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Abstract

The development of continuous fiber filament technology in the FFF process enabled the production
of lighter, stronger structural parts. In order to develop optimal structures using this technology, this
work aims to optimize the material distribution and orientation of bidimensional structures produced
by fused filament fabrication using continuous fiber. The design optimization is performed using
the DMO method with the optimized structures being printed using the Markforged Mark Two 3D
printer. Computed and experimental results show the effect of using different optimization and printing
parameters.
Keywords: Discrete Material Optimization (DMO), Markforged Mark Two, Fiber orientation
optimization, Additive Manufacturing, Fiber Reinforced Composite structures

1. Introduction

Additive manufacturing (AM) technologies have
found potential applications in various industries
such as the aerospace and automotive industries by
allowing the creation of complex lightweight struc-
tures. These technologies allow the fabrication of
prototypes or functional components with complex
structures such as those obtained by topology op-
timization, which could be too expensive to manu-
facture by conventional methods, and also difficult,
if not impossible [3].

One of these technologies is the Fused Filament
Fabrication (FFF) method which consists in repro-
ducing a three-dimensional geometry through the
deposition of successive layers of extruded ther-
moplastic filament. This technology has become
widely adopted due to its low cost, low material
wastage and ease of use. The most common ma-
terials used by this process include Polycarbonate
(PC), Polylactic acid (PLA), Acrylonitrile butadi-
ene styrene (ABS) and Polyamide (PA or Nylon),
due to their low cost and low melting tempera-
ture [5]. However, the poor mechanical proper-
ties of parts printed using these materials results
in the FFF process being primarily used to develop
prototypes [4]. In order to improve the mechan-
ical properties of 3D printed parts, the combina-
tion of a polymeric matrix with reinforcements such
as particles, fibers and nano-materials allows the
manufacture of structural parts, characterized by
their high-performance and functionality [3]. These

advantages lead to the recent development of 3D
printing technology of Fiber Reinforced Thermo-
plastic Composite (FRTPC) structures using short
and continuous fibers. An example of the materials
used are carbon fiber, fiberglass and Kevlar.

Although the use of fibers tends to improve the
overall strength and stiffness of parts produced by
Fused Filament Fabrication, this improvement is
only relevant when the fibers are oriented towards
the stresses that the part is set upon. Also, the use
of these materials greatly increases the cost of pro-
duction, resulting in the need for them to be used
efficiently.

For these reasons, this work aims to optimize in
terms of stiffness both the topology and material
orientation of parts produced by FFF technology
using continuous fiber as reinforcement.

Studies about structural optimization using con-
tinuous fiber can be seen in references [8], [10] and
[11], with the FFF process being also considered in
references [7] and [9].

2. Optimization

Assuming that all materials have a linear elastic
behavior, the structural optimization problem of
maximizing the stiffness of a structure can be re-
formulated as minimizing the displacements caused
by applied loads on the structure, in what is known
as minimizing the structural compliance C. By us-
ing the finite element method to analyze the loaded
structure, the optimization problem can be stated
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as

Minimize C(x) = pTu

subject to K u = p (1)

m ≤ mc

0 ≤ xmin ≤ x ≤ 1

where p is the applied forces vector, u is the dis-
placement vector, K is the stiffness matrix, m is the
mass of the structure, mc is the allowed total mass
and x are the design variables of the optimization
problem.

The optimization method applied in this work is
known as Discrete Material Optimization (DMO)
method, developed by Stegmann[15] in order to
avoid local minima solutions encountered by other
material orientation optimization methods, such as
the Continuous Fiber Angle Optimization (CFAO)
method. This parametrization method computes
the element constitutive matrix Ce as a sum of con-
stitutive matrix Ci over the number of candidate
materials, ne:

Ce =

ne∑
i=1

wiCi = w1C1 + . . .+ wneCne (2)

0 ≤ wi ≤ 1

with each matrix Ci corresponding to a discrete
candidate material and being affected by a weight
function wi. By using continuous weight functions,
gradient based optimizers can be applied in the op-
timization despite the use of discrete candidate ma-
terials. In order for the design to be physically
possible, the weight functions must have values be-
tween 0 and 1. Several parametrizations have been
developed for the DMO method based on these con-
ditions [15]. One of the most efficient can be for-
mulated as:

Ce =

ne∑
i=1

[
(xei )

p
ne∏

j=1;j 6=i

[1− (xej)
p]
]

︸ ︷︷ ︸
wi

Ci (3)

with the design variables xi, i = 1, . . . , ne being
pushed to the values of 0 and 1 by adopting the pe-
nalization factor p from the SIMP method, which
penalizes intermediate values of xi. Despite the effi-
ciency of this parametrization, during the optimiza-
tion the sum of the weight functions can be different
than one, i.e.

∑
wi 6= 1, which raises issues when

computing the mass of the structure:

m =

Ne∑
e=1

ne∑
i=1

(wiρiV )e (4)

where Ne is the total number of finite elements, ρi is
the density of the candidate material and V is the

finite element’s volume. This can be resolved by
normalizing the weight functions, resulting in the
parametrization:

wi =
wk∑ne

k=1 wk
(5)

in which the weight functions wk are computed us-
ing the parametrization in (3). This normalization
reduces the effectiveness of the penalization in pe-
nalizing intermediate values of xi. As such, the
parametrization presented in (3) is used for the el-
ement constitutive matrix Ce, while (5) is used for
the computation of the mass of the structure.

In order to update the design variables, the gra-
dients of the objective and constraints need to be
computed. By rewriting the compliance C as:

C(x) = uT K u (6)

and differentiating with respect to xi, assuming that
∂pT /∂xi = 0, the compliance sensitivity can be
written as:

dC
dxi

= −uT
∂K

∂xi
u (7)

with the stiffness matrix K defined as:

K =

Ne∑
e=1

∫
V e

(Be)T Ce Be dV (8)

where Be is the element strain-displacement ma-
trix. The constitutive matrix C of each candidate
material in (2) is defined as:

C =



E1

1− ν12ν21
ν12E2

1− ν12ν21
0

ν21E1

1− ν12ν21
E2

1− ν12ν21
0

0 0 G12

 (9)

in the case of an orthotropic material using the prin-
cipal material directions. In order to write the con-
stitutive matrix in the problem’s system of coordi-
nates, the transformation of coordinates

C̄ = T(θ) C T(θ)T (10)

is performed with T(θ) written as:

T(θ) =

 cos2 θ sin2 θ −2 cos θ sin θ
sin2 θ cos2 θ 2 cos θ sin θ

cos θ sin θ − cos θ sin θ cos2 θ − sin2 θ


(11)

Obtaining the gradient in (7) thus only requires cal-
culating the derivatives of the weighting functions
in (3). To compute the constraint function sensitiv-
ity, the necessary derivatives relate to the weighting
function in (5).
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To prevent checkerboard results and avoid mesh
dependency, a density filter is used [14], in which
the filtered design variables are written as:

x̃ec =

∑
i∈Ne

we(xi)Vixic∑
i∈Ne

we(xi)Vi
; ∀(e, c) (12)

where Ne are the elements inside the filter radius, r,
relative to the e’th element, Vi is the volume of the
i’th element, xic is the non-filtered design variable
relative to the i’th element and unique candidate
material c and we(xi) is a standard linear decaying
weight function defined as:

we(xi) = 1− ‖xi − xe‖
r

(13)

in which the term ‖xi−xe‖ is the distance between
the center points of the i’th and e’th elements based
on the Euclidean norm of the vectors containing the
coordinates of these points.

To determine convergence of the optimization,
the relative change of the design variables is cal-
culated as

R =

√√√√∑Ne

i=1

∑ne

c=1(xn+1
ic − xnic)2∑Ne

i=1

∑ne

c=1(xic − xic)2
(14)

where n is the number of the current iteration, xic
and xic are the upper and lower bounds of the i’th
element and c’th discrete material, i.e., 1 and 0, re-
spectively. If R is below the established threshold,
e.g. R = 0.01 if the relative change of the design
variables should be below 1%, or if the value of the
objective function didn’t change significantly, the
optimization is considered to have converged nu-
merically. This solution could, however, still be un-
acceptable, or still have room for improvement.

To confirm that the optimization has achieved
a satisfactory solution, i.e., a single material has
been selected in all the elements, a DMO conver-
gence measure is implemented from [15]. First, the
convergence for each element is measured, by com-
paring the Euclidean norm of the weight factors for
each weight factor, wi:

wi ≥ ε
√
w2

1 + w2
2 + · · ·+ w2

ne (15)

where ε is a tolerance level, with typical values rang-
ing between 95% - 99.5%. If the inequality in (15)
is satisfied, the element is flagged as converged. Af-
ter analyzing the convergence of all elements, the
DMO convergence (also known as the solution dis-
creteness), hε, can be calculated by dividing the
number of converged elements, Ne

c , by the number
of total elements, Ne,

hε =
Ne
c

Ne
(16)

with full convergence considered to have been
achieved when hε = 1.

If the DMO convergence is above an imposed
minimum, the solution is considered satisfactory.
However, if the non-discreteness of the solution is
deemed unacceptable and the penalization power p
is below pmax, the optimization is reinitialized with
an increased penalization.

3. Implementation

In order to implement the DMO method into a finite
element program, a custom MATLAB program was
developed capable of dealing with generic bidimen-
sional finite meshes composed of linear triangular
and quadrilateral elements. The finite element data
is provided in a .dat file generated in the commercial
finite element software Siemens NX. This file con-
tains the pre-processed design information such as
nodes, elements, elemental connectivity matrix and
boundary conditions of the design problem. The
program reads this data and then proceeds to ini-
tiate the optimization routine by computing the fi-
nite element analysis and sensitivity analysis whose
results are used to calculate the compliance and de-
sign gradients. The optimization problem is then
solved using the MMA optimization algorithm de-
veloped and provided by Svanberg[16].

3.1. Computational Results

To test the applicability of the DMO method for
material distribution and fiber angle optimizations,
a series of optimizations focused on the so-called
Messerschimitt-Bölkow-Blohm (MBB) beam [12]
and on a three-point tensile (3PT) example (see
Fig. 1) are presented. The goal of these optimiza-
tions serves to understand the influence of certain
parameters in the final optimal structure. In the
former example, the change in material properties
are studied and in the latter, the study is focused
on the change in the mass constraint and its effects
in the final compliance. In the optimization results,
the presence of fiber material is represented by a
darker element with a dash symbolizing the ma-
terial orientation, while the solid, lighter elements
represent void material. Black and white elements
represent converged elements, while an intermedi-
ate, gray color represents unconverged elements.

3.1.1. MBB beam optimization

In the following optimizations, the mass constraint
is set at 50% of the maximum mass and a fil-
ter radius of r = 1.4 mm is used. The starting
penalization is set as p = 3, increasing by 4 up
to a maximum of p = 23, if the convergence re-
quirements of a minimum of 95% converged ele-
ments aren’t met. These requirements are tested
when the relative change of the design values is
below R = 0.005 = 0.5% or the change in com-
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(a) MBB half-beam design space and load-
ing conditions

(b) 3PT design space and load-
ing conditions

Figure 1: Design space and loading conditions for
the MBB beam and 3PT optimizations

pliance is below 0.001%. The dimensions of the
full beam are 180 × 40 [mm] with a total thick-
ness of 1 mm. The beam is supported on the bot-
tom edge at two symmetrically placed points, 10
mm inwards from the lateral edges, fixing the ver-
tical displacement at those points. A single 1 New-
ton downward load is applied at the top center of
the structure. The MBB half-beam is modeled us-
ing 90 by 40 elements and there are 8 possible ori-
entations [90◦,±67.5◦,±45◦,±22.5◦, 0◦] for the or-
thotropic material. The first set of optimizations
focused on changing the Young’s modulus ratio by
decreasing E2 while maintaining the value of E1.
The optimization results can be observed in Fig. 2
for E1/E2 = 1, 2 and 10.

With exception of using E1/E2 = 1, which cor-
responds to an isotropic material, changing the
Young’s modulus ratio has no significant influence
in the material distribution.

The next set of optimizations focused on under-
standing the influence of changing the shear modu-
lus of the orthotropic material. The shear stiffness
is measured by the β parameter [13, 2], which can
be stated as:

β =
E1

1− ν12ν21
+

E2

1− ν12ν21
− 2

ν12E2

1− ν12ν21
− 4G12

(17)
with most materials being characterized as weak in
shear, β ≥ 0, with isotropic materials having β =

(a) Results for a 1:1 ratio of Young’s modulus

(b) Results for a 2:1 ratio of Young’s modulus

(c) Results for a 10:1 ratio of Young’s modulus

Figure 2: Results for the full MBB beam optimiza-
tion problem using the DMO method for different
ratios of Young’s modulus

0. Materials with β < 0 are considered strong in
shear. The optimization results for optimizations
with different values of β can be observed in Fig. 3.

(a) Results for β = 9.829

(b) Results for β = 0

(c) Results for β = −4.571

Figure 3: Results for the full MBB beam optimiza-
tion problem using the DMO method for different
β values

In this case, changing the shear modulus has se-
vere influence in the material distribution and ori-
entation, with the material distribution for β = 0
being similar to the isotropic material distribution
in Fig. 2(a) and for β < 0, the material orienta-
tion does not correspond with the principal stress
directions in the structure’s members.
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3.1.2. 3PT optimization

In this optimization problem, the material distri-
bution and orientation as well as structural stiff-
ness for different mass constraints are evaluated.
The design domain represented in Fig. 1(b) con-
sists of a rectangle with dimensions 100 × 85 [mm]
with a thickness of 1 mm. It has three centered
Ø5 mm holes, two aligned at the bottom situated
80 mm apart and one at the top, 65 mm verti-
cally from the others. A 1 Newton bearing force
is applied upwards in the top hole while the re-
maining holes remain fixed in the horizontal and
vertical directions. Using the same optimization
parameters as implemented in section 3.1.1 and an
orthotropic material with E1 = 10 MPa, E2 = 2.5
MPa, G12 = 0.4 MPa and ν12 = 0.25 oriented at
[90◦,±67.5◦,±45◦,±22.5◦, 0◦], the optimization re-
sults for different mass constraints can be observed
in Fig. 4 and Table 1. The results indicate that as

(a) Mass constraint of
40%

(b) Mass constraint of
60%

(c) Mass constraint of
80%

(d) Mass constraint of
100%

Figure 4: Results for the three-point tensile opti-
mization using different mass constraints

Table 1: Three-point tensile optimization results for
different mass constraints

Mass
%

Final
Compliance
[N.m] ×10−3

Normalized
Compliance
[N.m] ×10−3

40 2.368 0.936
60 2.009 1.191
80 1.946 1.547
100 1.957 1.957

the mass constraint increases, the compliance of the
structure decreases. Although heavier structures
should be stiffer, differences in material orientation
also have an effect in the compliance value as can

be observed in the 80% structure which presents
the lowest compliance value. By multiplying the
compliance with the mass constraint of the struc-
ture and dividing by the weightiest structure’s mass
constraint, the normalized compliance can be deter-
mined. The results in this case indicate that by de-
creasing the mass constraint, decreasing the allowed
mass, the normalized compliance decreases as well,
resulting in a better stiffness/weight ratio.

4. Experimental Setup

In order to validate the computational results for
optimal material distribution and orientation using
the DMO method, experimental tests in structures
printed using continuous fiber fabrication technol-
ogy are performed. The structures are printed with
a Markforged Mark Two 3D printer using a sand-
wich panel design with the outer layers reinforced
with fiberglass and a triangular nylon core. The
material properties of the sandwich panel are ob-
tained by the testing of tensile specimens. The goal
of the MBB beam experimental testing is to com-
pare the stiffness of similarly weighted topology op-
timized structures with topology and material ori-
entation optimized structures. In the 3-point tensile
experimental testing, the goal is to compare quasi-
isotropic structures against structures with opti-
mized material orientation for different volume frac-
tions. These tests serve to understand the advan-
tages and disadvantages of topology optimization
vs topology and material orientation optimization
using CFF and also advantages and disadvantages
of printed laminated, quasi-isotropic structures vs
printed structures with optimized material orienta-
tion in the context of CFF.

In order to be able to establish a comparison be-
tween the computational and experimental results,
the mechanical properties of the sandwich panels
are obtained using a unidirectional layered sand-
wich panel [6] following the ASTM D3039 standard
[1].

These properties are obtained for an orthotropic
laminate and a quasi-isotropic laminate, to use in
material distribution with orientation optimization
and in topology optimization, respectively. Each
laminate has a thickness of 5mm and 8 fiber layers.
The obtained properties can be seen in Tables 2 and
3.

Using the obtained mechanical properties, the fi-
nal optimal designs for the test studies can be seen
in Figs. 5 and 6 which are then printed and tested.

4.1. MBB beam experimental setup and results

Both MBB structures are printed using Concentric
fiber fill, to compare the stiffness of the structures
obtained through the optimizations with the fiber
oriented according to the principal stress directions.
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Table 2: In-plane tensile properties for the unidi-
rectional composite sandwich panel

Property Value

E1 (GPa) 3.869
E2 (GPa) 0.356
G12 (GPa) 0.742

ν12 0.426
ν21 0.022

Table 3: In-plane tensile properties for the Isotropic
composite sandwich panel

Property Value

E (GPa) 1.513
ν 0.394

(a) Final optimal material and fiber angle distribution
for the MBB ORTHO optimization

(b) Final optimal material distribution for the
MBB ISO optimization

Figure 5: Final optimal material distribution
and orientation results for the MBB ORTHO and
MBB ISO optimizations

In order to improve the stability of the structure
during the tests, the structures are printed with a
thickness of 10mm and 16 fiber layers, to maintain
the fiber/nylon ratio used in the tensile specimens.
The experimental setup can be seen in Fig. 7.

The results of the experiment can be seen in Fig.
8 and Table 4.

From the analysis of the experimental stiffness re-
sults, the structures seem to have similar stiffness,
with the MBB ISO having a greater variation in re-
sults and an overall better performance. These ex-
perimental results contradict the theoretical results
obtained through the optimizations. These differ-
ences can be related to the printing patterns, which
cannot be replicated through the optimization pro-
gram.

4.2. 3PT experimental setup and results

For this experiment, the 3PT structures are printed
using Markforged’s Concentric and Isotropic fiber
fill, to compare the stiffness of structures printed
with the fibers aligned with the principal stress
directions and structures printed with a quasi-

(a) Final results for 40% mass
constraint

(b) Final results for 100%
mass constraint

Figure 6: Final optimal material distribution and
orientation results for the 3PT optimization using
40% and 100% mass constraint

Figure 7: Experimental setup for testing of the
printed MBB beam structures

isotropic laminate, optimized for different mass con-
straints.

Since using the Concentric fiber fill in the struc-
ture in Fig. 6(b) results in an undesired fiber lay-
out, a series of 0,1 mm cuts were inserted in the
fiber layers, in order to force the slicing program to
orient the fibers according to the optimization re-
sults, as can be seen in Fig. 9. To minimize the
effect of hole deformation during testing, the holes
were reinforced in all the core layers with a maxi-
mum of five concentric fiber rings. In order to test
the printed specimens in a tensile test, special fix-
tures were machined in order to satisfy the bound-
ary conditions of the optimization problem. The
experimental setup is shown in Fig. 10. The results
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Figure 8: Zoomed-in load-displacement curves for
the 3 point bending test of optimized MBB struc-
tures

Table 4: Experimental and theoretical stiffness re-
sults for the 3 point bending test of optimized MBB
structures printed using CFF

MBB
Sample

Stiffness
[N/m]×103

Normalized
Stiffness

[N/m]×103

ORTHO 1 284.06 284.06

ORTHO 2 295.47 295.68

ORTHO 3 293.75 293.96

ISO 1 276.34 286.92

ISO 2 328.33 342.42

ISO 3 294.74 306.14

ORTHO THEO 940.96

ISO THEO 913.04

Figure 9: Printing pattern of the 3PT
1,0 Concentric structure

of the experiment can be seen in Fig. 11 and Table
5. By analyzing the load-displacement curves in
Fig. 11, several conclusions can be drawn. Since the

Figure 10: Experimental setup for the testing of the
3PT structures
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3PT load displacement curves

0,4 Concentric #1
0,4 Concentric #2
0,4 Concentric #3
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0,4 Isotropic #2
0,4 Isotropic #3

1,0 Concentric #1
1,0 Concentric #2
1,0 Concentric #3
1,0 Isotropic #1
1,0 Isotropic #2
1,0 Isotropic #3

Figure 11: Load-displacement results for the final
testing samples of 3PT

ultimate-stress for the 0,4 Concentric structure is
greater than the one obtained for the 1,0 Concentric
structure, the technique for orienting the fiber with
the use of small cut features was not very success-
ful for this problem. The similar ultimate-stress re-
sults obtained for the 1,0 structures, which contrast
greatly with the results obtained for the 0,4 struc-
tures, support this theory, since structures printed
with the fiber oriented in the principal stress direc-
tion should have an increased ultimate-stress value
when compared to structures printed with a quasi-
isotropic laminate and using the same amount of
fiber. The effect of hole deformation is also possi-
ble, revealing that this problem is not the most well
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Table 5: Experimental and theoretical stiffness re-
sults for the tensile test of optimized 3PT structures
printed using CFF

Mass
%

Sample
Stiffness

[N/m]×103

Normalized
Stiffness

[N/m]×103

40

Concentric

#1 923.18 2233.20

#2 815.61 2002.86

#3 886.58 2170.88

Theoretical 3780.71

Isotropic

#1 741.84 1830.95

#2 774.23 1897.14

#3 694.64 1715.70

Theoretical 1895.73

100

Concentric

#1 949.31 949.31

#2 981.24 992.90

#3 922.40 934.19

Theoretical 4653.87

Isotropic

#1 1023.88 1052.94

#2 1062.89 1093.39

#3 1081.17 1108.51

Theoretical 2443.49

suited to be tested.

By analyzing the stiffness results in Table 5, sev-
eral conclusions can be drawn. The experimental
results agree with the computational results in that
the structures with a higher volume fraction have
greater stiffness. Using 40% mass, the Concentric
structures are stiffer than the Isotropic structures,
as is expected. However, the computational results
indicate that the stiffness difference should be twice
as much, which is not the case. Using 100% mass,
the opposite occurs, with Isotropic structures being
stiffer than the Concentric structures, which is not
expected. This result could indicate that the em-
ployed technique is not useful in this case. When
observing the normalized stiffness results, the value
of the 40% structures are greater than the 100%
structures, almost by a factor of two, since the stiff-
ness results don’t increase as much as the weight.
This justifies using the 40% mass structures since
their stiffness/weight ratio is greater. The results
from the experimental tests differ greatly in terms
of numerical value from the computational results,
which could be explained by the difficulty in sim-
ulating the behavior of the sandwich panel, due to

the printing process, as the fiber can’t be printed
in the same disposition as in the optimization re-
sults and also because the local hole deformation
may not be accounted for in the simulations.

5. Conclusions

The goal of this work was to develop a structural op-
timization program capable of determining optimal
material distribution and orientation for structures
created by FFF processes implementing continuous
fiber filament. To this end, a Matlab program was
developed based on the DMO method, using the
MMA optimizer to minimize the compliance of the
structure. To allow the study of complex bidimen-
sional structures, the finite mesh generation is per-
formed by the finite element program Siemens Nx,
using triangular and quadrilateral finite elements.

To test the developed program, the MBB beam
and a three-point tensile problem were optimized
in respect to the material distribution and orienta-
tion. The studies showed that changing the ratio of
Young’s modulus has no significant effect on the fi-
nal structure and material orientation, while chang-
ing the shear stiffness can have a significant impact
in the material distribution and orientation of the
final structures. In order to complement the com-
putational results, experimental testing and char-
acterization of the composite layup was performed
and samples of the MBB beam and 3PT structures
were printed and tested with fiberglass continuous
fiber reinforcement using the Markforged Mark Two
3D printer, to determine their stiffness.

The major findings obtained by the experimental
tests can be summarized as:

• Topology optimized structures and material
distribution and orientation optimized struc-
tures have similar stiffness when printed with
fiber oriented along the principal stress direc-
tions if the composite material has a shear stiff-
ness similar to an isotropic material (β = 0).

• Lighter, functional structures have higher stiff-
ness/weight ratio than heavier structures, but
lower stiffness overall.

• Structures printed with optimal fiber orienta-
tion have better performance than structures
printed with generic quasi-isotropic layups for
the same fiber volume.

• Conclusions about the proposed fiber orienta-
tion technique can’t be performed due to im-
proper experimental testing, requiring further
examination.

• The experimental results confirm the general
findings obtained by the computational results
for the MBB beam and 3PT structure, al-
though with lower stiffness results due to the
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CFF process limitations and local stress con-
centration.

5.1. Future Work

Several improvements to the presented work could
still be implemented and will be presented here as
future work ideas as follows:

• Instead of using the presented parameteriza-
tion methods, other methods could be used
to increase the number of possible orientations
without increasing the computation time.

• Use of a discrete ”weak” material lead to con-
vergence difficulty. Use of a SIMP like method
of using a pseudo-density could prove more use-
ful.

• An Equivalent Single Layer Model (ESLM) was
used to simulate the structures. Use of a layer-
wise model would be interesting to implement
in order to simulate the layer-by-layer behavior
of the FFF process and determine which layers
should have fiber and its orientation.

• Further experimental studies of the material
orientation technique should be implemented
using better case studies to assess the practi-
cality of the method.
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and G. Rodŕıguez. Impact damage resistance
of 3D printed continuous fibre reinforced ther-
moplastic composites using fused deposition
modelling. Composites Part B: Engineering,
148:93–103, 2018.

[5] A. N. Dickson, J. N. Barry, K. A. McDonnell,
and D. P. Dowling. Fabrication of continuous
carbon, glass and Kevlar fibre reinforced poly-
mer composites using additive manufacturing.
Additive Manufacturing, 16:146–152, 2017.

[6] R. T. L. Ferreira, I. C. Amatte, T. A. Dutra,
and D. Bürger. Experimental characterization
and micrography of 3D printed PLA and PLA
reinforced with short carbon fibers. Composites
Part B: Engineering, 124:88–100, 2017.

[7] R. M. Hoglund. An Anisotropic Topol-
ogy Optimization Method For Carbon Fiber-
Reinforced Fused Filament Fabrication. Mas-
ter’s thesis, Baylor University, 2016.

[8] H. P. Jia, C. D. Jiang, G. P. Li, R. Q. Mu,
B. Liu, and C. B. Jiang. Topology Optimiza-
tion of Orthotropic Material Structure. Mate-
rials Science Forum, 575-578:978–989, 2008.

[9] D. Jiang. Three dimensional topology opti-
mization with orthotropic material orientation
design for additive manufacturing structures.
Master’s thesis, Baylor University, 2017.

[10] T. Nomura, E. M. Dede, J. Lee, S. Yamasaki,
T. Matsumori, A. Kawamoto, and N. Kikuchi.
General topology optimization method with
continuous and discrete orientation design us-
ing isoparametric projection. International
Journal for Numerical Methods in Engineer-
ing, 101(8):571–605, 2015.

[11] T. Nomura, E. M. Dede, T. Matsumori, and
A. Kawamoto. Simultaneous Optimization of
Topology and Orientation of Anisotropic Ma-
terial using Isoparametric Projection Method.
11th World Congress on Structural and Multi-
disciplinary Optimization, 2015.

[12] N. Olhoff, M. P. Bendsøe, and J. Rasmussen.
On CAD-integrated structural topology and
design optimization. Computer Methods in Ap-
plied Mechanics and Engineering, 89(1-3):259–
279, 1991.

[13] P. Pedersen. Optimal Orientation of
Anisotropic Materials Optimal Distribution of
Anisotropic Materials Optimal Shape Design
with Anisotropic Materials Optimal Design
for a Class of Non-Linear Elasticity. In Op-
timization of Large Structural Systems, vol-
ume II, pages 649–681. Springer Netherlands,
Dordrecht, 1993.

[14] R. Sørensen and E. Lund. In-plane material
filters for the discrete material optimization
method. Structural and Multidisciplinary Op-
timization, 52(4):645–661, 2015.

[15] J. Stegmann. Analysis and optimization of
laminated composite shell structures. PhD the-
sis, Aalborg University, 2004.

9



[16] K. Svanberg. The method of moving asymp-
totes—a new method for structural optimiza-
tion. International Journal for Numerical
Methods in Engineering, 24(2):359–373, 1987.

10


	Introduction
	Optimization
	Implementation
	Computational Results
	MBB beam optimization
	3PT optimization


	Experimental Setup
	MBB beam experimental setup and results
	3PT experimental setup and results

	Conclusions
	Future Work


