GMRES solver was performed for each timestep.

Eighth-order global matrix will have more NNZ than the fourth-order one although spatial errors are

expected to be lower for the latter. Therefore it is of interest assessing for a given mesh if eighth-order

schemes’s lower spatial error compensates the increase in NNZ and potentially in runtime. With that in

mind figure 2.7 shows the spatial error decay with SRT. Average order for each spatial scheme is shown.
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Figure 2.7: ‖esp‖1 as function of SRT for all schemes using CN

For both solutions sixth spatial order shows the optimal SRT since its curve guarantees a lower SRT

value for a error level when compared to the other schemes. For the Dampening Exponential case sixth-

and eighth-order scheme almost intersect for spatial error E-10 and since the eighth order scheme de-

cays at a higher rate. In this case for errors smaller than E-10 eighth-order might outperform sixth-order

but overall the eighth-order scheme underperforms as it needs more SRT for the solution to converge

for a similar error magnitude when compared to the sixth order. Eighth-order scheme may need more

timestep until global error is dominated by spatial error leading to higher SRT.

For a given spatial scheme, spatial error for Dampening Exponential case decays at a lower rate than

the Travelling Wave one. The Dampening Exponential case demands computing an artificial source at

time tn+1 for each timesteps and since higher spatial order schemes demands a higher number of

timesteps for the global error to reach spatial error’s value, which ultimately leads to higher values of

SRT. This difference increase for the highest spatial order schemes.

For the Dampening Exponential case spatial error decays according toO(SRTn/1.6260), O(SRTn/1.3365),

O(SRTn/2.462) and O(SRTn/2.7972) for second-, fourth-, sixth- and eighth-order spatial schemes and for

the Travelling Wave case it decaysO(SRTn/1.057), O(SRTn/1.2638), O(SRTn/1.9355) andO(SRTn/2.0131)

Number of Non-Zeros

This subsection focuses on memory storage required for each spatial scheme. Using CN an global sys-

tem matrix and a matrix for explicit multiplication must be stored as well as two face boundary matrices

(one computes the convection-diffusion boundary faces sources and another computes the mean-value

boundary face sources). Higher orders schemes lead to larger stencils and therefore more memory

costs. The present study intends to evaluate if the compromise of memory storage is compensated by

smaller spatial errors obtained when using higher order schemes. Figure 2.8 shows spatial error decay

with the number of non-zeros (NNZ) stored for each spatial scheme.
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Figure 2.8: ‖esp‖1 as function of NNZ for all schemes using CN

For both Exponential Dampening and Travelling Wave solutions eighth-order provides the optimal

memory storage. Therefore eighth spatial order should be interesting for cases where memory costs

are a limiting specification but overall showed larger SRT than sixth order as it was concluded previously.

Spatial error decays very similarly NNZ are larger for the Travelling Wave case as the meshes are more

refined (grids are for consultation in legends of figure 2.2(a) and (b) ). For both solutions spatial error

decays on average with NNZ according to ‖e‖1 = O(NNZn) for each spatial scheme.

2.4 High Order Temporal Schemes

Computing unsteady simulations requires high SRT costs and high-order temporal schemes can provide

more efficient results than the traditional second-order time discretization. The global error is composed

by the accumulation of each integral step error. High-order temporal schemes aim at decreasing the

number of timesteps needed to achieve the same spatial error and consequently decreasing SRT.

Implicit BDF and SDIRK schemes have been proved very efficient for stiff intial-value problems. BDF

will be implemented in this Thesis.

BDF schemes above sixth order are not zero-stable. The current thesis compares second-, fourth-

and sixth-order schemes using the following list, respectively (BDF2, BDF4 and BDF6):

φ
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φ
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3
φ
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=
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3
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The following subsection provides verification of the mentioned implicit BDF schemes as well com-

parisons regarding SRT and memory costs. Spatial orders will not be addressed since the spatial errors

will converge to the ones presented in the previous results subsection since they are not affected by the

time schemes.

It is worth mentioning the absence of results concerning memory costs in this subsection. The current

study is based on assessing spatial error since it is dependent on its mesh refinement and temporal error

can be decreased with timestep size. BDF2, BDF4 and BDF6 require respectively two, four and six time

stages and the global matrices for all stages have the same NNZ showing that higher BDF schemes

require more memory storage but in a neglegible level. As its conclusion is straightfoward, it will not be

studied in this section.

2.4.1 Results and Discussion

Temporal Orders of BDF schemes

Global error is made up of temporal and spatial errors. While global error is dominated by temporal error

it can decay with the temporal scheme’s order i.e. ∆tp. The following graph concerns the verification of

BDF’s temporal orders. The finest mesh with the eighth spatial order was chosen in order to postpone

global error’s convergence and avoid dominance of the spatial error in the global one.

Figure 2.9 shows the global error decay with the timestep using a eighth-order scheme with 35 cells.
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Figure 2.9: ‖e‖1 as function of timestep size for BDF2, BDF4 and BDF6 for Travelling Wave analytical
solution using eighth spatial order scheme in uniform 1D mesh with 35 cells and using full Dirichlet and
mixed BCs

Temporal scheme orders for BDF2, BDF4 and BDF6 are obtained as expected. BDF2 and BDF6
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schemes are over convergent and BDF4 is subconvergent and numerical orders are very close to the

theoretical ones. Using BDF6 curves for full Dirichlet and mixed BCs almost overlap while for BDF2 and

BDF4 scheme full Dirichlet BC provides slighthly lower global error than mixed BC.

Solver Runtime - SRT

By increasing the spatial order it would be expected advantageous increasing the temporal order as well

since the global error is dominated by the lowest order scheme being used. Figures 2.10 (a) and (b)

compare SRT results for the Travelling Wave analytical solution using second- and sixth-order meshes

and all BDF temporal schemes considered. Average orders for each temporal scheme are written in

bold.
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Figure 2.10: ‖esp‖1 as function of SRT for BDF2, BDF4 and BDF6 for Travelling Wave solution in uniform
1D mesh using full Dirichlet BC

Results show that using higher order BDF schemes for second-order spatial discretization improves

only slightly the SRT and only for errors under E-4. On the other hand for sixth-order spatial discretization

scheme higher order BDF schemes provide faster SRT values. For the same spatial error BDF4 presents

SRT values very similar to BDF6 but much smaller than BDF2. On both cases CN underperformes

regarding SRT when compared to the three BDF schemes. Table 2.2 compares SRT for two given

norm-1 errors (E-7 and E-9) when using sixth-order spatial discretization.

‖e‖1
BDF2 BDF4 BDF6 CN

SRT (s) r1 SRT (s) r1 SRT (s) r1 SRT (s) r1

E-7 0.2619 1 0.0202 0.0771 0.0259 0.099 0.7308 2.7904
E-9 3.0239 1 0.0809 0.0268 0.0820 0.0271 3.1680 1.0477

Table 2.2: The ‖e‖1 estimated for BDF2,BDF4, BDF6 and CN schemes and the respective ratios, using
as reference the value from BDF2.

When using a sixth spatial order scheme From table 2.2 shows that for an error level of E-7 time

savings go up to ninety percent when using BDF4 and BDF6 (when using BDF2 as reference). For a

norm-1 error of E-9 time savings go up to ninety seven percent.
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2.5 Conclusion

The temporal term on the transient convection-diffusion equation when integrated in space with the Fi-

nite Volume method is approximated to its mean time derivative value over the cell. If no mean operator

is created, this term will simply be second-order accurate and the average numerical solution will also

revert to this accuracy when using a pointwise framework. Therefore a pointwise to mean operator had

to be created because the temporal term needs to be at least as spatially accurate as the convection and

diffusion terms are. It is important that the temporal term does not limit the spatial order of the overall

transient scheme.

In the present 1D transient studies when using fourth-, sixth- and eighth-order schemes were strongly

verified both for Crank-Nicolson (second-order accurate) as well as Implicit discretization (first-order ac-

curate). Due to the presence of a mean operator every timestep results are implicitly computed. So

the traditional explicit discretization was not considered. Implicit discretization is as memory consuming

as CN but since it is first-order accurate it requires more timesteps to obtain the global error when it is

dominated by the spatial error, which leads to greater SRT.

Results obtained using non-uniform grids were less accurate than in uniform grids but the overall high-

order tendency can be observed.

Results were also compared in Travelling Wave solutions for different convection-diffusion ratios (or

Peclet numbers) and in those cases proved to have high spatial orders. Only when setting Peclet num-

ber to ten thousand the order was lowered than the theoretical one when using full Dirichlet BC.

Concerning the SRT when using CN time scheme, the sixth-order spatial scheme showed more efficient

results. On the other hand regarding memory costs eighth-order proved to be more advantageous.

In order to reduce even further the Solver Runtime costs high-order temporal schemes were an option

worth studying. BDF temporal schemes of orders two, four and six were designed and its accuracy

orders were successfully verified. Combining them with second-order spatial discretization did not very

yield fruitful. However when combining BDF4 with sixth spatial order schemes showed a much shorter

SRT than when using BDF2. It showed considerable time savings. It shows that high order temporal

schemes are suitable when paired with spatial high-order schemes. CN underperformed in all cases

when compared to high-order BDF schemes.
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Chapter 3

High order transient schemes in Two

Dimensional Space

This chapter describes the adaptation of the mean operator and the transient convection-diffusion equa-

tion to a 2D domain and unstructured grids. When building the proposed operator in 2D the number

of interpolation’s coefficients should be enough to keep the spatial high-order of the overall transient

transport equation. In order to minimize the local polynomial interpolation error weighted least-squares

method (WLS) will be used, which is a flexible method that can handle an arbitrary number of neighbours

of the unstructured grids.

Initially, using the Crank-Nicolson (CN) time discretization, accuracy spatial orders are verified for Carte-

sian meshes. Features like different convection velocities or Peclet number, SRT and memory storage

are evaluated. It was also studied the influence different grid types have in the accuracy and if for the

same scheme SRT and memory storage are influenced.

High temporal orders are achieved using high-order BDF schemes with Cartesian meshes and its impact

on SRT is assessed.

3.1 Unstructured Grids

Unstructured grids are useful to compute flows along complex boundaries or when discretizing local grid

refinements with smooth grid size. In this Thesis every domain cell has linear faces. When building

the mean operator, the WLS is used to minimize the interpolation error the local polynomials using the

correspondent values of the cell neighbours and from face boundaries when needed. All information

needed regarding stencils is already provided by SOL code database. Some tests are performed using

different grids at the end of this chapter in order to assess the operator’s robustness. Reference length,

H, is used as spatial parameter such that:

H =

√
Domain Area

ncells
(3.1)
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which in Cartesian grids reverts to the cell face’s length and the discretized domain is a square of one

per one (meter). It is analogous to ∆x of the 1D space.

3.2 Proposed Schemes

The transient transport equation in a 2D domain is discretized similarly to 1D. Remembering than when

discretizing the global equation with CN time discretization leads to:

(VpM − 0.5∆tA)φn+1 = (VpM + 0.5∆tA)φn + 0.5∆t(Sn+1 + Sn) (3.2)

where A is the matrix related to the convection and diffusion terms. In this pointwise framework mean

operator only needs to be considered for high-order spatial schemes with an order higher than two.

3.2.1 Stencil

In unstructured grids the stencil becomes less straightforward than for Cartesian grids and plays there-

fore a more significant role. A more compact stencil leads to less memory storage and consequently

less algebraic computations per timestep.

In the 2D case, the n-th spatial accuracy order local polynomial interpolation is extended to:

φRC(x, y) =

n−1∑
i=0

n−1∑
j=0

Ck(x− xC)i(y − yC)j (3.3)

and analogously to 1D, the mean value is given by:

φC(x, y) =
1

VC

∫
CV

φdV =
1

VC

n−1∑
i=0

n−1∑
j=0

Ckxijj (3.4)

where xiyj =
∫
CV

(x − xc)i(y − yc)j The minimum number of polynomial terms for each spatial order n

is n(n+1)
2 , which is presented in table 3.1.

Accuracy Order 4 6 8
Number of Terms 10 21 36

Table 3.1: Number of interpolation terms demanded by each n-th spatial order for the 2D case.

To create a compact stencil the closest cells to cell C must be considered for the cell-centered recon-

struction according to the desired order n. Firstly, the number of neighbours across both 2D directions

(x and y) must be at least as large as for 1D reconstructions i.e. n cell neighbours in each coordinate.

Secondly, to keep accuracy order stencil’s size must be at least as large as the number of terms indi-

cated in table 3.1.

When these requirements are not met the stencil must be extended towards within the domain (see

Diogo [37]).
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Therefore, using the face neighbours of cell C i.e. cells which share a face with cell C, it is possible to

achieve second-order schemes. For fourth-order schemes first-order and second-order face neighbours

of cell C are included in the stencil of the cell i.e. cells numbered with 1 and 2 in Figure 3.1. Analogously

sixth-order schemes require face neigbours up to third-order and eighth-order schemes require neigh-

bours up to fourth-order.

Figure 3.1 shows the stencils used in a local reconstruction for cell C up to eighth-order schemes.

The eighth-order scheme uses a stencil which is composed by all the numbered cells in the figure.
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Figure 3.1: Face neighbours of cell C that are used to compute pointwise to mean value conversion
operator

3.2.2 Local Polynomial Reconstructions

The n-th order local reconstruction around cell C using its face neighbours and the WLS method leads

to the following matrix system:



1 0 0 0 0 . . . 0

1 (xi−1 − xC) (yi−1 − yC) (xi−1 − xC)2 (xi−1 − xC)(yi−1 − yC) . . . (yi−1 − yC)n−1

1 (xi+1 − xC) (yi−1 − yC) (xi+1 − xC)2 (xi+1 − xC)(yi+1 − yC) . . . (yi+1 − yC)n−1

...
...

...
...

...
. . .

...

1 (xns − xC) (yns − yC) (xns − xC)2 (xns − xC)(yns − yC) . . . (yns − yC)n−1





C1

C2

C3

C4

C5

...

Cn−1


=



φC

φn−1

φn+1

...

φns
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which may be represented as DCcC = φs.

This is an overdetermined problem since the number of stencil neighbours is greater than the number of

terms to be computed. So, to minimize the weighted residual, WLS is used.

In order to obtain an invertible square matrix on the left side, both sides of the equation are multiplied by

DT
CWC :

DT
CWCDCcC = DT

CWCφs (3.5)

where WC is a weight matrix that uses a weight function given by ( 1
dC/max(dC) )6, which was optimized

by Diogo [37] for both the convection and diffusion schemes.

On the left side of the equation there is now a square matrix with rows linearly independent. Therefore

it is possible to invert it.

cC = (DT
CWCDC︸ ︷︷ ︸
WLS

)−1DT
CWCφs (3.6)

The matrix inversion is performed using Gauss Elimination Method. Starting with [WLS |I] an elimi-

nation from down to up is performed, obtaining an upper matrix on the left side. Then it is followed by an

elimination from up to down leading to a diagonal matrix and finally obtaining [I|W−1
LS ].

Local Polynomials coefficients can be stored in a the array P such that:

cC = Pφs (3.7)

for future reference.

3.2.3 Boundary Treatment

A stencil may have face boundaries and so BC must be applied in the local polynomial reconstruction.

Dirichlet BC imposes the analytical value at the face boundaries (this contribution is represented in the

first line of the equation 3.8). The Neumann BC is implemented as the dot product between the imposed

gradient flux and the unitary face boundary’s normal pointing outwards the domain (shown in the last

line of the equation 3.8).

Equation 3.8 shows how the contribution of the Dirichlet and Neumann boundary conditions can be

added to matrix DC .
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1 (xf − xC) (yf − yC) (xf − xC)2 (xf − xC)(yf − yC) . . .
...

...
...

...
...

. . .
...

0 nx ny 2(xnf
− xC)nx (ynf

− yC)nx + (xnf
− xC)ny . . .





C1

C2

C3

C4

C5

...

Cn−1


=


φf
...

∇φf · ~n



(3.8)

Two sets of boundary condition were considered in this work: full Dirichlet BC is a set with all bound-

aries imposed with Dirichlet condition, and mixed BC is a case with a Neumann BC at the east boundary

and the remaining ones have a Dirichlet condition.

3.2.4 Inertial Momentums

Similar to the 1D case the inertial momentum vector is computed using Gauss quadrature integration for

the 2D space. As mentioned in equation 3.4 the 2D inertial momentums are given by:

xiyj =

∫
CV

(x− xC)i(y − yC)j (3.9)

When considering cells from unstructured grids, the polygon cells (with more than three faces) can be

split into triangles which use the cell’s centroid and the two vertexes of each face. Figure 3.2 shows an

example of the points needed to perform a gauss quadrature integration over a polygonal cell.

P

(a) Example of a triangular splitting of
polygonal cell and fourth-order Gauss
quadrature points

(x1,y1)

(x2,y2)

(x3,y3)

(b) Gauss quadrature integration
Points over a Triangular domain
(eighth-order)

Figure 3.2: Examples of points used in the 2D Gauss quadrature integration [36]

Overall, the cell’s inertial momentum is the sum of the Gauss quadrature integrations performed in

each triangle.

xiyj =
∑
bεJ(C)

(
S∆b

∑
kεG(∆b)

wG(k)(xk − xc)i(yk − yc)j
)

(3.10)
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where J(C) is the set of triangles, ∆b represents each triangle.

Triangle S∆ is computed by:

S∆ = (x2 − x1)× (x3 − x1) (3.11)

In the 2D Cartesian plane the Gauss quadrature points over a triangle can be computed by equation

3.12 using the simplex coordinates (s1,s2 and s3) which are listed in table 3.2 up to spatial order n.

xk =
[
s1 s2 s3

]
x1 y1

x2 y2

x3 y3

 (3.12)

where the Gauss quadrature weights (wG) are listed in the table 3.2 according to each order:

n N s1 s2 s3 wGi

4 1 0.333333333333333 0.333333333333333 0.333333333333333 -0.5625
3 0.6 0.2 0.2 0.520833333333333

6
1 0.333333333333333 0.333333333333333 0.333333333333333 0.225
3 0.797426985353087 0.101286577323456 0.101286577323456 0.125939180544827
3 0.059715871789770 0.470142064105115 0.470142064105115 0.132394152788506

8

1 0.333333333333333 0.333333333333333 0.333333333333333 -0.14957004446767
3 0.479308067841923 0.260345966079038 0.260345966079038 0.175615257433204
3 0.869739794195568 0.065130102902216 0.065130102902216 0.053347235608839
6 0.638444188569809 0.312865496004875 0.048690315425316 0.077113760890257

Table 3.2: Simplex coordinates and Gaussian weights necessary to perform Gauss Integration in a
triangle, data taken from [59] and [60]

It is worth mentioning that purely odd inertial momentums such as x, y x3, y3, . . . are equal to zero.

In triangular cells using eighth-order, it implies computing less 8 inertial moments (out of 36) per cell.

3.2.5 Transport Equation Discretization

Analogously to 1D the pointwise to mean conversion operator for 2D domains is computed such that:

φC = MCφs = Pijxiyjφs (3.13)

When designing the computational algorithm if a stencil includes a face boundary its polynomial

coefficient is stored in a separate matrix, Mf .

φcells = Mcellsφcells +Mfφf (3.14)

Combining global transport equation (see equation 3.2 ) with equation 3.14

(VpMcells − 0.5∆tAcells)φ
n+1
cells = (VpMcells + 0.5∆tAcells)φ

n
cells+

+Mf (φnf − φn+1
f ) + 0.5∆t(Af (φnf + φn+1

f ) + Sn+1 + Sn)
(3.15)

30



3.2.6 Unstructured Grids in 2D

In order to study the applicability of the proposed schemes to unstructured grids. It was chosen a set

of irregular meshes such as polyhedral (Figure 3.3(a)), triangular (Figure 3.3(b)), quadrilateral (Figure

3.3(c)) and a hybrid grids (Figure 3.3(d)) which mixes different types of grids and it is used as a final

robustness test of the method. The first three sets of grids represent the irregular version of an available

grid type. Grids were created changing the orientation of the cells. The size of each cell is not constant

but overall the ratio was kept near to one.

(a) Example of Polyhedral grid (with 545 cells). (b) Example of Triangular grid (with 1016 cells).

(c) Example of quadrilateral grid (with 504 cells). (d) Example of hybrid grid (with 726 cells).

Figure 3.3: Samples of irregular grid categories studied in this Thesis and which were also previously
studied by Diogo [37] for steady cases.
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3.3 Results and Discussion for Cartesian grids using Crank-Nicolson

time discretization

In this section the accuracy order of the mean operator and the transient results with 2D domains will

be verified as well as the temporal order. Both full Dirichlet (blue lines) and mixed (red lines) boundary

conditions are compared alongside. Other features such as convection velocities, runtime and memory

costs are also addressed and there is a unstructured grid types comparison at the end of the section.

Two examples are considered as analytical solutions to the following equation:

∂φ

∂t
+ Ux

∂φ

∂x
+ Uy

∂φ

∂y
= Γx

∂2φ

∂x2
+ Γy

∂2φ

∂y2
+ ϕφ with Ux, Uy, Γx, Γy ∈ R (3.16)

Example 1 - Dampening Cosine (with artificial source – ϕφ 6= 0):

φ(x, y, t) = e−tcos(3π(x+ y)),

with source term ϕφ = (−1 + 18π2(Γx + Γy))cos(3π(x+ y))− 3π(Ux + Uy)sin(3π(x+ y))

(3.17)

Example 2: Classical Travelling Wave (without any artificial source – ϕφ = 0):

φ(x, y, t) = e−(Γx+Γy)kk2π2t sin (kkπ(x+ y + (Ux + Uy)t)) (3.18)

The present results were obtained by setting Ux = 1, Uy = 1, Γx = 1 and Γy = 1 and kk = 1.2.

In this chapter 2D Dampening Cosine replaces the former 1D Dampening Exponential solution since

for eighth-order the latter one reached the round-off error with very coarse grids which did not allow to

verify clearly eighth-order accuracy.

Initially, the pointwise to mean conversion’s accuracy order is verified, followed by the Crank-Nicolson

temporal order verification and finally the spatial scheme order for Cartesian and unstructured grids.

3.3.1 Mean Operator

Pointwise to mean conversion must be as accurate as the spatial schemes used for the convection and

diffusion schemes. Therefore it is important to verify the mean operator’s spatial order before applying it

to any transient problem. The mean operator error is quantified in similar fashion as previously described

for the 1D case in chapter 2.

Figure 3.4 shows norm-1 of pointwise to mean value conversion using the mean operator in 2D space

using a Cartesian grid. The average order of each spatial scheme is written in bold.
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(b) Travelling Wave analytical solution

Figure 3.4: Mean operator error and respective accuracy order with Cartesian grids for all high-order
schemes using both full Dirichlet and mixed BC cases

For both solutions all curves display a subconvergent behaviour but for each successive refinement

the computed order is increasing and tending to the theoretical value. The obtained results when using

full Dirichlet and mixed BCs are very similar and curves overlap each other.
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3.3.2 Temporal Discretization

In this section the temporal discretization was done using the Crank-Nicolson time scheme, which is

second-order accurate. While the global error is dominated by the temporal error it must decay with the

accuracy of the used time scheme.

Figure 3.5 shows the global error with the timestep. For small timesteps the global error tends to the

spatial error. Eighth-order spatial scheme was used for these results. In figure’s legend, a ”Grid 40”

means a mesh with 40 by 40 square cell distribution.
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(a) Dampening Cosine analytical case.

1 2 3 4 5

∆t
×10

-3

10
-5

10
-4

||
e
||
1

grid 30

2.002

2.000

2.001

2.000

2.000

2.000

2.000

(b) Travelling Wave analytical case.

Figure 3.5: ‖e‖1 as a function of timestep for the eight-order spatial scheme with Cartesian grids while
using CN temporal scheme and for both full Dirichlet and mixed boundary conditions.

For both analytical solutions, the full Dirichlet BC case showed slightly smaller global errors than the

mixed BC case. The computed order between timestep refinements is close to the theoretical value.

Coarser timesteps show a tendency to decay at second-order. With the timestep when the curves start

to flatten it shows that the global error started to be dominated by the spatial error before reaching round-

off error and it is no longer dominated by the temporal one caused by Crank-Nicolson discretization. It

can be observed for the Dampening Cosine solution that more refined meshes require smaller timesteps

before the curve starts to flatten. Since its spatial error is smaller the temporal error must decrease even

further before the spatial error becomes dominant.

When the global error is still dominated by the temporal one different meshes should decay with similar

values and that can be observed for the Dampening Cosine solution with 40x40 grid and above that the

curves overlap for coarser timestep.

3.3.3 Spatial Discretization

When the timestep is small enough that the global does not change in one percent spatial error is

assumed to be obtained.

Figure 3.6 shows the spatial error decay with H (or cell’s length in the Cartesian meshes) considered
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for these results. The computed order between each successive refinement is shown as well as the

average spatial order for each scheme, which is written in bold.
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(b) Travelling Wave analytical case

Figure 3.6: ‖esp‖1 as a function of H with Cartesian grids for all spatial schemes using full Dirichlet and
mixed BCs and with the computed order between each mesh refinement.

Only sixth-order scheme in the Dampening Cosine solution is slightly above the theoretical order.

All other lines are slightly under its respective theoretical order. In the Dampening Cosine for the most

refined meshes, orders 3.939, 6.020 and 7.853, were obtained, which are very close to their theoretical

values (four, six and eight respectively).

The computed orders for the Travelling Wave case are also close to their theoretical values. The most
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refined mesh refinement for the eighth order starts to lose its order due to round-off error.

3.3.4 Further Considerations

This subsection concerns the study of the performance of the proposed high-order schemes when set-

ting high Peclet numbers and assessing if they provide for a given spatial error faster results (parameter

SRT) than the traditional second-order schemes and using less memory storage (parameter NNZ). The

results of this subsection were obtained with MATLAB code using Cartesian grids.

Peclet Number

When using full Dirichlet BC all boundary faces are setting to Dirichlet and when using mixed BC the

east face is set as a Neumann boundary face while the other ones are set as Dirichlet.

In the 2D space, Peclet number may be defined in both directions as:

Pex =
Ux
Γ

and Pey =
Uy
Γ

(3.19)

using as reference length the domain’s size (L = 1).

Figure 3.7 shows the spatial error decay with H for Travelling Wave solution when setting Ux and Uy

to one hundred and Ux to one thousand. Full Dirichlet and mixed BCs were comparatively studied. In

mixed case, Neumann condition was applied at the right side of the domain. Once again average spatial

orders of the schemes are written in bold.
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Figure 3.7: Spatial error for Travelling Wave analytical case for all schemes setting different values of
convection velocities, Ux and Uy for the cases with full Dirichlet and mixed BCs

In the Travelling Wave solution by increasing the values of the Peclet number it will imply waves with

a higher speed although its decay over time will be the same.

For low Peclet numbers (Pex = 1 and Pey = 1) presented in figure 3.6 (b) full Dirichlet BC provided

slighthly better spatial errors for a given mesh compared to the mixed BC counterpart. However, when
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increasing Peclet number in both directions to one hundred both BC types provide very similar spatial

errors indicating that Dirichlet boundaries except for the eighth-order case. When Pex is set to one

thousand only mixed BC is able to converge while keeping the spatial order. For these meshes the use

with only Dirichlet BC could not be converged for this velocities.

Solver Runtime

For the same mesh a higher order scheme uses larger stencils and so it will require a greater number of

algebraic computations. This increases the solver Runtime (SRT) and the computational effort. There-

fore studying the SRT is important to answer if this increase in SRT compensates the obtained smaller

spatial errors of the high-order schemes.

Figure 3.8 shows the spatial error decay with SRT for both considered analytical solutions when using

all spatial order schemes. Full Dirichlet BC was used.
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Figure 3.8: ‖esp‖1 as function of SRT for all schemes using CN and full Dirichlet BC

Error levels can be estimated by the intersection between the different curves of Figure 3.8. For both

analytical solutions the high-order schemes provide more efficient results than the second-order scheme

for errors smaller than E-1.

From Figure 3.8(a) in the Dampening Cosine solution the eighth-order scheme provides smaller values

of SRT than the other high-order schemes.

In the Travelling Wave solution fourth-order schemes are optimal for error levels between E-1 and E-4,

sixth-order for error levels between E-4 and E-5 and eighth-order schemes for smaller ones.

These results show the positive impact higher-order schemes can have in the computational cost of

these solutions.

By making an average of the decay orders for the second, fourth, sixth and eighth-order spatial error

decays at a rate of O(SRT 2/2.29) , O(SRT 4/2.33) , O(SRT 6/2.33) and O(SRT 8/2.59) respectively. So it

may be estimated that ‖esp‖1 = O(n/2.39), where n is the spatial order of the scheme.
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Memory storage

If memory storage is a computational limiting factor, it is worth considering the impact of the scheme error

decay with the Number of Non-Zeros (NNZ). The following study aims at finding the optimal memory

storage for a given spatial error level in a similar fashion as it was done with SRT.

Figure 3.9 shows the spatial error decay with NNZ for both analytical solutions using the four spatial

schemes and the CN time discretization. Only the case with full Dirichlet BC was considered here.
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Figure 3.9: ‖esp‖1 as function of NNZ for all schemes using the CN time discretization and only Dirichlet
BC.

In the Dampening Cosine solution higher-order schemes are useful for errors below E-1 regarding

memory storage. The fourth-order scheme is optimal for spatial error levels between E-1 and E-3,

sixth-order for error levels between E-3 and 5E-5 and eighth-order for levels smaller than 5E-5. In

the Travelling Wave solution higher-order schemes are useful for errors below E-2 regarding memory

storage. Fourth-order scheme is optimal for spatial error levels between E-2 and E-3, sixth-order for

error levels between E-3 and E-4 and eighth-order for levels smaller than E-4.

Spatial error decay has a lower rate for the Dampening Cosine than for the Travelling Wave.

3.4 High Order temporal schemes using Cartesian grids

Matrices in 2D spaces have more NNZ for the same number of cells due to two dimensions when

compared to the 1D case. As a consequence there is a larger amount of algebric computations per

timestep in 2D cases than in 1D ones. Implementing higher-order temporal schemes may allow a lower

number of timesteps needed so that global error is only dominated by the spatial error i.e. improving

computational time.

The following section aims at verifying high-order BDF schemes and assessing their impact in SRT

when using each high-order spatial scheme. The BDF temporal schemes implemented in this chapter

are analogous to the ones performed for the 1D cases. The second-order, fourth-order and sixth-order

BDF schemes are given by equations 2.31, 2.32 and 2.33, respectively.
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Results were obtained using Cartesian grids with the MATLAB code.

The study concerning memory costs was neglected since its results are straightforward. The stored

global matrices are the same in all BDF schemes. BDF2 needs to store a vector containing φn and

another for φn−1. BDF4 needs to store four vectors and BDF6 needs to store six for their respective time

stages. Given this reason the study concerning memory costs was neglected when comparing time

discretization schemes.

3.4.1 Temporal Orders

In order to verify the implemented time schemes this subsection verifies the temporal orders for all BDF

schemes. When timestep is large enough, the global error is dominated by temporal error and should

decay with the theoretical order of the used temporal scheme.

Figure 3.10 shows the global error decay with timestep for BDF2, BDF4 and BDF6 schemes. In all

results of this section 3.4, only Dirichlet BC was considered.
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Figure 3.10: ‖e‖1 as function of the timestep for BDF2, BDF4 and BDF6 time schemes for Travelling
Wave analytical solution using eighth-order scheme in 2D Cartesian mesh with 30 per 30 cells

The temporal orders are very close to the theoretical ones when using cartesian grids and an eighth-

order spatial scheme. Temporal order should be read when timestep is coarser and the spatial error of

this analytical case, grid with 30x30 cells and eighth-order scheme is around 4E-9 (see Figure 3.6(b)).

BDF6 starts to flatten for the smallest timesteps as the spatial error’s contribution starts to be relevant

for the global error.
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3.4.2 Solver Runtime

Once the temporal order of the BDF schemes are verified it is important to perform a comparative study

for all spatial schemes using each BDF schemes. The goal is ultimately to assess how fast the high-

order temporal schemes provide results.

Figure 3.11 from (a) to (d) show the spatial error decay for secon, fourth, sixth and eighth order schemes,

respectively, using the three BDF schemes introduced and the CN one. Results were obtained solving

the Travelling Wave analytical case with Cartesian meshes and only Dirichlet BCs.
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(c) 6th order scheme.
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Figure 3.11: Spatial error evolution with SRT for all temporal and spatial schemes at study for Travelling
Wave analytical case

These graphs show how high-order temporal schemes decrease SRT when using high order spatial

schemes. For second-order spatial scheme CN provides slightly faster results and the high-order BDF

schemes do not provide any relevant improvements when compared with BDF2. For the fourth order

spatial scheme BDF4 already shows smaller SRT values than BDF2 and CN. Using BDF6 it leads to

slightly faster results than with BDF4 but with a similar order. For both sixth and eighth spatial schemes

BDF6 allows even faster results than the remaining schemes.

Overall all the high-order spatial schemes seem to have an optimal when the temporal scheme is as
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high-order as possible. However, when the temporal order is lower than the spatial one, there is a

noticeable underperformance in terms of efficiency regarding SRT.

For sixth-order schemes, for an error level of E-5 table 3.3 shows that BDF4 and BDF6 schemes reach

time savings up to ninety percent when compared to BDF2 and for error levels of E-7 time savings reach

ninety two percent.

‖e‖1
BDF2 BDF4 BDF6 CN

SRT (s) r1 SRT (s) r1 SRT (s) r1 SRT (s) r1

E-5 0.6723 1 0.0843 0.1254 0.0624 0.0928 0.6642 0.998
E-7 5.6334 1 0.4567 0.0811 0.1816 0.0322 4.4429 0.7887

Table 3.3: SRT estimated for BDF2,BDF4, BDF6 and CN schemes for sixth-order scheme and the
respective ratios, using as reference the value from BDF2.

3.5 Results and Discussion for Unstructured Grids

This section concerns the quantification and analysis of spatial error decay with H, SRT and NNZ

when using unstructured grids. Only irregular grids of polyhedral, triangular and quadratic meshes are

considered as well as an hybrid mesh which is considered a robustness test due to its low grid quality.

At the end it was performed a comparative studies regarding SRT and NNZ for different irregular meshes.

These results for unstructured grids were obtained using the SOL code. Global system matrix and matrix

for explicit multiplication were stored as MSR matrices, explained in AZTEC guide [61], GMRes as a

linear solver algorithm was used and the spatial error was obtained when the global error decreased

less than one percent with timestep size.

3.5.1 Spatial Error Orders

High spatial orders were verified by extending the SOL code to transient cases using CN time discretiza-

tion. It is worth assessing if the proposed schemes are applicable to unstructured grids.

Figure 3.12 shows the spatial error decay with H for the Dampening Cosine analytical case when using

irregular polyhedral (Figure 3.12(a) ) and hybrid meshes (Figure 3.12(b) ) for the three spatial schemes.
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Figure 3.12: ‖esp‖1 as function of H for the Dampening Cosine analytical case using irregular unstruc-
tured grids, the CN time scheme and full Dirichlet BC.

For the Dampening Cosine solution using an irregular polyhedral mesh curves show a very small

overconvergent behaviour for the most refined meshes and the computed average orders are very close

to the theoretical ones.

Using hybrid mesh curves display a slight overconvergent behaviour but the computed order for the last

grid refinement of the fourth and sixth-order schemes has a very close value to the theoretical one.

From Figure 3.12, for both polyhedral and hybrid meshes the eighth-order schemes reach very small

errors for coarse grids and the scheme for the most refined mesh is affected by round-off and iterative
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errors. Due to this for the eighth-order scheme the computed order for the last grid refinement has not

been considered.

3.5.2 Solver Runtime

This subsection evaluates the impact high-order schemes have on SRT when the global error is only

dominated by the spatial one. This study aims at assessing which scheme order provides the fastest

results for a given error level.

Figure 3.13 shows the spatial error decay with SRT when using irregular polyhedral and hybrid meshes

for the second and three high-order schemes.
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Figure 3.13: ‖esp‖1 as function of SRT for Dampening Cosine analytical case for the case with only
Dirichlet BC.

Using an irregular polyhedral mesh with the sixth-order scheme provides faster results for spatial

errors between E-3 and E-4 while the eighth-order is a better option for errors smaller than E-4.

When using a hybrid mesh the sixth-order scheme obtains faster results for errors between E-2 and

E-4 when compared to the other schemes while eighth-order schemes provide faster results for smaller

errors. From these results the following equation can be estimated: ‖esp‖1 = O(SRTn/2.967).

3.5.3 Memory Storage

When the memory storage is a limiting factor, it is worthwhile studying how the spatial error decays with

the total Number of Non-Zeros of the global matrices for each order.

Figure 3.14 shows the spatial error decay with the Number of Non-Zeros of the global matrices.
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Figure 3.14: ‖esp‖1 as function of NNZ for Dampening Cosine analytical case using CN time scheme
and full Dirichlet BC.

For the irregular polyhedral mesh fourth-order is optimal for errors greater than E-2 regarding memory

costs, while sixth-order scheme is the most efficient one for error levels between E-2 and E-4. For errors

smaller than E-4, the eighth-order schemes requires less memory than the other ones.

For the hybrid mesh fourth-order schemes requires less memory for errors above E-2, sixth-order for

errors between E-2 and E-3 and eighth-order is less memory costing for errors smaller than E-3.

From these results the following equation ‖esp‖1 = O(NNZn/2) is verified.

Grid Topology

The following comparative study aims at evaluating how the four sets of selected irregular meshes per-

form regarding SRT and memory storage for the sixth-order scheme.

Figure 3.15 compares the spatial error evolution with SRT and memory storage when using sixth-order

spatial schemes and for all irregular grids at study.
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Figure 3.15: ‖esp‖1 as function of SRT and NNZ for sixth-order spatial scheme in the Dampening Cosine
analytical case.
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Regarding SRT all curves almost overlap each other but the irregular quadrilateral mesh shows time

savings of ten percent when compared to triangular and polyhedral meshes and of thirty percent when

compared to hybrid ones, from table 3.4.

Memory cost results for the irregular triangular mesh are slightly better than the remaining ones. From

table 3.5 triangular meshes show memory savings of only three percent when compared to quadrilateral

meshes.

The hybrid grid as expected can be considered the worst for both criteria (SRT and NNZ), although it

has a similar order decay as the other irregular grids have.

‖e‖1
POLY TRI QUADS HYB

SRT (s) r1 SRT (s) r1 SRT (s) r1 SRT (s) r1

E-5 2.6593 0.8532 2.4879 0.7982 2.1437 0.6878 3.1167 1

Table 3.4: SRT estimated for a spatial error of E-5 with irregular polyhedral, triangular, quadrilateral and
hybrid grids for sixth-order scheme and the respective ratios, using as reference the value from hybrid
meshes.

‖e‖1
POLY TRI QUADS HYB

NNZ r1 NNZ r1 NNZ r1 NNZ r1

E-5 7.6626E4 0.8022 7.5991E4 0.7936 8.0205E4 0.8376 9.578E4 1

Table 3.5: NNZ estimated for spatial error of E-5 with irregular polyhedral, triangular, quadrilateral and
hybrid grids for sixth-order scheme and the respective ratios, using as reference the value from hybrid
meshes.

3.6 Conclusion

In the 2D space the local polynomial reconstructions lead to overdetermined matrices. So in order to

minimise residual error, the weighted least-squares method was used. The pointwise to mean conver-

sion orders were effectively verified for two analytical solutions before applying the method to transient

problems.

The 2D unsteady cases were temporally discretized using Crank-Nicolson method. Numerical temporal

orders were close to the theoretical ones. When the timestep is small enough, the global error starts to

be dominated by the spatial one. The numerical spatial orders were close to each expected theoretical

value.

Once the implemented schemes were successfully verified, the impact of the Peclet number on the accu-

racy was studied. For low Pe, full Dirichlet BC proved to be slightly more accurate. However, for high Pe

the mixed BC case was able to keep the spatial order while the full Dirichlet counterpart did not converge.

In order to reduce SRT, high-order BDF schemes were considered for the Travelling Wave analytical

case and their temporal orders were effectively verified. When comparing all BDF schemes using each

spatial scheme, it was evident that the best results regarding SRT were achieved when BDF6 was used.
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Afterwards spatial orders for all schemes were verified for irregular polyhedral and hybrid meshes for

the Dampening Cosine analytical solution.

Regarding both SRT and memory storage case, high-order schemes proved to be advantageous for

errors smaller than E-1 with both Cartesian and unstructured grids. Overall fourth-order schemes seem

to be the best one for error levels between E-1 and E-3, the fourth-order for error levels between E-3

and E-5, while the eighth-order for even smaller errors.

With sixth-order scheme, irregular quadrilateral meshes showed the fastest SRT, with time savings of

ten percent when compared to triangular and polyhedral meshes and thirty percent when compared to

hybrid ones.
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Chapter 4

Conclusion

4.1 Contributions

For the Finite Volume Method a mean operator, which converts pointwise values to mean ones, was

created to keep the spatial high-order accuracy in the pointwise framework previously developed for the

diffusion schemes by Vasconcelos [36] and for convection schemes by Diogo [37]. In the 1D space

and when using Crank-Nicolson time discretization the spatial (up to the eighth-order) and the temporal

orders were verified. Additionally, cases with non-uniform grids and for high Peclet numbers were also

studied.

In the 2D space, weighted least-squares method was used to minimize the local interpolation error

when using cell-centred stencils based on face neighbours. The cell inertial momentums were computed

using 2D Gauss quadrature integration after splitting the polygonal cells into triangles. The proposed

mean operator order was verified in Matlab environment with Cartesian grids.

Once again, the spatial and time orders were verified (up to eighth order) for 2D unsteady analytical

cases. For coarse meshes full Dirichlet BC was not able to keep the high spatial order for high Peclet

numbers while the mixed BC case was. Regarding Solver Runtime (SRT) and memory storage high-

order schemes prove to be advantageous over the second-order ones for errors smaller than E-1 as

they require less solver time.

In Matlab environment high temporal orders (up to the sixth) were verified using BDF schemes with

all high-order spatial schemes. Higher-order temporal schemes did not reduce considerably Solver

Runtime for second-order spatial schemes. However, this is not true for the case of high-order spatial

schemes, since high-order BDF schemes were more efficient than the CN and BDF2.

In SOL code high spatial orders (up to the eighth one) were verified for both polyhedral and hybrid grids.

When comparing irregular unstructured grids quadrilateral meshes provided SRT values ten percent

lower than with triangular and polyhedral grids and thirty percent lower than with hybrid meshes.
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4.2 Future Work

The present unsteady convection-diffusion results obtained for 2D unstructured grids can be adapted to

3D ones since all mathematical principles are the same and it is just an implementation issue. The SOL

code already has the 3D capabilities.

Another next step is the contribution for a high-order unsteady Navier-Stokes solver that uses the al-

ready implemented schemes. This is an integral part of HIBforMBI project since the moving immersed

boundary problems are considered to be unsteady.

This approach is applicable to other high-order schemes such as Adams-Moulton or SDIRK schemes. A

comparison study can be performed using the same parameters discussed in this Thesis (Solver Run-

time and memory).

One final future work should be the incorporation of turbulence modelling based on the Large-Eddy Sim-

ulation and quantifying the performance of the implemented high-order schemes in turbulent spectrum

when compared to the second-order schemes.

48



Bibliography

[1] N. K. Johnson and L. F. Richardson. Weather Prediction by Numerical Process. The Mathematical

Gazette, 1922. ISSN 00255572. doi: 10.2307/3603284.
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[29] R. Costa, S. Clain, and G. J. Machado. New cell-vertex reconstruction for finite volume scheme:

Application to the convection-diffusion-reaction equation. Computers and Mathematics with Appli-

cations, 2014. ISSN 08981221. doi: 10.1016/j.camwa.2014.08.015.

[30] R. Costa, S. Clain, and G. J. Machado. A sixth-order finite volume scheme for the steady-state

incompressible Stokes equations on staggered unstructured meshes. Journal of Computational

Physics, 2017. ISSN 10902716. doi: 10.1016/j.jcp.2017.07.047.

[31] X. Nogueira, L. Cueto-Felgueroso, I. Colominas, H. Gómez, F. Navarrina, and M. Casteleiro. On
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