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Abstract 

The heavy usage of chat platforms by users, allied with developments in natural language 

understanding, offer a favourable scenario for organizations to implement use cases in chatbots. This 

research identifies factors that influence the suitability of use cases for conversational user interfaces, 

enabling organizations to make more informed decisions regarding chatbots implementations. The 

factors identified are grouped in three categories: (i) general factors; (ii) factors to be considered to 

implement a chatbot over a human operator; and (iii) factors that should be considered when 

implementing a chatbot over a traditional GUI application. A use case selection process is created that 

uses the factors gathered and enables to prioritize the more appropriate use cases between a set of 

potential use cases for chatbot implementation. The selection process is applied to several use cases 

in the health care domain, yielding the use case of scheduling a medical appointment with highest 

priority. A reference architecture of a chatbot for scheduling an appointment is defined and implemented. 

User tests are conducted, comparing the interactions with the chatbot with a traditional graphical user 

interface (website). User tests indicate the chatbot as more efficient than the website, and most testers 

indicate it as a preferable method for scheduling an appointment, when comparing to the website. 
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Resumo 

A intensa utilização de plataformas de chat pelos utilizadores, conjugada com os desenvolvimentos em 

processamento de língua natural, criam um cenário favorável às organizações para a implementação 

de chatbots. Esta tese identifica as características dos casos de uso que influenciam a sua 

adequabilidade para chatbots, permitindo às organizações tomarem decisões mais informadas no que 

respeita a implementações em chatbots. Os fatores identificados estão divididos em três grupos: (i) 

fatores gerais; (ii) fatores a considerar para comparação com operadores humanos; e (iii) fatores a 

considerar para comparação com aplicações gráficas tradicionais (GUI). É definido um processo de 

seleção de casos de uso que, usando os fatores identificados, permite avaliar casos de uso e ordenar 

um conjunto de casos de uso para priorização de implementação em chatbot. Este processo é aplicado 

a um conjunto de casos de uso no domínio da saúde, o que resulta na identificação “marcação de 

consulta médica” como o mais adequado a implementar dentro do conjunto de casos de uso avaliados. 

É definida e implementada uma arquitetura de referência para um bot que implementa este caso de 

uso. São realizados testes com utilizadores, onde é comparada a interação com o chatbot e com uma 

aplicação gráfica tradicional (website) para marcação de consultas. Os resultados dos testes indicam o 

chatbot como mais eficiente do que o website, e a maioria dos utilizadores indica o chatbot como 

método preferencial para marcação de consultas, quando comparado com o website. 
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1. Introduction 

The developments in the artificial intelligence field have been responsible to the rise of new, more 

intelligent systems. Specifically, the developments in the Natural Language Processing, drive the 

development of chatbots. Chatbots are systems that interact with the user using natural language, as if 

the user were talking with another human. Today people are using chat platforms as one of the main 

channel of communication, using applications such as Facebook Messenger or WhatsApp. The heavy 

usage of chat platforms allied with the developments in natural language process (NLP) create a 

favourable scenario to organizations to offer their services using conversational user interfaces. 

Services can be accessed directly from the chat platforms the users already use, in a more natural way, 

instead of requiring the users to install a specific app or access the organization website.  

Health Care is one field that can benefit from the implementation of chatbots, both in customer service, 

enabling, for instance, users to schedule appointments or even in the clinical field, by assisting the 

decision process of healthcare professionals. 

Although chatbots can offer the beforementioned advantages, it is important to assess if a use case is 

suitable for a conversational interface. Moreover, organizations should be able to select the more 

appropriate use cases between several use case candidates, in order to understand the more suitable 

ones and prioritize them.  

This work is realized in the context of Medclick1. Medclick is a company that will provide a one-stop 

platform to book a medical appointment in a fast and user-friendly way, across multiple medical service 

providers. 

 

1.1 Research Problem 

This research aims to understand what use cases are adequate to expose via a conversational user 

interface. This raises the following questions: 

• How can suitable use cases be identified in a systematic way? 

• What use case factors influence its suitability to be implemented in a dialog agent? 

• How can organizations prioritize use cases for a chatbot implementation? 

It is therefore a goal of this research to find factors that impact the suitability of a use case for a chatbot, 

and use such factors to create an use case evaluation process, that can be used by any organization to 

evaluate the suitability of its use cases for a conversational user interfaces, and prioritize the more 

suitable ones. 

 
1 https://www.medclick.pt/ 
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Furthermore, this research aims to create a reference architecture of a chatbot in the healthcare domain. 

The use case evaluation process is used as the starting point to answer the following question: 

• What healthcare use cases are more appropriate to be exposed via a chatbot? 

After answering this question, it is possible to select a suitable healthcare use case and create a 

reference chatbot architecture. 

 

1.2 Thesis Outline 

The thesis is organized in five sections. In the next section, section 2, it is performed a review of the 

related work and background information useful to address the research problem. In section 3, factors 

that should be considered when evaluating the suitability of a use case for a chatbot are defined, and a 

use case selection process that uses the factors defined is proposed. This process is applied to use 

cases in the healthcare domain and yields the use case of scheduling a medical appointment as the 

more appropriate for chatbot. Later, in section 4, it is explored the architecture and implementation of 

the bot that supports this use case. In section 5, the evaluation of the chatbot created and of the use 

case selection process is discussed. Finally, in section 6, the conclusions of this research are 

presented. 
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2. Related work 

In this section, the background and related work useful to address the research problem are reviewed. 

It is defined what are dialog systems and its subcategorizations. The chatbots general uses and specific 

to the healthcare domain are explored. It is also explored the differences between the interaction of 

users with bots, humans and traditional GUI applications. An overview of natural language processing 

is performed. Finally, it is analysed the existing chatbot services that facilitate the development of 

chatbots nowadays. 

 

2.1 Dialog Systems 

Conversational agents or dialog systems are programs that communicate with users in natural language. 

This kind of systems can be classified in two categories [1]: 

• Task-oriented dialog agents: are designed for a particular task and set up to have short 

conversations to get information from the user to help complete the task. These include the 

digital assistants that can give travel directions, control home appliances, find restaurants, 

or help make phone calls or send texts.  

• Chatbots: Chatbots are systems designed for extended conversations, set up to mimic the 

unstructured conversational characteristic of human-human interaction, rather than focused 

on a particular task. These systems often have an entertainment value. Chatbots are also 

often attempts to pass the Turing test [2]. Chatbots can also have some practical uses such 

as testing theories of psychological counselling. 

The word “chatbot” is often used in the media and in industry as a synonym for conversational agent [1]. 

In this document the term “chatbot” is used in that same more general sense. In reality, the kind of 

systems explored in this thesis are typically task-oriented dialog agents, even though we may refer them 

using the word “chatbot” instead of “task-oriented dialog agent”.  

It is also important to notice that even though dialog systems communicate with users in natural 

language, other form of GUI elements are often used such as pre-defined quick replies that the user 

can click in order to make the interaction faster and easier. 

 

 



15 
 

2.2 Uses of Chatbots 

Today there are several tasks that can be performed by chatbots. This set of tasks make possible a 

panoply of use cases that can be supported by bot interaction. The main tasks performed by a chatbot 

are: send alerts; take action; pull information and answer questions [3]. 

It is possible to identify some categories of uses cases that were already being implemented by some 

companies taking advantage of the previously mentioned set of tasks,  [4] identifies the following major 

use cases. 

 

Conversational Commerce. Conversational bots offer the ability to order and explore services or goods 

directly by a conversational interface. This has the advantage of removing the need to install the specific 

app of the business, calling services directly from the preferred conversational channel. 

 

Bots for business. Bots are not only being used for external customers but also internally by 

businesses, in order to support their internal business processes. This can improve productivity by 

facilitating short, contextual and actionable tasks. 

 

Notification Bots. Notification through chat platform are being used as an alternative to more traditional 

notifications such as email. One of the advantages of this type of use is that traditional notifications 

usually redirect the user to another platform, while chatbots, taking advantage of its “take action” 

capability, can perform some related action directly from the conversational UI. For instance, a client 

can receive some appointment reminder, and can confirm/cancel it directly from the chat platform. 

 

Bots as Routers between humans. Bots can also help connecting humans to humans. By using 

chatbots we can by identifying the intent of the user and connect him or her to the most suitable human. 

This can act as a replacement of the traditional IVR systems, providing a more natural experience until 

a human takes the place. 

 

Customer Service and FAQ bots. Bots helping answering questions to clients are a very common use 

case. The fact that most questions are usually asked several times, and the answer is standard, make 

bots a great way to replace humans in this repetitive task, reducing costs and usually being faster. 

 

Productivity and Coaching. There are also various examples of bots focused on reminders, to-do lists, 

personal and team task management completion, that help people be more productive. Bots can also 
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be used for personal coaching to assist in areas such as weight loss and finance. By providing a more 

personal experience, bot users are more willing to provide information to the bot than to fill forms in an 

app. 

 

Third-Party integration Bots. Third party integrations make possible to bring external apps used in 

someone workflow to some chat app like slack. This avoids that users have to context-switch between 

apps to gather the information needed to their workflow. 

 

Games and Entertainment Bots. Bots are also being used in the entertainment area by using a 

conversation as a fun activity. One of the advantages of using bots in this area, is that bots can reengage 

with the users and encourage them back to the service in a less intrusive and more customizable and 

friendly way than app notifications, for example.  

 

Brand Bots. Business are using the chat channels to create brand awareness and engagement. One 

of the major incentives to use bots in this area is app fatigue, creating this way a new way to engage 

with users. 

 

Examples of bots available in each category of use case can be seen in Table 1. 
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Table 1 - Bot examples for each use case 

Use Case Bot Example Bot Description 

Conversational Commerce Kip2 AI assistant for team shopping 

that saves time coordinating 
office purchases. 

Bots for Business LawGeex3 LawGeex automates the 

contract review process, so that 
lawyers are free for other tasks. 

Notification Bots CNN Instant breaking news alerts 

and the most talked about 
stories. 

Bots as Routers between 

humans 
Sensay4 Sensay is a bot that connects 

you to real people to chat 

Customer Service and FAQ 
bots 

Chatbotler5 Automates responses to 
commonly asked questions 

Productivity and Coaching. Lark6 Helps users monitor their food 

habits, helping with weight loss 

Third-Party integration Bots Statsbot7 Connects to your database, 
generates data relationships 
from it automatically, and allows 
to get first insights 

Games and Entertainment Bots Swelly8 It is a polling chatbot that 

enables sharing your opinion 
with a worldwide community 
and get feedback on your own 
questions within seconds. 

Brand Bots Whole Food Market9 Lets users search for recipes, 

as well as find stores and 
contact the company over 
Facebook Messenger 

 

 

 
2 https://botlist.co/bots/kip-2 
3 https://www.lawgeex.com/ 
4 https://www.kik.com/bots/sensay/ 
5 https://www.chatbotler.com 
6 https://www.lark.com 
7 https://statsbot.co/statsbot 
8 https://www.swelly.ai/ 
9 https://www.chatbotguide.org/whole-foods-bot 

https://botlist.co/bots/kip-2
https://www.lawgeex.com/
https://www.kik.com/bots/sensay/
https://www.chatbotler.com/
https://www.lark.com/
https://statsbot.co/statsbot
https://www.swelly.ai/
https://www.chatbotguide.org/whole-foods-bot


18 
 

2.3 Chatbots In Healthcare 

In this section we focus on use cases specific to the healthcare domain. 

Chatbots in healthcare have impact on multiple actors of the healthcare domain. They are present in 

hospitals and clinics context to be used both by professionals and patients. 

Clinical Context: Used by Health Care Professionals. Conversational agents can be used to support 

the medical professional’s decision-making process, by helping them retrieve information in a fast and 

practical way. One example is the “SafedrugBot”, a messaging app that helps doctors who need 

appropriate information about the use of drugs during breastfeeding, offering readily accessible drug 

information [5]. There are also efforts made to support medical students’ education, [6] created a bot 

that can answer medical students queries by using the Unified Medical Language System (UMLS) as 

domain knowledge an converting the student natural language to SQL queries. The SQL queries are 

then run against the knowledge base and results returned to the user in natural dialog. Based on a 

survey to medical students, it was concluded that the most required type of question was of the form 

“what is <concept>?”. The system supports the following type of queries: what is; what is the type of; 

what are the causes of; what are the symptoms of. 

Clinical Context: Used by Patients. Bots can also be used by patients, [7] introduces a chatbot system 

that provides conversational service for mental health care based on emotion recognition methods. This 

service conducts psychiatric counselling to its users. To understand the dialogues and recognize user’s 

emotion, the service applies various emotional intelligence techniques such as multi-modal emotion 

recognition from conversation content, intonation, and facial expression, enabling continuous 

observation of user’s emotional changes.  

Furthermore, chatbots can be used to help triage patients. England NHS experimented triage NHS 111 

inquiries with “Babylon”, a chatbot drive by clinically-based algorithms that can triage patients based on 

the symptoms reported, without the intervention of humans. Based on the symptoms and its own 

algorithms, the app could refer the patient to hospital or recommend a GP appointment [8].   

Customer Service. In the medical provider’s customer service context, they can be used to help 

patients find doctors and scheduling their appointments. Bots can also be used to notify patients of 

incoming appointments. 

Used by Regular Users. There are also solutions on the consumer side that facilitate the day-to-day of 

users regarding to healthcare. Chatbots can be used to remind patients to take their medication, search 

for diseases information and find close pharmacies and doctors’ offices. One example of a bot that 

provides all the referred functionalities is “Florence” (see Figure 1). 
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Figure 1 - Florence bot medication reminder – in [9] 
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2.4 Chatbots, Humans and GUI Applications 

This section explores what are the chatbots benefits, when replacing human interaction and traditional 

applications (GUI). It is also explored the intrinsic differences of the interactions. 

Human-Human vs Human-Chatbot Interaction.  There are some differences in the way that people 

interact with a bot compared to a human. A study [10] concluded that people communicate with the 

chatbot for longer durations, using shorter messages, than they did with another human. Additionally, 

human–chatbot communication used simpler vocabulary than what is found in conversations among 

people and exhibited greater profanity. Factors such as number of words per conversation, shorthand 

terms, and emoticons were found to have no statistically significant differences. 

The usage of chatbots in some scenarios bring advantages over humans, namely [11]: 

• Consistency: chatbots can be consistent in services, which is important in certain sectors 

and may be hard to achieve with human operators. 

• Scalability: chatbots can easily scale up to handle periods of unregular increased traffic, 

which is much harder with human operators. 

With good design and implementation, Accenture [12] reports more than 80% of chat sessions resolved 

by a chatbot, that would otherwise been a human in a chat session or call. 

 

Human-Traditional GUI vs Human-Chatbot Interaction. A report [13] by Forrest identifies the 

following factors that foster chatbots adoptability over traditional applications: 

• Chatbots promise a more convenient and natural user interface: Typically, users must go to 

the process of discover, download, and install apps. Then, apps provide touch graphical 

interfaces to help consumers perform tasks. The experience isn’t natural, but it is effective. 

Conversations offer are more natural experience. 

• Mobile moment ownership is plateauing for enterprises:  Mobile is the first screen for 

consumers; however, consumers use only 25 to 30 apps on average each month and spend 

88% of their time in just five downloaded apps.  

• Heavy use of instant messaging platforms: Consumers spend 78% of their time on 

smartphones within apps. The median usage of instant messaging apps is 21.47 minutes 

per day among users of those apps and the pace of adoption is accelerating. 

 

The fact that we are living an app fatigue moment, allied with the heavy usage of messaging apps, 

present an opportunity to replace traditional applications with chatbots available on the messaging 

applications that users are already using.  
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2.5 Natural Language Processing 

Natural language processing (NLP) is a subfield of computer science concerned with using 

computational techniques to learn, understand, and produce human language content [14]. Some 

applications of NLP include: information extraction, transforming unstructured data found in texts into 

structured data [1]; conversational agents, that aid human-machine communication [14]; or machine 

translation, the use of computers to automate the process of  translating from one language to another, 

aiding  human-human communication [1] [14]. 

The factors that have allowed the development of NLP in the last years twenty years, according to  [14], 

are: (i) increase in computing power, (ii) the availability of large amounts of linguistic data, (iii) the 

development of successful machine learning methods, and (iv) a richer understanding of the structure 

of human language and its deployment in social context. 

The types of linguistic knowledge in NLP can be divided in the following categories [15] [1]: 

1. Phonetic and Phonological Knowledge;  

2. Morphological Knowledge; 

3. Syntactic Knowledge; 

4. Semantic Knowledge; 

5. Pragmatic Knowledge; 

6. World Knowledge; 

7. Discourse Knowledge. 

 

An overview of each type of knowledge and its analysis in NLP is presented next. 

Phonetic and Phonological Knowledge. Phonetic and phonological knowledge concerns how words 

are realized as sounds [15]. 

 

Morphological and Lexical Analysis. Morphology is the study of the way words are built up from 

smaller meaning-bearing units, morphemes [1]. Morphological parsing is the process of finding the 

constituent morphemes in a word. For instance, the morphological parsing of the word “cats” should 

reflect this word is the plural of the noun stem “cat” (CAT +N +PL for “cats”) [1]. 

This phase starts by the process of tokenization, the task of separating words from running text. Part-

of-speech tagging (POS) is a goal of this phase.  POS is the process of automatically assigning a 

morpho-syntactic tag (such as noun or verb) to each word. To perform POS tagging, the issue that the 

same word can have multiple tags (ambiguity) must be resolved. Methods for POS tagging include [1]: 

Rule-based taggers, that use hand-written rules to disambiguate between tags; HMM taggers, that 

maximize the product of word likelihood and tag sequence probability, trained with hand labelled data. 

The Viterbi algorithm is an example of an algorithm used that given an HMM and an input string returns 

the optimal tag sequence. Other machine learning models used include: maximum entropy and other 

log-linear models; decision trees; memory-based learning; and transformation-based learning [1]. 
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Syntactic Analysis. Syntactic analysis concerns how words can be putted together to form correct 

sentences [15]. It defines how words relate to one another [15]. Syntactic parsing is the task of 

recognizing a sentence and assign a syntactic structure to it [1]. The syntactic structure of a sentence 

is typically represented in the form of a tree. In order to perform syntactic parsing, it is needed a grammar 

and a parsing algorithm. The grammar specifies the allowed structures of the language and the parsing 

algorithm defines how to generate the structure of a sentence given the grammar. Parsing algorithms 

can be divided in two groups: bottom-up and top-down. Top-down parsers try to build a parse tree from 

the root node down to the leaves. On the other hand, bottom-down parsers start with the words of the 

input and tries to build the tree from the words up. 

Syntactic parsing must also deal with ambiguity, given that for the same sentence it can be possible to 

have multiple parsing trees that agree with the grammar. An approach to solve this issue is the use of 

probabilistic context-free grammars (PCFG). In PCFGs a probability is added to each rule, and the 

probability of a sentence can be obtained by multiplying the probability of each rule used in the parsing 

of the sentence [1]. The parsing algorithms can also be adapted to use the probability information. 

 

Semantic Analysis. Semantic analysis concerns the meaning of individual words and how the words 

combined create the meaning of a sentence [15]. Several approaches are possible to represent this 

meaning in NLP. [1] identifies the following meaning representation languages: (i) First Order Logic; (ii) 

Semantic Networks; (iii) Conceptual dependency; and (iv) Frame-based. 

Ambiguity is also present at the semantic level. The methods to solve this ambiguity can be divided in 

two major groups: (i) machine learning methods, that use features that are predictive of word senses 

(such as bag of words or collocational features), and (ii) methods that use lexical resources, such as 

dictionaries or syntax information.   

   

Pragmatic Knowledge. Pragmatic knowledge concerns how sentences are used in different contexts 

and how it affects the interpretation of the sentence [15]. 

 

World Knowledge. World knowledge includes general knowledge about the world.  

World knowledge is used in: (i) disambiguating the meaning of a sentence; (ii) connecting parts of 

discourse (bridging); (iii) finding how two segments of discourse are logically connected to one another 

(discourse relations); and  (iv) resolving rhetorical figures such as metaphors and metonyms [16]. 

 

Discourse Knowledge. Discourse knowledge widens the analysis to more than single independent 

sentences. It takes in account the general discourse when interpreting a sentence, using information 

from preceding sentences. It is used in solving co-references. 
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As seen above, ambiguity is present on various levels of analysis in NLP. It presents one of the main 

challenges in NLP. 

 

2.6 Natural Language Understanding in Dialog Agents 

There are various possible structures to represent the meaning of linguistic expressions. Modern task-

based dialog systems are based on a domain ontology, a knowledge structure representing the kinds of 

intentions the system can extract from user sentences [17]. The ontology defines a frame-based 

representation, with one or more frames, each a collection of slots, and defines the values that each slot 

can take.  

Dialog agents typically have a natural language understanding module. NLU is responsible for the 

semantic parsing of user utterance, i.e., it gives semantic meaning to user utterances. This module is 

responsible for selecting the appropriate frames and filling the slots of the before mentioned domain 

ontology structure. This module objective is therefore to extract three things from the user’s utterance 

[17]: 

• domain classification: if the systems is not single-domain, there is the need to determine 

what domain is the user referring to. 

• intent determination: what general task or goal is the user trying to accomplish. For 

example, the task could be to Find a Movie, or Show a Flight, or Remove a Calendar 

Appointment.   

• slot filling: extract the particular slots and fillers that the user intends the system to 

understand from their utterance with respect to their intent. 

Consider the sentence “Book me a table for two for Friday night at Sushi Place”. The NLU module would 

recognize the domain as “restaurant”; the intent as “book table” and would fill the time slots with “night” 

and “Friday”; the restaurant name slot as “Sushi Place”; and finally the slot for the number of seats as 

“two”. 

The domain and intent determination are usually treated as a semantic utterance classification (SUC) 

problem and the slot filling as a sequence labelling problem [18]. 

Possible methods used by for domain/intent recognition and slot filling include: (i) hand-written rules; (ii) 

semantic grammars, that are context-free semantic grammar in which the left-hand side of each rule 

corresponds to the slot names; and (iii) supervised machine learning, using a training set that associates 

each sentence with the semantics, we can train a classifier to map from sentences to intents and 

domains, and for slot filling a sequence model can be used [17]. 
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2.7 Existing Chatbot Services 

As seen in section 2.6, it is possible to create NLU from scratch by either implementing rules or applying 

machine learning algorithms. Training machine learning models requires having access to rare 

expertise, large datasets, and complex tools, which presents a barrier to smaller companies [19]. The 

availability of NLP services in the cloud has powered the widespread use of chatbots. From the rise of 

open source tools to the arrival of cloud APIs, NLU capabilities once limited to the academic and 

research community are now accessible to a wider audience across industries [19]. 

Today there are various solutions for businesses looking to build a chatbot without having to deal with 

the hard task of creating a NLU system from scratch. The major tech companies are all taking efforts in 

developing cloud platforms that can be used by other companies to create their own chatbots. 

Nowadays, there is a diversified offer of services with various degrees of complexity, from services that 

require no coding to programming frameworks. In this section we will analyse in more detail solutions 

offered by some of the world leading technologic companies, namely: Google, IBM and Microsoft. For 

each of the solutions we will focus on following aspects: 

• Concepts present: define what are the concepts that are used and configured in order to create 

the conversational agent. 

• Channels Integration: explore what are the channels where the agent can be integrated. Some 

platforms offer integrations to existing conversational interfaces, making the process of creating 

a UI for the agent much simpler, because the fronted for displaying text and other elements, 

such as lists of buttons, is already available.  

• Integration with external services: How does the solution allows the integration with external 

services is especially important to be considered when businesses are adapting existing 

business processes to a conversational UI, because typically there will be the need to 

communicate with the company’s backend to either retrieve information from it or trigger actions. 

Today many companies develop their systems following some sort of SOA architecture, it is then 

important to realize how can the bot platform communicate with it and integrate it with the flux 

of the conversation. 

 

Information about particular methods used by these NLU services for intent determination and slot filling 

could not be found publicly. 

 

Common Concepts. There are some concepts that are present in most chatbot platforms, namely 

Intents and Entities. These two concepts are fundamental pieces to understand the intention of the 

user (Intents) and respond accordingly, and after that retrieve important pieces (Entities) of information 

from the user input. These two concepts correspond to the concepts explored in section 2.6. 
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By IBM’s definition for Watson Assistant “intents are purposes or goals expressed in a customer's input, 

such as answering a question or processing a bill payment. By recognizing the intent expressed in a 

customer's input, the Watson Assistant service can choose the correct dialog flow for responding to it.” 

[20], while entities “represent a class of object or a data type that is relevant to a user's purpose. By 

recognizing the entities that are mentioned in the user's input, the Watson Assistant service can choose 

the specific actions to take to fulfil an intent.” [21] 

The definitions above are transversal to all platforms described in this section. In each platform section 

we will focus only on the unique concepts but is important to reinforce that intents and entities are not 

only present as they are the fundamental concepts of each one of the solutions presented next. 

 

2.7.1 Dialogflow  

Dialogflow is the solution provided by Google for developing conversational agents running on the cloud. 

Dialogflow offers the possibility to create the conversational agent entirely using its website user 

interface. Additionally, it’s also provided an SDK that allows to send some user message to Dalogflow 

and receive Dialogflow interpretation (such as detected intent and entities.). This SDK makes also 

possible to make changes in the agent itself, by changing its parameters, such as adding new intents. 

The concepts present in the Dialogflow service are: 

Contexts: Contexts let you control conversation flows by letting you define specific states that a 

conversation must be in for an intent to match [22]. There are two types of contexts in Dialogflow: the 

input context and output context. These contexts can be associated with intents. We can associate an 

input context to an intent so that the intent is matched only if the associated context is activated. 

Associating an output context to an intent, we can activate the context when the intent is matched. 

Follow-up intents: Follow-up intents are provided in order to facilitate the flux of the conversation without 

having to use contexts manually [23]. It is possible using follow-up intents to shape the next interaction 

based on the information given in the previous one. It is useful to create intents that are only matched if 

the user gave a specific answer to the parent intent. 

Events: Events are another way to activate intents but not by interpreting something that the user writes, 

but rather when something happens [24]. These events can be triggered from some of the platforms 

that Dialogflow integrates with, for instance when a user starts a conversation with the Dialogflow agent 

via Facebook platform, there is an event triggered to Dialogflow. 

Integration with external Systems. In order to integrate the bot with external services, Dialogflow 

provides the Fulfillment concept. Fulfillment is code that's deployed as a webhook that lets the Dialogflow 

agent call business logic on an intent-by-intent basis [25]. Fulfillment allows the use of information 

extracted by Dialogflow's natural language processing to communicate with some external system via 

webhook and generate dynamic responses (using the external system as source), or trigger actions in 

the external system.  
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2.7.2 Microsoft Bot Framework  

Microsoft bot Framework, unlike what we have seen in Google Dialogflow, is the result of various 

independent components. The three most essential components to build a chatbot are: BotBuilder SDK, 

Language Understanding (LUIS) and Azure Bot Service. Each component is explained next. 

BotBuilder SDK. BotBuilder is the SDK that Microsoft provides in order to programmatically create our 

bot. This is the central piece of the bot and it’s where the conversational flux is defined. To extend the 

conversational capabilities, it can be connected to other Microsoft services, such as LUIS for intent and 

entity recognition or Bing Spell Check to perform user’s spelling correction.  

Any call to an external service can also be done in the BotBuilder, by simply using the methods available 

in the SDK language. 

Luis. Luis is one of the cognitive services provided by Microsoft. It is a natural language understanding 

service. It is an essential piece in the Microsoft Bot Framework, enabling the bot to interpret the user 

utterance. This is where the previously common concepts of “intent” and “entity” are defined.  

The model is trained in LUIS website, where the bot creator gives training data to the model. It is possible 

to define all the intents and entities that our bot should recognize. Then we should add multiple 

utterances examples for each intent, marking the previously defined entities in that utterances. 

The LUIS service is exposed via an endpoint URL and key. When LUIS receives query, it returns a json 

file with the query received, the top scoring intents detected, and the entities detected. This endpoint 

can then be called by the botbuilder application but can also be used by any other application to add 

NLU capabilities. 

Azure Bot service. Azure Bot service offers an integrated environment to develop bots. It integrates 

the botbuilder sdk, making possible to create the bot directly from the azure website and host it in the 

azure servers. 

Furthermore, the Azure bot service can be used to just register the bot, by providing the endpoint where 

the bot is hosted (hosting in azure is not required, any SSL endpoint is accepted). When the bot is 

registered, it is created a Microsoft app id and secret key that is used in the botbuilder sdk. 

It is also in Azure Bot Service that the integrations with channels such as Facebook messenger or Skype 

is done 

.   
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2.7.3 Watson Assistant  

Watson Assistant is used in a similar manner to DialogFlow in the sense that both the intents/entities 

training, and the conversation flux is defined in the Watson website UI, as opposed to Microsoft Bot 

Framework which defines the conversation flux on a programming SDK. 

The conversation concepts present in Watson are [26]: 

• Dialogs: The dialog matches intents to responses. The dialog is represented graphically in the 

Watson Assistant tool as a tree. A branch should be created to process each intent that 

conversation should handle. A branch is composed of multiple Dialog nodes. 

• Dialog nodes: Each dialog node contains, at a minimum, a condition and a response. A 

condition specifies the information that must be present in the user input for this node in the 

dialog to be triggered. The information is typically a specific intent while a response is the 

utterance that the service uses to respond to the user.  

 

Figure 2 - Watson Assistant Overall Architecture – source [27] 

 

Integration With external Systems. Watson assistance allows to associate programmatic calls to dialog 

nodes. This can be achieved using IBM Cloud functions, where the script that interacts with the external 

system is deployed [28]. In the dialog node it is defined the cloud function that should be run and can 

also be defined entities values to be passed to that function. The cloud function then returns an answer 

that can be accessed in a variable inside dialog node, in order to respond to the user. 
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2.7.4 Performance Comparison 

A study [29] compared the performance of several NLU services, with the goal to enable both 

researchers and companies to make more educated decisions about which service to use. In order to 

test the performance on multiple domains, there were created multiple corpus, namely: chatbot, web 

apps and ask ubuntu. The “chatbot” corpus was obtained from questions gathered by a Telegram chatbot 

in production use, answering questions about public transport connections. The “ask ubuntu” and “Web 

Applications” corpus are based on data from the StackExchange web platforms with the same name. 

Chatbot corpus consisted of the intents “Departure Time” and “Find Connection”, with entities such as 

“Station Start” and “Station Destination”. The web apps corpus with intents such as “Change Password” 

or “Delete Account”. Finally, ask ubuntu consisted of intents such as “Make Update” or “Setup Printer”. 

The results of the study, regarding intent and entity recognition for the platforms analysed in this paper, 

can be seen in Figure 3.  

 

 

Figure 3 - F-scores for the different NLU services, grouped by corpus – source [29] 

 

It is possible to conclude that Microsoft’s LUIS obtained the best results in all the corpus tested, having 

a significant overall score difference from the rest. Additionally, the authors of the study note that the 

results of Dialogflow were heavily influenced by its shortcomings regarding entity detection and its 

results would improve if only intent detection was considered. 
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2.7.5 Comparison Summary 

In Table 2, it is presented a summary of the differences between the three studied platforms. The factors 

summarized are: the chat channels with supported integration; the number of languages supported; how 

the integration with external services is enabled; the summary of the performance results; if the dialog 

manager provided by the platform can be extended to be used with another NLU service; and finally if 

the service offers sentiment analysis. 

Table 2 - Comparison summary of studied platforms 

 DialogFlow Watson 

Assistant 

Microsoft Bot 

Framework 

Channel  

Integrations 

15 

 

2 12 

Languages 

Supported 

27 13 12 

Requires 

Programming 

Knowledge 

No No Yes 

Integration 

with  

ext. systems 

Inside Dialogflow 

platform website 

via fulfilment and 

webhooks it is 

possible to call 

external services 

 Inside Watson 

Assistant 

website 

plaftorm, 

calling IBM 

Cloud functions 

Using 

botbuilder 

SDK  

Performance 

(Overall F-

score result) 

0.69 0.75 0.92 

Dialog 

Manager can 

be integrated 

with other 

NLU services 

No No Yes 

Sentiment 

Analysis 

Yes Yes, if 

integrated with 

Watson tone 

analyser 

Yes 

 

External 

Login 

Support 

No No Yes, OAuth2 

 



30 
 

In summary, Dialogflow offers more chat channels integrations and is the solution that supports more 

idioms. Both DialogFlow and Watson assistant offer graphical interfaces to create the chatbot, not 

requiring programming knowledge. This can accelerate development time, while Microsoft Bot 

Framework requires programming knowledge that makes it more extensible. Concerning the natural 

language understanding performance, i.e. intent and entity recognition, Microsoft’s solution has 

substantially better results with LUIS than both other solutions. Finally, Microsoft Bot Framework is the 

only solution that offers support for authentication with external services, by providing support for OAuth 

2 protocol. 
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3. Chatbot Use Case Evaluator  

This section identifies use case factors  that should be considered when assessing the suitability of a 

use case for a chatbot implementation. A use case selection process is then proposed. This process 

allows the evaluation and ordering of a set of use cases, enabling the identification of the more suitable 

ones for chatbot implementation. After the definition of the use case selection process, it is applied to a 

set of use cases in the healthcare domain. 

3.1 Use Case Evaluation Factors 

In order to enable the evaluation of use cases, several factors are considered, reflecting the 

characteristics a use case should have in order to be appropriate to be implemented in a chatbot. 

Chatbots lie between human operators and traditional graphical user interfaces (GUI) applications. In 

one hand, they can be used in the place of a human, offering a similar way of interaction, by using 

natural language. On the other hand, they can also be used instead of a traditional application, replacing 

a traditional graphical user interface with natural language.  

The fact that chatbots share characteristics of both humans and GUI applications, fosters the division 

of the factors in three major groups: 

1. General Factors: general factors that are essential to be considered to assure the viability of 

the use case to be implemented in a conversational UI. 

2. Factors over GUI application: this group of factors reflect characteristics of a use case that 

can indicate that a chatbot is more adequate to expose it, instead of a traditional GUI application. 

3. Factors over Human: factors that reflect characteristics of a use case that can indicate that the 

use case would benefit from being implemented by a chatbot instead of a human operator. 

An analysis of such factors for each category yielded the following result. 

 

General Factors 

• Business Rules well defined: Chatbots perform better solving specific requests were the 

process to solve it is standard [30]. This facilitates the creation of the flow of the conversation 

based on that business rules. 

• Integration with Existing Systems: concerns if it’s possible to integrate the bot with the 

organization systems, via existing APIs. This factor guarantees that the chatbot can access the 

business logic and data required to the use case in question. 
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Factors over GUI Applications 

• Multiple steps or multiple input parameters [12]: A simple traditional UI might be more 

practical to use cases that are simple and require only one step, but for tasks that require several 

user data, using NLU we can sometimes get all the information that the user would input in a 

form, for instance, in a simple sentence. Consider the sentence “Can you rebook my flight to 

Madrid to the following Monday after 3pm and get me a window seat”. A traditional GUI would 

require the user to insert the different pieces of information in different steps of the process, 

while a chatbot would recognize all the information parameters directly from the user sentence. 

• Notifications required: Messaging applications already include an efficient and functional push 

notification system, which is available by default without any additional implementation effort 

[31]. 

• Authentication required [31]: Usually, for each new application, users must create a new 

account to be uniquely identified. With bots, user authentication is not necessarily needed. The 

messaging platform used already provides a reliable identification of the user. Users are 

uniquely identified by default. This reduces the effort asked to the user to start using the service, 

not requiring to create an additional account. 

 

Factors over Humans 

• High Volume, Simple tasks, performed by humans: For simple, well defined, repetitive tasks, 

a chatbot can be more suitable than a human, in the sense that is more economical and frees 

the human resources for another tasks [12]. 

• Consistency required: For use cases that is important consistency in the performance, i.e., 

the use case must be performed the same way in every occurrence, chatbots can be more 

suitable than a human operator [11]. Bots are intrinsically more consistent than human 

operators. 

• Scalability required [11]: some use cases have unstable loads of requests from users. Bots 

can scale-up to fulfil the requests. Using human operators, is hard to handle sudden increases 

of requests.  

 

These factors can be used not only to find out if a use case is suitable to a chatbot implementation, but 

can also indicate if a chatbot is more appropriate when compared with a human operator, or a traditional 

GUI application. The use case evaluation factors are summarized in Figure 4. 
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Figure 4 - Use Case Evaluator Factors 

 

3.2 Use Case Selection Process 

This section describes how the use case factors, defined in the previous section, can be used in order 

to select use cases suitable to implement in a chatbot. In order to accomplish the selection of use cases, 

a use case selection process is defined. 

The first question the process aims to answer, for each use case, is:  

• Is the use case viable to successfully implement in a chatbot?  

If the answer found to this question is negative, the use case is evaluated as not suitable to implement 

in a chatbot and the use case evaluation stops. On the other hand, if the UC is viable to implement in a 

chatbot, the following two questions arise: 

• Is the use case more adequate to implement in a chatbot when comparing with a GUI 

application?  

• Is the use case more adequate to implement in a chatbot when comparing with a Human 

Operator? 

Finally, after answering these questions for each use case, the process also aims to answer: 

• What use cases should be prioritized for chatbot implementation? 

 

Use Case 
Evaluator

General Factors

Business Rules 
well defined

Integration with 
Existing 
Systems

Factors over 
GUI Application

Multiple steps or 
multiple input 
parameters

Notifications 
required

Authentication 
required 

Factors over 
Humans

High Volume  
tasks, performed 

by humans

Consistency 
required

Scalability 
required
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The process proposed consists of three major steps, summarized in Figure 5. 

 

Figure 5 - Use Case Selection Process: overview 

 

The following use case selection process should be applied in order to identify and prioritize use cases 

to be implemented in a chatbot: 

1. Assessment for each use case: 

1.1. Assess if the UC is compliant with all the General factors.  

a. If the use case is not compliant with any of the factors, it should not be implemented in a 

chatbot altogether and the process stops. The general factors function as minimum 

requirements to a UC to be considered for a chatbot implementation; 

b. If the use case is complaint with all general factors, continue to step 1.2. 

1.2. Assess Factors over GUI application 

a. If some UC factors are compliant, a chatbot implementation is considered advantageous 

over a GUI application; 

b. If none of the factors are compliant, a chatbot is not considered as more suitable than a 

GUI application. 

1.3. Assess Factors over Human operator 

a. If some UC factors are compliant, a chatbot implementation is considered advantageous 

over a Human operator; 

b. If none of the factors are compliant, a chatbot is not considered as more suitable than a 

Human operator. 

2. Filtering use cases: the use cases considered for chatbot implementation are only the ones that fulfil 

the following requirements: 

• Meet the general factors (step 1.1.b); 

• Advantageous to implement over both a GUI application (step 1.2.a);  

• Advantageous to implement over a Human operator (step 1.3.a). 

3. After applying this evaluation process, and filtering out use cases using the before mentioned 

requirements, there might still be several use cases left as candidates to implement in a chatbot. 

The method purposed to prioritize the use cases is to prioritize the ones that meet a greater number 

of factors, or that meet factors that are of greater importance to the organization implementing the 
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use case. Organizations can define weights for each factor and prioritize use cases that have a 

greater sum of weighted factors. 

 

While Figure 5 summarizes the use case selection process, Figure 6 presents in detail the first step of 

the process, that is applied to each use case.  

 

 

Figure 6 - Assess Evaluation Factors subprocess 
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3.3 Use Case Evaluator Application 

In this section, the use case evaluation factors defined in section 3.1 are applied using the use case 

selection process, described in section 3.2, in order to select suitable chatbot use cases in the 

healthcare domain. 

The healthcare use cases considered are: 

• Scheduling an appointment; 

• Paying for an appointment; 

• Performing a medical diagnosis. 

Each use case is evaluated next. In the end of the section, the conclusions about the most suitable use 

cases for implementation are presented. 

3.3.1 Scheduling an Appointment 

3.3.1.1 Use Case Definition 

In order to schedule an appointment, the user must: select the specialty needed; choose one of the 

available doctors; and finally choose one of the available time slots (see Figure 7). This use case is 

typically performed with clerks, either by phone or in person, or in the case of some clinics, an application 

is available to the user schedule the appointment independently. Users are notified of the appointment 

close to the scheduled date, in order to confirm the presence or optionally reschedule (see Figure 7). 

 

Figure 7 - Scheduling appointment business process 
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Figure 8 - Gather Appointment Information subprocess 

3.3.1.2 Use Case Assessment 

Step 1.1: General Factors. Scheduling an appointment is a common use case that has business rules 

well defined. In the case of MedClick, an API is available in order to request all the information needed 

to perform this use cases, including list of doctors, available time slots, and scheduling the appointment. 

 

Table 3 - General factors assessment for scheduling appointment UC. 

Factor Assessment 

Business Rules Well 

Defined 

Yes 

Integration with existing 

Systems 

Yes 

 

 

Step 1.2: Factors Over GUI Application. Scheduling an appointment has multiple input parameters, 

namely the desired medical specialty, the name of the doctor and the time slot. The identification of the 

user must also be known.  The user must be notified close to the date of the appointment, in order to 

confirm its presence or, optionally, reschedule the appointment. 
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Table 4 - Factors over GUI application assessment for scheduling appointment UC. 

Factor Assessment 

Multiple Steps/ Multiple 

Input parameters 

Yes 

Notifications Required Yes 

Authentication 

Required 

Yes 

 

 

Step 1.3: Factors Over Humans. Hospitals and clinics usually address high volume requests for 

appointment scheduling. The volume of requests may vary in an unpredictable way, requiring scalability.  

This use case is still commonly performed by human operators. 

 

Table 5 - Factors over Humans assessment for scheduling appointment UC. 

Factor Assessment 

High Volume, Simple 

Tasks, performed by 

humans 

Yes 

Consistency required No 

Scalability required Yes 

 

 

Evaluation Conclusions. The fact that this use case meets the two general factors indicates the 

viability to implement it in a chatbot. Furthermore, it is possible to conclude that the use case might 

benefit from the implementation in a chatbot over a traditional GUI application, meeting the three factors. 

Being a use case with multiple input parameters, it might benefit particularly from the extraction of the 

parameters directly from a user sentence, by using NLU. It might also be adequate to implement it in a 

chatbot over a human, in the sense that can free-up human resources and can easily scale, which is 

important to a use case with unpredictable loads of requests as this. 
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3.3.2 Paying for an Appointment 

3.3.2.1 Use Case Definition 

In the end of each medical appointment, the patient performs its payment. It is typical performed with 

clerks at the clinic/hospital. The clerk informs the patient of the value of the appointment and receives 

the payment. The price may depend on the patient’s assurance. 

3.3.2.2 Use case Assessment 

Step 1.1: General Factors. Paying for an appointment has well defined business rules. In Medclick 

context the integration with existing systems could also be made by communicating with Medclick’s API, 

and the information about healthcare prices and assurances can also be obtained by using the API. 

 

Table 6 - General factors assessment for paying appointment UC 

Factor Assessment 

Business Rules Well 

Defined 

 Yes  

Integration with existing 

Systems 

Yes 

 

 

Step 1.2: Factors Over GUI Application. Paying for a medical appointment is a straightforward 

process, without multiple steps or input parameters. It does not require notifications, because the 

payment is typically immediately performed and processed, after the appointment. The patient paying 

should be identified.  

Table 7 - Factors over GUI application assessment for paying appointment UC 

Factor Assessment 

Multiple Steps/ Multiple 

Input parameters 

No 

Notifications Required No 

Authentication 

Required 

Yes 
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Step 1.3: Factors Over Humans. Hospitals and clinics usually address high volume requests for 

payment of appointments at the end of each appointment performed. Because the request for 

appointments may vary in unpredictable way, the number of payments also vary, requiring scalability.  

This use case is still commonly performed by human operators. 

 

Table 8 - Factors over Humans assessment for paying appointment UC 

Factor Assessment 

High Volume, Simple 

Tasks, performed by 

humans 

Yes 

Consistency required No 

Scalability required Yes 

 

Evaluation Conclusions. The fact that this use case meets the two general factors indicates it as viable 

to implement in a chatbot. Comparing with a GUI application, it only meets the authentication required 

factor, so it would not take advantage of NLU capabilities of a chatbot associated with the factor multiple 

steps/ multiple input parameters and would not take advantage of chat notifications. Therefore, the 

benefits over a GUI app exist but are not major. When comparing with a human operator, a chatbot 

would be more beneficial, in the sense that it is a high-volume use case that would free human resources 

and offer better scalability. 

 

 

3.3.3 Performing a Medical Diagnosis 

3.3.3.1 Use Case definition 

The diagnostic process is a complex, patient-centred, collaborative activity that involves information 

gathering and clinical reasoning with the goal of determining a patient's health problem [32]. 

The diagnostic process proceeds as follows: First, a patient experiences a health problem. Once a 

patient seeks health care, there is an iterative process of information gathering, information integration 

and interpretation, and determining a working diagnosis. In order to accumulate information that may be 

relevant to understanding a patient's health problem, health professionals may use the following 

approaches: (i) perform a clinical history and interview, (ii) conduct a physical exam, (iii) performing 

diagnostic testing, and (iv) referring or consulting with other clinicians. The information-gathering 
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approaches can be employed at different times, and diagnostic information can be obtained in different 

orders [32]. 

 

3.3.3.2 Use case Assessment 

Step 1.1: General Factors.  As seen in the use case definition, the diagnostic process is a complex 

iterative process, and is not performed always in the same manner. Consequently, the business rules 

are not considered to be well defined. 

Because the business rules well defined general factor is not met, and following the use case selection 

process (see section 3.2), this use case is evaluated as not suitable for a chatbot implementation and 

its individual assessment stops. 
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3.3.4 Use Cases Selection 

The assessment results of the three use cases considered are summarized in Table 9. The table is the 

result of applying the step 1 of the use case selection process (see section 3.2). 

 

Table 9 - Use cases individual assessment summary (step 1) 

                                   Use Cases 
     Factors 

UC1: Scheduling 
Appointment 

UC2: Paying 
Appointment 

UC3: Medical 
Diagnosis 

General 
Factors 

Business Rules 
Well defined 

✔ ✔ ✖ 

Integration 
with existing 
Systems 

✔ ✔ - 

Factors Over 
GUI 

Multiple 
Steps/Input 
parameters 

✔ ✖ - 

Notifications 
Required 

✔ ✖ - 

Authentication 
Required 

✔ ✔ - 

Factors Over 
Human 

High Volume 
tasks, 
performed by 
humans 

✔ ✔ - 

Consistency 
Required 

✖ ✖ - 

Scalability 
Required 

✔ ✔ - 

 

With the results of the assessment of each use case, it is possible to perform the step 2 of the process, 

that filters out use cases that do not meet the defined requirements. Because the use case of performing 

a medical diagnosis (UC3) does not meet the business rules well defined (general factor), it is excluded 

from the candidates to implement in chatbot (step 1.1.a of the process). Both UC1 and UC2 meet all the 

general factors and are considered advantageous over a GUI and over a Human, because meet at least 

one factor of both factor over GUI and factor over human categories. Therefore, UC1 and UC2 are not 

filtered out. 

Finally, step 3 is applied, and the use cases that were not filtered out are sorted by order of priority. UC 

1 and UC 2 both meet the same factors over human. The differences are present in the Factors over 

GUI.  UC 1 meets all the three factors over a GUI, while UC 2 only meets one factor (notifications 

required). Because the scheduling appointment (UC 1) meets more factors than paying appointment it 

is considered as more adequate and having more priority for a chatbot implementation (see Table 10). 
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Note that the all the factors that UC 2 meets, are also met by UC 1, making the decision of priority 

clearer and a possible attribution of weights for each factor not needed entirely. 

 

Table 10 - Use cases priority rank and conclusions 

              Assessment 
Questions 

 
Use Cases 

Viable for 
chatbot 
implementation 

Chatbot 
advantageous over 
GUI 

Chatbot 
advantageous 
over Human 

Priority 
rank 

UC1: Scheduling 
Appointment 

✔ ✔ 
(3/3) 

✔ 
(2/3) 

#1 

UC2: Paying 
Appointment 

✔ ✔ 
(1/3) 

✔ 
(2/3) 

#2 

UC3: Medical 
Diagnosis 

✖ - - - 

  



44 
 

4. Chatbot Implementation 

This section explains how the chatbot that supports the use case of scheduling a medical appointment 

is implemented. In section 4.1, an overview of all the components and the high-level architecture of the 

bot is defined. In section 4.2, it is explained how the dialog management is performed by the bot. Later, 

in section 4.3 it is explained in detail how the natural language understanding is realized. In section 4.4 

it is analysed how the bot can actively learn from user interactions. Section 4.5 specifies how the login 

is achieved in the chatbot. Finally, section 4.6 explains how the user appointment notifications are sent 

to the users via chatbot. 

 

4.1 Components and Integrations Overview 

The main goal of the chatbot implementation is to support users in the Schedule Appointment business 

process. To enable this use case, a bot application is created, that is served by other external 

components. The bot application is exposed via chat platforms, such as the Facebook Messenger or 

Skype, where users can interact with the bot. The high-level architecture of the solution for the 

implementation of the chatbot is defined in Figure 9, where the several applications and services that 

interact with the bot application are represented. The end of each component is explained next. 
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Figure 9 - Chatbot Architecture 

 

Medclick Platform. The Medclick platform is the system that provides the business data needed to 

schedule an appointment (domain object HealthCare). The domain model containing all the business 

objects and its relations relevant to bot’s scope is detailed in Figure 10. Medclick exposes the business 

objects via a REST API, where objects such as the health professionals or the list of medical 

departments (specialty domain object) can be fetched. It also exposes the relations between the several 

business objects. It is possible to get, for instance, the list of all the health professionals that practice a 

given specialty.  
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Figure 10 - Medclick domain objects 

 

Microsoft LUIS. Microsoft LUIS is the natural language understanding component that is responsible 

to give semantic meaning to the users’ utterances. It is exposed via an internet endpoint, that receives 

an utterance, and returns the intent and entities identified. Luis was chosen as the NLU service due to 

the fact that it is the service with better intent and entity detection performance from the services 

explored in section 2.7. 

 

Bot Application. The Bot Application is a node.js web application. It is where the dialog management 

is defined, using the botbuilder sdk from the Microsoft Bot Framework. It is exposed in the chat channels 

such as Facebook Messenger. It receives the user utterances and defines the answers. This central 

component interacts with all the other, namely: (i) The Medclick platform, to obtain the business data 

needed for scheduling the appointment with the user; (ii) Microsoft LUIS application, to understand the 

meaning of the users’ utterances; (iii) The azure bot service, in order to connect to chat platforms such 

as the Facebook messenger or Skype. 

The botbuilder sdk, from Microsoft Bot Framework, has the unique benefit of supporting login using the 

OAuth2 protocol. None of the other solutions analysed in section 2.7 support external application login, 
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that is a requirement to enable login in Medclick system from the bot application. This reason makes it 

the only suitable solution from the ones analysed in section 2.7.  

 

Heroku Hosting Service. Heroku is the cloud platform as a service (PAS) where the node.js Bot 

Application is deployed. 
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4.2 Dialog Management 

This section discusses how the dialog management is performed in the bot created. Dialog management 

concerns how the flow of the conversation is defined, and how the bot defines the output to the input 

use utterances. It explains how the bot controls the flux of the conversation using the concept of state-

machine, and the evolution from the first version of the state machine to the final one. 

 

4.2.1 State Machine: first iteration 

The first iteration of the dialog manager of the dialog system is based on a finite-state automata (see 

Figure 11). The user enters the schedule state when the intention of scheduling an appointment is 

detected in the user utterance. The next states of the automata have the goal of filling the different slots 

needed to complete the scheduling in this frame-based conversation, i.e, the department, doctor and 

the timeslot frames.  

After detecting that the user wants to schedule an appointment the dialog system enters the askLocation 

state, where the user selects the provider (clinic or hospital). The providers are filtered by asking the 

district and locality first, in sub-states of this state.  The user system then enters the askDepartment 

state where the user is prompt to insert the department desired. After the department is known the 

system enters the askDoctor state, where the system prompts the user to choose between the doctors 

belonging to the department and the provider selected in the previous states. After the doctor is known, 

the system enters the askTimeSlot state where the user chooses between the doctor’s availabilities. At 

this state the three frames are filled. Additionally, the system enters the login state in order to identify 

the user and the askConfirmation to allow the user to review the slots inserted and either: confirm the 

schedule of the appointment; cancel it; or restart the scheduling. The user might exit the schedule state 

at any sub-state, by using pre-defined exit/cancel keywords. 

Figure 12 shows the implementation of this state machine, interacting with a user on Skype chat 

platform.  

This dialog management is system-initiative in the sense that the system has the initiative of asking the 

questions, and the user answers to a specific given question. This makes the language understanding 

easier, because the system knows the context of the answer given by the user. However, it does not 

provide the flexibility of allowing user to freely mention another entities in an utterance.  
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Figure 11 - Schedule dialog first state machine 
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Figure 12 - Chatbot first iteration in skype 
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4.2.2 State Machine: final version 

The system-initiative dialog management strategy of the first iteration (see section 4.2.1), does not adapt 

to the case where the user gives an utterance with several slots information. The user might say 

“schedule appointment for tomorrow with Dr. James” and the system would behave the same way if the 

user simply said “schedule an appointment”.  Therefore, it would not benefit from the fact that this use 

case has multiple steps and multiple input parameters. This factor is one of the advantages of 

implementing such a use case in a chatbot instead of in a traditional GUI application, as discussed in 

section 3. The second iteration of the dialog management of the bot here presented, has the goal of 

taking advantage of NLU to extract multiple inputs and reduce the number of steps when the user 

utterance contains multiple input information (such as the name of the department or the name of the 

doctor desired). In order to achieve this, a new state machine was created (see Figure 13), extending 

the state machine of the first iteration. 

In this iteration of the state machine, the system starts by entering the processEntities state. This state 

responsibility is to detect if the user mentioned the doctor, department or time entity. The next states of 

the automata are dependent of the entities detected: 

• If the doctor entity is detected, the system skips the askLocation and askDepartment, then, 

instead of entering the askDoctor state, it enters the confirmDoctor state, that prompt the user 

to choose between the doctors with the most similar name to the one detected in the 

processEntites state. It then enters the asDoctorLocation state, that prompts the user to choose 

only between the providers where the selected doctor practices; 

• If the user mentions the department, but not the doctor, the system skips the askDepartment 

state. 

• The askTimeSlot was adapted to when processEntities detects date entity, prompt the user 

with time slots only in the period detected, when free time slots for the period requested are 

found. 

• If there are no entities detected, the user behaves the same way as in the first iteration of the 

state machine. 

This way, the dialog system adapts to the information that the user provides in the first utterance, 

allowing to skip steps all together, or prompt a restrict subset of domain objects based on the NLU 

entities found in the user sentence. 
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Figure 13 - Schedule dialog final state machine 

 

In Figure 14, it is possible to observe an interaction with a user that mentions the name of the doctor 

and the date wanted in the beginning of the conversation. The system adapts to this information, by 

directly showing the most similar doctors found in medclick database, and by searching the doctor 

availabilities in the time frame requested by the user.  
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Figure 14 - Chatbot final version on Facebook Messenger 
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4.3 Natural Language Understanding 

In order to extract meaning from the user utterances, the Microsoft LUIS service needs to be trained 

with labelled utterances. LUIS supports a frame-based approach, applying supervised machine learning 

to detect intent and its entities from utterances. The first step is therefore to model what are the user 

intents that we want LUIS to detect, and what entities should be extracted. 

The main goal of the dialog agent is to allow scheduling of appointments. Therefore, should exist a 

schedule intent. The pieces of information we want to extract from the user that wants to schedule a 

medical appointment are: 

• Department: The name of the medical department/specialty the user is seeking; 

• Doctor: The name of the doctor the user wants to schedule; 

• Date: When does the user want to schedule the appointment for. 

The department, doctor and date translate as entities of the schedule intent, in the frame-based 

modelling of the NLU. 

Additionally to the schedule intent, there should also be a none intent, to detect the cases that do not 

fall in any other intent, in this case utterances that do not represent the schedule intent. The summary 

of the intent and entities modelling can be seen in Figure 15. 

 

 

Figure 15 - Intent and entities modelling 

 

After modelling the intent and entities needed, the LUIS model is trained with example utterances. The 

goal is to provide the LUIS model with a good enough variability of sentences that map to the intent, 

using common combinations of entities, in order to create a model that can generalize to recognize and 

label new sentences. In Figure 16 are presented some of the utterances used to train the schedule 

intent. Each sentence is inserted as an utterance the user might use, and then the entities are labelled. 

For instance, the first sentence of Figure 16 was inserted as “marcar consulta com o doutor bernardo 

amanhã”, and after labelling the entities it seen as “marcar consulta com o doutor [doctor] [datetimeV2]” 

,i.e., the entities instances are replaced by the general label identifier. 
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Figure 16 - Training LUIS app with labelled utterances  

 

LUIS has different types of entities. When creating the entities, it must be considered what is the most 

appropriate type for the entity in question. Entities can be extracted with machine-learning, which allows 

LUIS to continue learning about how the entity appears in the utterance or can be extracted without 

machine-learning, matching either exact text or a regular expression. Only Machine-learned entities 

need to be marked in the example utterances. 

The different relevant types of entities LUIS offers are summarized in Table 11. 
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Table 11 - LUIS entities types 

Entity Type Machine  

Learned 

Purpose 

List No List of items and their synonyms extracted with 

exact text match. 

Prebuilt No Already trained to extract various kinds of data. 

Simple Yes 
Contains a single concept in word or phrase. 

Regular Expression No Uses regular expression to match text. 

 

Additionally, LUIS also offers other resources to improve accuracy. One of the resources is the phrase 

list. A phrase list includes a group of values (word or phrases) that belong to the same class and must 

be treated similarly. What LUIS learns about one of them is automatically applied to the others as well. 

Unlike the List Entity type (see Table 11), a phrase list is not used as an exact match and does not need 

to be every possible value expected. 
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4.3.1 Entity Recognition and Mapping 

After training the LUIS app with labelled utterance, it is able to identify the intent of the user and the 

parts of the utterance that map to the modelled entities. But we still need to map the NLU entity identified 

to the specific domain business object the user is referring. Consider the query result in Figure 17.  When 

the bot application receives this query result, it is possible to determine that the desired doctor name is 

“bernardo”, and that the user wants to schedule the appointment for tomorrow (“amanhã”). The question 

is who is the “bernardo” doctor in medclick’s database, and to which available time slots does tomorrow 

map to?  

 

 

Figure 17 - LUIS response to query "marcar consulta com doutor bernardo amanhã" 

 

The pipeline that resolves entities needs to be able to receive a user utterance, extract the NLU entities 

and map them to business objects. Figure 18 demonstrates the sequence of interactions required to 

perform the mapping. 



58 
 

 

 

Figure 18 - Mapping user utterances to domain objects 

 

The mapping is not realized exactly the same way for each entity, due to intrinsic differences between 

them. It is explored next the differences in the NLU entity recognition level and at the domain business 

object mapping level, explaining and how this pipeline is implemented for each entity in particular. 
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4.3.1.1 Department Entity 

The department entity has a static nature, given that there is a close set of medical departments. It is 

not expected great variability on the way the departments are mentioned by the users, when compared 

to the other entities. Typically, the departments are mentioned by the name of the department or by the 

name of the profession (e.g. “ophthalmology” or “ophthalmologist”).  

Given the static nature of the entity, the LUIS entity type chosen was the List. This entity type allows us 

to create a canonical form for the name of the department and add synonyms to it. LUIS then detects 

this entity by applying exact text match by searching for the canonical form or any synonym in the user 

utterance.  

The Medclick API provides a list of all departments. It was extended to be able to associate synonyms 

to each department name. This way, additional synonyms can be added to the departments, as they are 

discovered in interactions with users. A script was created that loads every department from Medclick 

API and its synonyms and adds to the LUIS’ list entity the name of the department as the LUIS canonical 

form and the synonyms associated. This way LUIS will return the name of the department if there is a 

string match with the department canonical form or any of the synonyms loaded. By running this script 

there is a guarantee that the LUIS model is aware of all the nomenclatures for each department present 

in Medclick’s database.  

Given that LUIS returns the canonical form of the department entity detected, the mapping to the 

business object is direct, because this canonical form is the name of department in medclick database. 

This way we simply query Medclick API for the department with the name equal to the canonical form 

returned by LUIS. 

In Figure 19 it’s shown the LUIS result for the query “marcar oftalmologista”. LUIS detects 

“oftalmologista” as a department entity (departmentsList), and resolves it to the canonical form 

“Oftalmologia (Olhos)”. This canonical form is equal to the name of the business entity from the API, 

resulting in a direct mapping by these two strings. 
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Figure 19 - Mapping department list entity to business entity 
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4.3.1.2 Doctor Entity 

The doctor name entity, as opposed to the department entity, is more dynamic and presents more 

variability. New doctors may be added and removed from the database at any time and may be 

referenced by the user in multiple forms. Given the fact that LUIS does not provided a person name 

built-in entity for the Portuguese culture, it was chosen to use the simple entity type.  

The LUIS app was trained with some sentences containing doctor names. This training data with some 

labelled doctor names does not suffice for LUIS to be able to predict new doctor names effectively. 

Because a name can be anything, LUIS predicts entities more accurately if it has a phrase list of words 

to boost the signal of the simple entity. It was taking advantage of the fact that the possible doctor names 

we want LUIS to detect at a given time can be known by querying Medclick API for all doctors. A script 

was created to automatically create a phrase-list in LUIS with the names of all the doctors in Medclick 

at the moment the script is run. This way everything the model learns for the names inserted in the 

training phrases is also learned for the other names in the phrase list.  

One possible way to address the mapping of the string returned by LUIS to the doctor domain object 

would be to apply exact string matching. However, this would be problematic, given that the name of the 

doctor in the database might not be exactly equal to how the user is referencing he or she. Personal 

names are referenced with several variations and errors, which makes an exact string matching 

approach problematic, creating the need to use approximate matching techniques [33]. Some variations 

that can be easily identified of how the user might reference the doctor are: the first name only; first and 

last name; full name. 

The choice of the matching technique to be applied to the doctor name entity was based on a study [33] 

that compared several techniques performance for name matching applied to personal names. The 

experimental results on the four datasets tested are presented in Table 12. Even though the study 

concludes that at there is no clear best matching technique for every case, it indicates Jaro and Winkler 

techniques as suitable for personal name data, given their good performance on all four data sets. 

Considering the results of the study, the algorithm chosen was the Winckler (also known as Jaro-

Winkler).  
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Table 12 - F-measure scores for different Personal Name Matching Techniques 

 

 

The algorithm that calculates the distance of the doctor name mentioned by the user, to a doctor in the 

database is presented in Figure 20. The algorithm receives two strings as arguments: the doctor 

mentioned recognized by LUIS, and the full name of some database doctor, and returns the distance 

between the two names. The algorithm starts by creating an array with all the names of the doctor 

mentioned, by separating the name string by words. The same pre-process is applied to the database 

doctor name that will be compared. Then for each name of the mentioned doctor, it’s found the most 

similar name of the database doctor that is being compared, by finding the least jaro-wrinkler distance. 

The total distance between the mentioned doctor name and the database doctor is the sum of the 

minimum distances of each mentioned doctor name to each database doctor name. 
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function calculateNameDistance(doctorMentioned, doctor){ 

    doctorMentioned = doctorMentioned.match(/\S+/g); 

    doctor = doctor.match(/\S+/g); 

    let fullNameDistance = 0; 

    for (let mentionedName of doctorMentioned){ 

        let minDistance = Number.MAX_SAFE_INTEGER; 

        for (let doctorName of doctor){ 

            let distance = winkler(doctorName, mentionedName).distance; 

            if (distance < minDistance){ 

                minDistance = distance; 

            } 

        } 

        fullNameDistance += minDistance; 

    } 

    return fullNameDistance 

}  

Figure 20 - Algorithm used to calculate distance of the doctor mentioned name to a database doctor 

name 

 

The algorithm in Figure 20 is applied to all the doctors in the database, in order to compare the 

mentioned doctor name with all the database doctors. This comparison allows to find the database 

doctor with the smallest edit distance to the doctor mentioned, i.e., the doctor with the most similar name.  

 

  



64 
 

 

4.3.1.3 Time Entity 

The date when the user wants to schedule the appointment can be referenced by the user with great 

variability of format. In natural language it cannot be expected that the user mentions the date in a 

standard format. Consider the user wants to schedule an appointment for tomorrow. The user might 

reference tomorrow in a more standard format such as dd/mm/yyyy or might simply use the word 

“tomorrow” or even reference this date by the weekday. The solution to extract the time entity and to 

resolve it to a standard format is not trivial.   

Microsoft LUIS service provides a built-in entity type to recognize date and time values from the user 

utterance. This entity type is named datetimeV2. The service not only identifies the part of the utterance 

containing the datetimeV2 entity, but also resolves the date from natural language to a standard format. 

The use of this entity simplifies substantially the extraction and resolutions of dates, given that it is 

already trained for the Portuguese idiom, supporting known temporal expressions of the language. The 

entity chosen to represent the date that the user wants to schedule the appointment was therefore the 

built-in pre-trained datetimeV2.  

 

 

Figure 21 - LUIS resolution for "amanhã à tarde" datetimeV2 entity detected 

 

Figure 21 presents a LUIS datimeV2 entity detected. It resolves the “amanhã à tarde” entity to a standard 

date format with a start and end date. Using this standard format, the bot application can query the 

Medclick API for availabilities only in this time frame. This query to the Medclick is done by applying a 

filter to the http request that queries for the availabilities that queries availabilities only in the time frame 

resolved. 
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4.3.1.4 Entity Recognition and Mapping Summary 

Table 13 summarizes for each entity the LUIS entity type chosen and the strategy implemented to map 

this detected entity to the domain object. 

 

Table 13 - Entity Recognition and Mapping Summary 

Entity LUIS Entity Type NLU entity to domain 

Object mapping 

Department List Entity Direct match between 

canonical form returned 

by LUIS and 

Department Name in 

database 

Doctor Simple Entity Calculating most similar 

name (least edit 

distance) in database 

using jaro-winckler 

algorithm 

Date Built-in (dateTimeV2) Querying API for 

availabilities in the date 

or time frame resolved 

by LUIS  
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4.4 Active Learning 

Dialog systems should be capable of learning from previous conversations with users, in order to 

enhance the quality of future conversations. Linguistic variability is one of the factors that makes active 

learning important. Because a user can express the same idea in several different ways, we aim to 

capture these variations actively in each interaction. When a dialog system is first deployed, it is useful 

to have a dataset of real-world conversations, that can be used to initially train the bot. This training can 

be done by labelling the intents/entities of each utterance in the dataset, in order to train a machine 

learning model. In the context of the bot created, it was not possible to gather real conversations of 

medical appointment scheduling. The fact that there is no real initial training data, foster the search for 

ways to mitigate this issue, and makes active learning a matter of increased importance.  

 

Menu options and buttons. The chatbot may not be able to recognize an entity referenced by the user. 

The strategy used as a fallback is to present a list of options to the user. Consider the department entity. 

If a department is not detected in the first utterance, the bot will prompt the user to insert the name of 

the department. The text answer to the department question is analysed (using NLU by calling LUIS 

service), but the system might not be able to identify a department in the user response. In the case of 

failure of NLU, the system uses as fallback a less conversational approach, by showing the user a list 

of departments and asking the user to choose one (see Figure 22). This approach allows to let the user 

insert the department using natural language, and only in case of failure presents the list of departments 

for the user to choose, and looks for the most similar to the text inserted by the user. This strategy allows 

to learn how the user mentions the departments, as seen next in the next topic synonyms. 
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Figure 22 - Department Entity NLU recognition failure 

 

Synonyms. As discussed in section 4.3.1.1, the department entity is detected by finding exact text 

matches in the user sentence, using a list of synonyms for each department name. The medclick API 

was extended to support the insertion of new synonyms for a department. This functions as active 

learning, in the sense that as a new user expression for a department is found, it can be added to the 

synonym list, catching the department name language variability. This way, in the next interaction, the 

bot will be able to recognize the department mentioned using the same expression. 

 

Reviewing user utterances NLU labelling. One approach used to actively learn from user 

conversations, is to manually review utterances from users. A human corrects the intent and entities 

detected, when they were wrongly automatically attributed. Microsoft LUIS supports this reviewing in 

LUIS Portal, where it is possible to manually correct the predictions, using the graphical interface to 

change the intent and mark the entities in the sentence (see Figure 23).  
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Figure 23 - Reviewing LUIS NLU predictions 

 

In summary, by using active learning, the bot will be able to improve its NLU performance with user 

interactions. The increase in NLU performance, will better the conversational experience. Moreover, by 

using less conversational approaches, such as menu options and buttons when NLU fails, it is possible 

to assure that user will still be able to complete the appointment scheduling, even if using a more 

traditional GUI approach. This approach is a compromise that aims to solve the paradox that a 

conversational system needs good training data to offer a good experience, but to have good training 

data, the system needs user interactions. 

 

  



69 
 

4.5 Login 

Medclick platform requires that a user is authenticated to allow the scheduling of appointments. The 

authentication is implemented using access tokens. Medclick’s API has an endpoint for user login that 

receives the user credentials (email and password) and returns the access token. This access token 

allows the user to make authenticated requests to protected API endpoints, and functions as identifier 

of the user in Medclick backend. 

The login could be trivially implemented in the chatbot, by just asking the user to insert the email and 

password in the chat window, and the bot would be able to request the user’s access token to Medclick 

API. The problem with this approach is that when the user is interacting with the bot in channels such 

as Facebook Messenger or Skype, there is the additional issue that login credentials (email and 

password) must not be exposed in the channel. By simply asking the username and password in the 

chat window, not only would this information be exposed to the channel provider, but there would be no 

way to hide the password from the chat window when the user is typing it and after from the conversation 

history. This approach, even though simple to implement, would raise security concerns. 

Microsoft bot framework solves the issue mentioned by using a card that is presented to the user, in the 

chat channel, called OAuth card. This card initiates an oauth2 flux and is configured in the azure portal, 

and can be later used in the bot. After the user clicks the OAuth card in the chat window, he or she is 

redirected to the OAuth2 provider login page. After a successful login, the bot receives the access token. 

This way, the credentials are inserted in the scope of the OAuth2 provider in question, instead of being 

inserted in the chat window. This authentication can be more easily implemented when the login is made 

with a known OAuth2 service provider. The bot service is already configured to deal with known 

providers, such as uber, facebook or google. Although it also allows to configure authentication to any 

“generic oauth 2”, where fields such as “authorization URL” or “token URL” should be manually inserted. 

The Medclick login system does not support OAuth2. In order to take advantage of the OAuth card, 

Medclick login was extended to support social login with facebook and google. It was created a register 

and login social endpoints, both for facebook and google: 

• The register endpoint receives the social user token and uses it to retrieve user data from 

facebook/google, such as the name, email and facebook/google id. With this data, it registers 

the user as medclick user. The medclick user is linked with the facebook/google ID. This way, 

each user has a medclick ID and a facebook/google ID. 

• The login endpoint receives a social token and uses this token to get the facebook/google id 

from the oauth2 provider. After having the facebook/google ID, medclick server uses it to identify 

the medclick user with that id associated. Finally, the medclick user token is returned. 

After these extensions to the medclick API were completed, the azure bot service was configured to 

support OAuth login with facebook and google. The bot application presents an OAuth card to the user 

that redirects the user to facebook/google login, and as a result the bot application receives the 

facebook/google token. This social token is used to login the user, and the result is the medclick’s user 
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token of the user with the facebook/google id associated. If no user with this social ID is found, the 

register endpoint is called first. The azure bot service stores the social tokens, so after the first time the 

users logs in, if the social token is still valid, azure bot service will return it to the bot, and there is no 

need to present an OAuth card to the user. 

Figure 24 summarizes how the bot application retrieves the social token and uses it to retrieve the user 

token, calling the medclick API.  

 

 

Figure 24 - Login with social token and Medclick token flux 

 

In summary, there are two tokens: (i) the social token, from facebook or google; and (ii) the medclick 

user token from medclick backend. Each medclick user have three ids associated: (i) The medclick ID; 

(ii) The facebook ID; and (iii) The google ID. When the oauth card is presented to the user, the user logs 
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in facebook/google, and the bot receives the social token. Then the bot uses the social token to make a 

login request to medclick backend. The medclick backend uses the social token to request the oauth 

provider the google/facebook ID associated with the social token. Finally, medclick finds the medclick 

user with the google/facebook ID associated and returns to the bot application the medclick user token. 
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4.6 Appointment Reminder 

This section describes how the bot appointment reminders to the users are implemented. When the 

scheduled date of an appointment is approaching, the bot sends a notification to the user, reminding the 

user of the details of the appointment, and asking the user for confirmation if he or she will be attending 

the appointment (see Figure 25). The usage of notification is important in order to help reducing the 

number of healthcare that patients miss without previous notice. When a patient misses an appointment 

without noticing, the slot attributed to the healthcare becomes vacant and cannot be used by other 

patients.  The notifications are typical either done by phone call, or by sending a text message. A 

systematic review [34] of several studies on the effect of text-based electronic notifications found that 

patients who received notifications were 23% more likely to attend clinic than those who received no 

notification.  

The usage of chatbot notifications, instead of SMS, has the advantage that the user receives the 

reminder in the same platform used to schedule the appointment, so there is no context-switch. 

Furthermore, the patient can directly answer if he or she will be attending the healthcare appointment in 

the chatbot. 

 

 

Figure 25 - Appointment reminder sent to user 
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The notifications were implemented in a way that the server has the initiative to request the bot 

application to send a notification to the user. This request is triggered when the appointment is three 

days away.  In order to enable the bot to send reminder notifications to the bot users, the Medclick 

backend was extended. When the Medclick backend sends this request to the bot, it must contain the 

appointment details (healthcare business object) and the information needed for the bot to send the 

reminder to the associated user. Additionally, the server must know which appointments were scheduled 

via chatbot. The user attendance answer to the reminder should also be recorded in the Medclick 

database. These requirements were fulfilled by extending the Medclick backend as seen in Figure 26. 

Note that each healthcare object was associated with a channel object, in order to know if the 

appointment was scheduled via chatbot. The healthcare object properties were also extended to record 

the user answer to the reminder notification. When the user first schedules the appointment, the 

healthcare object is created via Medclick API, and the bot conversation data is associated with it. This 

bot conversation data is the data the bot uses to route messages to the correct chat users.  

 

 

 

Figure 26 - Medclick backend extensions for notifications 

 

The bot was also extended in order to create a POST endpoint that receives reminder requests from 

the Medclick server. The full flux of the notification implementation is described in Figure 27.  
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Figure 27 - Appointment notification communication sequence 
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5. Evaluation 

This section discusses the evaluation of the chatbot use case evaluator and of the chatbot 

implementation. The use case of scheduling a medical appointment was selected as the more suitable 

(see section 3) for a chatbot, between the evaluated use cases. It was then implemented as described 

in section 4. Using the chatbot use case evaluator, it was defined that the implementation in a chatbot 

over a GUI is advantageous. In order to confirm if the UC is indeed advantageous in a chatbot, user 

tests are performed both in Medclick website (traditional GUI) and using the chatbot in Facebook 

messenger. It is also important to test the quality of the chatbot itself. The use case might be appropriate 

for a chatbot, but the bot implementation might not be performant enough.  

 

5.1 Evaluation Process 

In this section, it is described the process that enables the evaluation of both the chatbot and the use 

case selection process. 

5.1.1 Website and Chatbot Scheduling 

Users are asked to schedule an appointment using both the chatbot and the website. Metrics are 

extracted from logs of both interactions.  

The metrics extracted from the website interaction are: 

• Task completion success: was the user able to perform the desired task? 

• Efficiency: how long did the interaction take. 

The metrics extracted from the bot interaction are: 

• Task completion success: was the user able to perform the desired task? 

• Efficiency: how long did the interaction take. 

• Intent detection error rate: how often did the system misclassified the user intention. 

• Entity detection error rate: how often did the system filled an entity slot with the wrong value 

or did not detect that an entity was given. 

 

With the beforementioned metrics, it is possible to directly compare the task completion success and 

efficiency of the GUI and chatbot interaction. The intent and entity detection error rate are specific to the 

chatbot, and indicate the quality of the natural language understanding of the bot. Both website and 

chatbot were adapted to produce logs of the interactions, to enable later extraction of these metrics. 
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The information given to the user for scheduling both the appointments is: 

• Doctor Name: The name of the doctor that the user wants to schedule 

• Time Frame: The date when the user desires to visit the doctor. 

5.1.2 Questionnaire 

In the end of the website and chatbot interaction, users are also requested to answer a questionnaire. 

The questionnaire uses the questions of the short version of the “User experience questionnaire (UEQ)” 

[35], in order to evaluate the chatbot user experience (see Figure 28). Participants can rate each item 

on a 7-point Likert scale. The answers are scaled from -3 (fully agree with negative term) to +3 (fully 

agree with positive term). The questionnaire aims to evaluate the pragmatic and the hedonic quality of 

the bot. Pragmatic quality concerns task or goal related quality aspects, while hedonic quality relates to 

pleasure or fun while using the product. Half the questions concern pragmatic quality and the other half 

hedonic quality. 

 

Figure 28 – Chatbot user experience questions asked in the questionnaire 

 

The use of the User Experience Questionnaire (UEQ) allows to quantify the user experience of the 

chatbot. The UEQ contains a benchmark that helps to judge how good or bad a measured product is in 

comparison to other products. The benchmark contains data from 9905 persons that evaluated 246 

different interactive products. [36] adapted this benchmark for the short version of the UEQ, based on 

the same dataset. The proposed scale is the following: 

• Excellent (In the range of the 10% best results): Pragmatic Q. greater than 1.73, Hedonic 

Q. greater than 1.55, Overall greater than 1.58. 

• Good (10% of the results in the benchmark data set are better and 75% of the results are 

worse): Pragmatic Q. between 1.55 and 1.73, Hedonic Q. between 1.25 and 1.55, Overall 

between 1.4 and 1.58. 

• Above average (25% of the results in the benchmark are better than the result for the 

evaluated product, 50% of the results are worse): Pragmatic Q. between 1.15 and 1.54, 

Hedonic Q. between 0.88 and 1.24, Overall between 1.02 and 1.39.  
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• Below average (50% of the results in the benchmark are better than the result for the 

evaluated product, 25% of the results are worse): Pragmatic Q. between 0.73 and 1.14, 

Hedonic Q. between 0.57 and 0.87, Overall between 0.68 and 1.01. 

• Bad (In the range of the 25% worst results): Pragmatic Q. less than 0.73, Hedonic Q. less 

than 0.57, Overall less than 0.68. 

 

Additionally to the UEQ questions, the questionnaire created also contains a question inquiring the tester 

what the preferred method for scheduling appointments is, based on the two product interactions.  

 

5.1.3 Evaluation Process Summary 

In summary, the evaluation process consists on the following steps: 

1. User schedules appointment on Medclick website (see Figure 29); 

2. User schedules appointment using the chatbot on Facebook Messenger (see Figure 30); 

3. User answers the questionnaire; 

 

 

Figure 29 - Website interface 
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Figure 30 - Chatbot interface on Facebook Messenger 

 

Figure 31 summarizes the steps of the process and indicates the metrics that can be extracted from 

each individual step. 

 

 

Figure 31 - Evaluation with users process 
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5.2 Evaluation Results 

This section presents the results of applying the evaluation process described in section 5.1. The full 

process was performed by 10 test users. The demographic data collected indicates that test user age 

range from 18 to 64 years old (see Figure 32), and the distribution regarding sex  can be seen in Figure 

33. Furthermore, half the users indicated that were using a chatbot for the first time, while the remaining 

half already had interacted with a chatbot before. 

 

 

Figure 32 - Age distribution of test users 

 

 

 

Figure 33 - Sex distribution of test users 
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The application of the evaluation process yielded the following results. 

5.2.1 Chatbot Results 

Users were able to complete the scheduling in all chatbot interactions. Furthermore, the bot was able to 

detect the intention of scheduling in the users’ utterance and successfully detected and map the doctor 

name and time entities in every interaction (see Table 14). The doctor name is considered successfully 

detected when the first doctor suggested is the one that was asked the user to request. The time entity 

is considered successfully detected when the bot searches for timeslots in the time frame mentioned by 

the user and presents the ones that exist in the database in such time frame.  

 

Table 14 - Chatbot user testing results 

Task Completion Success 100% 

Completion Time (in seconds) 

Average 47,8 

Median 45 

Std. Dev. 13,12 

Intent Detection Rate 100% 

Entity Detection Rate 100% 

 

 

5.2.2 Website (traditional GUI) and Chatbot Results Comparison 

Comparing the average time users took to schedule the appointment in the website and in the chatbot, 

it is possible to conclude that the chatbot was more efficient, in the sense that users took less time to 

complete the task (see Table 15). All the users were able to complete the scheduling in both interactions, 

so the task completion success is the same. 
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Table 15 - Task completion and efficiency comparison (chatbot and website) 

Scheduling Method 

Metrics 

Website Chatbot 

Task Completion Success  100% 100% 

Completion Time (in 
seconds) 

Average 65,7 47,8 

Median 58 45 

Std. Dev. 20,27 13,12 

 

Analyzing for each individual user test which ones were faster on the bot and in the website, it is 

concluded that most of the users were faster scheduling the appointment via chatbot than using the 

website (see Figure 34). 

 

Figure 34 - Comparison of faster method per user test 

 

 

5.2.3  Questionnaire Results 

The results of the answers to the UEQ in the questionnaire can be found in Table 16. Note that the mean 

value is already in the -3 (most negative) to +3 (most positive) scale. 
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Table 16 - Short UEQ results 

 

 

Considering the averages of the Pragmatic and the Hedonic Quality fields, it is possible to yield the 

following general results: 

• Pragmatic Quality: 2,457; 

• Hedonic Quality: 1,950; 

• Overall: 2,213. 

With these results the benchmark proposed by [36] is applied, as described in section 5.1.2. The chatbot 

is evaluated as Excellent (In the range of the 10% best results) in pragmatic, hedonic and overall quality, 

as the values obtained for each category are higher than the requirement of the benchmark level.  

When asked what the preferred method for scheduling was, most users (70%) chose the chatbot as 

preferable (see Figure 35). 

 

 

Figure 35 - User preferred scheduling method results 

 

Item Mean Variance Std. Dev. No. Negative Positive Scale

1 2,2 0,6 0,8 10 obstructive supportive Pragmatic Quality

2 2,5 0,9 1,0 10 complicated easy Pragmatic Quality

3 2,7 0,2 0,5 10 inefficient efficient Pragmatic Quality

4 2,5 0,5 0,7 10 confusing clear Pragmatic Quality

5 1,8 1,1 1,0 10 boring exciting Hedonic Quality

6 2,3 0,7 0,8 10 not interesting interesting Hedonic Quality

7 1,9 0,5 0,7 10 conventional inventive Hedonic Quality

8 1,8 0,4 0,6 10 usual leading edge Hedonic Quality
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5.3 Evaluation Results Conclusions 

The fact that all the users were able to complete the scheduling using the chatbot, and that the UEQ 

benchmark positions the user experience in the range of the 10% best results, indicates the use case 

of scheduling a medical appointment as suitable for a chatbot. Furthermore, considering that: (i) 70% of 

the users answered that prefer to schedule an appointment using the bot instead of a website (GUI), 

and that (ii) the chatbot interactions were more efficient in 80% of the tests, it is possible to consider the 

chatbot implementation as advantageous over a traditional graphical user interface. 

The suitability of the use case for a chatbot combined with the observable advantages over a GUI, 

indicates that the use case selection process (see section 3.2) selected an appropriate use case for 

implementation. 
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6. Conclusion 

The heavy usage of chat platforms allied with the developments in natural language understanding 

create an opportunity for organizations to engage users using dialog agents. Chatbots lie between a 

human operator and a graphical user interface (GUI) application. Chatbots share the advantage of the 

more natural interaction of human operators and the automation benefits of GUI applications.  Although 

several advantages can be found in chatbots, it is not obvious how can organizations define a priori the 

use cases that are suitable for a conversational user interface implementation. Evaluating the factors 

that are required for a viable implementation (general factors), and the factors of the use case that make 

it beneficial over a GUI application or over a human, it is possible to further understand if a use case is 

not only viable for a chatbot, but if it is beneficial over a GUI or a human operator. This research proposes 

a process that using the evaluating factors gathered aims to aid organizations in this analysis. 

The application of the use case selection process to the health care domain, indicates scheduling a 

medical appointment as beneficial to be implemented in a dialog agent. After conduction user tests using 

the bot implementation of this use case, it was possible to conclude that the chatbot was more efficient 

when comparing to a traditional GUI (website), and that most users preferred to schedule an 

appointment using the bot over the website. 

6.1 Contributions 

This research enables organizations to make more informed decisions regarding dialog agent 

implementations, offering a systematic process for use case suitability assessment. In the healthcare 

domain, it was possible to evaluate several use cases using this process. 

The major contributions identified are: 

• Gathering of evaluating factors that should be considered when implementing a use case in a 

dialog agent. This analysis resulted in three categories of factors: (i) general factors, that 

indicate the viability of a use case for a chatbot, (ii) factors over GUI application, that allow to 

determine if a conversational interface implementation is advantageous when comparing to a 

GUI and (iii) factors over humans, that allow the assessment of the benefits of implementing a 

use case in a chatbot over a human operator. 

• A use case selection process, that can be used by any organization to evaluate and prioritize 

use cases for a chatbot implementation, in a systematic way. The process consists of three 

major steps. In the first step the evaluation factors are applied to each use. In step 2, use cases 

that do not meet a set of requirements that result of the assessment of the evaluation factors 

are filtered out. Finally, in the final step, the remaining use cases are ordered, allowing 

organizations to prioritize the more suitable use cases for implementation in a chatbot; 
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• Application of the use case selection process to use cases in the healthcare domain, resulting 

in the conclusion that scheduling medical appointments is a good candidate to be implemented 

by healthcare organizations in a chatbot; 

• A reference chatbot architecture, applied to the healthcare domain, that allows the scheduling 

of medical appointments.  The major components are:  (i) the bot application, using the Microsoft 

bot framework, where the dialog management is defined and that interacts with the other 

components, (ii) The natural language understanding module, that gives semantic meaning to 

the user sentences, by recognizing the intent and entities present in it, and (iii) The medclick 

API, that provides the business data for scheduling the appointment. The architecture is 

validated via user testing and can be used as a reference for other implementations. 

The secondary contributions identified are: 

• Review of the state of the art of chatbots, and the current use cases that are being implemented 

using dialog agents; 

• Review of chatbot and natural language understanding services, comparing aspects such as 

the performance in intent and entity recognition, number of languages and chat channels 

supported or the support for integration with existing systems. 

 

6.2 Future work 

Future work can be performed in order to further develop and evaluate the use case evaluation process. 

Regarding the evaluation of the process, it can be further validated by using it to assess other use cases 

and compare the success of the implementation with the result of the assessment using the process. 

The evaluation of the chatbot implemented can also be improved, by adding more variability of entities 

given (doctor name, time, specialty) and by increasing the number of test users.  It would be beneficial 

to use a corpus of real appointment schedule conversations, in order to train the chatbot natural 

language understanding module. The usage of such corpus would also enable to further evaluate and 

improve the intent and entity detection rate of the dialog agent, even though the proposed bot can learn 

as more interactions are performed. 
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