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Abstract

Recently, the development of continuous fiber filament technology in the Fused Filament Fabrication pro-

cess enabled the production of lighter, stronger structural parts. In order to develop optimal structures

using this technology, this thesis aims to optimize the material distribution and orientation of bidimen-

sional structures produced by FFF using continuous fiber. The finite element method is used to simulate

the structure, using the Siemens NX commercial software to generate the finite element mesh and im-

pose boundary conditions. This data is then read by the optimization program which was developed in

Matlab. The optimization is performed by implementing the DMO method to discretize the fiber mate-

rial orientations and the void material, together with a density filter to avoid checkerboard results. The

optimization is performed using the MMA optimizer.

Using the developed Matlab program, optimizations are performed and structures are printed ac-

cording to the results using the Markforged Mark Two continuous fiber 3D printer. Results show that

topology optimized structures and topology with fiber orientation optimized structures, when printed with

Concentric fiber fill, have similar stiffness, showing agreement with the computational results, although

with significantly lower stiffness values. A technique to force the orientation of the fiber is tested for

fiber orientation optimized structures, against structures printed with a quasi-isotropic layup. The results

aren’t conclusive if the technique is successful, requiring further investigation for different structures or

boundary conditions. Structures printed with fiber aligned with the principal stress directions revealed

stiffer than structures printed with a quasi-isotropic layup.

Keywords: Discrete Material Optimization (DMO), Markforged Mark Two, Fiber orientation op-

timization, Additive Manufacturing, Fiber reinforced composite structures
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Resumo

Recentemente, o desenvolvimento de tecnologias de FFF recorrendo a fibra contı́nua permitiu a produ-

ção de peças estruturais mais leves e resistentes. De forma a desenvolver estruturas ótimas com

recurso a estas tecnologias, o objetivo desta tese passa pela otimização da distribuição e orientação do

material em estruturas bidimensionais produzidas com recurso a esta tecnologia. A estrutura é simulada

utilizando elementos finitos, usando-se o software Siemens Nx para geração da malha e aplicação das

condições de fronteira. Esta informação é transmitida para o programa de otimização desenvolvido em

Matlab. A otimização é feita pela implementação do método DMO para discretizar as orientações da

fibra e vazio, utilizando um filtro de densidade para evitar resultados em “xadrez”. O optimizador MMA

é utilizado para a optimização.

Usando o programa desenvolvido, são feitas otimizações sendo as estruturas daı́ provenientes im-

pressas recorrendo à impressora 3D Mark Two da Markforged. Os resultados mostram que estruturas

otimizadas somente quanto à topologia e estruturas também otimizadas quanto à orientação da fibra,

quando impressas com preenchimento “Concêntrico” de fibra, apresentam rigidez semelhante, concor-

dando com os resultados computacionais, no entanto com valores inferiores. Foi testada uma técnica

para orientar a fibra de acordo com os resultados das otimizações, comparando os resultados com es-

truturas impressas com um laminado quasi-isotrópico. Os resultados revelaram-se inconclusivos quanto

ao sucesso da técnica, sendo necessária uma investigação mais aprofundada. Foi também verificado

que estruturas impressas com as fibras alinhadas nas direções de maior tensão são mais rı́gidas que

estruturas impressas com um laminado quasi-isotrópico.

Palavras-chave: Discrete Material Optimization (DMO), Impressora 3D Mark Two, Otimização

da orientação da fibra, Manufatura Aditiva, Estruturas em compósito reforçado por fibra
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Chapter 1

Introduction

This chapter will provide an introduction to the subjects presented in this thesis. The motivation for

this work as well as previous developments will be presented, concluding with the determination of the

objectives for this thesis and its outline.

1.1 Structural Optimization

Optimization refers to the process of finding the ”best” or optimal solution for a given problem which can

have certain restrictions. This solution is normally obtained by a process of trial and error, which begins

with an original solution that will be analyzed, evaluated and improved, resulting in a new, preferably

better solution. This process continues until no further improvements are possible and the solution is

deemed optimal [1]. This methodology has been applied all over the human history and the process can

also be observed in nature, through the concept of evolution and natural selection.

Structural optimization thus refer to obtaining the optimal structure subject to certain loads/ displace-

ments normally with restrictions defined by the engineer. The concept of optimal can vary according to

the imposed specifications that characterize the optimization objective. In structural optimization, the ob-

jective can be such as making the lightest structure , e.g. minimize weight, or the opposite by designing

the stiffest structure e.g. maximizing stiffness. Of course these examples cannot be implemented with-

out imposing constraints, as the former would result in a non-existent structure and the latter wouldn’t

have limitations in the amount of material that could be used. Both cases implying a poorly defined

optimization problem [2]. The most common methods used in structural optimization can be divided into

three categories: size, shape and topology optimization. Size and shape optimizations were the first

methods to be developed and are usually performed when the design is already in its final stages. Size

optimization can be used to determine the optimal thickness distribution over the structure or overall di-

mensions. Shape optimization modifies the geometry of the structure, to prevent stress concentrations

or optimize the material distribution. Topology optimization is used to determine the optimal material dis-

tribution from an initial design domain, by removing material were it’s not needed, normally introducing

holes in the structure [1].

1



1.2 Fused Filament Fabrication

Additive manufacturing (AM) technologies have found potential applications in various industries such

as the aerospace and automotive industries by allowing the creation of complex lightweight structures.

These technologies allow the fabrication of prototypes or functional components with complex struc-

tures such as those obtained by topology optimization, which could be too expensive to manufacture by

conventional methods, and also difficult, if not impossible [3].

One of these technologies is the Fused Filament Fabrication (FFF) method which consists in repro-

ducing a three-dimensional geometry through the deposition of successive layers of extruded thermo-

plastic filament. This technology has become widely adopted due to its low cost, low material wastage

and ease of use. The most common materials used by this process include Polycarbonate (PC), Poly-

lactic acid (PLA), Acrylonitrile butadiene styrene (ABS) and Polyamide (PA or Nylon), due to their low

cost and low melting temperature [4]. However, the poor mechanical properties of parts printed using

these materials results in the FFF process being primarily used to develop prototypes [5]. In order to

improve the mechanical properties of 3D printed parts, the combination of a polymeric matrix with re-

inforcements such as particles, fibers and nano-materials allows the manufacture of structural parts,

characterized by their high-performance and functionality [3]. These advantages lead to the recent de-

velopment of 3D printing technology of Fiber Reinforced Thermoplastic Composite (FRTPC) structures

using short and continuous fibers. The first commercial printer capable of producing continuous fiber

reinforced composite structures was the Mark One, developed by Markforged, using their patented tech-

nology of Continuous Fiber Fabrication (CFF). Since then, Markforged developed several others CFF

3D printers both for the consumer as well as the professional market [6]. A more recent example of FFF

using continuous fiber can be found in the Composer printers, produced by the Anisoprint company,

which uses their patent pending technology of Composite Fiber Coextrusion (CFC) [7].

1.3 Motivation

With the increasing development of additive manufacturing, the technology started to shift from initial

prototyping, where prototypes were developed to quickly bring ideas to life or to check dimensional

problems, to functional prototyping, were working, structural parts are created and ready to use. This

change implied the use of stronger materials than thermoplastic polymers, such as PLA and ABS. An

example of these materials are carbon fiber and fiberglass, that when applied as reinforcement in a

polymeric matrix structure results in a Fiber Reinforced Composite (FRC) structure.

Although the use of fibers tends to improve the overall strength and stiffness of parts produced by

Fused Filament Fabrication, this improvement is only relevant when the fibers are oriented towards

the stresses that the part is set upon. Also, the use of these materials greatly increases the cost of

production, resulting in the need for them to be used efficiently.

For these reasons, this thesis aims to optimize in terms of stiffness both the topology and material

orientation of parts produced by FFF technology using continuous fiber as reinforcement.

2



1.3.1 State of the Art

Topology optimization as it is today began as a variation of shape optimization. Bendsøe and Kikuchi [8]

were among the first to study this branch of structural optimization using the homogenization method.

Instead of placing or removing material, the material’s microstructure is composed of voids with varying

sizes and orientations. By modifying the shape and orientation of these voids in each cell, the problem

transforms from a shape optimization problem, in which the design domain changes constantly, into

a sizing optimization problem, simplifying the whole process. A modification for the homogenization

method was developed by Suzuki and Kikuchi [9] and tested for various examples of linearly elastic

structures using shape and topology optimization.

Xie and Steven [10] proposed a topology optimization method inspired by the evolution of natural

structures. This process, designated as Evolutionary Structural Optimization (ESO) method, computes

the stress distribution across the structure using a finite element analysis and eliminates elements based

on a rejection criterion such as the Von Mises stress being less than an established rejection ratio. This

process is repeated until a steady state is reached. Afterwards, to the rejection ratio is added an evolu-

tion rate and the process continues until it reaches a new steady state. The optimization proceeds until

a desired optimum is reached. Since the method functions by eliminating elements, a global optimum

solution cannot be guaranteed and also the generation of high stress zones created by the elimination

of material could not be alleviated with the addition of material. This lead to the development of the

Bidirectional Evolutionary Structural Optimization (BESO) method, proposed by Querin et al. [11]. This

method starts from a minimum possible design space and using a bidirectional technique, which adds

or removes material, the structure evolves until an optimal solution is found.

Another approach to topology optimization is the Solid Isotropic Material with Penalization (SIMP)

method, developed independently by Bendsøe [12] , Zhou and Rozvany [13] and Mlejnek [14]. Instead

of introducing voids in the material microstructure as the homogenization method, or removing low-

stressed finite elements as the ESO method, the SIMP methodology assumes the material properties

constant for all the elements in the discretized domain and the design variables are the relative densities

of each element, which vary between 0 and 1. Each elements material is then modeled by multiplying

the isotropic solid material with the corresponding element relative density raised to a designated power.

This method, also called ”the power-law approach”, is used to penalize intermediate densities and drive

them to the values of 0 and 1, corresponding to void and solid material, respectively. An implementation

of the method was developed by Sigmund [15] in Matlab, using a 99 line topology optimization code

which could be modified to solve various structural optimization problems. A variation of the SIMP

method using an orthotropic material model designated as Solid Orthotropic Material with Penalization

(SOMP) method was used by Lee et al. [16] and Hoglund [17] to study the influence in topology results

when using an orthotropic material with a specified orientation.

With the increasing use of fiber reinforced composites in areas of the industry such as the aerospace

and automotive industry, a new branch of structural optimization designated by fiber orientation optimiza-

tion emerged. The objective of this type of optimization is to find the optimal orientation for orthotropic

material, such as fiber reinforced composites. The first studies regarding the optimal material orienta-
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tion were developed by Pedersen [18, 19, 20] and Gibiansky and Cherkaev [21] with the former using a

strain based method and the latter a stress method. The results obtained by these studies, confirmed by

Suzuki and Kikuchi [9] , suggest that for ”weak” shear materials the optimal material orientation coincides

with the principal stresses and strains direction.

One of the most straightforward methods used to optimize the orthotropic material orientation is the

so-called Continuous Fiber Angle Optimization (CFAO) method [22–24] which uses the orientation an-

gle itself as a design variable. This approach, however, has some local minima issues, as noted and

illustrated by Stegmann [1], with the global design space becoming non-convex with the use of the con-

tinuous angle as design variable. Despite these issues, it has proven to be successful in simultaneously

optimizing topology and fiber orientation, since it can easily be integrated with the SIMP method. This

methodology was used by Jia et al. [25] in the optimization for minimal compliance of a cantilever beam.

Recently, the use of the CFAO method with the SIMP approach was used by Hoglund [17] and Hoglund

and Smith [26] for the two dimensional topology and fiber orientation optimization, with focus on struc-

tures printed using the FFF process with short fiber reinforced filament. This combination of CFAO +

SIMP was latter implemented by Jiang [27] for the three dimensional model.

In order to avoid the local minima issues found using CFAO, Nomura et al. [28, 29] proposed a gen-

eral topology optimization method capable of dealing with the material distribution design as well as

continuous or discrete material orientation. This method employs a Cartesian representation for the

orientation angle, using unit vectors. A transformation of the bound box of the Cartesian components is

performed using isoparametric shape functions, into a circular element with unity radius. The transfor-

mation ensures continuity and prevents solution ambiguity. The design variables are regularized using

a Helmholtz filter with a Heaviside function. The method was tested for the short cantilever problem,

noting the resulting fiber orientation being coincident with the direction of the structural bars, confirming

the results from previous studies.

Another method that was developed to tackle the local minima problem present in the CFAO method

is the Discrete Material Optimization (DMO) method [1, 30]. This method determines the most ap-

propriate material from a set of given options, with these ranging from a single material with different

orientations to multiple materials. By reducing the number of possible angle configurations, the risk of

encountering local minima diminishes, although with an increase of computational time as the number of

design variables increases. The original parametrizations developed by Stegmann for the DMO method

consist in representing the element constitutive matrix as a weighted sum formulation of the various ma-

terials constitutive matrices. These weights vary between 0 and 1, with a material being selected when

its corresponding weight has the value of 1 and the others 0. The optimizers ability to select a single

material determines the success of the method. Although this approach does not cover continuously

varying orientation distributions problems, as can be found in the FFF process, an approximation can be

achieved by using several orientation angles as design variables, with the already mentioned increase in

computation time. To address this issue, several new parametrization schemes were developed [31, 32]

that reduce the number of design variables while maintaining the number of possible orientation angles.

However, these were not implemented in the present work.
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1.4 Objectives

The objective of this thesis is to develop an optimization algorithm capable of optimizing material distri-

bution and orientation for structures subject to plane stress. The algorithm has to be capable of reading

and processing information provided by a commercial finite element software regarding the structures

geometry, loading conditions and constraints. The computational results obtained from the algorithm will

then be compared against the experimental results of structures printed using CFF.

As such, the key aspects of this work are:

• Implement an optimization algorithm for material distribution and orientation using the DMO method

and a robust optimizer;

• Compare the optimization results with experimental data obtained by testing FRTPC structures

using continuous fiber and similar boundary conditions.

1.5 Thesis Outline

This thesis is divided in 5 chapters.

Chapter 1 introduces the background for the developed work, revealing the motivation and objectives

of this thesis.

Chapter 2 is dedicated to the optimization algorithm, detailing the governing equations, sensitivity

analysis, filtering and the optimizer.

Chapter 3 treats the finite element model, detailing the equations behind the triangular and quadrilat-

eral finite element. The implementation of the developed algorithm is also described and computational

results are presented.

Chapter 4 deals with the experimental part of this thesis. Material properties for parts printed using

Markforged’s Mark Two printer are obtained and structures are printed and tested, according to the

computational results. An analysis of the experiments is performed.

Chapter 5 is dedicated to the conclusions drawn from the present work and possibilities for future

works are presented.
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Chapter 2

Optimization

In this chapter, the formulation of the optimization problem is presented. The objective and constraints of

the problem are defined as well as the design variables. The parametrization method known as Discrete

Material Optimization (DMO) method is introduced and the objective function and sensitivity analysis

are defined. Finally, the gradient-based optimizer known as Method of Moving Asymptotes (MMA) is

presented, having been developed and provided by Krister Svanberg.

2.1 Problem Formulation

The formulation of an optimization problem is a process of transforming a real, tangible problem into a

mathematical model. In order to do this, several stages must be considered:

• Objective - What it’s trying to achieve, what are the desired goals.

• Design Variables - What parameters are being changed to achieve those goals.

• Objective Function - How can the problem be translated to a mathematical model.

• Constraints - What are the problem’s limitations.

These 4 stages are what constitute the problem formulation. After the completion of these stages

we are able to produce a mathematical formula for our design optimization problem. Once this is done

the optimization process can begin. First we start with an initial design, which is then analyzed and

calculated. If the conditions for optimum are not met, the design is altered according to a set of rules,

generating a new design. This iterative process is performed until an optimum solution is achieved. In

Fig. 2.1 we can observe how this process is done.

2.1.1 Objective

As was said earlier in 2.1, the objective is a description of the problem that we are trying to optimize, its

requirements or goals and its limitations.
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Figure 2.1: Flowchart of the optimization process

In this thesis, the optimization problem consists of maximizing the stiffness of a given structure un-

der certain loads and boundary conditions while maintaining its weight under a certain threshold. The

material that this structure is made of has an orthotropic nature.

2.1.2 Design Variables

As stated in 2.1, this stage serves to define the variables that will be changed in order to improve upon

our design. These variables should be as much independent from each other as possible, i.e, the value

of one variable should not affect the value of another. The number of degrees of freedom that a problem

possesses is based on the number of independent design variables.

In 2.1.1 it was stated that the objective was to maximize the stiffness of a structure made of an or-

thotropic material. Contrary to isotropic materials, which have no preferred directions in the material,

having infinite number of planes of material symmetry, orthotropic materials have three mutually orthog-

onal planes of material symmetry [33]. This means that, as opposed to isotropic materials, orthotropic

materials have different material properties, depending on the direction at a certain point. As such, this

should be exploited when optimizing for the stiffness of a structure.

In order to model the behavior of an orthotropic material under a given load or stress, we can make

use of the so called generalized Hooke’s Law (2.1), assuming that we are in the elastic regime of the

material.

σ = C · ε (2.1)

In (2.1), σ is the stress tensor, ε is the strain tensor and C is the stiffness tensor. In matrix notation,

equation (2.1) is written as:
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σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


·



ε11

ε22

ε33

2ε23

2ε13

2ε12


(2.2)

Eq. (2.2) relates to a generic elastic material. If we assume this material is hyperelastic, then the

stiffness coefficients Cij must be symmetric, i.e, Cij = Cji. This leaves us with 21 unique stiffness

coefficients.

For orthotropic materials this number is reduced to 9 stiffness coefficients due to the 3 planes of

symmetry these materials possess at any given point. Because of this and substituting Cij for the

corresponding expressions featuring the engineering constants such as Young’s modulus E, Poisson

ratio ν and shear modulus G, the stiffness tensor C in (2.2) can be rewritten as:

C =



1−ν23ν32
E2E3∆

ν21+ν23ν31
E2E3∆

ν31+ν21ν32
E2E3∆ 0 0 0

ν21+ν23ν31
E2E3∆

1−ν13ν31
E1E3∆

ν32+ν12ν31
E1E3∆ 0 0 0

ν31+ν21ν32
E2E3∆

ν32+ν12ν31
E1E3∆

1−ν12ν21
E1E2∆ 0 0 0

0 0 0 G23 0 0

0 0 0 0 G31 0

0 0 0 0 0 G12


(2.3)

∆ = (1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13)/(E1E2E3)

in the principal directions of the material.

For isotropic materials the number of stiffness coefficients is further reduced to 3, while the number of

independent elastic coefficients, i.e, engineering constants, necessary to fully characterize the material

are 2.

C =



E
1−ν2

νE
1−ν2

νE
1−ν2 0 0 0

νE
1−ν2

E
1−ν2

νE
1−ν2 0 0 0

νE
1−ν2

νE
1−ν2

E
1−ν2 0 0 0

0 0 0 E
2(1+ν) 0 0

0 0 0 0 E
2(1+ν) 0

0 0 0 0 0 E
2(1+ν)


(2.4)

It is important to note that all these equations are written in the principal directions of the material

which is not very useful because the loads and boundary conditions applied to the material will be

written in the problem system of coordinates. In order to write all the necessary equations in the same
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coordinate system, we need to perform a transformation of coordinates in the form of

σt = T(θ) C T(θ)Tεt (2.5)

in which σt and εt are written in the problem coordinate system, θ is the angle between x1 and x,

assuming that x3 = z (see Fig. 2.2) and T(θ) is written as

T(θ) =



cos2 θ sin2 θ 0 0 0 −2 cos θ sin θ

sin2 θ cos2 θ 0 0 0 2 cos θ sin θ

0 0 1 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 − sin θ cos θ 0

cos θ sin θ − cos θ sin θ 0 0 0 cos2 θ − sin2 θ


(2.6)

Figure 2.2: A lamina with material and problem coordinate system.1

Another design variable that should be accountable is the density of the material, as this is the only

way to maintain the mass under a certain threshold as stated in the objectives in 2.1.1. This can be done

in two different ways. Either we assume a pseudo-density as a design variable, with values between 0

and 1, as done by the SIMP method and then multiplying this pseudo-density by the stiffness tensor C

or, in case we are already assuming discrete orientations of the orthotropic material as being different

materials, we can simply add a low density, low stiffness isotropic material in order to simulate a void

material, as suggested by Stegmann [1] for the DMO method.

2.1.3 Objective Function

In 2.1.1 we defined the objective as maximizing the stiffness of a given structure, in the elastic regime.

As known from solid mechanics, the stiffer the structure, the smaller the displacement caused by a

given applied force. This means that by maximizing the stiffness, we are actually minimizing the work

produced by the applied forces in the structure. This is also known as compliance, C, and will be our

objective function. It’s normal to use finite element analysis (see [34]) in structural optimization as is the

1Figure taken from J. N. Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press,
London, 2nd edition, 2004. ISBN 9780203502808. doi: 10.1201/b12409
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case of this problem, and so we can write the compliance in finite element notation as

C = pTu = uTK u (2.7)

were p are the forces applied, u are the displacements of the structure and K is the stiffness matrix of

the structure, also known as global stiffness matrix.

In order to establish a connection between the objective structure and our design variables, we will

be using finite elements as was discussed. As such, we can write the linear static equilibrium equation

as

K u = p (2.8)

In finite elements, the global stiffness matrix is the sum of all the elemental stiffness matrix and so

K =

Ne∑
e=1

Ke (2.9)

with

Ke =

∫
V e

BT C B dV (2.10)

in which Ke is the element stiffness matrix, B is the strain-displacement matrix and C is the stiffness

tensor defined in (2.1).

2.1.4 Constraints

As mentioned before, a mass constrain can be imposed in the optimization, which needs to be defined.

This constraint can be formulated as

m < mc (2.11)

in which m is the sum of the weight of all elements in the structure and defined as:

m =

Ne∑
e=1

ρeVe (2.12)

with ρe and Ve being the density and the volume of the element, respectively. In (2.11) the parameter mc

is the allowed mass, which in this case is the maximum possible mass multiplied by the desired volume

fraction f :

mc = M × Vdesired
Vtotal

= M × f (2.13)

2.2 DMO

DMO stands for Discrete Material Optimization and was developed by Jan Stegmann for his PHD thesis

in 1994 [1]. It was created in order to improve upon the already established CFAO method as this

approach had trouble dealing with local minima. This method uses ideas from topology optimization
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where instead of having to choose between solid material and void, we are choosing between any

number of different materials or, in the case of this thesis, different orientations of the same material and

void material.

In order to be able to use gradient based optimizers when performing optimization with discrete

materials, DMO implements methods similar to those used in multiphase topology optimization, first

used by Sigmund and Torquato [35]. These methods, used at the finite element level, involve expressing

the element constitutive matrix, Ce, as a weighted sum of the material constitutive matrices (also known

as stiffness tensors) Ci (2.1) of the different discrete materials, ne:

Ce =

ne∑
i=1

wiCi = w1C1 + w2C2 + . . .+ wneCne , 0 ≤ wi ≤ 1 (2.14)

By allowing the weight factors wi to assume values between 0 and 1, the DMO method transforms

this discrete optimization problem into a problem with a continuum design domain. These weight factors

must remain between these values as it’s not physically possible to have negative material properties

and a material cannot contribute with more than his physical material properties.

It falls to the optimizer to select the optimal material for any given finite element in a matrix by pushing

the weight factor associated with its constitutive matrix Ci to 1 and all the others to 0. This way the initial

discretization of materials is achieved by having the weight factor functioning as ”on/off switches” for the

different materials, achieving convergence for a given element when only one single material is chosen.

To aid the optimizer in this endeavor, several interpolation schemes for the weight factors were devel-

oped by Stegmann. The design variables xi in these schemes could start with any value between 0 and

1 but the best practice is to start all with the same value so as to not favor any material. The following

schemes are the ones that were used for this work, as they are the ones that generate the best results

according to Stegmann. They each have positive and negative aspects that will also be discussed.

DMO scheme 4

This scheme is an improvement from previous ones presented by Stegmann [1] and has each design

variable xi affecting all the weight factors:

Ce =

ne∑
i=1

[
(xei )

p
ne∏

j=1;j 6=i
[1− (xej)

p]
]

︸ ︷︷ ︸
wi

Ci (2.15)

This is achieved by having the term (1 − (xej)
p) which, if there’s an increase in xi, prompting an

increase in the weight factor wi, causes a decrease in all other weight factors and vice-versa. The

exponent p is a penalization that is imposed in order to further help the optimizer to push the values of

wi towards 0/1. The manner in which this interpolation scheme behaves as p changes is demonstrated

in Fig. 2.3 using two materials. As can be seen, as p increases, the steeper the curve and the faster the

weight factor wi reaches 0 as xi decreases.

Although this scheme proves to be very successful in pushing the weight factors to the values of 0/1,
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Figure 2.3: Weight functions, w1 and w2, for two materials, computed with DMO scheme 4. Top and
bottom row represent w1 and w2, respectively.2

its main drawback is that generally the sum of the weight factors does not equal to one, i.e
∑
wi 6= 1.

If we were only optimizing for material orientation, this would not be very troublesome, as although

the initial stiffness would be too low, it would be slowly pushed to the physical stiffness as the solution

converged to the ”optimum” and in the end this sum would be indeed 1. If we are also evaluating for

a mass constraint, this is problematic due to the poor scaling of results, as initially the optimizer might

”assume” that the constraint are being satisfied but in reality, they are not. For this reason, the following

scheme was developed, normalizing the weight factors.

DMO scheme 5

As mentioned, DMO scheme 5 is a modification of DMO sheme 4 developed in order to ensure that the

sum of the weight factors always equals to one, i.e.
∑
wi = 1. This is accomplished by calculating ŵi

the same way as in (2.15) and then normalizing the weight factors by dividing for their sum.

Ce =

ne∑
i=1

ŵi∑ne

k=1 ŵk︸ ︷︷ ︸
wi

Ci ŵi = (xei )
p

ne∏
j=1;j 6=i

[1− (xej)
p] (2.16)

As can be seen in Fig. 2.4, which shows the behavior of this interpolation scheme for different

values of penalization p, as the value of the penalization increases, it increases the number of favorable

combinations of design variables, represented by the flat regions that can be seen when p = 15. As

such, although this scheme is faster to converge to a ”near optimum” value, it can not effectively drive

the design variables to 0/1, for the reasons explained above. However, because this scheme ensures

2Figure taken from J. Stegmann. Analysis and optimization of laminated composite shell structures. PhD thesis, Aalborg Uni-
versity, 2004. URL https://www.researchgate.net/publication/235219180_Analysis_and_Optimization_of_Laminated_

Composite_Shell_Structures
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that
∑
wi = 1, it becomes useful for dealing with the physical constraint that we will be imposing, i.e.

mass constraint, for if we were using DMO scheme 4 and the design variables for a certain element had

a very low value, its mass would also have a very low value, but if we use DMO scheme 5, now the

computed mass would be accurate.

Due to this fact, Stegmann [1] proposed to use DMO scheme 4 for stiffness interpolation combined

with DMO scheme 5 to compute the physical constraints. This type of combined interpolation was the

one used in this work.

Figure 2.4: Weight functions, w1 and w2, for two materials, computed with DMO scheme 5. Top and
bottom row represent w1 and w2, respectively.3

2.3 Optimization Problem

Having defined the objectives, design variables, objective function and constraints of the problem, the

discrete material optimization problem, subject to a mass constraint, can be stated as:

Objective : min
x
C(x) = pTu

Subject to : m ≤ mc

0 ≤ xmin ≤ x ≤ 1

K u = p


(2.17)

As seen in Section 2.1.4, m is the mass of the structure and mc is the allowable mass, defined as

the maximum possible mass for the structure multiplied by a constraint. (see (2.13))

3Figure taken from J. Stegmann. Analysis and optimization of laminated composite shell structures. PhD thesis, Aalborg Uni-
versity, 2004. URL https://www.researchgate.net/publication/235219180_Analysis_and_Optimization_of_Laminated_

Composite_Shell_Structures
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The mass of the structure, m, is calculated as the sum of the weighted mass of all candidate materi-

als, ne, over all elements, Ne, i.e.

m =

Ne∑
e=1

ne∑
i=1

(wiρiV )e (2.18)

where ρi is the physical material density of the candidate material i, written in SI units as [kg/m3].

When doing pure fiber angle optimization, since there’s no change of mass from the different fiber

orientations, the volume fraction f in the allowable mass should be set above 1, as to allow the optimizer

to only choose fiber for the optimization. When performing fiber angle optimization with topology opti-

mization, f should be set between 0 and 1, forcing the optimizer to choose a percentage of void material

for the final structure based on this constraint.

2.3.1 Sensitivity Analysis

In optimization, the optimizer needs to know how the objective function and the constraints will react to a

change in the design variables and if this change improves the performance of the design while obeying

the imposed constraint. To accomplish this, the gradients of these functions need to be calculated and

passed to the optimizer.

The compliance sensitivity can be calculated as:

dC
dxi

=
d

dxi
(pTu) =

∂pT

∂xi
u + pT

∂u

∂xi
= pT

∂u

∂xi
(2.19)

The first partial derivation equals to zero since the applied forces don’t depend on the design variables.

From (2.8), we can substitute in (2.19), which gives us:

dC
dxi

= uTK
∂u

∂xi
(2.20)

At this point we still don’t know how u changes with xi. If we now take (2.8) and differentiate in respect

to the design variables we get:

d

dxi
(K u)− d

dxi
p = 0⇒ ∂K

∂xi
u + K

∂u

∂xi
= 0⇒ K

∂u

∂xi
= −∂K

∂xi
u (2.21)

Substituting (2.21) into (2.20) and noting that the i’th design variable only affects the stiffness matrix on

the element level, the compliance sensitivity can finally be written as:

dC
dxi

= −(ue)T
∂Ke

∂xi
ue (2.22)

As for the mass constraint sensitivity, by rearranging the terms in (2.11) and differentiating in respect

to the design variables, the following equation is obtained:

d

dxi
m− d

dxi
mc (2.23)
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Substituting for (2.18) and taking into account that mc is a constant:

d

dxi

Ne∑
e=1

ne∑
j=1

(wjρjV )e (2.24)

By observing again that the i’th design variable influences the mass on the element level, the mass

constraint sensitivity can then be written as:

d

dxi

ne∑
j=1

(wjρjV )e (2.25)

Obtaining the derivative of the stiffness matrix in (2.22) consists in obtaining the derivative of the

element constitutive matrix Ce (2.14) as can be deduced from (2.10), since each element is dependent

on a set of independent variables xi. This derivative can be stated as:

∂Ke

∂xi
=

∫
V e

BT ∂Ce

∂xi
B dV (2.26)

with
∂Ce

∂xi
=
∂w1

∂xi
C1 +

∂w2

∂xi
C2 + . . .+

∂wne

∂xi
Cne (2.27)

with both the derivatives of Ce and (2.25) consisting in differentiating the polynomials of the employed

DMO schemes. As an example, the derivatives of the polynomials from DMO schemes 4 and 5 will now

be shown for 3 candidate materials.

DMO scheme 4 derivatives

Using 3 candidate materials, the DMO scheme 4 polynomials are written as:

wi = xpi (1− xpj )(1− xpk)

wj = xpj (1− xpi )(1− xpk)

wk = xpk(1− xpi )(1− xpj )

(2.28)

The derivation of these polynomials is very simple and will be written as an example only for the first two

weight factors, wi and wj , and the first design variable, xi, as the remaining derivations are very similar.

These can be written as:

dwi
dxi

= p xp−1
i (1− xpj )(1− xpk)

dwj
dxi

= −p xp−1
i xpj (1− xpk) (2.29)

As can be seen in (2.29), if w and x have matching indices, the derivative will be similar to the one on

the left, and if they have different indices, the derivative will be similar to the one on the right.
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DMO scheme 5 derivatives

As can be seen in (2.16), the weight factors in DMO scheme 5 are a modification of the ones used in

DMO scheme 4 (2.28) and will be written here in a compact format:

ŵi =
wi

wi + wj + wk
ŵj =

wj
wi + wj + wk

ŵk =
wk

wi + wj + wk
(2.30)

These functions are of the type
(
b
a

)
and their derivatives are written as:

( b
a

)′
=
b′a− ba′

a2
(2.31)

From here, writing the derivatives of the different weight factors is also very similar and so only the

derivative for the i’th design variable for w and x will be presented here:

dŵi
dxi

=
dwi

dxi
(wi + wj + wk)− wi d

dxi
(wi + wj + wk)

(wi + wj + wk)2
(2.32)

2.3.2 Material filter

When performing material distribution based topology optimization, two important issues that signif-

icantly influence the computational results and therefore should be avoided are the appearance of

checkerboard designs and mesh-dependency [36]. The checkerboard problem gets its name for the

pattern of solid and void elements organized in a checkerboard like design, which can be seen in Fig.

2.5, and is related to the bad numerical modeling of the linear Q4-displacement elements generally

used in these optimizations that attribute an artificially high stiffness to these types of layouts. Mesh-

dependence concerns the effect that different sized meshes generate different optimal solution (Fig.

2.6). These solutions tend to be increasingly complex and more detailed as the mesh size increases,

generating designs which make better use of the material without changing the volume of the structure,

leading to an increase in efficiency. However, this creates a problem for topology optimization as the

near infinite amount of solutions poses questions for what structure should be implemented.

To deal with these issues, several solutions were developed by various authors, with some being

implemented in the final code. The first consideration was using higher order elements to deal with the

checkerboard patterns, as the improved numerical calculations that these elements have avoid these.

Although these resolved the problems of checkerboarding, they don’t resolve the problem of mesh de-

pendency, and increase the computation time. In order to deal with both these issue the best method is

to use a filtering technique.

Filtering techniques are methods that work by establishing a dependence between design variables

of a specific element with those from neighboring elements, situated inside a fixed radius region. By

establishing this dependence, the ”new” design variables become weighted averages of those inside the

fixed region. This in turn mitigates the appearance of checkerboard patterns as these regions would

appear as grey regions, regions without a defined material which are penalized by the imposed penal-
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Figure 2.5: The checkerboard problem demonstrated on a long cantilever beam. a) Design problem, b)
solution for 400 element discretization and c) solution for 6400 element discretization.4

Figure 2.6: Dependence of the optimal topology on mesh refinement for the MBB-beam example. Solu-
tion for a discretization with a) 2700, b) 4800 and c) 17200 elements.4

ization in the DMO method. As for the mesh-dependence, this problem is also mitigated as the fixed

radius of the filter imposes a minimum length scale avoiding the micro-structures seen in Fig. 2.6.

Over the years, several filtering techniques were developed, with various degrees of success. In

this work, the density filter used in [37] and developed by Bruns and Tortorelli [38] and Bourdin [39]

4Figures taken from M. P. Bendsøe and O. Sigmund. Topology Optimization: theory, methods and applications, volume 95.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-642-07698-5. doi: 10.1007/978-3-662-05086-6
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is applied. In discrete material optimization, the density filter works by filtering each unique material

candidate across all elements inside the radius of the filtered candidate material. The filtered candidate

material variables are thus defined as

x̃ec =

∑
i∈Ne

we(xi)Vixic∑
i∈Ne

we(xi)Vi
; ∀(e, c) (2.33)

where Ne are the elements inside the filter radius, r, relative to the e’th element, Vi is the volume of

the i’th element, xic is the non-filtered design variable relative to the i’th element and unique candidate

material c and we(xi) is a standard linear decaying weight function defined as

we(xi) = 1− ‖xi − xe‖
r

(2.34)

In (2.34), the term ‖xi−xe‖ is the distance between the center points of the i’th and e’th elements based

on the Euclidean norm of the vectors containing the coordinates of these points.

After calculating the filtered design variables in (2.33), these are then substituted in the DMO schemes

used. As the DMO method relies on gradient based optimization, the influence of the filter used needs

to be ascertained for the calculation of the sensitivity analysis. By using the chain rule of differentiation,

the sensitivity of the generic function, f , with respect to the design variables, xec, can be obtained as

follows:
∂f

∂xec
=
∑
i∈Ne

∂f

∂x̃ic

∂x̃ic
∂xec

(2.35)

In (2.35), the function f , could either be the objective function, (2.7), or the constraint function, (2.11).

The first part of the chain rule is the sensitivity of the function, f , with respect to the filtered design

variables, x̃ic, which was already obtained for the objective function in (2.22) and for the constrain

function in (2.25). The final part is the sensitivity of the filtered variables, x̃ic, with respect to the ”real”

design variables, xec, which are updated by the optimizer:

∂x̃ic
∂xec

=
wi(xe)Ve∑
j∈Ni

wi(xj)Vj
(2.36)

Note that in (2.36), Ni are the elements inside the density filter radius relative to the i’th element.

2.3.3 Optimizer

When choosing the optimizer for structural topology optimization, several parameters should be consid-

ered. The optimizer should be able to deal with a great number of design variables with few constraints,

take a minimal amount of time per iteration and be able to converge in a reasonable number of iterations.

Although several optimization algorithms have been developed over the years and used in this type of

problems, such as Sequential Linear Programming methods (SLP) and Sequential Quadratic Program-

ming methods (SQP), one of the most popular optimizers for structural topology optimization has been

the Method of Moving Asymptotes (MMA) [40].

This optimizer has been implemented using the Matlab source code developed and provided by
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Professor Krister Svanberg from the Royal Institute of Technology in Stockholm, Sweden.

MMA belongs to a class of optimization methods known as conservative convex separable approxi-

mation (CCSA) methods. The method works by simplifying the original problem using simpler approxi-

mate subproblems which are separable and convex, allowing the use of dual methods or interior point

algorithms to solve the subproblem and calculate the next iteration point. The method considers the

optimization problem as being written in the form

minimize f0(x) + a0z +

m∑
i=1

(ciyi +
1

2
diy

2
i )

subject to fi(x)− aiz − yi ≤ 0, i = 1, . . . ,m

x ∈ X, y ≥ 0, z ≥ 0

(2.37)

In order to transform (2.37) into the ”standard” non-linear programming form (2.38)

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,
(2.38)

and used in (2.17), the recommended values of ai = 0, di = 0 were used. Since ci is recommended to

be ”a large number”, the value of ci = 1000 was used [40].

2.3.4 Optimization Convergence

To determine convergence of the optimization, an approach similar to the algorithm used by Sørensen

and Lund [37] was implemented. The program starts by calculating the relative change of design vari-

ables and verifying if this is below a certain established threshold. This relative change of the design

variables is calculated as

R =

√√√√∑Ne

i=1

∑ne

c=1(xn+1
ic − xnic)2∑Ne

i=1

∑ne

c=1(xic − xic)2
(2.39)

where n is the number of the current iteration, xic and xic are the upper and lower bounds of the i’th

element and c’th discrete material, i.e., 1 and 0, respectively. If R is below the established threshold,

which could be for example R = 0.01, meaning that if the relative change of the design variables is below

1%, or if the value of the objective function didn’t change significantly, the optimization is considered to

have converged numerically. This solution could, however, still be unacceptable, or still have room for

improvement.

To confirm that the optimization achieved a satisfactory solution, i.e., a single material was selected

in all the elements, a DMO convergence measure was implemented from [1]. First, the convergence

for each element is measured, by comparing the Euclidean norm of the weight factors for each weight

factor, wi:

wi ≥ ε
√
w2

1 + w2
2 + · · ·+ w2

ne (2.40)

where ε is a tolerance level, with typical values ranging between 95% - 99.5%. If inequality (2.40) is
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satisfied, the element is flagged as converged. After analyzing the convergence of all elements, the DMO

convergence (also called as the solution discreteness), hε, can be calculated by dividing the number of

converged elements, Ne
c , by the number of total elements, Ne,

hε =
Ne
c

Ne
(2.41)

with full convergence considered to have been achieved when hε = 1.

If the DMO convergence is above an imposed minimum, the solution is considered satisfactory.

However, if the non-discreteness of the solution is deemed unacceptable and the penalization power p

is below pmax, the optimization is reinitialized with an increased penalization.
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Chapter 3

Computational Model

This chapter is dedicated to the implementation of the optimization algorithm in a finite element pro-

gram. The theory and implementation of the finite element method is presented together with the finite

elements used in the program. Later in the chapter, some case studies are introduced and analyzed:

the MBB problem and a 3 point tensile problem.

3.1 Finite Element Analysis

In the last chapter, the objective function was defined as the minimization of the compliance of the

structure, which was defined for the linear case in (2.7) but is stated here again for reference:

C = uTp = 2U (3.1)

where p are the applied forces, u are the displacements at the point of load application and U is the

total strain energy. In order to calculate the displacement of a structure with multiple degrees of freedom

subject to a static load, one of the most used methods is the finite element method.

The finite element analysis is a powerful numerical method used to simulate and solve many real-

world problems such as heat conduction, structural behavior and fluid mechanics, by dividing a given

domain into several, smaller subdomains, which then have their governing differential equations solved

using a collection of simple polynomials.

The finite element method begins by dividing the geometrically complex domain of the problem into

a series of geometrically simple subdomains called finite elements. This is designated as mesh genera-

tion. These finite elements are defined by points called nodes and a mesh can be composed by different

types of elements, with the same number of nodes or not. Then, over each finite element, ”algebraic

equations of among the quantities of interest are developed using the governing equations of the prob-

lem” [34, p. 13]. After developing these equations for all the finite elements, these are then assembled

altogether to obtain the algebraic equations that characterize the total problem. Finally, after the appli-

cation of the boundary conditions, such as loads, displacements, etc, the solution of the equations can
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be found, which should then be post-processed for the quantities of interest. More information about the

finite element method can be found in [34].

In this work only linear elastic problems were considered, which is common in various topology

optimization routines. In this case, the stress-strain relation is considered to be linear, as seen in (2.1),

and the displacements are assumed to be small. The linear relation between stress and strain results in

a linear behavior between the applied forces and the resulting displacement of the structure. The solution

of the finite element method in a problem of linear elasticity is the approximate nodal displacements of a

structure given a set of applied boundary conditions, i.e, fixed displacements and applied loads.

In the case of plane stress in the x-y plane, the stress components are assumed to only have con-

tributions in the xx, yy and xy components, while all the -z components are assumed to have value of

zero. This means that the only displacements that will be influenced are the ones in the horizontal (ux)

and vertical (uy) directions.

The approximate solution of these displacements can be determined as a linear combination of nodal

displacements uix and uiy and approximation functions known as shape functions ψei (x, y):

ux ≈
n∑
i=1

uixψ
e
i (x, y), uy ≈

n∑
i=1

uiyψ
e
i (x, y) (3.2)

where i corresponds to the i’th node of element e and n is the total number of nodes of said element.

These shape functions are expressed as polynomial functions with certain properties. The first prop-

erty in known as interpolation property in which the value of ψei is unity at the i’th node and zero at every

other node. The other property is known as the partition of unity where the sum of the shape functions

of a given element is unity. These properties are summarized in equation (3.3) [34]

ψei (x
e
j , y

e
j ) =

0 if i 6= j

1 if i = j∑n
i=1 ψ

e
i (x, y) = 1

(3.3)

The development of the finite element model is provided in [34]. For the linear static equilibrium

problem, this is defined as:

Keue = pe (3.4)

where Ke is the element stiffness matrix, already defined in (2.10), but stated here again for reference:

Ke =

∫
V e

BTCB dV (3.5)

In chapter 2, the constitutive matrix C was introduced along with the transformation matrix T(θ) for

a generic tridimensional case. However, for plane stress in the x-y plane, as was already mentioned,

the -z stress components are assumed to have value zero which allows us to simplify both matrices by

eliminating the terms, lines and columns associated with these components. In the case of orthotropic
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materials, the constitutive matrix C in (2.3) is written as:

C =


E1

1−ν12ν21
ν12E2

1−ν12ν21 0

ν21E1

1−ν12ν21
E2

1−ν12ν21 0

0 0 G12

 (3.6)

(Note that for isotropic materials the constitutive matrix C in (3.6) has E1 = E2 and ν12 = ν21)

The transformation matrix T(θ) in (2.6) is written as:

T(θ) =


cos2 θ sin2 θ −2 cos θ sin θ

sin2 θ cos2 θ 2 cos θ sin θ

cos θ sin θ − cos θ sin θ cos2 θ − sin2 θ

 (3.7)

By combining matrices (3.6) and (3.7) similarly as in Eq. (2.5), we obtain the transformed constitutive

matrix C̄:

C̄ = T(θ) C T(θ)T (3.8)

which is then substituted in (2.14) for each orthotropic material candidate.

The strain-displacement matrix B in Eq. (3.5) is calculated from the partial derivatives of the shape

functions ψ as:

B = DTψ =


∂ψ1

∂x 0 ∂ψ2

∂x 0 . . . ∂ψn

∂x 0

0 ∂ψ1

∂y 0 ∂ψ2

∂y . . . 0 ∂ψn

∂y

∂ψ1

∂y
∂ψ1

∂x
∂ψ2

∂y
∂ψ2

∂x . . . ∂ψn

∂y
∂ψn

∂x


D =

 ∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x


(3.9)

Finally, the element stiffness matrix Ke in (3.5) can be expressed for a bidimensional element com-

posed of an orthotropic material as:

Ke =

∫
Ae

hBT C̄B dA (3.10)

where h is the thickness of the structure in the z direction and Ae is the area of the element. All that is

left to do is sum over all elements the equations in (3.4), making sure to correspond the local nodes of

each element with the corresponding global nodes of the mesh and solve the linear static equilibrium

equations

Ku = p (3.11)

thus obtaining the vector of global displacements u.

However, when using irregular elements in a mesh such as quadrilateral elements, its easier to

evaluate the integral in (3.10) over a rectangular geometry and as such, a transformation of the finite

element equations from a quadrilateral to a rectangular element is performed. This normally results

in complicated algebraic integral expressions hard to calculate analytically. Therefore, these are often

evaluated using numerical integration methods such as the Gauss quadrature method [33, 34].
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In the Gauss quadrature method, the integral of element Ωe with coordinate system (x, y) must be

expressed over region Ω̂ with coordinate system (ξ, η) to be such that −1 ≤ (ξ, η) ≤ 1. This transfor-

mation from element Ωe to master element Ω̂ (or vice-versa) is performed by a transformation of the

form

x =

m∑
i=1

xei ψ̂
e
i (ξ, η), y =

m∑
i=1

yei ψ̂
e
i (ξ, η) (3.12)

where ψ̂ei are the shape functions of master element Ω̂.

This transformation from global (x, y) to local (ξ, η) coordinates will involve for the strain-displacement

matrix B in (3.9) to be expressed in this new coordinate system by means of Eq. (3.12). By the chain

rule of partial differentiation, we have [34]

∂ψei
∂ξ

=
∂ψei
∂x

∂x

∂ξ
+
∂ψei
∂y

∂y

∂ξ

∂ψei
∂η

=
∂ψei
∂x

∂x

∂η
+
∂ψei
∂y

∂y

∂η

(3.13)

which in matrix notation becomes
∂ψei
∂ξ

∂ψei
∂η

 =


∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η



∂ψei
∂x

∂ψei
∂y

 ≡ J


∂ψei
∂x

∂ψei
∂y

 (3.14)

where J is known as the Jacobian matrix of the transformation in (3.12).

In (3.14), the relation between the derivatives of ψei with respect to the global and local coordinates

is established. From (3.12) we notice that what is required is the inverse relation to then substitute in the

B matrix (3.9). Therefore, Eq. (3.14) must be inverted:


∂ψei
∂x

∂ψei
∂y

 = J−1


∂ψei
∂ξ

∂ψei
∂η

 (3.15)

The development of the Jacobian matrix J in (3.14) can be written by direct application of (3.12),

which gives us:

J =

∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

 =

∑m
i=1 xi

∂ψ̂e
i

∂ξ

∑m
i=1 yi

∂ψ̂e
i

∂ξ∑m
i=1 xi

∂ψ̂e
i

∂η

∑m
i=1 yi

∂ψ̂e
i

∂η



=

∂ψ̂e
1

∂ξ
∂ψ̂e

2

∂ξ . . .
∂ψ̂e

m

∂ξ

∂ψ̂e
1

∂η
∂ψ̂e

2

∂η . . .
∂ψ̂e

m

∂η



x1 y1

x2 y2

...
...

xm ym


(3.16)

As noted before, ψ̂ei are the interpolation functions of the master element Ω̂. These are generally different

from the interpolation functions of the original element Ωe. However, if the two elements have equal
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number of nodes resulting in an equal degree of approximation, then ψ̂ei and ψei are the same, when

written in the local coordinate system (ξ, η) and the elements are called isoparametric elements.

In order to be able to invert the Jacobian matrix J in (3.15), this needs to be nonsingular. For a matrix

to be considered nonsingular, a necessary and sufficient condition is that its determinant needs to be

nonzero. For the Jacobian matrix J, this determinant is called the Jacobian J and can be stated as:

J ≡ det[J ] =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
> 0 (3.17)

By writing the element area dA = dx dy in local coordinates (ξ, η) as

dA ≡ dx dy ≡ J dξ dη (3.18)

and substituting (3.15) in (3.9) and (3.18) in (3.10), we can now write the elemental stiffness matrix, Ke,

in local coordinates (ξ, η) as

Ke =

∫ 1

−1

∫ 1

−1

hB(ξ, η)T C̄B(ξ, η) J dξ dη ≡
∫

Ω̂

F (ξ, η)dξdη (3.19)

As stated earlier, the calculation of the integral in (3.19) results in complicated algebraic expressions.

By using numerical quadrature formulas such as the Gauss quadrature, the resulting expression is much

simpler to deal with. As such, we obtain [34]:

∫
Ω̂

F (ξ, η)dξdη ≈
M∑
I=1

N∑
J=1

F (ξI , ηJ)WIWJ (3.20)

where M and N correspond to the number of quadrature points in the ξ and η directions, (ξI , ηJ) corre-

spond to the Gauss points and WI and WJ are the corresponding Gauss weights. For a polynomial of

degree p to be integrated exactly, the number of Gauss points used most be greater than 1
2 (p+ 1).

3.1.1 Integration of linear master finite elements

These are the simplest and least computationally expensive finite elements, being generally used in

topology optimization. The use of both quadrilateral and triangular elements can accurately represent

the geometry of an irregular domain, without as much element distortion as using solely quadrilateral

elements with the same size.

3.1.1.1 Linear Master Rectangular Element

The polynomial associated with this element is a 2nd degree polynomial and is given by

u(x, y) = a1 + a2x+ a3y + a4xy (3.21)

By applying the interpolation functions properties in (3.3) to the nodes associated with the linear rectan-

gular element in Fig. 3.1(a), we can develop its interpolation functions, as seen in Fig. 3.1(b), written in
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the local coordinate system (ξ, η).

(a)

ψ̂1 =
1

4
(1− ξ)(1− η)

ψ̂2 =
1

4
(1 + ξ)(1− η)

ψ̂3 =
1

4
(1 + ξ)(1 + η)

ψ̂4 =
1

4
(1− ξ)(1 + η)

(b)

Figure 3.1: Node numbering and shape functions for the linear rectangular element

The integration points and respective weight values used to evaluate the function in (3.20) for the

rectangular finite element for multiple degrees of accuracy are summarized in Table 3.1, adapted from

[34].

Table 3.1: Weights and points for the Gauss quadrature in one coordinate direction

N or M Points ξI or ηJ Weights WI or WJ

1 0 2

2 −
√

1

3
,
√

1

3
1, 1

3 −
√

3

5
, 0,

√
3

5

5

9
,

8

9
,

5

9

The linear rectangular finite element has a maximum polynomial degree of p = 2. The number of

Gauss points necessary to accurately evaluate the integrals most be greater than N = 1
2 (p + 1) = 3

2 ,

which means that a minimum of two Gauss points will be required for each of the coordinate directions

(ξ, η), bringing the total of Gauss points to four. A representation of the Gauss points location for the

constant, linear and quadratic quadrilateral finite element can be seen in Fig. 3.2.

(a) Constant element (b) Linear element (c) Quadratic element

Figure 3.2: Location of Gauss points for the constant, linear and quadratic quadrilateral elements 5

5Figures taken from J. N. Reddy. An introduction to the finite element method. McGraw-Hill, 3rd edition, 2006. ISBN 0072466855
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3.1.1.2 Linear Master Triangular Element

The polynomial associated with this element is a 1st degree polynomial, given by

u(x, y) = a1 + a2x+ a3y (3.22)

By applying the interpolation functions properties in (3.3) to the nodes associated with the linear trian-

gular element in Fig. 3.3(a), we can develop its interpolation functions, as seen in Fig. 3.3(b), written in

the local coordinate system (ξ, η).

(a)

ψ̂1 = L1 = 1− ξ − η
ψ̂2 = L2 = ξ

ψ̂3 = L3 = η

(b)

Figure 3.3: Node numbering and shape functions for the linear triangular element

For the linear triangular element, these interpolation functions ψ̂i are equivalent to the area coor-

dinates Li(i = 1, 2, 3) which are three nondimensionalized coordinates that ”relate respectively to the

sides directly opposite nodes 1, 2 and 3 such that (see Fig. 3.4)

Li =
Ai
A

A =

3∑
i=1

Ai (3.23)

Figure 3.4: Definition of the natural coordinates of a triangular element 6

where Ai is the area of the triangle formed by nodes j and k and an arbitrary point P in the element,

and A is the total area of the element” [34, p. 528]. The interpolation functions for higher-order triangular

6Figure taken from J. N. Reddy. An introduction to the finite element method. McGraw-Hill, 3rd edition, 2006. ISBN 0072466855
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elements can be easily constructed with the use of these area coordinates Li.

From Eq. (3.23) we can write that
∑
Li = 1 and so we can treat L1 and L2 as linearly independent

coordinates, since L3 = 1 − L1 − L2. After transformation from the local coordinates (ξ, η) to the area

coordinates (L1, L2), we can write Eq. (3.15) as

∂ψi
∂x

=
∂ψi
∂L1

∂L1

∂x
+
∂ψi
∂L2

∂L2

∂x

∂ψi
∂y

=
∂ψi
∂L1

∂L1

∂y
+
∂ψi
∂L2

∂L2

∂y

(3.24)

or 
∂ψi
∂x

∂ψi
∂y

 = J−1


∂ψi
∂L1

∂ψi
∂L2

 , J =


∂x

∂L1

∂y

∂L1

∂x

∂L2

∂y

∂L2

 (3.25)

which leads us to a similar expression as Eq. (3.20) with the form

∫
Ω̂

G(ξ, η)dξdη =

∫
Ω̂

Ĝ(L1, L2, L3)dL1d2 ≈
1

2

N∑
i=1

Ĝ(SI)WI (3.26)

where WI and SI are the weight and integration points of the quadrature rule which are summarized in

Table 3.2 for one- and three-point quadrature rules over triangular elements. Fig. 3.5 shows the location

of the integration points.

Table 3.2: Quadrature points and weights for triangular elements

Number of
integration
points

Integration points and weights
Nodes

L1 L2 L3 W

1 1
3

1
3

1
3 1 a

3

1
2 0 1

2
1
3 a

1
2

1
2 0 1

3 b
0 1

2
1
2

1
3 c

(a) (b)

Figure 3.5: Quadrature points location for triangular elements with a) 1 integration point, b) 3 integration
points 7
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3.2 Implementation of the Discrete Material Optimization Program

In order to be able to implement in a flexible way the DMO method discussed in chapter 2 into a finite

element program, a custom MATLAB program was developed. The algorithm starts by reading a .dat file

generated in the commercial finite element software Siemens NX. This file contains the pre-processed

information such as nodes, elements, elemental connectivity matrix and boundary conditions of the

design problem. The program then proceeds to initiate the optimization routine by computing the finite

element analysis and sensitivity analysis whose results are used to calculate the compliance and design

gradients. These are then used by the MMA algorithm to generate new design variables with each

iteration of the optimization until an optimal design is attained, at which point, the program will then

display the final results along with the optimal structure. A schematic of the general structure of the

computer algorithm can be seen in Fig. 3.6:

Figure 3.6: Flowchart of the developed Matlab algorithm

7Figures taken from J. N. Reddy. An introduction to the finite element method. McGraw-Hill, 3rd edition, 2006. ISBN 0072466855
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3.2.1 Computational Results

Next, a series of material distribution and fiber angle optimizations will be presented using the Discrete

Material Optimization (DMO) method. These optimizations will focus on the so-called Messerschimitt-

Bölkow-Blohm (MBB) beam, first introduced by Olhoff et al. [41] and in a three-point tensile example.

The goal of these optimizations will be to understand the influence of certain parameters in the final

structure. In the first example, material properties and mesh-dependence will be studied and in the latter,

the study will be focused on the volume fraction and its effects in the final compliance. In the optimization

results, the presence of fiber material is represented by a darker element with a dash symbolizing the

material orientation, while the solid, lighter elements represent void material. Black and white elements

represent converged elements, while an intermediate, gray color represents unconverged elements. All

the computations were performed on a laptop with an Intel i7-7700HQ CPU and 16 GB of RAM.

3.2.1.1 MBB Beam Optimization

The MBB beam has become a standard topology optimization problem, used as a benchmark for various

optimizations methods. A modified model of the MBB beam can be seen in Fig. 3.7. The dimensions

of the beam are 180 × 40 [mm] with a total thickness of 1 mm. The beam is supported on the bot-

tom edge at two symmetrically placed points, 10 mm inwards from the lateral edges, fixing the vertical

displacement at those points. A single 1 Newton downward load is applied at the top center of the

structure.

Figure 3.7: Loading conditions and geometry of the MBB beam

Young’s Modulus ratio’s influence in the MBB Beam optimization

To understand the influence of the Young’s Modulus ratio on the results of the MBB beam optimization

problem, when using the DMO method, a series of optimizations were run using different ratios by alter-

ing the value of the Young’s Modulus for direction 2, i.e, E2. A similar study was performed by Hoglund

[17] using the CFAO method, for which there were no observable differences in the final structures using

different ratios.

Since both the structure and boundary conditions share one axis of symmetry, the optimizations were

performed on one half of the structure, as seen in Fig. 3.8, using the appropriate symmetry conditions.

This allows for the use of smaller finite elements without increasing the computation time, leading to a
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better resolution of the complete structure.

Figure 3.8: Loading and boundary conditions for one half of the MBB beam

The beam was modeled using a regular mesh of 90 by 40 rectangular elements, resulting in a total

of 3600 elements. The orthotropic material properties used were E1 = 10 MPa, G12 = 0.4 MPa and

ν12 = 0.25 with 8 possible orientations [90◦ ,±67.5◦ ,±45◦ ,±22.5◦ , 0◦ ], while the void material properties

are E = 0.001 MPa and ν = 0.4. The volume fraction was set at f = 0.5 and a filter radius of r = 1.4

mm was used to prevent checkerboarding and define the minimal frame thickness of the structure. The

starting penalization was set as p = 3, increasing by 4 up to a maximum of p = 23, if the convergence

requirements of a minimum of 95% converged elements weren’t met. These requirements were tested

when the relative change of the design values was below R = 0.005 = 0.5% or the change in compliance

was below 0.001%. In table 3.3 the results of the optimizations have been summarized, where the

compliance and volume fraction are computed for a totally converged structure, by setting the highest

design variable for each element to 1 and the rest to 0.

Table 3.3: MBB test results by varying Young’s Modulus ratio

Young’s Modulus
[E1 : E2] Ratio

Number
of

iterations

Total
Time

[s]

Final
Compliance
[N.m] ×10−3

Volume
Fraction

Convergence
[%]

10 MPa : 10 MPa 1:1 111 750 7.255 0.487 0.958

10 MPa : 5 MPa 2:1 108 3187 7.959 0.485 0.946

10 MPa : 2.5 MPa 4:1 120 2645 7.983 0.486 0.945

10 MPa : 1.667 MPa 6:1 132 3005 9.183 0.481 0.934

10 MPa : 1.25 MPa 8:1 142 3292 9.763 0.481 0.936

10 MPa : 1 MPa 10:1 123 3856 10.131 0.478 0.923

In the 1:1 ratio optimization, the material was altered to have isotropic properties with G12 = 4 MPa

and the material orientation was set to 0◦ to avoid problems with unconverged fiber elements, since
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there wouldn’t be a preferred material orientation. For this reason, the resulting isotropic structure is

represented only as black and white, as is common in topology optimization results. This explains the

discrepancy in the total optimization time, since the 1:1 ratio optimization has a total of 7200 design

variables and the rest of the optimizations have a total of 32400 design variables.

The results indicate that, as the orthotropy ratio increases, the volume fraction and the convergence

of the solution decreases, revealing a higher difficulty for the optimizer to choose between the materials

and orientations. The opposite can be observed for the compliance, which increases with the orthotropy

ratio. For the most part, an increase in orthotropy ratio leads to an increase in the number of iterations

needed for the optimization to converge. The same could be said about the total computing time, but

conclusions can’t be drawn since the processor wasn’t always completely dedicated to the optimizations.

The structures from the resulting optimizations can be seen in Fig. 3.9. The isotropic 1:1 ratio

structure is similar to results obtained using normal topology optimization, acquiring a truss-like design.

For the rest of the structures, the optimal material distribution remains approximately the same, with

slight variations, independently of the Young’s modulus ratio, which agrees with the results obtained by

Hoglund [17]. This explains the increase in compliance values for higher degrees of orthotropy, since the

decrease of Young’s modulus E2 results in a weaker material, leading to a higher displacement of the

structure, for the same force. By observing the insignificant increase in compliance when comparing the

4:1 ratio with the 2:1 ratio structure as opposed to the rest and then comparing the structures, it seems

that the extra reinforcement created in the 4:1 optimization creates a stiffer structure while maintaining

the mass. This reinforcement can be seen to be developed for increased orthotropic ratios although with

little success. In all the orthotropic optimizations, the material orientation is observed to be aligned along

the principal stress directions of the structure’s frame.

Mesh-dependence study using the DMO method with a density filter

To investigate the influence different mesh sizes have on optimizations performed with the DMO

method coupled with a density filter, a study of the MBB beam problem was conducted using the same

material properties for different sized meshes.

For this test, the orthotropic material properties were E1 = 10 MPa, E2 = 1.667 MPa, G12 = 0.4

MPa and ν12 = 0.25 with possible orientations [90◦ ,±67.5◦ ,±45◦ ,±22.5◦ , 0◦ ], while the void material

remained the same with E = 0.001 MPa and ν = 0.4. The volume fraction and filter radius were,

respectively, f = 0.5 and r = 1.4 mm. The same optimization parameters of the previous test were

used. Results for the varying mesh sizes can be seen in table 3.4 with the resulting material distribution

and orientations shown in Fig. 3.10.

The mesh-independent density filter was successful in preventing mesh-dependency for the different

mesh sizes as the resulting structures have similar material distribution. The results for the mesh of 45

by 20 elements show a slightly different material distribution, with extra frames appearing in the middle,

and the appearance of the checkerboard effect, since the element size is approximately the same as the

filter diameter. The reinforcement noticed in the previous study is also present in two of the optimization
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(a) Results for a 1:1 ratio of Young’s modulus

(b) Results for a 2:1 ratio of Young’s modulus

(c) Results for a 4:1 ratio of Young’s modulus

(d) Results for a 6:1 ratio of Young’s modulus

(e) Results for a 8:1 ratio of Young’s modulus

(f) Results for a 10:1 ratio of Young’s modulus

Figure 3.9: Results for the MBB beam optimization problem using the DMO method for different ratios
of Young’s modulus
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Table 3.4: MBB test results for different finite element mesh sizes

Mesh sizes
Number

of
iterations

Total
Time

[s]

Final
Compliance
[N.m] ×10−3

Volume
Fraction

Convergence
[%]

45 by 20 84 255 9.247 0.471 0.956

72 by 32 220 3566 10.262 0.469 0.938

90 by 40 132 3005 9.183 0.481 0.934

144 by 64 102 17855 8.570 0.488 0.938

results, although the presence of unconverged elements in the area indicate the optimizer’s difficulty to

decide if the reinforcement must be there or not.

As the mesh size increases, the number of necessary iterations tend to increase as well as the total

computation time which greatly increases. This behavior of the computation time can be explained by

the increase of number of design variables with more refined meshes.

Shear modulus influence in the MBB Beam optimization

For this study, the effect of the shear modulus G12 in the material distribution and orientation in the

MBB beam optimization is investigated. The material parameters were maintained throughout the var-

ious optimizations with exception of the shear modulus. The materials used were an orthotropic material

withE1 = 10 MPa, E2 = 2.5 MPa and ν12 = 0.25 with possible orientations [90◦ ,±67.5◦ ,±45◦ ,±22.5◦ , 0◦ ],

as well as an isotropic void material with E = 0.001 MPa and ν = 0.4. The same optimization parameters

of the previous studies were used. A mesh with 90 by 40 elements was used for the computations. Table

3.5 summarizes the results of this study.

Contrary to the previous study for the Young’s modulus, there’s no indication of a decrease in com-

pliance as the shear modulus increases. In Fig. 3.11 the material distribution and orientation for the

different values of G12 are represented. As the value of G12 increases, the material distribution becomes

increasingly similar to that of the isotropic structure seen in Fig. 3.9(a) until G12 = 2.857 MPa. For values

of G12 > 2.857 MPa, the orientation of the material begins to not correspond with those of the principal

stress directions in the structure’s members. The explanation for this behavior can be explained by the

values of β in table 3.5. The parameter β relates the various material properties and is used to measure

the shear stiffness of the material [36, 42]. It can be stated as:

β =
E1

1− ν12ν21
+

E2

1− ν12ν21
− 2

ν12E2

1− ν12ν21
− 4G12 (3.27)

Most materials are characterized as being weak in shear with β ≥ 0, representing low shear stiffness,

with isotropic materials having β = 0. Materials with high shear stiffness, i.e, β < 0 can be designed with
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(a) Finite element mesh with 45 by 20 elements

(b) Finite element mesh with 72 by 32 elements

(c) Finite element mesh with 90 by 40 elements

(d) Finite element mesh with 144 by 64 elements

Figure 3.10: Results for the MBB beam optimization problem using the DMO method for different mesh
sizes

the use of laminates. This can explain the similar material distribution of Fig. 3.11(f) with G12 = 2.857

MPa with the one in Fig. 3.9(a) for an isotropic material, as β = 0 for these materials.

Although these results seem promising, the guarantee of global minimum cannot be assured even

when using the DMO method. This can be proven by taking the material with G12 = 4 MPa and sub-

stituting it in the structure seen in Fig. 3.11(a), with G12 = 0.4 MPa. This results in a compliance of

7.466×10−3 N.m, better than the original compliance of 7.805×10−3 N.m, for the same volume fraction

and the material now oriented with the principal stress directions.

In an attempt to reach an even better optimal solution with material G12 = 4 MPa, an optimization

was performed using the final design values of the optimization result for G12 = 0.4 MPa as initial design

values, using the same optimization parameters as before. The results of this optimization can be seen

in table 3.6 and the resulting material distribution and orientation is shown in Fig. 3.12.
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Table 3.5: MBB test results by varying Shear Modulus G12 value

Shear Modulus
[G12]

Number of
iterations

Total Time
[s]

Final
Compliance

[N.m]
×10−3

Volume
Fraction

Convergence
[%] β

0.4 MPa 120 2645 7.983 0.486 0.945 9.829

0.7 MPa 119 2455 8.240 0.485 0.957 8.627

1 MPa 110 2617 7.891 0.483 0.953 7.429

1.5 MPa 83 1790 8.386 0.473 0.959 5.429

2.5 MPa 80 1865 8.042 0.475 0.967 1.429

2.857 MPa 87 2395 8.087 0.476 0.963 0

3 MPa 116 2791 8.352 0.479 0.951 -0.571

3.5 MPa 102 3036 9.063 0.469 0.957 -2.571

4 MPa 111 3278 7.805 0.484 0.959 -4.571

Table 3.6: MBB beam optimization results for G12 = 4 MPa using G12 = 0.4 MPa optimization’s final
design variables

Number
of

iterations

Total
Time

[s]

Final
Compliance
[N.m] ×10−3

Volume
Fraction

Convergence
[%]

69 1990 7.284 0.489 0.959

This optimization results in a structure with a lower compliance than the previous structures for the

material with G12 = 4 MPa. In order to understand if this new structure results in a better solution for

the material with G12 = 0.4 MPa, the compliance for this structure was calculated using this material.

The resulting compliance was 9.411×10−3 N.m, higher than the compliance value of 7.983×10−3 N.m

for the original optimization in Fig. 3.11(a).

3.2.1.2 Three-point tensile optimization

The objective for this optimization is to compare material distribution and orientation as well as stiffness

of structures with different mass values, when subjected to the same load conditions. The geometry of

the initial design domain can be seen in Fig. 3.13. It consists of a rectangle with dimensions 100 × 85

[mm] with a thickness of 1 mm. It has three centered Ø5 mm holes, two aligned at the bottom situated

80 mm apart and one at the top, 65 mm vertically from the others. A 1 Newton bearing force is applied

upwards in the top hole while the remaining holes remain fixed in the horizontal and vertical directions.
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(a) Results for G12 = 0.4 MPa

(b) Results for G12 = 0.7 MPa (c) Results for G12 = 1 MPa

(d) Results for G12 = 1.5 MPa (e) Results for G12 = 2.5 MPa

(f) Results for G12 = 2.857 MPa (g) Results for G12 = 3 MPa

(h) Results for G12 = 3.5 MPa (i) Results for G12 = 4 MPa

Figure 3.11: Results for the MBB beam optimization problem using the DMO method for different values
of shear modulus G12

Figure 3.12: MBB beam optimization material distribution and orientation results for G12 = 4 MPa using
G12 = 0.4 MPa optimization’s final design variables

The design domain was meshed using a symmetric matrix with 2202 quadrilateral elements and 94

triangular elements, with a maximum size of 2 mm. The resulting mesh and boundary conditions are

shown in Fig. 3.14, with the red arrows representing the applied loads and the blue lines are the fixed

nodal displacements.

The candidate materials used are an orthotropic material with E1 = 10 MPa, E2 = 2.5 MPa, G12 = 0.4

MPa and ν12 = 0.25 oriented at [90◦ ,±67.5◦ ,±45◦ ,±22.5◦ , 0◦ ], as well as an isotropic void material with

E = 0.001 MPa and ν = 0.4. The optimization parameters used as well as the filter radius of r = 1.4 mm

remain the same as previous studies. The optimization results are shown in Table 3.7.
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Figure 3.13: Loading conditions and geometry of the three-point tensile problem

Figure 3.14: Finite element mesh and boundary conditions for the three-point tensile problem

Table 3.7: Three-point tensile optimization results for different volume fractions

f
Number of
iterations

Total Time
[s]

Final
Compliance
[N.m] ×10−3

Final
Volume
Fraction

Convergence
[%]

Normalized
Compliance
[N.m] ×10−3

0.4 56 598 2.368 0.395 0.9874 0.936

0.6 41 477 2.009 0.592 0.9852 1.191

0.8 27 334 1.946 0.794 0.9865 1.547

1 29 331 1.957 0.999 0.9895 1.957

The results indicate that as the volume fraction increases, the compliance of the structure decreases,

as expected. However when comparing the compliance values between f = 0.8 and f = 1, this is not

the case. By observing Fig. 3.15, which shows the final material distribution and orientation, the logical

conclusion for this result is that the areas with no material in f = 0.8 are not subject to significant stress

values in the f = 1 structure and small variations in the fiber orientation for both structures lead to

a smaller compliance value for the f = 0.8 structure, when comparing against the f = 1 structure.
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By multiplying the compliance with the volume fraction of the structure and dividing by the weightiest

structure’s volume fraction, the normalized compliance can be determined. The results in this case

indicate that by decreasing the volume fraction, the normalized compliance decreases as well, resulting

in a better stiffness/weight ratio, as expected.

Although the generated finite element mesh is symmetric, leading to the expectation of also symmet-

ric results, examination of the optimization outcome show the contrary, with a few differences in each

side of the structures. The problem was found to be caused by rounding differences performed by Mat-

lab when calculating the K matrix for opposite elements, which when factoring multiple iterations after

lead to major differences in values. In this case, this issue is not very significant but for other cases with

symmetric structures and boundary conditions, it’s better to apply symmetry conditions.

(a) Results for f = 0.4 (b) Results for f = 0.6

(c) Results for f = 0.8 (d) Results for f = 1

Figure 3.15: Results for the three-point tensile optimization using different volume fractions
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Chapter 4

Experimental Testing and Results

In this chapter, experimental tests in structures printed using continuous fiber fabrication technology are

performed, in order to validate the computational results for optimal material distribution and orientation

using the DMO method. The structures are printed with a Markforged Mark Two printer using a sandwich

panel design with the outer layers reinforced with fiberglass and a triangular nylon core. The material

properties of the sandwich panel are obtained with the use of an Instron tension-compression test ma-

chine to allow a comparison between the computational and experimental results. The goal of the MBB

beam experimental testing is to compare the stiffness of similarly weighted topology optimized structures

with topology and material orientation optimized structures. In the 3-point tensile experimental testing,

the goal is to compare quasi-isotropic structures against structures with optimized material orientation

for different volume fractions. These tests serve to understand the advantages and disadvantages of

topology optimization vs topology and material orientation optimization using CFF and also advantages

and disadvantages of printed laminated, quasi-isotropic structures vs printed structures with optimized

material orientation in the context of CFF.

4.1 Sandwich panel properties

To be able to establish a comparison between the computational and experimental results, the mechani-

cal properties of the sandwich panels must be obtained. These include the Young’s modulus E1 and E2,

the shear modulus G12 and the Poisson’s ratios ν12 and ν21 which are obtained using a unidirectional

layered sandwich panel. Using a quasi-isotropic layup, the Young’s modulus E and Poisson’s ratio ν

can also be obtained. These mechanical material properties are used in the material distribution and

orientation optimizations and in the topology optimizations, respectively.

A quasi-isotropic layup is obtained by combining multiple, unidirectional fiber layers, in different ori-

entations to simulate the in-plane properties of an isotropic material. Since this is done by layers, the

properties in the transversal direction won’t be the same as in the other in-plane directions, hence the

name quasi-isotropic.

As previously mentioned, the structures are printed using a Markforged Mark Two printer capable of
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printing composite structures using continuous fiber filament. The .mdf files needed to use the printer

are generated by the Markforged’s browser slicing software, Eiger. In Eiger, the default, quasi-isotropic

parameters consist in 4 fiber layers oriented at [0◦ , 45◦ , 90◦ , 135◦ ] at the top and at the bottom, resulting

in a total of 8 fiber layers. This fiber fill type is called Isotropic and will be used to refer to this type of

layup in the future. It can also be used to create a unidirectional layup by selecting only one angle.

The ASTM standard used to obtain the mechanical properties of the sandwich panel is the ASTM

D3039 [43] also used by Markforged for their fiber composite test specimens. This test method is

specifically designed for polymer matrix composite materials with the goal of determining their in-plane

tensile properties.

In accordance with this standard, rectangular specimens were printed with dimensions 200 × 25

[mm] and a nominal thickness of 5 mm, as illustrated in Fig. 4.1. The specimens were printed using

8 fiber layers, in consideration for the default Isotropic parameters, to ensure each specimen had the

same amount of fiber. The sandwich core was printed using the default triangular infill pattern with a

37% fill density. The wall layers were reduced to the minimum of 1 wall, to ensure maximum in-plane

fiber deposition and the recommended value of 4 roof and floor layers were used.

Figure 4.1: General dimensions for the rectangular specimens with a 5 mm thickness

In a study by Ferreira et al. [44], focusing on the mechanical characterization of 3D printed materials

reinforced with short carbon fibers, 3 specimens configurations are required to fully characterize E1, E2,

G12, ν12 and ν21. Young’s modulus E1 and Poisson’s ratio ν12 can be determined using a laminate with

fibers printed at 0◦ along the tensile direction. E2 and ν21 are obtained with a 90◦ stacking sequence

and to determine G12, alternating layers at 45◦ and -45◦ are used. The isotropic properties E and ν are

determined using a [0◦ , 45◦ , 90◦ ,−45◦ ] stacking sequence.

Although the testing of five specimens per sample is recommended, due to shortage of strain gauges

at the time, only one specimen per sample was tested. This allows an estimate of the in-plane ten-

sile properties of the sandwich panel, but further testing would be required for a more in-dept anal-

ysis. The four specimens were printed with stacking sequences [0◦ ]4s, [90◦ ]4s, [45◦ / − 45◦ ]2s and

[0◦ , 45◦ , 90◦ ,−45◦ ]s using Markforged’s fiberglass and nylon filament, whose properties can be found

in B.1.

The experiments were performed using an Instron 3369 universal testing system with a 50 kN load

cell. All but the 90◦ specimen were tested until material failure occurred. Strains were measured using an

extensometer/strain gauge combination. The strains aligned with the loading direction were measured
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with a static clip-on extensometer while the strains in the loading transversal direction were measured

at determined load intervals using a BFLA-5 strain gauge. The experimental assembly is demonstrated

in Fig. 4.2. The strain-stress curves resulting from the tensile tests are shown in Figs. 4.3 and 4.4. Fig.

4.5 shows the tested specimens after the experiments.

Figure 4.2: Setup for the tensile test

With the strain-stress results, the in-plane tensile properties of the unidirectional and the Isotropic

composite sandwich panels can be obtained. These are shown in Tables 4.1 and 4.2.

Table 4.1: In-plane tensile properties for the unidirectional composite sandwich panel

Parameter Symbol Value

Young’s
modulus (GPa)

E1 3.869

E2 0.356

In-plane shear
modulus (GPa) G12 0.742

Poisson’s Ratio
ν12 0.426

ν21 0.022
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(a) Strain-stress data for the 0◦ specimen
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(b) Strain-stress data for the 90◦ specimen
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(c) Strain-stress data for the ±45◦ specimen
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(d) Strain-stress data for the Isotropic specimen

Figure 4.3: Strain-stress results for the various laminates
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Figure 4.4: Combined strain-stress results for the various laminates
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Figure 4.5: Tested specimens with unidirectional fiber configuration 0o, 90o, ±45o and Isotropic config-
uration, respectively

Table 4.2: In-plane tensile properties for the Isotropic composite sandwich panel

Parameter Symbol Value

Young’s
modulus (GPa) E 1.513

Poisson’s Ratio ν 0.394

4.2 MBB beam optimization, printing and experimental results

In this section, the final designs for the MBB beam optimization problem are determined taking into

account the printer limitations and the in-plane tensile properties obtained in section 4.1. One design

consists in a structure assuming an orthotropic material optimized in its distribution and orientation. The

other structure will assume an isotropic material that will be optimized in its distribution. Both structures

are printed using the Concentric fiber fill type in which the fiber is printed parallel to the walls. The goal

of this experiment is to compare the stiffness of structures optimized considering the orthotropic nature

of CFF printing and topology optimized structures.

4.2.1 MBB beam final designs

One limitation of printing using CFF has to do with the invariable width of the deposited fiber filament. A

minimum fiber reinforcement feature width of 2.8 mm is recommended by Markforged to allow the use of

a single fiber strand as reinforcement. Thinner features may not be fiber reinforced, depending on other

printing parameters, such as number of wall layers. To fit two fiber strands, the minimum recommended

width is 3.6 mm. This is illustrated in Fig. 4.6. To account for these limitations, the filter radius used in
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the optimizations must be set to half of the minimum recommended width of 2.8 mm, meaning that r =

1,4 mm. This value for the filter radius was already used in previous optimizations for this reason.

Figure 4.6: Minimum fiber reinforcement feature width 8

As previously mentioned, two different optimizations will be performed. The first optimization, named

MBB ORTHO, will be using the orthotropic properties previously obtained with E1 = 3.869 GPa, E2 =

0.356 GPa, G12 = 0.742 GPa and ν12 = 0.426 oriented at [90◦ ,±67.5◦ ,±45◦ ,±22.5◦ , 0◦ ]. This will

be performed for material distribution and orientation optimization. The second optimization, named

MBB ISO, uses the previously determined isotropic properties E = 1.513 GPa and ν = 0.394. The

focus of this optimization is the material distribution. The optimization parameters used are the same as

those in Section 3.2.1.1 as well as an imposed material usage of 50%, f = 0.5, and filter radius r = 1.4

mm. The beam geometry is modeled using a 144 by 64 mesh of rectangular elements, with a nominal

thickness of 1 mm. The use of a more refined mesh results in a smoother optimal structure which is

easier to correctly model as will be shown further in the chapter. The optimizations results can be seen

in Table 4.3 and Fig. 4.7.

Table 4.3: MBB beam results for the MBB ORTHO and MBB ISO optimizations

Optimization
Number

of
iterations

Total
Time

[s]

Final
Compliance
[N.m] ×10−6

Volume
Fraction Convergence

MBB ORTHO 83 13735 21.847 0.4850 0.953

MBB ISO 61 4317 53.713 0.4745 0.952

The results show a similar optimal material distribution for both cases with the material distribution

of MBB ORTHO resembling the results seen in Fig. 3.11(e), for a material with β = 1.429. Since the

parameter β for the material used in MBB ORTHO is β = 1.022, this similarity of material distribution

using materials with similar shear stiffness should be object of future studies.

Despite these results, since previous studies in Section 3.2.1.1 indicated a possibility of these being

8Figure taken from Markforged design guide. https://s3.amazonaws.com/mf.product.doc.images/Composites_

DesignGuide/CompositesDesignGuide_V1-2.pdf, . Accessed: 16-09-2019
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(a) Optimal material and fiber angle distribution for the MBB ORTHO optimization

(b) Optimal material distribution for the MBB ISO optimization

Figure 4.7: Optimal material distribution and orientation results for the MBB ORTHO and MBB ISO
optimizations

local minimum solutions, previous optimization results were analyzed by substitution of the materials

used in MBB ORTHO and MBB ISO. Although this does not guaranteed that the final designs are global

minimum solutions of the optimization problem, they guarantee better final designs. The results of this

study can be seen in Table 4.4, in which the compliance improvement per weight is presented. The

material and fiber angle distribution can be seen in Fig. 4.8.

Table 4.4: Final MBB beam results for the MBB ORTHO and MBB ISO optimizations

Optimization
Final

Compliance
[N.m] ×10−6

Volume
Fraction Convergence

Improvement
per weight

[%]

MBB ORTHO 21.248 0.490 0.930 1.74

MBB ISO 46.522 0.493 0.962 10.01

4.2.2 MBB beam printed designs

With the establishment of the structures final design, the 3D printing process can begin. In order to use

a slicing software such as Eiger, an .stl file must first be created containing the structure’s geometrical

information. To create the .stl file, the program used was the CAD program SolidEdge ST10, although

other CAD programs could have been used for the same purpose. To transform the obtained 2D results

to a 3D structure, a BMP image of the results was used, allowing the tracing of the contours of the

structure using splines, lines and the round feature. Fig. 4.9 illustrates this process. To increase the

stability of the structure during the tests, a thickness of 10 mm was used for the structure.

With the STL file created, the Eiger software can now be used to define the printing parameters. In
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(a) Final optimal material and fiber angle distribution for the MBB ORTHO optimization

(b) Final optimal material distribution for the MBB ISO optimization

Figure 4.8: Final optimal material distribution and orientation results for the MBB ORTHO and MBB ISO
optimizations

Figure 4.9: Obtaining the contour of the MBB Ortho structure using SolidEdge

order to replicate the material orientation of the optimizations, aligned with the principal stress directions

which are parallel to the structure’s walls, the Concentric fiber fill type was used. Since the structures

now have twice the thickness of 5 mm used in the sandwich panels tested in Section 4.1, a total of 16

fiber layers should be used to maintain the fiber/nylon ratio used in the sandwich panels. Other printing

parameters such as the fill pattern and number of wall layers remained the same, respectively, 37%

triangular fill pattern and 1. Regarding the roof and floor layers, which are layers printed using solid infill

in the external layers and also before and after a consecutive set of fiber layers, these also remained

the same with the value of 4. However, since these are nylon layers using a solid infill, they should also

be doubled. This was accomplished by dividing the 16 fiber layers into 4 equal groups, 2 at the top and

2 at the bottom and separated, forcing the software to double the nylon layers. The reasoning behind

this was to maintain the four consecutive fiber layers used in the sandwich panels. A symmetric fiber

deposition can be ensured by modifying the Start Rotation Percent parameter for every fiber layer. This

tells the printer were it should start printing fiber in each layer. Due to the fiber printing limitations, only

certain positions allow the fiber to be symmetrically deposited. Fig. 4.10 shows the 3D and 2D internal

view of the MBB ISO structure in the Eiger program.

In Fig. 4.11, a comparison between the optimal material and fiber angle distribution and the fiber
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(a) 3D internal view for MBB ISO structure illustrating the different layers distribution

(b) 2D internal view for MBB ISO structure illustrating the material deposition in the fiber layers

Figure 4.10: 3D and 2D representations of the MBB ISO structure in the Eiger program

deposition in the printed results is shown. As mentioned before, one of the printing limitations of using

fiber is the minimum reinforcement width for which fiber can be placed. Other limitations include the

minimum fiber length that can be used, which is 45 mm, corresponding to the length between the fiber

cutter and the nozzle. These limitations, combined with the program specifications to try to use the

maximum of continuous fiber possible, results in certain areas of the fiber layers needing to be filled with

nylon, differing from the computational results.

Figure 4.11: Side-by-side comparison of the material distribution and orientation between the printed
structure and optimization result for the MBB Ortho

In order to promote bed adhesion and prevent warping, the structures were printed using brim and

the recommended Elmer’s Disappearing Purple Glue was used. A total of six structures were printed,

three for each design. Each MBB ORTHO structure took approximately 7h of printing time while each

MBB ISO structure was printed in approximately 5h30m. The final printed structures can be seen in Fig.

4.12.
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(a) Printed MBB Ortho structure

(b) Printed MBB ISO structure

Figure 4.12: Printed MBB structures

4.2.3 MBB beam experimental results

To provide a fair comparison between the different structures, the total mass of each structure should be

registered since heavier structures tend to be stiffer than lighter ones. These measurements will allow

us to compare the different stiffness results using a normalized stiffness. Although both structures were

optimized using a 50% material volume and the final volume fraction being 49% for both structures, due

to the transformation to a 3D structure, the different material depositions and other factors can lead to

a difference in weight. These measurements can be seen in Table 4.5 that shows the weight of the

different samples in grams, after removing the brim and protruding material left from the printing process

and wiping the leftover glue.

As was expected, the weight distribution is similar across all samples with slight variations between

them. These will be taken into consideration when presenting the stiffness test results.

To test the MBB structures, a three point bending setup was used in an Instron 5566 universal

testing machine with a 10 kN load cell. The printed beams were placed in the two support cylinders of

the fixture which were distanced 160 mm from each other’s center, simulating the boundary conditions

used in the finite element model. This allows free horizontal movement in those points while fixing the

vertical displacement. The loading cylinder sits in the top center of the beam, exerting a downwards

force corresponding to the loading conditions used. The setup for this experiment can be seen in Fig.

4.13.

Since the stiffness is computed as the linear relation between the applied load and the resulting

displacement, to determine the experimental stiffness of the structures, the slope of the linear elastic
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Table 4.5: Weights of the MBB structures printed using CFF

MBB Sample Weight(g)

MBB ORTHO 1 28.20

MBB ORTHO 2 28.18

MBB ORTHO 3 28.18

MBB ISO 1 27.16

MBB ISO 2 27.04

MBB ISO 3 27.15

Figure 4.13: Experimental setup for testing of the printed MBB beam structures

region in the load-displacement curve must be determined. This is accomplished by selecting a set

of points in the linear elastic region and calculating the linear regression for these values. The linear

regression value represents the stiffness of the structure, given in SI units as N/m.

Before each sample’s test, the correct positioning and alignment of the structures was verified to

make sure the force was applied in the top center of the beam and the cylinders were perpendicular

to the structure. For one sample of each structure, the experiment proceeded until structural failure

of the sample in order to understand the structural behavior of the structure until the point of failure.

The rest of the structures were tested until a displacement of around 3.5 mm was reached, so as to

not break the structures. The load-displacement curves for the three point bend tests can be seen in

Figs. 4.14 and 4.15. During the testing of the MBB ORTHO 1 sample, an improper positioning of the

structure, which was not correctly centered, resulted in a displacement of the structure to the side with

the increased load. This invalidated the results for the structural failure test, which were then repeated

for MBB ORTHO 2. From Fig. 4.15, the stiffness of each structure is determined by obtaining the slope
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of the load-displacement curves from data-points inside the linear elastic region. Table 4.6 displays the

experimental stiffness and normalized stiffness values for each sample as well as the theoretical values.
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Figure 4.14: Load-displacement curves for the 3 point bending test of optimized MBB structures

Table 4.6: Experimental and theoretical stiffness results for the 3 point bending test of optimized MBB
structures printed using CFF

MBB Sample Stiffness
[N/m]×103

Normalized
Stiffness

[N/m]×103

MBB ORTHO 1 284.06 284.06

MBB ORTHO 2 295.47 295.68

MBB ORTHO 3 293.75 293.96

MBB ISO 1 276.34 286.92

MBB ISO 2 328.33 342.42

MBB ISO 3 294.74 306.14

MBB ORTHO THEO 940.96

MBB ISO THEO 913.04

From analysis of Fig. 4.14, both types of structures fail after a loading cylinder’s displacement of
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Figure 4.15: Zoomed-in load-displacement curves for the 3 point bending test of optimized MBB struc-
tures

5 mm, with the failure of MBB ORTHO occurring at higher loads. However, further testings would be

required since one result for each structure only allows simple observations. From the analysis of the

experimental stiffness results, the structures seem to have similar stiffness, with the MBB ISO having a

greater variation in results and an overall better performance. These experimental results contradict the

theoretical results obtained through the optimizations. These differences can be related to the printing

patterns, which cannot be replicated through the optimization program. The results will be discussed

further in section 4.4.

4.3 3-point tensile optimization, printing and experimental results

In this section, the 3-point tensile design will be tested for different volume fractions and fiber fill types.

A method to enforce the optimal material orientation will be tested as well as a study of hole tolerance.

To test the designs, special fixtures were machined. The goal of these tests is to compare the stiffness

between designs printed with optimal material orientation and the default Isotropic fiber fill, for different

volume fractions.

4.3.1 3PT final designs

As seen in section 4.2.1, the final designs for the MBB structures were obtained by performing optimiza-

tions with the material properties determined in 4.1. Using a similar approach for the 3PT structure, two
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optimizations were performed for 2 different volume fractions. The material used in the optimizations has

orthotropic properties E1 = 3.869 GPa, E2 = 0.356 GPa, G12 = 0.742 GPa and ν12 = 0.426 oriented at

[90◦ ,±67.5◦ ,±45◦ ,±22.5◦ , 0◦ ]. The same optimizations parameters seen in section 3.2.1.2 were used

and the imposed volume fractions were f = 0, 4 and f = 1. The optimizations results can be seen in

Table 4.7 with the material distribution and orientation represented in Fig. 4.16. The finite element mesh

was discretized using 8608 quadrilateral elements and 144 triangular elements with size 1 mm.

Table 4.7: Final 3PT optimization results for volume fractions f = 0, 4 and f = 1

Optimization
Final

Compliance
[N.m] ×10−6

Volume
Fraction Convergence

3PT 0,4 1.058 0.398 0.981

3PT 1,0 0.968 1.000 0.979

(a) Results for f = 0.4 (b) Results for f = 1

Figure 4.16: Final structures for the 3PT optimization results for volume fractions f = 0, 4 and f = 1

4.3.2 3PT test setup and printing

To test the structures, fixtures had to be designed and machined to be used in a tensile test. Two

fixtures were machined in a milling machine. The top fixture, where the stresses would be greater, was

machined from a 12 mm steel plate and the bottom fixture was machined from a 7075 aluminum block.

The fixtures were machined so that the structure would sit in between the 6 mm grooves, attached by

long M5 screws so that the smooth cylindrical part of the screw was in contact with the structure, to

simulate the bearing load used in the simulations. The setup’s assembly with the fixtures and structure

is represented in Fig. 4.17.

To print the structure in Fig. 4.16(a), the Concentric fiber fill type can be used to approximate the

optimal material orientation. This however is not the case for the structure in Fig. 4.16(b), since using

the Concentric fiber fill type leads to the fiber printing pattern illustrated in Fig. 4.18. In order to force
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Figure 4.17: CAD representation of the assembly of the 3PT testing setup

Eiger to print the fiber in a pattern similar with the results obtained from the optimizations, a proposed

method was used, consisting in cutting small, 0,1 mm features which are recognized by the program

and reinforced. Since these features are so small, the objective was that these would be closed by the

printer, due to it’s inability to reproduce such small features. However, other printing parameters need to

be used for these gaps to be closed, since by default the program enlarges them to be able to reproduce

them. In order for this to happen, the parameter Expand thin features must be used, which will force the

program to try and print these features in their real size at the expense of some dimensional accuracy.

Fig. 4.19 shows the comparison of prints with/without Expand thin features ON.

Figure 4.18: Printing pattern using Concentric fill type for the unmodified f = 1 3PT structure

Using this technique, a total of 10 unique variations of the structure in Fig. 4.16(b) were developed

to find the one that could best approximate to the optimal material orientation. Fig. 4.20 shows four of

these variations. All the variations can be found in A.1.

Other tests that involve testing printing parameters is the hole tolerance parameters. Since we will

be using M5 screws, in order to achieve a perfect fit between the holes and the screws, a set of hollowed

cylindrical structures were printed, with various hole diameters. These can be seen in Fig. 4.21. These

tests were performed with and without the Expand thin features parameter ON, since the use of this
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Figure 4.19: Side by side comparison of using the Expand thin features ON and OFF, respectively

(a) Variation # 1 (b) Variation # 4

(c) Variation # 6 (d) Variation # 9

Figure 4.20: Some variations in printing pattern for the 3PT structure

parameter results in holes with a smaller size than the defined diameter. Using these tests, the required

hole dimensions for an M5 screw were determined to be:

• ø5 mm with Expand thin features ”OFF”

• ø6 mm with Expand thin features ”ON”

Using the results from these experiences, 2 different structures were first printed and tested, with 3

samples per structure and fiber fill type, resulting in a total of 12 printed samples. These first samples

were printed before the material properties were known, using the previous results determined in Section

3.2.1.2.
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Figure 4.21: Printed structures with different diameters to determine dimensional tolerance for holes

The samples were printed using the previous printing parameters. A reinforcement of 3 concentric

rings around the holes in a total of 4 layers were used to prevent the holes deformation from influencing

the results. Each structure was printed with a thickness of 5mm. A comparison between the computa-

tional results and the fiber printing pattern is shown in Fig. 4.22.

(a) Structure with f = 0.4 (b) Structure with f = 1

Figure 4.22: Side by side comparison of the fiber orientation in the printed structures and the computa-
tional results

As can be seen, the same printing limitations observed in section 4.2.2 are present in these struc-

tures.

4.3.3 3PT experimental testing and results

To test the 3PT printed samples, a standard tensile setup was used in the Instron 3369 previously used to

determine the in-plane tensile material properties. The machined fixtures were secured via mechanical

grips while the structures were fixed by the three screws to the fixtures. The screws were held in place

by nuts. The assembly was properly checked to make sure everything was properly aligned. The testing

setup can be seen in Fig. 4.23.

As was previously done for the MBB beam tests, the stiffness of the different structures printed with
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Figure 4.23: Experimental setup for the testing of the 3PT structures

the various printing patterns is to be obtained by the load-displacement curves obtained by the tensile

tests. The load-displacement curves of the different tests can be seen in Fig. 4.24.
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Figure 4.24: Load displacement curves for the 3PT tests
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By observing that in all the curves the response to the loads was very similar, tests were performed

to understand if the hole deformation was the cause, since the reinforcement of the holes was the

same for all the samples. To test this theory, two samples were printed with volume fraction f = 0.4,

with Concentric and Isotropic fiber fill. These samples had the holes reinforced in all the core layers,

with a maximum of 5 concentric fiber rings reinforcing the top hole. These samples were tested in the

same conditions of the first tests. The resulting load-displacement curves for these reinforced structures

against the previous curves can be seen in Fig. 4.25.
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Figure 4.25: Load displacement curves for the 3PT tests with reinforced structures

This time both reinforced structures’ load-displacement curves exhibit a distinct behavior from each

other as expected, with the Concentric structure exhibiting a steeper linear-elastic slope, resulting in

a greater stiffness, than the Isotropic structure as is expected. With these results, further tests were

performed, this time with the holes fully reinforced to prevent the hole deformation from influencing the

results. These tests were now performed with the optimizations result obtained in section 4.3.1, since

the material properties were now known. During the first tests of 3PT Concentric 1,0, a design flaw in

the way the cuts were made to orient the fiber was exposed which lead to a modification of the design.

Fig. 4.26 shows the printing pattern and optimal material distribution and orientation for the structures.

These designs were then printed and tested. The results can be seen in Figs. 4.27, 4.28, 4.29. From

the load-displacement curves, the experimental stiffness can be determined as was previously done in

section 4.2.3. Table 4.8 shows the experimental and normalized stiffness results of the samples tested.
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(a) Structure with f = 0.4 (b) Structure with f = 1

Figure 4.26: Side by side comparison of the fiber orientation in the printed structures and the computa-
tional results for the final structures

0 1 2 3 4 5 6 7 8
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Extension [mm]

Lo
ad

[N
]

3PT load displacement curves

0,4 Concentric #1
0,4 Concentric #2
0,4 Concentric #3
0,4 Isotropic #1
0,4 Isotropic #2
0,4 Isotropic #3

1,0 Concentric #1
1,0 Concentric #2
1,0 Concentric #3
1,0 Isotropic #1
1,0 Isotropic #2
1,0 Isotropic #3

Figure 4.27: Load-displacement results for the final testing samples of 3PT structures

By analyzing the load-displacement curves, several conclusions can be drawn. Since the ultimate-

stress for the 0,4 Concentric structure is greater than the 1,0 Concentric one, this leads to the conclusion

that the technique for orienting the fiber with the use of small cut features was not very successful for this

problem. The similar ultimate-stress results of the 1,0 structures in Fig. 4.29 (which contrast greatly with
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Figure 4.28: Load-displacement results for the
final testing samples of f = 0.4 3PT structures
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Figure 4.29: Load-displacement results for the
final testing samples of f = 1 3PT structures

Table 4.8: Experimental and theoretical stiffness results for the tensile test of optimized 3PT structures
printed using CFF

Volume
fraction Sample Weight

[g]
Stiffness

[N/m]×103

Normalized
Stiffness

[N/m]×103

f=0.4

Concentric Fill
#1 14.08 923.18 2233.20
#2 13.87 815.61 2002.86
#3 13.91 886.58 2170.88

Comp. Result 3780.71
Isotropic Fill

#1 13.80 741.84 1830.95
#2 13.90 774.23 1897.14
#3 13.79 694.64 1715.70

Comp. Result 1895.73

f=1.0

Concentric Fill
#1 34.06 949.31 949.31
#2 33.66 981.24 992.90
#3 33.63 922.40 934.19

Comp. Result 4653.87
Isotropic Fill

#1 33.12 1023.88 1052.94
#2 33.11 1062.89 1093.39
#3 33.22 1081.17 1108.51

Comp. Result 2443.49

the results obtained in Fig. 4.28 for the 0,4 structures) support this theory, since structures printed with

the fiber oriented in the principal stress direction should have an increased ultimate-stress value when

compared to structures printed with a quasi-isotropic laminate and using the same amount of fiber. The
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effect of hole deformation is also possible, again revealing that this problem was not the most well suited

to be tested.

By analyzing the stiffness results, again several conclusions can be drawn. The experimental results

agree with the computational results in that the structures with a higher volume fraction have greater

stiffness. For f = 0, 4 the Concentric structures are stiffer than the Isotropic structures, as is expected.

However, the computational results indicate that the stiffness difference should be twice as much, which

is not the case. For f = 1, 0, the opposite occurs with Isotropic structures being stiffer than the Concen-

tric structures, which is not expected. This result could indicate that the technique is not useful in this

case. When observing the normalized stiffness results, the value of the f = 0, 4 structures are bigger

than the f = 1, 0 structures, almost by a factor of two, since the stiffness results don’t increase as much

as the weight. This justifies using the f = 0, 4 structures since their stiffness/weight ratio is greater.

The results from the experimental tests differ greatly in terms of numerical value from the computational

results, which could be explained by the difficulty in simulating the behavior of the sandwich panel, due

to the printing process, as the fiber can’t be printed with the same distribution and orientation as in

the optimization results and also because the local hole deformation may not be accounted for in the

simulations.

4.4 Discussion of the experimental results

In this section, a discussion of the experimental results will be performed as well as the implications of

using CFF to print the structures.

One complication of printing the structures using the Markforged’s Mark Two printer lies with the

difficulty to print full fiber layers as seen in Fig. 4.10(b). Due to the fiber deposition limitations, void

spaces are created which are then filled with nylon. The existence of these void spaces lead to a lower

experimental structural stiffness when comparing with the optimal results, since the latter can’t account

for the existence of these voids as can be seen in Fig. 4.11.

In the case of the MBB beam, both structures exhibit similar stiffness values as was expected. The

experimental results reveal that the structure obtained by topological optimization is stiffer, with the com-

putational results revealing the opposite situation. When analyzing the fiber volume used in each struc-

ture, these reveal that the MBB ISO structure was printed with 4.10 cm3 of fiber and the MBB ORTHO

was printed with 3.49 cm3. Although both structures have similar weight, with the MBB ISO structure

being slightly lighter, it also uses more fiber to be printed. Due to the more intricate structure of the

MBB ORTHO, the fiber has a greater difficulty in following the optimal deposition created by the compu-

tational program, leading to the generation of more voids spaces than the simpler MBB ISO structure,

resulting in a structure with less stiffness as demonstrated by the experimental results.

For the 3PT structures, the presence of void spaces can also have an effect on the experimental re-

sults. The experimental results for the lighter structures confirm that orienting the fiber in the fiber layers

according to the principal stress directions increases the stiffness of the structure when comparing with

using a quasi-isotropic layup. However, the increase in the experimental stiffness is not as noticeable as
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the obtained through the computational results. For the heavier structures, the experimental results con-

firm that these are stiffer than the lighter structures, with the structure printed using the quasi-isotropic

layup revealing to be stiffer, contrary to the computational results. Although for the structure printed

using the Concentric fill type an experimental technique was used to force the fiber to follow the optimal

orientation, which could result in a weaker structure, hole deformation issues cannot be discarded, due

to stress concentration in that area, explaining the small increase in stiffness among the lighter struc-

tures. In order to fully engage the fibers, a clamping mechanism, similar to the ones used for general

tensile testing, should have been used. As it stands, conclusions about the fiber orientation technique

used can’t be drawn, since the boundary conditions used weren’t suitable for the experiment.

In general, the results from the experimental testing confirmed, qualitatively, the results obtained

by the computational program, in regards to the stiffness of the different structures during testing. Al-

though the stiffness values obtained by the computational program are greatly superior to the values

obtained by the experimental testing, due to the difficulty in accurately model the printing pattern of the

printer, through these results one can infer which structure is preferable to print and the optimal printing

orientation of the fibers.
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Chapter 5

Conclusions and Future Work

In this chapter, conclusions drawn from this work are presented, followed by recommendations for future

work in the area of optimization of fiber reinforced composite structures produced by AM processes.

5.1 Conclusions

The goal of this thesis was to develop a structural optimization program capable of determining optimal

material distribution and orientation for structures created by FFF processes implementing continuous

fiber filament. To this end, a Matlab program was developed based on the DMO method, using the

MMA optimizer to minimize the compliance of the structure. This method uses as design variables

the fiber with discrete orientation angles and a ”weak” material to represent the void, to determine the

optimal material distribution. To allow the study of complex bidimensional structures, the finite mesh

generation is performed by the finite element program Siemens Nx, using triangular and quadrilateral

finite elements.

Although the use of the DMO method is not recommended to optimize FFF processes due to the con-

tinuous fiber deposition and the use of discrete fiber orientations by the method, it still proved successful

in the optimization of the structures, producing similar results obtained by continuous fiber optimization

methods for the study of the MBB beam. Even though in this work, the use of eight discrete material

orientations was implemented, to satisfactory simulate continuous fiber orientation without excessively

increasing the computation time, other parameterization methods could have been implemented that

could increase the number of possible orientations while maintaining the processing time. This would

allow to better simulate the continuous fiber process similarly to the CFAO method while still minimizing

the local minima issues.

To test the developed program, the MBB beam and a three-point tensile problem were optimized in

respect to the material distribution and orientation. The studies showed that changing the ratio of Young’s

modulus has no significant effect on the final structure and material orientation, while changing the shear

stiffness can have a significant impact in the material distribution and orientation of the final structures.

Local minima issues were also discovered and attempts to reach better solutions were made. In order
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to complement the computational results, experimental testing and characterization of the composite

layup was performed and samples of the MBB beam and 3PT structures were printed and tested with

fiberglass continuous fiber reinforcement using Markforged’s Mark Two 3D printer, to determine their

stiffness.

The major findings obtained by the experimental tests can be summarized as:

• Topology optimized structures and material distribution and orientation optimized structures have

similar stiffness when printed with fiber oriented along the principal stress directions if the com-

posite material has a shear stiffness similar to an isotropic material (β = 0).

• Lighter, functional structures have higher stiffness/weight ratio than heavier structures, but lower

stiffness overall.

• Structures printed with optimal fiber orientation have better performance than structures printed

with generic quasi-isotropic layups for the same fiber volume.

• Conclusions about the proposed fiber orientation technique can’t be performed due to improper

experimental testing, requiring further examination.

• The experimental results confirm the general findings obtained by the computational results for

the MBB beam and 3PT structure, although with lower stiffness results due to the CFF process

limitations and local stress concentration.

Given the presented work, the objectives proposed for this thesis are considered satisfied and the ob-

tained results should help to further develop the optimization of structures produced by the FFF method

using continuous fiber reinforcement.

5.2 Future Work

Several improvements to the presented work could still be implemented and will be presented here as

future work ideas as follows:

• Instead of using the DMO4 and DMO5 parameterization methods, other methods could be used

to increase the number of possible orientations without increasing the computation time.

• Use of a discrete ”weak” material lead to convergence difficulty. Use of a SIMP like method of

using a pseudo-density could prove more useful.

• An Equivalent Single Layer Model (ESLM) was used to simulate the structures. Use of a layerwise

model would be interesting to implement in order to simulate the layer-by-layer behavior of the FFF

process and determine which layers should have fiber and its orientation.

• Further experimental studies of the material orientation technique should be implemented using

better case studies to assess the practicality of the method.
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Appendix A

Fiber Patterns

In the following section, all the obtained fiber patterns variations for the 3PT structure used to simulate

the material distribution and orientation resulting from the optimizations are presented.

A.1 Fiber patterns variations for the 3PT structure

(a) Variation # 1 (b) Variation # 2

(c) Variation # 3 (d) Variation # 4

Figure A.1: Variations in printing pattern for the 3PT structure
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(c) Variation # 5 (d) Variation # 6

(e) Variation # 5 (f) Variation # 6

(g) Variation # 7 (h) Variation # 8

(i) Variation # 9 (j) Variation # 10

Figure A.1: Variations in printing pattern for the 3PT structure (cont.)
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Appendix B

Technical Datasheets

B.1 Markforged’s Composites Material Datasheet
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markforged.com 85 School St, Watertown, MA 02472

Composites
MATERIAL DATASHEET

Plastic Matrix Test (ASTM) Onyx Nylon

Tensile Modulus (GPa) D638 1.4 0.94

Tensile Stress at Yield (MPa) D638 36 31

Tensile Strain at Yield (%) D638 25 27

Tensile Stress at Break (MPa) D638 30 54

Tensile Strain at Break (%) D638 58 260

Flexural Strength (MPa) D7901 81 32

Flexural Modulus (GPa) D7901 2.9 0.84

Heat Deflection Temp (oC) D648 B 145 49

Izod Impact - notched (J/m)  D256-10 A 330 1000

Density (g/cm3) — 1.2 1.1

Fiber Reinforcement Test (ASTM) Carbon Kevlar® Fiberglass HSHT FG

Tensile Strength (MPa) D3039 800 610 590 600

Tensile Modulus (GPa) D3039 60 27 21 21

Tensile Strain at Break (%) D3039 1.5 2.7 3.8 3.9

Flexural Strength (MPa) D7901 470 190 210 420

Flexural Modulus (GPa) D7901 51 26 22 21

Flexural Strain at Break (%) D7901 1.2 2.1 1.1 2.2

Compressive Strength (MPa) D6641 320 97 140 192

Compressive Modulus (MPa) D6641 54 28 21 21

Compressive Strain at Break (%) D6641 0.7 1.5 — —

Heat Deflection Temp (oC) D648 B 105 105 105 150

Izod Impact - notched (J/m)  D256-10 A 960 2000 2600 3100

Density (g/cm3) — 1.4 1.2 1.5 1.5

Dimensions and Construction of Plastic Test 
Specimens:

• Tensile test specimens: ASTM D638 type 
IV beams

• Flexural test specimens: 3-pt. Bending, 
4.5 in (L) x 0.4 in (W) x 0.12 in (H)

• Heat-deflection temperature at 0.45 
MPa, 66 psi (ASTM D648-07 Method B)

All Markforged machines are equipped to 
print Onyx. Nylon is a specialized material 
that can only be printed on the Mark Two and 
X7. Machines that print Onyx cannot also 
print Nylon due to machine conditioning.

Markforged parts are primarily composed 
of plastic matrix. Users may add one type of 
fiber reinforcement in each part, enhancing 
its material properties.

1. Measured by a method similar to ASTM 
D790. Thermoplastic-only parts do not break 
before end of Flexural Test.

Dimensions and Construction of Fiber Composite
Test Specimens:

• Test plaques used in these data are fiber 
reinforced unidirectionally (0° Plies)

• Tensile test specimens: 9.8 in (L) x 0.5 in (H) x 
0.048 in (W) (CF composites), 9.8 in (L) x 0.5 in 
(H) x 0.08 in (W) (GF and Kevlar® composites)

• Compressive test specimens: 5.5 in (L) x 0.5 
in (H) x 0.085 in (W) (CF composites), 5.5 in 
(L) x 0.5 in (H) x 0.12 in (W) (Kevlar® and GF 
composites)

• Flexural test specimens: 3-pt. Bending, 4.5 in 
(L) x 0.4 in (W) x 0.12 in (H)

• Heat-deflection temperature at 0.45 MPa, 66 
psi (ASTM D648-07 Method B) 

Tensile, Compressive, Strain at Break, and Heat

Deflection Temperature data were provided by 
an accredited 3rd party test facility. Flexural 
data were prepared by Markforged, Inc. These 
represent typical values.

Markforged tests plaques are uniquely designed 
to maximize test performance. Fiber test plaques 
are fully filled with unidirectional fiber and printed 
without walls. Plastic test plaques are printed 
with full infill. To learn more about specific testing 
conditions or to request test parts for internal 
testing, contact a Markforged representative.

Part and material performance will vary by 
fiber layout design, part design, specific load 
conditions, test conditions, build conditions, and 
the like.

This representative data were tested, measured, 
or calculated using standard methods and are 
subject to change without notice. Markforged 
makes no warranties of any kind, express 
or implied, including, but not limited to, the 
warranties of merchantability, fitness for a 
particular use, or warranty against patent 
infringement; and assumes no liability in 
connection with the use of this information. The 
data listed here should not be used to establish 
design, quality control, or specification limits, 
and are not intended to substitute for your 
own testing to determine suitability for your 
particular application. Nothing in this sheet is to 
be construed as a license to operate under or a 
recommendation to infringe upon any intellectual 
property right.
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Fiber Reinforcement
Continuous Filament Fabrication (CFF) is our 

unique technology that adds fiber reinforcement 

to printed parts. Within our thermoplastic matrix, 

Markforged uses proprietary technology to lay 

down continuous long-strand fiber. Users can 

control the layers reinforced, amount, orientation, 

and type of reinforcing fiber.

Plastic Matrix
In Fused Filament Fabrication (FFF), the printer 

heats thermoplastic filament to near melting 

point and extrudes it through its nozzle, building a 

plastic matrix layer by layer. Markforged prints all 

thermoplastics by this method.

Onyx Nylon

Fiberglass Carbon Fiber

Kevlar® HSHT Fiberglass

Printing Methods

Composites
MATERIAL DESCRIPTIONS

Materials

markforged.com 85 School St, Watertown, MA 02472

Onyx
Engineering Grade Thermoplastic
Onyx yields stiff, strong, and accurate parts. 

Already 1.4 times stronger and stiffer than ABS, 

Onyx can be reinforced with any continuous 

fiber. Onyx sets the bar for surface finish, 

chemical resistivity, and heat tolerance.

Flexural Strength 81 MPa

Flexural Stiffness 2.9 GPa

Fiberglass
Reinforced Fiber Strength
Fiberglass is our entry level continuous fiber, 

providing high strength at an accessible price. 

2.5 times stronger and eight times stiffer than 

Onyx, Fiberglass reinforcement results in strong, 

robust tools. 

Flexural Strength 210 MPa

Flexural Stiffness 22 GPa

Carbon Fiber
Aluminum Strength. Half the Weight.
Carbon Fiber has the highest strength to weight 

ratio of our reinforcing fibers. Six times stronger 

and eighteen times stiffer than Onyx, Carbon 

Fiber reinforcement is commonly used for parts 

that replace machined aluminum. 

Flexural Strength 470 MPa

Flexural Stiffness 51 GPa

Nylon
Tough Flexible Thermoplastic
Nylon parts are flexible, impact-resistant and can 

be reinforced with any Markforged continuous 

fiber. The material works best in applications 

that require increased flexibility or low working 

friction.

Flexural Strength 32 MPa

Flexural Stiffness 0.84 GPa

Kevlar®
Lightweight, Durable, and Strong
Kevlar® possesses excellent durability, making 

it optimal for parts that experience repeated 

and sudden loading. As stiff as fiberglass and 

much more ductile, it’s best used for end of arm 

tooling.

Flexural Strength 190 MPa

Flexural Stiffness 26 GPa

HSHT Fiberglass
Strength at High Temperatures
High Strength High Temperature (HSHT) 

Fiberglass exhibits Aluminum strength and high 

heat tolerance. Five times as strong and seven 

times as stiff as Onyx, it’s best used for parts 

loaded in high operating temperatures.

Flexural Strength 420 MPa

Flexural Stiffness 21 GPa

Plastic

Plastic

Fiber

Fiber Fiber

Fiber
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