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Resumo

Perante a atual crise de acumulação de plásticos, polímeros biobaseados e biodegradáveis po-
dem ser preponderantes na construção de uma indústria de plástico mais sustentável. Entre estes
polímeros ”verdes”, os polihidroxialcanoatos (PHA) são poliésteres alifáticos sintetizados por bac-
térias e armazenados como grânulos intracelulares. No presente estudo, poli-(3-hidroxibutirato-co-
3-hidroxivalerato) foi produzido por uma cultura microbiana mista alimentada com resíduo de polpa
de fruta fermentado. O reator de acumulação foi monitorizado at-line por espetroscopia Raman e de
infravermelho-próximo (NIR) para desenvolver modelos da concentração de sólidos suspensos totais
(SST), concentração de PHA e conteúdo de PHA na biomassa. Uma análise de componentes principais
(PCA) aos espetros de Raman revelou uma mudança gradual na forma do sinal com o tempo, que se
acredita resultar de alterações na cultura. Os espetros de NIR foram utilizados no desenvolvimento
de modelos quantitativos através de regressão de mínimos quadrados parciais (PLS). Os modelos,
submetidos a validação cruzada e externa, mostraram-se adequados para previsão dos parâmetros
estudados. A concentração de SST foi prevista com raíz do erro quadrático médio de previsão (RE-
QMP) de 1.0g/L e coeficiente de determinação (R2) de 0.86, enquanto que a concentração de PHA
apresentou REQMP de 0.69g/L e R2 de 0.89 e o conteúdo de PHA revelou REQMP de 14.6% e R2 de
0.86. Finalmente, os resultados dos modelos para concentração de SST e PHA foram combinados para
dar uma previsão indireta do conteúdo de PHA. Este modelo mostrou-se excepcional para amostras
com elevada densidade celular, com REQMP de 4.52% e R2 de 0.96.

Palavras-chave

Polihidroxialcanoatos; Culturas Microbianas Mistas; Resíduos de Polpa de Fruta; Monitorização
de Reatores Biológicos; Espetroscopia Raman; Espetroscopia de Infravermelho Próximo; Análise Mul-
tivariada.
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Abstract

Given today’s plastic disposal global crisis, bio-based and biodegradable polymers may have an
important role in leading the way towards a more sustainable plastics industry. Among these ”green”
polymers, polyhydroxyalkanoates (PHA) are aliphatic polyesters synthesized by bacteria and stored as
intracellular granules. In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), was
produced by a mixed microbial culture fed with fruit pulp waste fermentate. The accumulation reactor
was monitored at-line by Raman and NIR spectroscopy to develop models for predicting total suspended
solids (TSS) concentration, PHA concentration and intracellular PHA content. A principal component
analysis (PCA) model performed on the Raman spectral data revealed a gradual change in the shape
of the signal over time, which was believed to result from shifts in the bacterial community. NIR spectra
were used for the development of quantitative calibration models through partial least squares (PLS)
regression. The models were subjected to cross-validation and external test set validation and proved to
be suitable for predicting all three parameters under study. TSS concentration was predicted with a root
mean square error of prediction (RMSEP) of 1.0g/L and a coefficient of determination (R2) of 0.86, while
PHA concentration showed a RMSEP of 0.69g/L and a R2 of 0.89 and PHA content had an RMSEP of
14.6% and a R2 of 0.86. Finally, the results of the TSS and PHA concentration models were combined
to give an indirect PHA content prediction. This model performed exceptionally in predicting high cell
density samples, with a RMSEP of 4.52% and a R2 of 0.96.

Keywords

Polyhydroxyalkanoates; Mixed Microbial Culture; Fruit Pulpe Waste; Bioreactor Monitoring; Raman
Spectroscopy; Near-Infrared Spectroscopy; Multivariate Analysis.
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1 Introduction

1.1 Context of the Thesis

We are currently facing a society that is strongly dependent on plastics throughout many sectors:
from packaging to agriculture, electronics, construction industry, transportation or health care. Due to
their inexpensive manufacturing, high resistance and versatility, plastics have become an integral and im-
portant part of the global economy [1]. They began to be commercialized around 1950’s and their global
production reached an astounishing number of 348 milllion tonnes in 2017, making them a potentially
unparalleled success in the history of materials industry [2, 3].

However, at a time in which a global environmental conscience is arising, the issues associated
with the origin and fate of conventional plastics cannot possibly be ignored. On the one hand, over 99%
of all commercially available plastics are produced from fossil fuels - if current trends continue, by 2050
the plastic industry could account for 20% of the world’s total oil consumption [4]. On the other hand, their
non-biodegradability, together with inefficient collection and recycling systems, is leading to an alarming
accumulation of mismanaged plastic waste. This has been aggravated by the fact that, over the last
decades, production has shifted from durable to single-use plastic [1, 3].

In Europe, one of the world regions with the most effective waste management systems, only 31%
of collected plastic was recycled in 2016, with 42% used for energy recovery through incineration and the
remaining 27% ending up in landfills [2]. This means that the potential for recycling plastic waste remains
largely unexploited.The scenario is significantly more negative if a global and cummulative analysis is
carried out: 5.8 billion tonnes of plastic waste (polymers, synthetic fibers and additives) were produced
between 1950 and 2015, of which 84% was discarded, 14% was incinerated and only 2% was recycled
and is still in use [5]. Furthermore, it is estimated that between 5 and 13 million tonnes of plastic end up
in the ocean every year, endangering marine environments at levels yet to be fully understood [6].

Packaging, in particular, accounts for about 40% of global annual plastic production and is almost
exclusively single-use [4, 5]. It is estimated that only 14% of plastic packaging is collected for recycling
and that after sorting and reprocessing only 5% of material value is retained. Furthermore, plastics that
do get recycled are mostly recycled into lower-value applications that are no longer recyclable[4]. Plastic
packaging is also among the items most commonly found on beaches, since around 32% is believed to
escape collection systems [4, 7].

Given the current scenario, in January 2018, the European Union (EU) presented its strategy for
a more sustainable plastics industry, which relies on a circular economy concept and is to be achieved
by 2030 [7]. Besides promoting and optimizing plastic recycling, the report discusses opportunities and
risks of bio-based and biodegradable plastics (see Section 1.2.1). Moreover, ’The New Plastics Economy
Global Commitment’ was signed in Bali, in October 2018, and focuses on innovating to ensure 100%

1



of plastic packaging can be safely reused, recycled, or composted by 2025 [8, 9]. The initiative is led
by the Ellen MacArthur Foundation, in collaboration with UN Environment, and is supported by many of
the world’s largest packaging producers, brands, retailers and recyclers, as well as governments and
non-governmental organizations (NGOs).

Therefore, it is becoming widely accepted that a possible approach to the current plastic waste
crisis might be the further development and production of biorelated plastic materials. These alternative
polymers, may, in fact, present themselves as answers to the environmental problems raised by tradi-
tional plastics, both reducing nonrenewable energy use and, consequently, greenhouse gas emissons,
as well as presenting an innovative solution for the end of life issues, as will be discussed in subsequent
sections [10].

A number of projects has been funded by the EU over the last few years on the field of bio-based and
biodegradable polymers [11, 12, 13, 14, 15]. The GLOPACK (Granting society with LOw environmental
impact innovative PACKaging) project is investigating food packaging with little environmental footprint
and the ability to extend the shelf life of food products. It has over a dozen partners all over Europe, from
research groups and universities to private companies. It is within this project that the present thesis is
inserted, focusing on biodegradable packaging materials made from agro-food residues [15].

1.2 Biorelated Polymers

1.2.1 Classification and Properties

Biorelated polymers are generally associated with two different concepts: ’bio-based’ and ’biodegra-
dable’. The term ’bio-based’ implies the material contains organic carbon of renewable origin, i.e. it is
total or partially derived from biomass, whereas ’biodegradable’ means it can be converted into natural
substances such as water, carbon dioxide/methane and nitrate/ammonium by the action of naturally-
occurring microorganisms [16, 17]. Contrary to common belief, biodegradation is unrelated to the origin
of a material, but is rather a consequence of its chemical structure. This means that bio-based plastics
may not be biodegradable, just like plastics based on fossil fuels may be susceptible to biodegradation
[18].

Bio-based polyethylene (PE), polyethylene terephthalate (PET) and polyamide (PA), for instance,
are similar to their their oil-based counterparts in terms of molecular structure but are derived from renew-
able feedstock, i.e., they are bio-based. This means they exhibit the same properties and are suitable for
the same applications, but produce a smaller carbon footprint at their source, even though they do not
show any biodegradability capacity [16]. On the other hand, polybutylene succinate (PBS) and polybuty-
lene adipate-co-terephthalate (PBAT) are examples of petrochemical-based polymers that given their
chemical structure are susceptible to biodegradation at their end of life [19].

The polymers that have, however, received greater attention and show more promise as truly sus-
tainable alternatives to conventional plastics are those that are both bio-based and biodegradable, since
they tackle the two major environmental issues associated with the latter. Three main polymers are
included in this group: polysaccharides (e.g. starch), polylactic acid (PLA) and polyhydroxyalkanoates
(PHA).

Apart from biodegradability, if these biorelated polymers are to be suitable for replacing traditional
plastic materials, they must exhibit specific features, depending on the particular application and the
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oil-based plastic they aim to replace. These include mechanical (e.g. elasticity, strenght), thermal (e.g.
melting point, glass transition temperature) and optical (e.g. transparency) characteristics, as well as
gas and water barrier properties. Furthermore, it is desirable that these polymers are thermoplastically
processable through conventional methods, such as extrusion, molding and foaming, in order for their
introduction in the market to be as smooth and cost-efficient as possible [19].

Starch

Starch is the most abundant polysaccharide reserve in plants, therefore representing a renewable,
biodegradable and readily available basis for polymer development. In fact, starch can be extracted from
cereals, tubers, grains and even nuts, with its main commercial sources coming down to corn, potato
and tapioca [20].

Even though starch polymers from different sources will exhibit different properties, starch is hardly
used in its native state, as it is generally brittle, absorbs moisture and is difficult to process. Its properties
can be improved through the addition of plasticisers (e.g. sorbitol and glycerine) or through blending with
a range of other polymers (e.g. PE, PHA, PLA), even though sometimes compromising its biodegrad-
ability [16, 21, 22]. The resulting starch-based thermoplastic materials have been successfully applied
on industrial level for foaming, film blowing, injection molding, blow molding and extrusion applications
and used in several industries, such as food, medical and pharmaceutical [20].

Polylactic acid (PLA)

PLA is a biodegradable aliphatic polyester which can be produced from bio-based lactic acid
monomers resulting from the fermentation of renewable resources such as corn, wheat, potato and
sugarcane [23]. Polymerization is achieved through classical chemical synthesis, either by direct
polycondensation or ring-opening polymerization [24].

PLA exhibits mechanical, optical and barrier properties comparable to those of oil-based commodity
polymers, such as polypropylene (PP), PET, and polystyrene (PS). Furthermore, processing of PLA
can now be carried out through most well-established polymer-manufacturing techniques, from injection
molding to film extrusion. Consequently, PLA has potential applications in a wide range of fields, from
biomedical devices and implants to packaging and agricultural industries [25].

Although it may take several years for PLA to completely disappear in a natural environment, it
is recyclable and quickly biodegradable under industrial composting conditions. It is mostly suitable in
cases where plastics become highly contaminated and are difficult to recover through traditional recycling
systems (e.g. food packaging containers, agricultural films). However, suitable infrastructures for sorting,
recycling, and/or composting PLA products at their end of life must still be developed to enable this
biopolymer to perform to its true potential [23, 25].

Polyhydroxyalkanoates (PHA)

Polyhydroxyalkanoates (PHAs) are a family of aliphatic polyesters produced via bacterial metabolic
transformation of sugars or fatty acids, generally plant-based. In native PHA-producing organisms,
they function as intracellular reserves for carbon and energy. They are also easily biodegraded by a
range of bacteria that secrete specific extracellular PHA depolymerases [16, 19]. The most relevant
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polymers belonging to this family are poly(3-hydroxybutyrate) (P(3HB)), poly(3-hydroxybutyrate-co-3-
valerate) (P(3HB-co-3HV)) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)), all
of which are already commercially available [26, 27, 28, 19].

PHA’s characteristics are dependent on the type of carbon source and the microorganisms in-
volved, which determine the composition of the polymer [22]. In fact, by manipulation of the molecular
structure, properties ranging from hard, brittle plastics to soft elastomers can be obtained, using conven-
tional processing techniques [19]. This means they show potential to be used as alternatives for several
traditional polymers and applied to a range of different industries [22].

Polyhydroxyalkanoates will be themain focus of this thesis, meaning that more detailed analysis will
be presented in subsequent sections, namely regarding their properties, bacterial metabolism, production
process and applications.

1.2.2 Market

In 2017, an astounishing amount of 348 million tonnes of plastic were produced globally [2]. On the
same year, the global production of biorelated polymers (bio-based and/or biodegradable) summed up
to a mere total of 2.06 million tonnes, and 2.11 million on the following year. This means that ”bioplastics”
currently account for less than 1% of annual plastic production, worldwide [29].

Figure 1.1: Global production capacity of biorelated polymers (by material type) in 2018. PE (polyehty-
lene), PET (polyethylene terephthalate), PA (polyamide), PP (polypropylene), PEF (polyethylene furanoate),
PTT(polytrimethylene terephthalate), PBAT (polybutylene adipate-co-terephthalate), PBS (polybutylene succinate),
PLA (polylactic acid), PHA (polyhydroxyalkanoate). * currently under development and predicted to be available at
commercial scale in 2023. Source: European Bioplastics, nova-Institute (2018) [29].

Bio-PET (26.6%) and starch blends (18.2%) represent the biggest fraction of the 2.11 million tonnes
of bio-based and biodegradable polymers, respectively, produced in 2018. Although PHAs are still a
minor share of the global production capacity (1.4%), they are the polymer family that is expected to grow
the most over the next five years. In fact, PHAs have been in development for a while and now seem
to be ready to enter the market at commercial scale, with production capacities expected to triplicate
by 2023 compared to 2018, whereas PLA is estimated to almost double its numbers. Furthermore,
biodegradable polymers are expected to grow faster than bio-based. The above mentioned information
can be visualized in Figures 1.1 and 1.2 [30].
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As a whole, the biopolymer industry global capacity is predicted to reach 2.62 million tonnes in
the next five years [29], which is still under 1% of the global plastic production. However, demand for
sustainable products is on the rise and improved materials, processes and applications are emerging
every year, promising a greener future for the plastic industry.

Figure 1.2: Predicted global production capacity of biorelated polymers (by material type) in 2023. PE (polye-
htylene), PET (polyethylene terephthalate), PA (polyamide), PP (polypropylene), PEF (polyethylene furanoate),
PTT(polytrimethylene terephthalate), PBAT (polybutylene adipate-co-terephthalate), PBS (polybutylene succinate),
PLA (polylactic acid), PHA (polyhydroxyalkanoate). Source: European Bioplastics, nova-Institute (2018) [29].

Regarding applications, there is currently a bio-based/biodegradable alternative for almost ev-
ery conventional plastic material and corresponding application [29]. Therefore, these biopolymers are
now used in an increasing number of markets, with packaging taking the lead for both bio-based and
biodegradable plastics, with over 50% of the total market in 2018. One can also clearly see that depend-
ing on the application and properties required, bio-based or biodegradable plastics are preferred. For
instance, biodegradable polymers are mostly used for flexible packaging (e.g. food packaging) and agri-
culture and horticulture (e.g. agricultural films), where biodegradability is preponderant, as mentioned
before. On the other hand, bio-based polymers are used for rigid packaging and more durable products
for the textile, building and automotive industries, which require mechanical properties that are still some-
what difficult to achieve with polymers such as PLA or PHA. Figure 1.3 illustrates the previous statements,
providing data about the different market sectors on which biorelated polymers are succeeding.

Figure 1.3: Bio-based (a) and biodegradable (b) plastics by market segment in 2018. Source: European Bioplastics,
nova-Institute (2018) [29].
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1.3 Polyhydroxyalkanoates Fundamentals

1.3.1 Structure and Properties

It was back in the 1920s when French microbiologist Maurice Lemoigne first came across the
polyester poly(3-hydroxybutyrate), P(3HB), in the form of intracellular granules in Bacillus megaterium
[31]. Nowadays, 3HB is still by far the most commonly observed monomer, although over 150 hydrox-
yalkanoate (HA) monomers and over 300 PHA-producing bacterial species have now been identified
[10].This wide range of possible monomeric compositions, microstructure and molecular weight distribu-
tion grants PHAs the flexibility in material properties that PLA and starch-based plastics lack [31].

Apart from the range of possible polymers and properties, one of themajor advantages of PHA is the
fact that it is industrially compostable, home compostable, soil and marine biodegradable, anaerobically
digestible and biodegrades in wetlands, septic systems and municipal solid waste systems, unlike PLA
which only biodegrades under very specific conditions like industrial composting [19].

Structurally, PHAs can be classified based on the number of carbon atoms in their monomeric units.
Short-chain lenght PHA monomers (SCL), like 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV),
contain between 3 and 5 carbon atoms, whereas medium-chain lenght (MCL), like 3-hydroxyhexanoate
(3HHx), contain up to 14 carbon atoms [32]. Long-chain lenght (LCL) with over 14 carbon atoms, like
3-hydroxyhexadecanoate (3HHD), are less common but have been identified in wild strains [33]. Regard-
less of the monomer type, PHA polymerization is achieved by the formation of an ester bond between
the carboxyl group of one hydroxy fatty acid and the hydroxyl group of the adjacent monomer [16].

Figure 1.4: Chemical structure of themost well-known polyhydroxyalkanoates: homopolymer poly(3-hydroxybutyra-
te) (P(3HB)), copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) and copolymer poly(3-
hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx))

Regarding their monomeric composition, PHAs can be classified as homopolymers or copolymers.
Homopolymers composed solely of SCL monomer units generally have thermoplastic properties, while
those comprehending MCL units generally tend to have elastomeric properties [32]. When copolymers
are introduced, however, the possibilities to develop novel polymers with different physical properties
become almost endless. figure 1.4 illustrates the chemical structure of some of the most relevant PHA
polymers.

P(3HB), for example, exhibits good thermoplastic properties, with a melting temperature of almost
180◦C, a glass transition temperature around 4◦C and mechanical properties close to those of PP [34].
However, it has a highly crystalline structure (55-85%) that makes it stiff and brittle, with an elongation to
break of 5%, in comparison to 400% achieved by conventional PP [10, 31]. In order to overcome this limi-
tation, which makes P(3HB) unsuitable for many applications, different monomers can be incorporated to
form copolymers with improved mechanical properties, as they reduce polymer crystallinity by disturbing
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the crystal lattice. In P(3HB-co-3HV), for instance, increasing the HV content in the copolymers reduces
the melting temperature and crystallinity, while providing toughness and flexibility to the polymer, which
facilitates further chemical or mechanical processing [35, 36]. Furthermore, the introduction of MCL
monomers, like in P(3HB-co-3HHx), causes even further crystal disruption and yields highly amorphous
elastomers for high value-added application, such as surgical sutures, implants, biodegradable matrices
for drug delivery, etc.[10, 37].

The monomeric composition of PHA polymers can be influenced by different factors, such as the
organism producing the PHA polymer, the carbon source on which cells are grown and how that carbon
source is metabolized in the cells, all of which will be discussed further on.

1.3.2 Organisms for PHA Production

Pure Cultures

PHA-producing microorganisms can be found in nearly every conceivable habitat, from hypersaline
ecosystems and marine niches to rhizospheric soil and man-made environments, such as waste water
treatment plants (WWTP) [38]. Some of the most well-studied and industrially exploited species include
Pseudomonas putida, Cupravidus necator, and Alcaligenes latus [37, 39, 40, 41].

Since PHA functions as a carbon storage and energy reserve, its biosynthesis by bacteria usually
takes place when the cell is growing at a slower rate than the one at which it takes up its source of carbon.
The growth limitation can either result from external lack of nutrients (e.g. nitrogen or phosphorus) or
from internal inhibition of an anabolic enzyme [10]. However, there are some bacterial strains, such as
Alcaligenes latus, which do not require any growth limitation in order to store PHA [31].

Currently, industrial PHA production is conducted by bacterial pure culture fermentation using pure
substrates (i.e. glucose), sterile conditions and a fed-batch regime. The general production process
can be summarized in two main steps: firstly, the culture is supplied with growth media; secondly, once
an appropriate cellular density is reached, growth limiting conditions are imposed and PHA storage is
induced [10, 31]. In one of the most successful cases ever reported, this strategy was applied to A.
latus with nitrogen limitation and allowed for cell densities above 100g/L, P(3HB) contents up to 88%
and productivities near 5g/(L.h) [42].

Despite the above mentioned successes, production costs remain too high for this process to re-
place that of petrochemical commodity polymers. These costs are mainly driven by the market price of
pure substrates, the downstream process and the high energy expenditure used in sterilization, aeration
and agitation, all of which are also responsible for a significant environmental impact [43].

Over the past decades, there has been an increasing effort towards developing low-cost alter-
native processes. Strategies have focused, namely, on genetic engineering tools to design improved
PHA-producing strains and on the use of agro-industrial wastes and byproducts as substrates for PHA
production [38]. Even though these low-cost carbon sources have been tried on pure cultures and
good productivities and PHA contents have been demonstrated [44, 45, 46], their fullest potential is
only achieved when combined with mixed microbial cultures (MMC), which will be further discussed [10].
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Genetically Engineered Strains

Engineering of PHA-producing candidates has been used as a tool to optimize their biosynthetic
performance and reduce operation costs in several ways. Firstly, genetic information associated to PHA
accumulation can be transferred from wild-type producers to well-known recombinant organisms, such
as Escherichia coli, whose physiology, biochemistry and genetics have been thoroughly studied. In fact,
since some strains of E. coli utilize lactose, which many PHA-producing organisms like C. necator are
not able to metabolize, recombinant E. coli strains have been designed with the PHA-producing genes
from C.necator to produce PHA using dairy whey as a carbon source, with very high PHA contents
(87%) [47]. While whey is the primary food waste substrate investigated for recombinant E. coli, other
nutrient sources and recombinant strains have been investigated [48, 49]. On the other hand, native
PHA-producing microrganisms can also be engineered to metabolize additional substrates [50]. Both
strategies attempt to tackle the high costs associated with pure substrates [51].

Furthermore, metabolic engineering has allowed for the redirection of substrates towards PHA
production in Pseudomonas putida, by silencing alternative biosynthetic pathways, therefore increasing
the yields of carbon to PHA conversion [52]. The same bacterial strain has also been used as a platform
to produce PHA with specific (3HB) and (3HHx) content and composition, providing a solution to batch
variability in wild-type cultures [51, 53].

Other optimizations have been performed, from reducing downstream costs by facilitating recov-
ery of PHA granules after cell lysis to accelerating cell growth, achieving very high PHA contents and
engineering extremophiles able to grow under open unsterile conditions with high substrate to PHA con-
version efficiency [54, 55]. Future advancements in synthetic biology, genetic and metabolic engineering
will certainly open an array of opportunities for a more efficient, low-cost and environmentally responsi-
ble PHA production [56, 51]. It is worth mentioning, however, that dealing with genetically engineered
strains raises some concerns regarding their disposal into the environment, since these are not naturally-
occurring microorganisms and might, therefore, affect native ecosystems [57].

Mixed Microbial Cultures (MMC)

Another alternative approach to the reduction of PHA production costs is to replace wild-type or
engineered strains with mixed microbial cultures (MMCs). These consortia are microbial populations
operating in open (non-sterile) biological systems to which a selective pressure that favors organisms
with high PHA storage capacity is applied. In other words, the feeding and cultivation conditions imposed
on the bioreactor are such that a bacterial population rich in PHA-producing microorganisms is eventually
obtained. Thus, the ecosystem, rather than a specific microorganism, is engineered [10, 37, 38, 58].

The fact that the process takes place under non-sterile conditions and the potential of MMC to
adapt to a variety of different inexpensive waste streams as carbon sources are the two main factors
behind the cost reduction of producing PHA with MMCs instead of pure cultures [37]. This production
strategy is the starting point of the present thesis and will therefore be discussed in greater detail over
the next chapter, together with the different agro-industrial/domestic feedstocks used, the most common
operating conditions for ecological selection and some notable achievements and applications so far.
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1.3.3 Metabolism

The most common pathway for PHA biosynthesis in pure cultures (e.g. C. necator and A. latus)
begins with carbohydrate catabolic degradation through glycolysis. Under unlimited growth conditions,
the resulting pyruvate is converted to acetyl-CoA, which enters the tricarboxylic acid cycle. However,
when some external or internal limitation to growth is present, acetyl-CoA can serve as a precursor
for the synthesis of hydroxyalkanoate monomers. In the latter case, three enzymes are involved: 3-
ketothiolase catalyzes the condensation of two units of acetyl-CoA into acetoacetyl-CoA; acetoacetyl-
CoA reductase reduces it to (R)-3-hydroxybutyryl-CoA, which is then polymerized as (3HB) into P(3HB),
by PHA synthase [10, 59].

However, the feeding of CH-rich feedstocks in a MMC process, such as starch or cellulose hy-
drolisates, generally results in a culture dominated by glycogen-accumulating organisms (GAOs). There-
fore, volatile fatty acids (VFAs) such as acetic, propionic, butyric and valeric, are generally preferred. Due
to the fact that not much is known about the metabolism for PHA production by MMCs, it is assumed that
it is similar to that reported for pure cultures using the same carbon substrate [59].

Regarding the direct use of VFAs, acetate is converted to acetyl-CoA, then to (R)-3-hydroxybutyryl-
CoA, and finally to PHB, through the same chemical reactions and using the same enzymes as pure cul-
tures. Similarly, propionate is converted to propionyl-CoA, which can then be combined with an acetyl-
CoA molecule to form (R)-3-hydroxyvaleryl-CoA, and finally PHV. This second pathway is analogous
to the one for PHB biosynthesis, with the only difference being that propionyl-CoA replaces one of the
acetyl-CoA molecules [60]. It is worth noticing that propionyl-CoA can also lead to acetyl-CoA via decar-
boxylation, meaning that the presence of acetate is not determinant for PHB synthesis [60]. Butyrate and
valerate, which have a higher number of carbon atoms, can be directly converted to (R)-3-hydroxybutyryl-
CoA and (R)-3-hydroxyvaleryl-CoA, respectively [10]. The above mentioned reactions are summarized
in Figure 1.5.

Figure 1.5: Metabolic pathways involved in polyhydroxyalkanoate (PHA) synthesis from sugars, through glycolysis
(a) and from fatty acids, directly (b). Adapted from [10].

Longer-chain fatty acids can be broken down by β-oxidation, which acts in a cyclic manner, re-
moving a two-carbon acetyl-CoA group from the fatty acyl chain each cycle. [61] Apart from acetyl-CoA,
which, as mentioned above, is one of the main building blocks for PHB synthesis, the different intermedi-
ates in the cycle may also be converted to the corresponding (R)-3-hydroxyacyl-CoA and, subsequently,
originate mcl-PHA (or scl-PHA once the fatty acyl chain is short enough) [59]. Reversely, the de novo
synthesis pathway builds up fatty acids from acetyl-CoA by adding a new acetyl-CoA group in each cy-

9



cle and also provides intermediates suitable for conversion into (R)-3-hydroxyacyl-CoA monomers (see
Figure 1.6 [61].
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Figure 1.6: Metabolic pathways involved in polyhydroxyalkanoate (PHA) synthesis using intermediates from β-
oxidation (a) and from de novo synthesis (b) as precursors. Adapted from [61].

However, when a mixture of VFAs - and not a single substrate - is used, intracellular regulation of
PHA synthesis is significantly more complex, since not one but several of the above mentioned path-
ways are activated [62]. Many experiments have attempted to provide a correlation between the profile
of VFAs in the feed stream and the polymer final composition, and some metabolic models have even
been developed [62, 63]. For example, the balance of (3HB) and (3HV) in the PHA copolymer can be
influenced by even versus odd number of carbon atoms in the VFA feed [64]. Takabatake et al. achieved
increasing molar ratios of (3HV) in a P(3HB-co-HV) copolymer, from 3% to 84%, when the propionate
fraction in a mixture of propionate and acetate was increased from 0% to 100% [65]. Furthermore, Albu-
querque et.al studied mixtures of acetate, propionate, butyrate and valerate in fractions of 30/20/30/20
and 60/15/20/05 and obtained P(3HB-co-HV) copolymers with around 70:30 and 85:15 HB:HV ratio,
respectively [66].

1.3.4 Applications

Over the last decade, PHAs have witnessed a significant development at the industrial and com-
mercial level, thanks to a number of emerging partnerships and collaborations between the top players
in the market [67]. Danimer Scientific [28], for example, acquired the patented PHA technology from
Procter & Gamble in 2007 [68] and is also collaborating with the University of Georgia since 2015 [69],
strongly focusing on innovations through extensive R&D activities. In 2018, its Nodax-brand polyhydrox-
yalkanoate biopolymer was used to create the first fully biodegradable plastic straw [70] and is currently
working with PepsiCo to develop a chip bag made of the same polymer [71].

These latest advances in PHA production at a large scale have opened up countless opportunities
regarding their applications. Nowadays, PHAs aim to replace conventional fuel-based polymers in a
variety of fields. Regarding packaging and coating applications, PHAs can be used to produce a variety
of products, including shopping bags, collection bags for solid wastes, single-use containers for hygiene
and cosmetic products, agricultural films, bottles, cups and materials for food packaging [72]. These
applications fundamentally overlap those of biodegradable plastics mentioned in Section 1.2.2.

On the other hand, there is another unique and appealing characteristic associated to PHAs: their
biocompatibility. The 3-hydroxyacids which compose the polymer are naturally found in animals and
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it has already been shown that they do not produce toxic or immunological responses in the human
body. This has made them suitable candidates for the development of implants, sutures and scaffolds
for tissue engineering and tissue repair [73]. A number of promising studies have been reported, showing
the potential of PHAs to outperform other polymeric materials as three-dimensional scaffolds to support
cell growth for tissue engineering of blood vessels, heart valves, bone [74], cartilage [75], nerve and skin.
Furthermore, different copolymers have been used to develop materials for wound management, such
as sutures, implants, stents, patches and pins [76].

Also making use of both biodegradability and biocompatibility, the pharmaceutical sector is working
on the development of micro and nanospheres of PHA that can be utilized as as delivery systems for
hydrophobic drugs. The principle is that the active compound is released once the polymer coating
starts to degrade [77]. The hydrophobic nature of PHA can be modified to encapsulate hydrophilic drugs.
Furthermore, PHAs in the form of nano-beads have been used together with proteins that intrinsically bind
to the PHA granules to immobilize recombinant proteins of interest and design functional nanocarriers
for a wide range of applications, such as drug screening and diagnostic tools [78].

Apart from the above mentioned applications, PHAs show promise in endless other fields: as
biofuels, raw materials for the production of paints, fiber materials, paper waterproof coatings, among
others [79]. However, for many of these opportunities to become reality, the high costs associated to
PHA production must be tackled. In this context, production with MMCs will now be introduced.

1.4 Production of Polyhydroxyalkanoates with Mixed Microbial
Cultures

1.4.1 Substrates

Over the last two decades, numerous studies have focused on producing PHA using waste carbon
sources from the agro-food and industrial sectors, as well as from urban waste treatment plants. Apart
from decreasing the production costs, using waste streams as substrates also adds the advantage of
significantly reducing their polluting load [10].

These complex feedstocks are characterized by having a high organic fraction and comprise,
among others, cheese whey effluents, fruit and vegetable solid wastes, olive oil mill wastewater, crude
glycerol and the organic fraction of municipal solid waste leachate. Lignocellulosic materials (e.g. wood,
agricultural, or forestry wastes) are available in the highest quantity. Lately, there has been an increas-
ing worldwide effort to create biorefinery plants where lignocellulosic wastes can be converted to starting
materials not only for production of biopolymers but also of bioethanol and a range of fine chemicals [80,
81, 82]. To avoid the logistics for collection and transportation of these feedstocks, these facilities are,
preferably, integrated into existing production lines [38].

Another factor to be considered is the availability of the waste stream throughout the year. In
Europe and North America, surplus whey from the dairy industry is continuously available in large quan-
tities, whereas in other parts of the world, the availability of lignocellulosic materials is compromised
when no harvest takes place (off-season). Therefore, storage strategies are necessary, usually with the
conversion of perishable components into stable intermediates, like lactic acid. Lastly, the substrate’s
composition should have minimal variability in order to ensure that the final quality and characteristics of
the polymer are uniform and reproducible [81].
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1.4.2 3-Stage Production Process

Processes for PHA production involving MMCs are commonly operated in three-stages, compris-
ing: (1) an acidogenic fermentation of the organic carbon substrate to produce VFAs, which are used
as precursors for PHA biosynthesis; (2) a culture selection stage, where the culture is enriched with
PHA-producing organisms by applying a selective pressure method for PHA storage; and (3) a PHA
accumulation stage where the selected culture is fed with an excess of VFAs in order to exploit its PHA
storage capacity to its maximum [83]. Figure 1.7 summarizes the typical process layout.

Figure 1.7: Schematic representation of the 3-stage process for PHA production with mixed microbial cultures. The
dashed lines indicate sludge displacement and the solid lines refer to the movement of the VFA-rich mixture. SBR
stands for Selection Batch Reactor. Adapted from [10]

Acidogenic Fermentation

Anaerobic digestion (AD) has been used for the treatment of a wide variety of organic waste streams
for decades now, as it allows for the conversion of complex organic matter into simple carbon compounds,
such as carbon dioxide and methane [84, 85]. This conversion is usually carried out by a consortium
of both facultative and strict anaerobic microorganisms, through a sequence of biochemical processes.
The first step is an enzymatic hydrolysis, in which initial proteins and polysaccharides are broken down
to monomeric sugars, amino acids, long chain fatty acids and alcohols. Acidogenic bacteria are then
capable of carrying out the fermentation of these simple organic compounds, which leads to the produc-
tion of volatile fatty acids, hydrogen and carbon dioxide, in a step called acidogenesis. These products
can, however, be further oxidized to acetate, hydrogen, and carbon dioxide, which is known as acetoge-
nesis. Lastly, a consortium of methanogenic bacteria are responsible for producing methane, either by
decarboxylation of acetate or by reduction of H2/CO2 [86].

The VFAs commonly used for PHA production with MMC can, therefore, be produced from the
acidogenic fermentation of organic waste streams [87]. Hydrolysis may or may not take place, depending
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on the type of substrate. It is preponderant, however, that methanogenesis - and often acetogenesis -
are prevented, since it is the intermediate byproducts that are of interest in this case. This can be done
by selecting specific operating conditions that inhibit the activity of methanogenic and/or acetogenic
microorganisms, such as low solids retention time (SRT), low temperature, low pH, or a combination of
these different approaches [10].

This fermentation is often the first step in the production process of PHA with MMCs. Manipulat-
ing the operating conditions of the corresponding bioreactor can lead to a variety of VFA profiles and
concentrations from the same original waste stream, which in turn can originate polymers with different
monomer composition, as was just mentioned in the previous section [88]. The different parameters that
can be tuned in order to achieve a specific VFA composition include hydraulic retention time (HRT), SRT,
pH, temperature, organic loading rate (OLR) and reactor configuration [10]. For example, the concen-
tration of propionate was found to increase with both pH (within an acidic range) and HRT for paper mill
and cheese whey effluents [89], while butyrate and valerate were preferably produced at lower pH when
using sugarcane molasses [90].

Lastly, it is important to mention that when the organic waste stream chosen as carbon source for
PHA production is alreadymainly composed of VFAs, this first acidogenic step is unnecessary. Examples
of such wastes include, for example, methanol in pulp and paper mill foul condensate or a mixture of
ethanol, glycerol, esters and fatty acids in biodiesel wastewater [91]. In these cases, the substrate is
directly used for both MMC selection and accumulation stages, which will now be approached.

Selection

Asmentioned in Section 1.3.2, if MMCs are to be used for PHA production, a selective pressuremust
be applied so that the culture is enriched with PHA-storing organisms. The presence of microorganisms
with low storage capacities would affect both the productivity of the process and the downstream stage,
increasing final production costs. [10] It is important to emphasize that the aim of this step is to achieve
a population with high and stable storage capacity, rather than to maximize the PHA cell content [59].
Indeed, the latter is achieved during the final accumulation step, which will be approached in the following
section.

The selection usually takes place in a selection batch reactor (SBR) which operates in aerobic
conditions and is fed with the VFA-rich stream produced during the acidogenic fermentation. Generally,
this reactor is operated under short periods of carbon substrate abundance (feast phase), alternated
with rather long periods of carbon unavailability (famine phase). During the latter phase, PHA-producing
microorganisms are able to use their internal carbon reserves and external nitrogen for growth and main-
tenance, whereas organisms with no storage capacity are unable to do so and will, eventually, be elimi-
nated from the reactor [92]. This type of enrichment technique is commonly known as Aerobic Dynamic
Feeding (ADF) and generally allows for the selection of cultures highly enriched in PHA-storing organ-
isms [93].

Moreover, during starvation periods, the activity of cells is reduced to a minimum and the rates of
enzyme synthesis and RNA transcription are significantly decreased [37]. This internal limitation means
that growth is inhibited in the next feast period and cell physiological adaptation is needed to reach
maximum growth rates. Nevertheless, PHA synthase remains active and substrate uptake is, therefore,
mainly driven toward polymer storage during these adaptation phase [93]. This faster response provides
PHA-producing microorganisms with a new competitive advantage [37].
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A different approach for culture enrichment is based on anaerobic/aerobic cycles. In fact, PHA
storage by MMC was first observed in Enhanced Biological Phosphate Removal (EBPR) systems, in
wastewater treatment plants (WWTP), where polyphosphate-accumulating organisms (PAOs) and GAOs
were described to accumulate PHA during the anaerobic phase [94]. These dynamic conditions of oxy-
gen availability follow a similar principle to ADF: the external carbon source is only available during
the anaerobic phase, PAOs and GAOs store it as PHA, while glycogen, a second storage polymer, is
consumed; in the subsequent aerobic stage, when oxygen is available for oxidative phosphorylation,
PHA is used for cell growth, maintenance, and glycogen pool replenishment and a selective advantage
is provided to PHA-producing microorganisms [10]. Although ADF has presented itself as the preferred
approach when only PHA production is intended, there is still potential in optimizing these EBPR systems
for both wastewater treatment and resource recovery [95].

Several operational parameters regulate culture selection in the SBR reactor. One of the key fac-
tors is the feast to famine (F/F) length ratio: the famine phase must be long enough to ensure internal
limitation, otherwise the culture will be better fit to grow when supplied with external carbon source and
will therefore accumulate less PHA, hindering the selective advantage of PHA-producing organisms [96,
92]. A low F/F ratio is usually achieved by implementing low OLR or long cycle lengths. Substrate
concentration in the reactor is another important parameter: substrate uptake and polymer production
rates increase with substrate concentration up to a certain maximum value and after that decrease due
to inhibition by the substrate. This inhibition can extend to the feast phase and, consequently, alter the
pre-established F/F ratio [93].

The SRT also plays an important role. Since the effective specific growth rate of a culture de-
creases with the increase in SRT, keeping this parameter at higher levels is expected to inhibit growth
and, therefore, promote PHA storage. On the other hand, a shorter SRT leads to a stronger weeding
out effect, which favours PHA-producing organisms by enhancing their growth advantage. In fact, con-
tradicting results can be found in the literature [97, 98, 99], suggesting that further studies are required
to understand the effects of SRT on selection processes. Moreover, temperature and pH can also im-
pact the selection performance, although the effects depend mainly on the microbial composition of the
culture and not much can be inferred but that pH is usually kept above 7 [99, 100].

Another important factor is the carbon to nitrogen (C/N) ratio and the corresponding nutrient feeding
strategy. Generally, studies have found that the polymer storage ability of the biomass can be improved
under dynamic conditions with nitrogen deficiency, when compared to a nutrient excess scenario [101,
102]. However, since carbon is preferably directed towards polymer storage instead of growth, this
means that the overall volumetric productivity is compromised. Regading the feeding strategy, nitrogen
can either be fed together with the carbon substrate during the feast period, or it can be uncoupled
and delivered during the famine stage. This latter strategy was proved to select a more efficient PHA
storing culture which does not depend on the F/F ratio. This means that higher OLRs can be applied to
the system, which allows for higher volumetric productivities without compromising the efficiency of the
enrichment step [92, 103].

To sum up, the main goal of the selection stage is to ensure that the MMC is properly enriched
with PHA-producing organisms. Furthermore, since this culture is to be used in the subsequent produc-
tion stage, high cell densities would allow for a more concentrated biomass inoculum. Therefore, the
ultimate goal of the SBR operation is to select microbial cultures capable of high growth rates without
compromising their high storage capacity [96].
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Accumulation

The final step in the 3-stage production process is accumulation and its main goal is to exploit the
culture’s PHA production capacity to its full potential. Thus, the enriched MMC that is obtained after
selection is fed with the VFA-rich stream resulting from acidogenic fermentation, usually in the absence
of nutrients, so that the carbon is mostly channelled towards PHA storage rather than growth [92]. In
fact, biomass yield is generally achieved during the previous selection step and the accumulation’s goal
is mainly to increase the PHA content in this biomass.

This operation is commonly carried out in fed-batch mode, with the carbon substrate being fed
pulse wise. The length of each pulse can be monitored indirectly through dissolved oxygen (DO) mea-
surements: when an external carbon source is available, DO decreases due to substrate consumption
[104]; once the carbon source is depleted, a sudden increase in DO is observed and a new pulse of
substrate is fed to the accumulation reactor. This procedure is repeated until there is no DO response
[83], which is when the culture is believed to have reached its maximum storage capacity. Ideally, no
PHA consumption takes place between pulses and the biomass is exposed to conditions of extended
feast, so to say [64]. It is worth mentioning that several continuous feeding strategies have been studied
and show potential when regarding process scale-up [66, 105, 106, 107].

However, the overall PHA output is still significantly low for MMCs, mostly because of the cell den-
sities attained in the selection phase, and several studies have now been reported on which higher PHA
volumetric productivities were achieved with targeted levels of nutrient limitation, suggesting that it might
be possible to promote growth of the PHA-storing biomass during the accumulation stage without it over-
taking storage response [108, 109]. This is very promising for PHA production using waste feedstocks
as carbon sources, since many fermentable agro-industrial organic wastes are far from nutrient-limiting.

As in the enrichment step, several operational parameters have an impact on PHA accumulation.
The influent substrate concentration is usually that which is fed to the SBR during the feast phase, just like
the pH and temperature tend to be kept at the same values, since the culture is fundamentally the same
[93, 92, 83]. However, it is the success of the selection that influences the outcome of PHA accumulation
the most [64]. A culture with a considerable cell density, enriched with PHA-producing microorganisms
that are well adapted to the carbon feedstock is needed in order for the accumulation stage to be a
success. Table 1.1 summarizes the achievements of some pilot-plant facilities producing PHA through
this 3-stage production process worldwide.

1.4.3 Downstream Process

Because PHAs are intracellular compounds, downstream processing constitutes a considerable
cost factor in the polymer production process, especially when mixed cultures and waste feedstocks
are involved, not only because PHA has to be isolated from a more complex matrix but also because
the polymer is considerably diluted as a result of the low cell densities attained during production with
MMCs. The PHA content in the biomass also affects the efficiency of polymer recovery: generally, less
digesting/extracting agent is needed to retrieve PHA granules from cells with higher polymer content
[115].

Nevertheless, recovery of PHA is a complicated process that normally requires more than a sin-
gle unit operation: firstly, right after the accumulation step takes place, the biomass must be separated
from the broth (e.g. through centrifugation, filtration, sedimentation); afterwards, the biomass can be
pre-treated to promote the permeability of the cells (e.g. by heating, freezing, adding salts) and is then
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Table 1.1: Examples of pilot-scale projects for the production of polyhydroxyalkanoates (PHA) from different waste
feedstocks and their main features. The productivity of the process can be evaluated by the substrate to product
yield and intracellular PHA content (%w/w), although standardization of these parameters is still not fully guaranteed
and, thus, comparison between studies is often not straightforward. * Yield calculated on a COD basis.

Pilot Plant,

Location
Feedstock

Origin of MMC and

Enrichment Strategy

YP/S

(g/g)

PHA

Content (%)

HB:HV Ratio

(%w/w)
Ref.

Nagpur,

India

Pre-fermented milk

and ice cream

processing

wastewater

Activated sludge 0.425* 39-43 - [110]

Eslov,

Sweden

Beet processed

water, 38% in VFA

PHA producing MMC

from pre-fermented

effluent of

Procordia Foods

- 60 85:15 [111]

Brussels

North WWTP,

Belgium

Pre-hydrolyzed

and fermented

WWTP sludge

Sludge under

aerobic feast

famine

0.25-0.38 27-38 66-74:26-34 [112]

Leerwarden

WWTP,

Friesland,

Netherlands

Fermented residuals

from green-house

tomato production

Sludge under

anoxic feast/

aerobic famine

0.30-0.39 34-42 51-58:42:49 [113]

Mars

company,

Veghel,

Netherlands

Fermented

wastewater from a

candy bar factory

Activated sludge

under aerobic feast

famine with inhibitor

of nitrification

0.30 70-76 84:16 [114]

subjected to an extraction process, in which either the non-PHA cellular material or the PHA are solubi-
lized; lastly, PHA is isolated and purified [116].

Regading the extraction step, the most commonly used technique is solvent extraction, given its
simplicity and the high purity it allows for. However, this method makes use of significant amounts of
hazardous solvents and energy, which have a negative impact on both the total production cost and
the environmental footprint of the process, compromising the whole sustainability motivation. Thus,
alternative processes are emerging, from chemical/enzymatic digestion of non-PHA cellular biomass
[117, 118], to extraction with supercritical fluids [119], which have a low toxic nature and cost. Lately,
aqueous-two phase systems have also been described and show promise considering both economical
and environmental factors [120].

Lastly, choosing an extraction method for a particular process must not only account for production
costs and environmental impact but also take into consideration the intended application for the polymer.
For example, if the extracted PHA is to be used for the fabrication of a medical product, high purity rather
than cost is the key factor, whereas if the final product is a single-use disposable item, then high purity
is no longer mandatory and cost will probably take over as the determinant factor [56].
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1.4.4 Challenges and Future Perspectives

PHA production using waste-based feedstocks and enriched mixed cultures is now well established.
Apart from reducing operational costs by not requiring sterile conditions nor costly substrates, MMC-
based processes offer the possibility of using a wide range of waste streams, reducing their pollutant
load and allowing for a possible process integration in current wastewater treatment plants or industrial
facilities. In fact, wastewaster, crude glycerol and whey are gaining attention as potential carbon sources,
given their adequate and constant supply. On the other hand, the combination of two or more feedstocks
could avoid the requirement for additional synthetic nutrient and/or mineral feeding in the process.

The three-stage process has been demonstrated at both laboratory and pilot scale and PHA con-
tents comparable to those of pure culture processes have been demonstrated. However, the low cell
densities and consequent volumetric productivities attained with MMCs are the main bottleneck of the
process, along with some challenges in the cost and environmental impact of the downstream stage. One
potential solution to tackle the cell density issue could be based on the use of membrane bioreactors
(submerged or cell recycling), that allow for an effective retention of biomass inside the reactor. Regard-
ing PHA recovery, there is an urgent call for a large scale integration of novel downstream strategies that
avoid toxic organic solvents, many of which have already been successfully applied in the laboratory,
such as the aqueous two-phase system or enzymatic methods.

Further research is required to understand the effect of key controlling factors in the accumulation
process, such as the characteristics of the selected culture, the feeding strategy (e.g. continuous vs
pulse, nutrient excess vs limitation), and the operational parameters of the reactor (e.g. pH and tem-
perature). In this context, online monitoring techniques are also necessary for process optimization.
Moreover, for the development of polymers with specific chemomechanical properties, the metabolism
of mixed cultures and the way different substrates translate into certain polymer compositions must be
better understood. Only when both the operational conditions and substrate conversion are finely tuned
will the tailored and reproducible synthesis of PHA with MMCs and waste streams become a reality.

Global environmental awareness, continuous efforts in different scientific areas and cooperation
between the academia and industry are needed in order to solve the current challenges and take PHA
production with mixed cultures to an industrial and commercial level.

1.5 Spectroscopy for Monitoring PHA Production

Nowadays, real-time monitoring of bioreactors is considered essential for a reliable and robust
process control and, consequently, for improved efficiency, productivity and reproducibility [121]. For
instance, measurements of cell growth, substrate consumption, and product concentration are of utter
importance in bioprocess operations, such as PHA production. Traditionally, off-line analytical methods
like gas chromatography (GC) and high-performance liquid chromatography (HPLC) are carried out to
obtain such measurements [122]. However, these are destructive, labor-intensive and time-consuming
techniques, meaning the results are usually too late to be of any use for process control [123] Thus, there
has been an increasing effort to develop more efficient monitoring tools.

An ideal sensor for real-time monitoring of bioprocesses should be rapid, sensitive, non-destructive
and robust. Furthermore, the system should preferably generate multi-analyte data, require minimal
sampling, and endure the complex bioreactor environment.
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A possible set of candidates are on-line sensors, such as optical sensors, chemosensors and
biosensors, which have shown improved performance and reliability [124]. However, they are generally
costly, require high-maintenance and provide single-property analysis, limiting their applicability. Spec-
troscopy, on the other hand, has been gaining attention for on-line, in-situ monitoring of bioreactors,
given the recent advances in the development of robust spectrometers, high-quality probes and optical
fibers, and the possibility of coupling with chemometrics tools for process modelling and multi-analyte
quantification [121].

Among the different spectroscopy methods available for monitoring PHA production, vibrational
spectroscopy has received the most attention. In this context, Raman scattering and near-infrared (NIR)
spectroscopy will be approached with greater detail in the subsequent sections, as they represent the
scope of the present thesis.

1.5.1 Raman Spectroscopy

Fundamentals

When electromagnetic radiation interacts with a molecule, the photons can either be absorbed or
scattered. For absorption to take place, the frequency of the incident light must correspond to the energy
gap between the ground state of the molecule and an excited state. Therefore, in absorption techniques,
such as infrared spectroscopy, a wide range of frequencies is directed onto the sample in order to find out
which ones are missing after interaction. On the other hand, scattering-based vibrational spectroscopy,
for which Raman is the best example, does not require the photons to exactly match the energy difference
between a pair of states, but instead, the incident light interacts with the molecule and is scattered from
it. In this case, a single frequency radiation is used and the frequency difference between the incident
and the scattered light is detected [125].

In scattering processes, this interaction between light and matter is translated in a distortion of the
electron cloud around the nuclei that brings the molecule to a so-called ’virtual state’. This ’complex’ is
highly unstable and the energy is quickly released as scattered radiation. If only electron cloud distortion
is induced, light is scattered with the same frequency, since electrons are light and cause unsignificant
frequency changes. Most photons scatter through this elastic phenomenom, known as Rayleigh scat-
tering. However, if nuclear motion is involved, there is energy transfer between the light source and the
molecule and a shift in the frequency of the scattered radiation can be observed. This inelastic scattering
of monochromatic light is known as Raman scattering and is the basis of Raman spectroscopy, since the
frequency shift depends on the chemical bonds of the molecules and can, therefore, provide qualitative
and quantitative information about the samples. However, Raman scattering is considerably less likely
than Rayleigh’s, with an intensity 10−6-10−8 that of the incident light, making this spectroscopy method
an inherently weak process [125].

Figure 1.8 illustrates the Rayleigh scattering phenomenom, along with the two types of Raman
scattering: Stokes and anti-Stokes. A Stokes shift takes place when the molecule is initially in the ground
state and energy is transferred from the incident photon to the molecule, promoting it to a higher energy
state and increasing the wavelength of the former. An anti-Stokes shift, on the other hand, takes place
when the molecule is already in an excited vibrational level due to thermal energy and is brought back to
the ground state after interaction with the electromagnetic radiation. In this case, the photon reaches the
detector with a shorter wavelength than the light source. In the end, Raman spectroscopy measures the
difference between the initial and the final states by subtracting the energy of the scattered photon from
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that of the incident beam. The final vibrational spectra can provide data about the composition, chemical
environment, and structure of a given sample [126].

Figure 1.8: Diagram of the Rayleigh, Stokes and anti-Stokes Raman scattering processes. The lowest energy
vibrational state is represented as m and n represents higher energy levels. Both the incident laser energy (upward
arrows) and the scattered energy (downward arrows) have much larger energies than the energy of a vibration. The
dashed lines indicate the “virtual states.”

In a typical Raman experiment, a laser is used to irradiate the sample with monochromatic radiation.
Different choices of Raman lasers are available, which can be broadly classified into three different
categories depending on their wavelength: ultraviolet (UV) lasers (<360 nm), visible lasers (450-660
nm), and near-infrared (NIR) lasers (785–1064 nm). Apart from the laser, any Raman spectromoter will
have to include a filter to eliminate Rayleigh scattering, so that only Raman scattering is detected [121].

Advantages and Disadvantages

One of the main advantages of Raman spectroscopy is the fact that it can be applied to basically
every type of sample (i.e. solids, liquids, gases, slurries, gels, etc). The method is non-destructive, little
to no sample preparation is needed and an immersion probe can even be used to directly acquire the
spectra (e.g. by inserting the probe inside the bioreactor) [121]. Regarding the information it provides,
Raman spectroscopy can be used for multi-analyte analysis and is best at detecting the symmetric vi-
brations of non-polar groups, since these cause the largest changes in the polarizability of the molecule,
and hence, the greatest scattering, in contrast with IR spectroscopy, which is more appropriate for iden-
tifying assymmetric vibrations of polar groups [126]. In fact, Raman and IR spectroscopy can be seen as
complementary techniques and usually a combination of both is needed in order to get a full view of the
vibrational modes of a molecule. Furthermore, Raman methods are compatible with aqueous solutions,
since the spectra are not sensitive to water, while IR, on the contrary, is strongly limited in such cases
due to the excessive absorptivity of water [127].

The most obvious disadvantage of Raman spectroscopy is the weak signal it provides. This issue
can be tackled by using shorter wavelengths, since Raman scattering intensity varies as the fourth power
of the inverse of the wavelength [127]. However, decreasing the wavelength entails another major prob-
lem in Raman spectroscopy: a high fluorescence background that can easily overcome the weak Raman
signal, rendering the spectra useless. Thus, selection of laser wavelength requires a delicate balance
between maximizing the signal and minimizing fluorescence interference [121]. Nevertheless, signal in-
tensity can also be improved by the laser flux power density. In fact, most modern Raman equipments
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are coupled with microscopy tools, allowing for the delivery of very high power densities to very small
samples [125].

Applications for PHA Production Process

Most studies using Raman as a monitoring tool for PHA production have focused on intracellular
polymer quantification, composition and degree of crystallinity. De Gelder et al. compared the spectra of
PHB-producingC. necator DSM 428 and its PHB-negative mutant DSM 541 during growth and were able
to locate the most prominent contributions of PHB to a bacterial Raman spectrum. In particular, a peak
at around 1734 cm−1 was considered suitable to follow PHB synthesis and consumption during growth.
The intensity of the Raman band was proven to be proportional to PHB concentration and, therefore,
the authors present Raman spectroscopy as a fast and efficient tool with potential for monitoring and
quantifying the intracellular PHB content in biomass [128]. Samek et al. also identified a peak around
the same wavenumber (1736 cm−1) in C. necator H16 and carried out a calibration model that can be
used as a fast and reliable determination of intracellular PHB content, replacing time-consuming GC
analysis [129].

Izumi and Temperini used commercially available copolymers of P(3HB-co-HV) with HV contents
between 0 and 12% and were able to locate several Raman bands for amorphous/crystalline domains
and to quantify the molar fraction of 3HV in the samples through the ratio of the intensity of the bands
at 2938 cm−1/1740 cm−1 and 1354 cm−1/1740 cm−1 for polyester solutions and molten polyester films,
respectively [130]. Similarly, Jost et al. tempered P(3HB-co-HV) samples in order to create different
degrees of crystallinity (0.69-0.86) and developed a model that considers the ratio between the sensi-
tive band at 2999 cm−1 and the internal standard at 1059 cm−1 to estimate this physical parameter.
Furthermore, the study also presented a model for calculation of the 3HV content (0-12%) in copolymer
films using the ratio between the sensitive band at 844 cm−1 and the internal standard at 1101 cm−1

[131]. No models have yet been developed for estimation of 3HV content and degree of crystallinity of
intracellular polymers (still inside the cells).

Apart from estimating PHA content and composition, there is potential for using Raman spec-
troscopy to monitor cell growth. Petrosino reported the development of a preliminary model that follows
the total suspended solids (TSS) and volatile suspended solids (VSS) concentration in an SBR reactor
belonging to a pilot-scale 3-stage process for PHA production [132]. Despite this and the other above-
mentioned successes, the use of Raman spectroscopy for on-line monitoring of bioprocesses is still very
limited, especially for production with MMCs.

1.5.2 Near-Infrared Spectroscopy

Fundamentals

Near-infrared (NIR) spectroscopy is a type of vibrational spectroscopy that employs photon energy
in the wavelength range of 780 to 2,500 nm (wavenumber between 13,000 to 4,000 cm−1) [121, 133].
As in other absorption techniques, it makes use of a polychromatic light source from which the sam-
ple absorbs specific frequencies that correspond to molecular vibrational transitions. With mid-infrared
(MIR) radiation, these transitions are usually from ground level to the lowest excited vibrational state
of a molecule, and they are known as fundamental vibrational transitions, whereas NIR radiation has
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enough energy to bring the molecules to higher excitation levels. This is possible through overtones and
combinations of the different fundamental bands seen in the MIR region, as will now be explained [134].

According to the simple harmonic model (A in Figure 1.9), the absorption or emission of energy
can only occur when it matches the energy gap between any pair of neighboring vibration levels (∆ν=1,
where ν represents the vibrational quantum number). In practice, since most molecules in a sample at
room-temperature normally occupy the lowest energy level, this means that the only significant transition
is from 0 to 1, which corresponds to the above-mentioned fundamental vibrational transition promoted
by MIR radiation. However, this model is not perfectly adequate for describing the vibrational motion
of chemical bonds in the NIR region, due to non-ideal behaviors such as repulsion between electronic
clouds when the atomic nuclei approach andmolecular dissociation when the nuclei are overly displaced.
On the other hand, the anharmonic model (B in Figure 1.9) is more realistic and, while it still applies some
limitations to the possible energy levels of the molecules, it already predicts the occurrence of overtones
(i.e. transitions with ∆ν=2 or higher) and of combination bands between two or more fundamental vi-
brational transitions taking place simultaneously. Moreover, it also predicts that the separation between
two adjacent energy levels decreases with ν. The frequencies of both overtones and combinations are
usually in the NIR region and, despite the higher complexity of the final spectra, these events can usually
be assigned to specific group vibrational frequencies [135, 133].

Figure 1.9: Schematic representation of the harmonic (A) and anharmonic (B) models for the potential energy of a
diatomic molecule. de = equilibrium distance.

For a particular vibrational event to be detected through NIR (or any IR) spectroscopy, it must not
only equal the frequency of the incident light but must also promote a change in the dipole moment of the
molecule, which is why symmetrical streches are NIR inactive [134]. Thus, the intensity of a given NIR
band is dependent on themagnitude of the dipole change during themotion of the atoms in a vibration and
on its degree of anharmocity. Both phenomena are strongly present in the vibration of chemical bonds
between hydrogen and a heavier atom such as carbon, nitrogen or oxygen (i.e. X-H bonds), which are
the basis of most NIR spectroscopic information. The spectra of water, for instance, are characterized by
the presence of strong peaks at 5,200 cm−1 and 7,100 cm−1, which correspond to the combinations and
first overtone, respectively, of the fundamental vibration of the O-H bond. Since most biological samples
comprise X-H bonds, NIR spectroscopy is potentially suitable for measuring most components involved
in bioprocesses [134, 135].
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Advantages and Disadvantages

The bands occurring in the NIR region are between 10–100 times weaker than those obtained with
MIR radiation and, therefore, no sample pretreatment is needed. Furthermore, just like Raman, NIR
spectroscopy is a rapid, non-destructive technique and an immersion probe can also be used for real-
time, in-situ monitoring [135, 121]. It is a flexible tool, with various measurement modes available: diffuse
reflectance (for solids, powders, etc.), transflection (for slurries, semi-solids, liquids, films, emulsions,
etc.) and transmitance (for clean liquids) [135, 136]. NIR spectroscopy can also be considered a multi-
analyte method, since a single measurement can provide information about several different compounds
present in the sample [121].

On the other hand, this non-selectivity can also be a disadvantage, because interferents can often
mask the signals of interest. For instance, since water absorbs strongly in the NIR region, the applicability
of NIR spectroscopy to aqueous solutions is often conditioned. Moreover, the fact that only bonds to
hydrogen produce intense bands in the NIR region may also be a limitation in some situations. Lastly, as
mentioned above, the presence of overtones and combinations makes NIR spectral data complex and
not directly interpretable. It is the development and utilization of the mathematical techniques known as
chemometrics that allows for the extraction of relevant information from the spectra, as will be introduced
in Section 1.5.3. In fact, the recent developments in computation and modelling tools have made NIR
a promising candidate for low-cost and real-time monitoring of bioprocesses, and of PHA production in
particular [121, 137].

Applications for PHA Production Process

NIR spectroscopy has already been proven useful for detection and quantification of PHA and other
relevant elements of the production process. Cruz et al. developed an at-line monitoring strategy based
on NIR technology for the production of P(3HB) byC. necator using waste cooking oil as a substrate. The
models were developed through statistical analysis and provided a connection between NIR spectra and
the biomass, substrate and polymer concentrations in the broth [138]. The NIR predictions were com-
pared with values obtained by offline reference methods and acceptable prediction errors were obtained.
It is worth mentioning that quantification was achieved by selecting the spectral regions that rendered
the models with the smallest error and not by identifying single peaks. Dai et al. carried out a similar
experiment using MMCs and crude glycerol as a substrate. NIR data was used to follow P(3HB) content
and substrate concentration in-situ and satisfactory prediction models were built for both [122].

Furthermore, Zhang et al. (2009) developed and validated a rapid quantification method, based
on NIR spectroscopy, to estimate the concentrations of VFAs and ethanol in the effluent of an anaerobic
H2-producing bioreactor [139]. Besides, the method allowed for further distinction between individual
VFAs. Similarly, Petrosino (2018) proposed a NIR-based approach to monitor the acidogenic reactor of
a pilot-scale PHA production process with MMCs and apple pulp waste as a substrate [132]. A model to
quantify the VFAs produced in the acidogenic fermentation stage was successfully developed, although
a higher number of samples would be needed for full validation.

Overall, NIR techniques for in-situ monitoring have been widely applied to fermentations in the
pharmaceutical industry and to environmental treatment processes [134]x, but there is clearly a lot of work
to be developed in the context of PHA production, with very few papers on the topic to date. However,
the potential of this method is undeniable and further research is needed in order to establish it as an
effective monitoring tool to assist bioreactor control during PHA production processes.
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1.5.3 Chemometrics for Spectral Analysis

Chemometrics is the science of extracting information frommeasurements made on a chemical sys-
tem through the use of mathematical and statistical tools. These measurements can take different forms,
from chromatographic (e.g. HPLC, GC) to physical (e.g. temperature, pressure) and spectroscopic (NIR,
Raman). The resulting data serves as input for the development of empirical or semi-empirical models,
which ultimately aim to make future predictions of the system’s properties based on new measurements.
Chemometrics focuses both on qualitative analysis, by creating classification models, and on quantitative
analysis, through the construction of regression models [140, 141].

Since today’s laboratory instruments produce large amounts of data, chemical systems are typically
multivariate. For spectroscopy, in particular, each wavelength measured constitutes a different variable
and considering that a common spectrometer usually detects hundreds to thousands of wavelengths per
run, this means that mathematics and statistics are preponderant for establishing relationships between
these variables and extracting relevant information from the system [142].

There is a generalized workflow for multivariate analysis (see Figure 1.10). After proper sample
preparation and data acquisition, preprocessing is employed to enhance the signal and reduce the noise
in the data (i.e. anything besides the information of interest). Secondly, a qualitative or quantitative
method is carried out and a preliminarymodel arises. Themain difference between these two approaches
is that a quantitative approach requires data from a well-established analytical tool to use as reference
for calibration. Lastly, internal and external validation are essential to ensure the robustness of the final
model, which may then be used as a prediction tool for the system in question.

Figure 1.10: Multivariate Analysis Workflow for Model Development. PCA - Principal Component Analysis; PLS -
Partial Least Squares.

Mathematical Preprocessing

Mathematical preprocessing is essential in multivariate analysis, since there wil be plenty of variation
in the data that does not constitute analytical information. Thus, this step aims to eliminate unwanted sig-
nals such as fluorescence, detector noise, calibration errors, cosmic rays, laser power fluctuations, sig-
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nals from cell media or glass substrate etc. Furthermore, preprocessing can enhance subtle differences
between different samples [143]. Although it is common for scientists to try out different preprocessing
combinations and assess which one yields the best performance, prior knowledge and understading is
preferable to random trials, to avoid accidentally masking the signal of interest.

For Raman spectra, smoothing is often useful to reduce random noise and improve the visual as-
pect of the spectra, although it might inadvertently remove important information at an early stage. In this
context, Savitzky-Golay (SG) filtering is one of the commonly used smoothing techniques [144]. More-
over, background correction/baseline removal is often carried out to eliminate the effects of broad bands
or low frequency components. This is particularly relevant for Raman spectra with a fluorescence back-
ground and is usually achieved through polynomial fitting methods [145, 146]. Normalization techniques
are also essential to cope with disparities in intensity. The Standard Normal Variate (SNV) normalization
is a simple, but effective procedure for making spectra comparable. In Raman spectra, these intensity
shifts are usually induced by laser fluctuations [145].

The most common preprocessing strategies for NIR spectra come down to spectral normalization
and differentiation. Normalization is achieved through scatter-correction methods, such as the above-
mentioned SNV, which aim to compensate for physical variabilities between samples or path-length
variations. Differentiation, on the other hand, allows for signal enhancement by emphasizing higher fre-
quencies in detriment of lower ones. However, this also leads to accentuated noise, which is why the
Savitzky-Golay algorithm is used to simultaneously smooth the data as it takes the derivative. In some
cases, it might be necessary to apply both types of pretreatment techniques, consecutively, to optimize
the results.

Laslty, mean-centering is always employed, for both Raman and NIR spectra, to ensure that all
results can be interpreted as variation around the mean. Further details regarding the description and
algorithms of the different preprocessing tools mentioned above can be found in Subsection 3.4.1.

Qualitative Analysis: Principal Component Analysis

Qualitative analysis is usually carried out by unsupervised methods, from which Principal Compo-
nent Analysis (PCA) is a good example. These methods dismiss any labelling and attempt to find hidden
structures in the unlabelled data. They are often used as precursors to supervised methods when work-
ing on huge data sets [147] and can help identify outliers within them [141].

PCA is mainly used to visualize and describe the data. The method is based on projecting a mul-
tivariate data matrix (X) onto a low dimensional space, while retaining the most relevant information for
further analysis. It basically reduces a set of variables into a smaller set of orthogonal, and therefore
independent, principal components (PCs) in the directions of maximal variation. Each PC can be repre-
sented as a linear combination of the original variables [147]. Basically, the first PC (PC1) will capture the
maximum variance in the data and only then will the second principal component (PC2) be determined,
representing the largest residual variance along a direction orthogonal to PC1, and so forth. From a
certain PC on, the algorithm will begin to model noise and, therefore, identifying the optimal number of
PCs (k) is crucial for developing a robust model [143].

In the case of spectral data,X will be anm x nmatrix, where them objects are different observations
(spectra) and the n variables are the measurements (e.g. wavenumbers) for each object [147]. PCA will
separate X into a structured part (S), which basically constitutes the PC-model, and a noise part (E),
which measures the lack-of-fit of the model: a smaller E represents a better model [148].
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Two more concepts are relevant in PCA: the scores and the loadings. The scores are the values of
each object in the new coordinate system, i.e. the projections of each object on the different PCs, and the
score matrix T (m x k) constitutes all the scores for all the objects, with the scores of each object making
up a row. The loadings, on the other hand, illustrate the weight or importance of each original variable on
a given PC. The loading matrix P (n x k) consists of the k PCs retained and acts as the transformation
matrix between the original variable coordinate system and the new PC-system. The data matrix X can
be decomposed into the scores and loadings matrices [141, 143].

X = S + E = TPT + E (1.1)

Generally, the data can be adequately described by far fewer factors than the original variables
and hence PCA is highly efficient for qualitative analysis. Intra-sample relationships can be observed
by plotting the scores from different PCs against each other and looking for clustering phenomena. In
fact, these combinations of variables are often more robust indicators of laboratory sample or process
conditions than the original ones individually [140].

Quantitative Analysis: Partial Least Squares Regression

In order to develop a quantitative prediction model, which is the ultimate goal if spectroscopy is to be
used to monitor the PHA production process, supervised regression methods are usually applied. In this
case, two matrices are necessary, one with the reference information Y (e.g. sample concentration) and
the other with the spectra collected, which is basically the previously introduced X matrix. The resulting
regression model will be used to predict Y -values from new measurements of X [143].

Partial Least Squares (PLS), for example, is one of the most common tools used with vibrational
spectroscopy to estimate and quantify the various components within a sample. PLS is an extension
of the PCA method mentioned above, but it carries out its decomposition while looking for a correlation
between theX and Y blocks. In other words, the chosen factors, which in PLS are commonly referred to
as Latent Variables (LVs), must reduce the dimensionality of the overall data space while being predictive
of the information in the dependent block [149]. The result will be a regression matrix that provides the
coefficients for the relationship Y = f(X), which can represent, in the end, the relationship between the
acquired spectra and the concentration of the analyte of interest.

Model Validation

Lastly, validation is essential. If two many factors are included in the model, it will most likely fit
the sampled data perfectly, but will fail to properly predict new data. This phenomenom is called over-
fitting. It is, therefore, important that internal validation is first performed to test the robustness of the
model. Cross-validation is usually used in this context, leaving out part of the data points, building a
model, predicting them back in and doing so repeatedly with different sample sets. Only after ensuring
robustness in this manner can one move from the training phase to the validation phase and introduce
new measurements for prediction. If the model is proven to have a good prediction strength, it can be
used to make future estimations of the property comprised in the Y -block without the need of performing
extensive off-line analyses and based exclusively on the spectral data contained in X [143].
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2 Aims and Objectives

The present thesis was carried out in the Biochemical Engineering (BIOENG) group, in the Faculty
of Sciences and Technology (FCT), Universidade NOVA de Lisboa (UNL), which focuses on develop-
ing both fundamental and applied research in the areas of industrial and environmental biotechnology,
namely on production and characterization of PHAs.

Furthermore, this work is inserted in the GLOPACK project, which is an on-going Horizon 2020-EU
initiative led by the Université de Montpellier and with which the BIOENG group is collaborating. The
project focuses on accelerating the transition to a circular economy concept, through the development
of innovative packaging solutions with no environmental footprint and the ability to extend the shelf life
of food products. The technologies under progress are enabling but simply applicable solutions, such as
the development of biodegradable packaging materials issued from agro-food residues.

Hence, the research was integrated in the context of a pilot-scale PHA production plant, using
MMCs and fruit pulp waste as feedstock. A 3-stage process was established, which is detailed in the
following chapter. In particular, the present thesis aims to follow this pilot-scale production and develop
an at-line monitoring strategy for PHA and biomass quantification during the accumulation stage. Both
Raman and NIR spectroscopies are to be investigated as potential tools for the development of a quan-
titative model, using GC as a reference method.

Thus, the experimental approach is based on the collection of a considerable number of samples
from different accumulation assays for both spectral acquisition and GC analysis, which will allow for the
development of a robust and reliable calibration based on chemometrics tools. Validation with additional
samples is also crutial to ensure the validity of the model. Furthermore, a preliminary qualitative analysis
is of interest, in order to better understand the data.

Ultimately, if their potential is corroborated by this work, spectroscopy tools may be integrated
on-line by means of immersion probes and provide real-time information on the process reactors, thus
replacing most of the time-consuming and labor-intensive analytical techniques currently under use.
This on-line monitoring will facilitate decision-making during production, namely regarding the number
and organic load of the pulses fed during the accumulation.
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3 Materials and Methods

3.1 Experimental Set-up

The experimental set-up is illustrated in Figure 3.1. PHA production was carried out through the 3-
stage process mentioned in the Introduction (Section 1.4.2), which includes an acidogenic fermentation,
followed by the selection and accumulation stages. The set-up and operational parameters of each
corresponding reactor are detailed in the following sections.

Figure 3.1: Experimental set-up of the 3-stage PHA production process. UASB - Upflow Anaerobic Sludge Blanket;
SBR - Selection Batch Reactor; FBR - Fed-Batch Reactor; W - Withdrawal.

It is important to highlight that two different operations of the pilot plant were followed for the present
thesis. The first one took place between April and July 2019 (Operation 1) and the second one in Oc-
tober of the same year (Operation 2). All the reactors were shut down during August and restarted in
September.

3.1.1 Acidogenic Fermentation

A 100-L acrylic Upflow Anaerobic Sludge Blanket (UASB) reactor was used to carry out the acido-
genic fermentation stage, during which apple pulp waste provided by Sumol+Compal S.A. was used to
produce a VFA-rich stream. The feedstock was stored at -20◦C to prevent degradation and the UASB
feed solution was prepared every two or three days in a 500 L refrigerating tank by diluting the apple pulp

29



with tap water down to the desired substrate concentration. The solution was suplemented with ammo-
nium chloride, NH4Cl, and potassium dihydrogen phosphate, KH2PO4, in order to establish a COD:N:P
ratio of 100:0.5:0.1. Furthermore, to maintain granules consistency, cellular structure and activity, cal-
cium as CaCl2, magnesium as MgSO4.7H2O and iron as FeCl3 were also added to the medium.

A mixed microbial culture was used to inoculate the reactor. The culture was obtained from an
anaerobic digestion process for biogas production from the brewery industry (Super Bock Group, S.A.).
Enrichment in acidogenic bacteria was achieved by imposing a low pH-based selective pressure strategy.
The reactor was operated continuously with a working volume of 60L and a recirculation flow of 2.4 L/min.
The fermentate products outlet was located on the upper part of the reactor and the recirculation and
feed streams entered from the bottom and flowed upwards, keeping the biomass granules in suspension.
An OLR of 16 g/(L.day) as chemical oxygen demand (COD) was applied to the reactor during Operation
1, while in Operation 2 this loading rate was increased between 10 and 16 g/(L.day) as COD. The final
VFA-rich stream was filtered for solids removal before being forwarded to the selection and accumulation
reactors.

It should be noted that this reactor was not operated by the author of this thesis and that the
description above simply attempts to provide some notion of the pilot-scale process as a whole, since the
acidogenic fermentation stage will have significant impact on the subsequent selection and accumulation.

3.1.2 Culture Selection

The culture selection was conducted in a SBR with a working volume of 100 L, operating under a
feast and famine regime. The reactor was inoculated with activated sludge from the Mutela WWTP. The
operation was carried out in aerobic conditions and the DO levels were monitored through an immersion
probe (ISM®, Mettler Toledo). Moreover, a mechanical impeller allowed for stirring and further ensured
non-oxygen limiting conditions. There was no control of pH nor temperature, but pH was frequently
measured through pH test paper strips and kept around 8 by addition of sodium bicarbonate.

A computer software (BioCTR 59m) was used to control the different phases of the cycle, which was
kept at 12 hours. The carbon source was fed in the beginning of the cycle and was mostly composed
of the VFA-rich stream provided by the UASB reactor, although synthetic VFA supplementation was
often necessary to adjust the OLR to 75 Cmmol/cycle or the ratios of HB and HV precursors and that
butyric and valeric acids were used for this purpose. It should be noted that in the present thesis, for
supplementation estimations and later polymer characterization, caproate was considered as a precursor
of HB monomers. Together with this carbon source, mineral medium with the following composition
(mg/L) was added to the reactor: FeCl3.6H2O: 12, H3BO3: 1.2, CoCl2.6H2O: 1.2, MnCl2.4H2O: 0.92,
ZnSO4.7H2O: 0.92, Na2MoO4.2H2O: 0.46, CuSO4.5H2O: 0.23, KI: 0.23, ethylenediaminetetraacetic acid
(EDTA): 400, MgSO4.7H2O: 2300 and CaCl2.2H2O: 300. The nutrient supply was uncoupled from the
carbon source and it was performed 2 hours after the beginning of the cycle by feeding ammonium
chloride and potassium phosphate in a typical COD:N:P ratio of 100:6.5:1 [Cmmol:Nmmol:Pmmol].

By the end of each cycle, a biomass purge of 12.5 L was removed, the mixed liquor was allowed to
settle for 1 hour and 37.5 L of supernatant were discarded. The total volume withdrawn with the purge
and after the settling phase was equal to the sum of the volumes added with the carbon, mineral medium
and nutrient supplies. Overall, this translated into an SRT of 4 days and an HRT of 1 day.

The SBR performance was monitored through weekly sampling: 6 samples during the feast phase,
1 sample right before nutrient feeding, as well as 5 min and 15 min after that, and 5 more samples cover-
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ing the rest of the famine phase. All the samples collected were subjected to GC for PHA quantification
and characterization and had their TSS determined for biomass assessment. Furthermore, the samples
from the feast phase were analyzed through HPLC for VFA quantification.

Regarding relevant changes applied to the reactor, it should be noted that the SBR was started-up
on the 21st of December of 2018 but a washout of the culture ocurred around day 178 and the SBR had to
be reinoculated on the 19th of June of 2019. The operation ended on day 43 after this reinoculation. With
respect to Operation 2, the SBR was started-up on the 18th of September of 2019 with and OLR of 75
Cmmol/(L.day), which was increased to 150 Cmmol/(L.day) after a week. A synthetic VFA mixture was
used during this period, with a HB:HV percursors ratio of 60:40 (%w/w). On day 29, it was observed that
considerable levels of ammonia remained at the end of the famine and thus the typical C:N:P ratio was
changed to 100:5:1 [Cmmol:Nmmol:Pmmol]. However, after noticing a significant drop in the biomass,
the ratio was increased to 100:6:1 [Cmmol:Nmmol:Pmmol] on day 34. The experimental studies were
ended on day 40 of this operation.

3.1.3 Accumulation

Once the UASB and SBR operations were stable, accumulation assays were performed. Typically,
two purges withdrawn from the SBR after carbon depletion were collected and placed in a 60L fed-batch
reactor, which was then fed with the VFA-rich stream in a pulse-wise manner under nutrient limitation.
The reactor was aerated and agitated to ensure aerobic conditions and mixing. Similarly to the SBR,
there was no automatic control of pH, although the pH was frequently measured through pH test paper
strips and kept around 8 by addition of sodium bicarbonate. Furthermore, the reactor was kept at room-
temperature.

Each pulse was typically equivalent to the carbon supply of the SBR and was fed to the reactor once
the carbon from the previous pulse was entirely consumed. Carbon depletion was indirectly monitored
through a DO probe (ISM®, Mettler Toledo), as described in Section 1.4.2 [104]. The accumulation
assays were terminated once no significant DO drop was observed after the pulse. Thus, the length of an
accumulation and the number of pulses was not fixed, but varied greatly, depending of the performance
of each assay.

Monitoring of the accumulation reactor was carried out on a weekly basis, in order to assess the
accumulation performance of the selected culture. Hence, samples for GC were collected before and
after each feeding pulse to quantify and characterize intracellular PHA, and three extra samples were
collected between the first and second and the second and third pulses for a more detailed observation
of the accumulation dynamics. Furthermore, the same samples were subjected to HPLC analysis to
determine VFA concentration. Lastly, the samples were used to estimate the TSS at each acquisition
moment.

Apart from the above mentioned routine monitoring for performance evaluation, samples were
collected before each pulse for analysis through Raman and NIR spectroscopy techniques. GC was
used as a reference method for PHA concentration (triplicate measurements) and the corresponding
TSS were further determined for each data point (duplicate measurements). A total of 16 accumulations
were monitored during the first operation of the pilot plant and 13 during the second one. The first
set was exclusively analysed through Raman, whereas the second set was investigated through NIR
spectroscopy.
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3.2 Experimental Procedures

3.2.1 Determination of Suspended Solids

The determination of TSS concentration in the collected samples was carried out according to the
standard procedure described in [150]. Samples were filtered through a pre-weighed standard glass-fiber
filter, which was then placed in an oven at 105 ◦C overnight. Once dried, the increase in filter weight
represented TSS. The sample volume was generally fixed at 5 mL, although a few samples required
smaller volumes of 2, 3 or 4 mL due to higher viscosity. VWR glass-fiber filters with 47 mm in diameter
and a particle retention of 1.2 µm were used and the filtration was performed with a vaccuum filtration
system. The calculation of this parameter was as follows:

TSS =
m2 −m1

V
(3.1)

wherem1 refers to the mass of the empty filter,m2 is the mass after drying at 105 ◦C and V is the volume
of sample subjected to filtration. This method offers an estimation of the amount of matter present in the
accumulation reactor, which roughly relates to its biomass concentration.

3.2.2 PHA Quantification and Characterization

GC was used to quantify the polymer produced during the accumulation assays and to characterize
it in terms of monomer composition. The protocol for sample preparation was adapted from Serafim et
al [101], with slight modifications. Before every accumulation pulse, about 4 mL of mixed liquor were
collected, centrifuged at 11000 rpm for 3 min, frozen with liquid nitrogen and lyophilized overnight in a
Telstar LyoQuest freeze dryer (-51 ◦C, 0.09 mbar). The resulting pellets were weighed (2-7 mg) in 15 mL
test tubes, to which 2 mL of acidic methanol (20% H2SO4) and 2 mL of chloroform were subsequently
added. The chloroform solution comprised heptadecanoate (HD) at around 1 g/L which acted as an
internal standard to improve the accuracy and reproducibility of the method. Tubes were placed in a
digestor for 3.5 hours at 100 ◦C, cooled to room temperature and 2 mL of distilled water were added to
each tube, which was then shaken vigorously for 30 seconds bymeans of a vortex mixer. The two phases
were allowed to separate and the organic phase, which comprised the resulting esterified monomers,
was extracted and placed in GC vials. Molecular sieves were used for absorption of any residual water.

A gas chromatograph (Varian CP-3800 Gas Chromatograph, Bruker), equipped with a Restek col-
umn (60 m, 0,53 mm internal diameter, 1 µm film thickness, Stabilwax) was used for quantification.
Helium was used as carrier gas at a flow rate of 1 mL/min and a constant pressure of 14.50 psi. Each
run lasted 32 minutes and a volume of 2 µL of sample was injected in the equipment. The tempera-
ture started at 40 ◦C and rose at 20 ◦C/min up to 100 ◦C (3 min), followed by a period during which
temperature rose up to 155 ◦C at 3 ◦C/min (18 min and 20 s), encompassing the elution times of the
hydroxyalkanoate monomers. Lastly, temperature was raised up to 220 ◦C, again at 20 ◦C/min (3 min
and 15 s), and kept for 7 more minutes for cleaning.

Calibration standards were made using an Aldrich copolymer of P(3HB-co-3HV) containing 14%
(HV) and 86% (HB) (%(w/w)) with concentrations between 0 and 6.3 g/L. The standards were prepared
in an analogous manner to the samples. Squared correlation coefficients (R2) of 0.987 and 0.994 were
achieved for HB and HV calibration curves, respectively. Since HD was used as an internal standard, the
resulting standard curves reported the concentration of each monomer as a function of the ratio between
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the peak area of the monomer and that of the internal standard. It should be noted that the intercept
of the calibration curve was forced to zero. The PHA concentration of the samples was considered
as the sum of the concentrations of both monomers, whereas the PHA content in the biomass was
calculated by dividing the PHA concentration by the total solids (TS) concentration and, thus, expressed
as a percentage. The reason why TSS were chosen as a measure of cell density is that they would give
the closest estimation of PHA concentration from this PHA content, which is based on TS.

3.2.3 Volatile Fatty Acids Analysis

VFAs - acetic (Ac), propionic (Prop), butyric (But), valeric (Val) and caproic (Cap) acids - were
quantified throughHPLC, as described byWang et al. (2017) [60]. A VWRHitachi Chromaster equipment
with a refractive index detector, a Biorad pre-column (125-0129 30 x 4.6 mm) and Biorad Aminex HPX-
87H column (300x7.8 mm) was used for the analyses. Sulphuric acid, H2SO4 0.01 N, was applied as
eluent at a flow rate of 0.5 mL/min and temperature of 30 ◦C. A calibration curve with standards ranging
between 4-1000 mg/L was used to estimate the concentration of the different organic acids.

3.2.4 Cell Staining and Visualization

Nile blue staining was performed according to Bengtsson et al., 2008 [89] to visualize PHA granules
and confirm that the selected culture was effectively enriched with PHA-accumulating organisms. This
method was also used to follow an accumulation assay qualitatively by observing the increasing size and
number of granules in the biomass. In either case, a drop of Nile blue stain was added to about 1 mL of
sample, which was then placed in a thermostatic bath at 55 ◦C for 15 min. After this incubation period,
the sample was examined under a Olympus BX51 epifluorescence microscope (Japan) at 1000X. With
this method, intracellular PHA granules could be observed as bright orange fluorescence.

3.2.5 Microbial Classification

In order to obtain a phylogenetic analysis of the mixed bacterial communities in the SBR and ac-
cumulation reactor, Fluorescence in situ Hybridization (FISH) was carried out as previously described
by Amann (1995) et al. [151]. Samples were collected from the SBR at the end of the feast phase and
immediately fixed with 4% paraformaldehyde (PFA). The fixation protocol was adapted from Nielsen et
al (2009) [152] and is adequate for Gram-negative bateria. It began with the addition of 1 mL of PFA to
0.5 mL of sample, which was then incubated at 4 ◦C for 3 hours. After the incubation period, samples
were centrifuged at 10000 rpm for 3 min, the supernatant was discarded and the remaining pellet was
washed with 1 mL of phosphate-buffered saline (PBS) and centrifuged again. This washing step was
repeated once more. Finally, the cells were resuspended in 0.5 mL of absolute ethanol at -20 ◦C and
stored at the same temperature until further analysis.

The next step was to prepare the slides for hybridization. Samples were applied to the wells of
specific glass-slides for FISH analysis and placed in an oven at 46 ◦C for 10 min. Once dried, the
samples were dehydrated in a grading series of ethanol solutions at 50%, 80% and 98% (3 minutes in
each solution) and dried under compressed air at the end. Probe hybridization was achieved by firstly
applying 8 µL of an hybridization buffer (2 M NaCl, 10% sodium dodecyl sulphate (SDS), 1 M Tris-HCl,
formamide and miliQ water, pH 8) to each well. The amount of formamide in the buffer was adjusted
based on the concentration required by each specific probe and miliQ water was used to make up a
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final volume of 2 mL. Then, 0.7 µL of EUBMIX (see below) and 0.7 µL of a specific probe were added
to each well. Each slide was placed in a falcon tube containing a moisturising tissue with the remaining
hybridization buffer and incubated in the oven at 46 ◦C for 1.5-3 hours.

The incubation was then followed by a washing step. The washing buffer (2 M NaCl, 10% SDS, 1
M Tris-HCl, 0.5 M EDTA and miliQ water) was prepared in a 50 mL falcon tube and pre-heated to 48 ◦C
in a thermostatic bath. The slides were then place in the buffer tube for 10-15 min, washed with MiliQ
water at 4 ◦C and dried with compressed air. Finally, a few drops of Vectashield mounting media were
added to the dried slides - enough to cover all wells. The slides were visualized using ZEISS Axiocam
506 mono fluorescence microscope, at 1000X.

Regarding the probes used, the above mentioned EUBmix is a fluorescein isothiocyanate (FITC)-
labelled mixture of probes (EUB338 [153], EUB338II, EUB338III [154]) which together encompass most
members of the domain Bacteria and are therefore applied to all wells to visualize the entire bacterial
community and differentiate it from detritus. Furthermore, specific cyanine 3 (Cy3)-labelled probes for
PHA-accumulating bacteria were applied (see Table 3.1). FITC emits in the green wavelength interval,
whereas Cy3 does so in the red wavelength region.

Table 3.1: DNA probes used for targeting polyhyroxyalkanoates (PHA) accumulating genera through fluorescent in
situ hybridization (FISH) analysis.

Probe Name Targeted Genus Reference

PAR651 Paracoccus [155]

Azo644 Azoarcus [156]

THAU832 Thauera [157]

LAMP444 Lampropedia [158]

AMAR839 Amaricoccus [159]

Zra23a Zoogloea [160]

ULB-450 Plasticicumulans [161]

3.3 At-Line Monitoring

3.3.1 Sampling and Acquisition of Raman Spectra

As mentioned above, different accumulation assays were monitored, with samples collected before
every feed pulse. Raman spectra were obtained with a modular spectrometer (Ocean Optics QE65
Pro), coupled with a 785 nm excitation laser (RGBLase LLc, California, USA) that delivered 500mW
to the sample. SpectraSuite® was the software platform used for operating the spectrometer. A total
of 16 accumulation assays were fully monitored through Raman spectroscopy during the first period of
operation of the pilot plant.

A 15 s integration time was applied to all samples. Each spectrum corresponded to a single scan
and quadruplicates were measured every time: twice with the same volume of sample and twice more
after renovating this volume. Furthermore, a dark spectrum was acquired before each sample and used
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as a reference. The spectra X-axis units were defined as Raman shifts, which basically correspond
to the change in wavenumber undergone by the monochromatic light scattered while passing through
the sample. The detector covered a Raman shift range between -62,34 and 2677,68 cm−1 with a 3,69
cm−1/pixel linear dispersion, which in the processed spectrum translated into 1044 data points.

Due to the inherently weak signals obtained in Raman spectroscopy, samples were previously
concentrated by centrifugation. Around 40 mL of each sample were collected and centrifuged at 10000
rpm for 3 min. Most of the supernatant was discarded, while ensuring that enough was kept to resuspend
the biomass. Graduated pipettes were used both for collecting the sample and discarding the supernatant
and thus, the final concentration factor was thoroughly estimated and recorded for later addition to the
model. Once homogeneous, the concentrated sample was placed in a 3 mL glass cuvette, with a 1 cm
optical path length, and its spectrum was acquired. The pretreament was carried out immediately after
collection of the sample from the accumulation reactor and took between 10 to 20 min. The acquisition
of the spectra lasted around 10 additional minutes.

3.3.2 Sampling and Acquisition of Near-Infrared Spectra

Just like for Raman monitoring, samples were collected before each feed pulse and analized with
a Matrix-F Fourier Transform-NIR Spectrometer (Bruker OPTIK GmbH, Ettlingen, Germany), coupled
with a fiber optic probe (Falcata XP 12 NIR, Hellma® Analytics, Müllheim, Germany) with a mechanical
pathlength of 1 mm (total optical path length of 2mm). OPUS (Version 8.2) spectroscopy software was
used to operate the equipment. NIR spectroscopy was carried out during the second operation period
of the pilot plant, on a total of 13 accumulation assays.

Regarding the optical parameters, spectra were acquired in transflectance mode with a resolution
of 16 cm−1, a scanner speed of 40kHz and a preamplification gain of B for the samples and A for the
background. Quadruplicates were measured for every sample and each spectrum further comprised 64
scans in order to obtain an average and reduce noise. The integration time was dependent on the above
mentioned acquisition parameters and was typically around 7 s. Air was used as background and its
spectrum was acquired every day before beginning the monitorization (dried empty probe). Overview
spectra were acquired in the range of 12,000-4,000 cm−1 which, considering a resolution of 16 cm−1,
translated into a total of 999 data points per spectra.

No sample pretreatment was performed before spectral acquisition. Around 50 mL of sample were
collected from the accumulation reactor and placed in a glass beaker under constant agitation, where the
fiber optic probe was directly inserted. The probe was washed with distilled water and ethanol and dried
between each measurement. A total NIR spectral measurement time was between 10 and 20 minutes,
accounting for sample collection, the sequential acquisition of several spectra and the selection of four
consistent ones to be recorded as quadruplicates for every sample.

3.4 Chemometrics

Multivariate data analysis was performed using Matlab version 9.3, R2017b (MathWorks, Natick,
MA, USA) and the PLS Toolbox version 8.2.1 (Eigenvector Research Inc., Wenatchee, WA, USA). The
Raman data matrix included 95 spectra (rows) and 970 Raman shifts (columns), whereas the NIR data
matrix comprised 74 samples (rows) and 999 wavenumbers (columns).
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3.4.1 Data Preprocessing

For Raman spectra, the preprocessing stage comprised spectral truncation between 200 and 2000
cm-1, Savitsky-Golay smoothing, followed by SNV normalization andmean-centering. On the other hand,
different preprocessing strategies were applied during the optimization of the NIR models, including first
and second derivative, SNV normalization and mean-centering and different spectral truncations. A brief
explanation of the fundaments of each mathematical preprocessing tool is presented below [140].

Smoothing is done separately on each row (sample) of the data matrix, by assuming that adjacent
variables contain redundant information which can be averaged to remove high-frequency noise. The
Savitsk-Golay algorithm, in particular, is able to smooth the spectra by successively fitting low-degree
polynomials to windows around each data point. In this case, a filter width of 15 points was applied.

The Standard Normal Variate (SNV) normalization is applied to every spectrum individually. It
calculates the mean and the standard deviation of all the variables for a given sample and then every
data point is subtracted from the mean and divided by the standard deviation. After SNV, each spectrum
will have a mean of 0 and a standard deviation of 1. It should be noted that this implies a zero-order
detrend (subtraction of the individual mean value from each spectrum), which is, however, different from
the mean-centering tool discussed below.

For differentiation, a point-difference first derivative is applied, on which each variable in a sample
is subtracted from its immediate adjacent variable. This subtraction leaves only the part of the signal
which is different between the two variables, and thus decreases baseline signal and enhances higher-
frequency features. The second derivative is calculated by repeating this process. Since differentiation
tends to accentuate noise, the above-mentioned Savitsky-Golay algorithm is simultaneously applied as
the derivative is taken, with a a filter width of 13 points.

Lastly, mean-centering is included in every preprocessing strategy. This technique calculates the
mean of each column and subtracts this from the column. Hence, after mean-centering, each row will
include information how that sample deviates from the average sample in the original data matrix.

3.4.2 Principal Component Analysis

PCA was performed on both Raman and NIR data matrices for data compression and information
extraction. Mathematically, PCA uses an eigenvector decomposition of the covariance of the process
variables. For a given mean-centered data matrix X with m rows and n columns, the covariance matrix
of X is defined as:

cov(X) =
XTX

m− 1
(3.2)

The eigenvectors of this covariance matrix, pi, correspond to the loadings in the following decom-
position of matrix X:

X = t1p
T
1 + t2p

T
2 + t3p

T
1 + ...+ tkp

T
k + E (3.3)

where k is the chosen number of factors or PCs, E is the residual matrix and ti are the scores vectors,
which are basically the projection of X onto the pi. The ti, pi pairs are arranged in descending order
according to the corresponding eigenvalue, λi, which is a measure of the amount of variance captured
by the pair.
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For outlier detection, a 95% confidence limit was established on the scores plots, which can be
calculated by assuming a normal distribution of the scores and applying the student’s t-distribution. Fur-
thermore, the Q lack-of-fit statistic was used to evaluate how each sample conformed to the PCA model:
for a given sample, Q represents the square of the corresponding row of matrix E. Lastly, the Hotelling’s
T2 statistic was employed as a measure of the variation in each sample within the PCA model.

A more detailed explanation of the statistics associated with PCA models can be found in the PLS
Toolbox Chemometrics Tutorial [140].

3.4.3 Partial Least Squares Regression

Of the 74 NIR samples, 4 were excluded as outliers and 57 were used in PLS regression for quan-
titative determination of PHA content (%), PHA concentration (g/L) and TSS concentration (g/L). The
remaining 12 samples were used for test set validation, after performing a full cross-validation and pre-
selecting the calibration model. The PLS toolbox default cross-validation method was applied: venetian
blinds with 8 splits and 1 sample per split. Calibration models were evaluated based on the squared
coefficient of determination (R2), root mean square errors (RMSE) of calibration, and cross-validation
(RMSEC and RMSECV, respectively). The optimal number of LVs was identified as that leading to the
minimal RMSECV and a total of 20 LVs were estimated for each calibration. The final models were cho-
sen based on their root mean square error of prediction (RMSEP). The mathematical expression for the
RMSE is presented below (Equations 3.4).

RMSE =

√√√√ 1

m
.

m∑

i=1

(Y meas
i − Y pred

i )2 (3.4)

where m is the number of samples, Y meas
i are the reference values and Y pred

i are the values predicted
in every situation, calibration, cross-validation or test set prediction.

Regarding the mathematics of the method, PLS attempts to find LVs which maximize the amount
of variation explained in X (e.g. spectra) that is relevant for predicting Y (e.g. reference values). The
SIMPLS algorithmwas applied for the present work, which focuses onmaximizing the covariance of these
two matrices, also through an eigenvector decomposition. For more on SIMPLS-related algorithms, see
de Jong, 2001 [162]. Finally, the same statistical tools were employed to establish confidence limits
within the model.
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4 Results and Discussion

4.1 Overview of Process Performance

The three-stage process described in Chapter 3 was successfully applied to the pilot-plant in two
operational periods. The set-up allowed for culture enrichment in PHA-accumulating organisms and
ultimately enabled the pilot-scale production of a P(3HB-co-HV) copolymer. The focus of this work is
on the accumulation stage, although punctual references to the SBR will be made during this chapter in
order to explain some of the effects observed in the accumulation assays. Tables 4.1 and 4.2 summarize
the most relevant parameters of every accumulation monitored during Operation 1 and 2, respectively.

4.1.1 Production Outcome

Regarding Operation 1, it is worth highlighting that the SBR had to be started-up again after a wash-
out of the culture took place. Since the UASB reactor was stable at the time, all the accumulations used
its VFA-rich outlet stream as feed, although supplementation was often carried out in order to increase its
organic load or adjust the HB:HV ratio. Only two accumulations were monitored before the wash-out and
therefore the bulk of the results of this operation period rely on the assays performed after reinoculating
the SBR. Overall, the percentage of HV in the copolymer varied between 17 and 26 % (% w/w) and PHA
contents up to 78 % (%w/w) were achieved. High cell densities for MMC standards were also obtained,
up to 22 g/L as TSS. The results in terms of PHA storage are comparable to the highest storage capacities
in the literature and the cell densities are considerably higher than those reported so far (see Table 1.1).

Operation 2, on the other hand, overlapped with the start-up of the entire 3-stage process and,
therefore, the UASB reactor was not yet stable when the accumulation assays began. Hence, the first
assays of this operation period used a synthetic VFA mixture as feed, which was changed to the UASB
fermentate outlet as soon as possible. Supplementation was necessary in most of the assays, mainly
to increase the VFA load but also to adjust the HB:HV ratios, as mentioned above. However, the last
two accumulations used the VFA-rich outlet exclusively as feed. It is highlighted that the SBR was fed
with a synthetic VFA mixture during the entire monitorization period, regardless of the type of feed used
for the accumulation assays. The HV content in the copolymer produced was slightly higher than that
of Operation 1, with a range between 22 and 35 %. The two last accumulations were an exception
(see Accumulation 12b and 13b in Table 4.2) since the HV content went up to 52 %. This was probably
the result of not supplementing the fermentate feed, which at the time presented a higher fraction of
HV precursors than expected. Nevertheless, similar PHA contents were obtained during this second
operation, with a maximum of 89 % (%w/w) reported - or 71 % if these last couple of accumulation
assays were to be excluded. However, lower cell densities, of up to 11 g/L, were observed.
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It is worth highlighting the signifcant drop in TSS levels observed on day 33, which was certainly
due to the changes in C:N:P ratio applied to the SBR (100:6.5:1 to 100:5:1) on day 29. It appears that
there was some serious nitrogen limitation after a few cycles, which eventually resulted in a significant
loss of biomass. Although the ratio was increased right after this observation (day 34), the culture was
not able to go back to the initial TSS concentrations during the monitored operation period.

Regarding the dynamics of an accumulation assay, Figure 4.1 below illustrates the typical trends in
terms of PHA production, TSS growth and VFA consumption, and uses accumulation 15a as an example.
It can be noticed that the PHA content increased with VFA consumption during the first pulse and that
VFAs were entirely consumed by the end of the pulse (Figure 4.1 (a)). Regarding the accumulation as a
whole, the PHA production rate was higher during the first few pulses, generally approaching a plateau
by the end of the assay (Figure 4.1 (b)). As was expected, PHA accumulation was accompanied by a
considerable increase in TSS concentration.

(a) PHA content (%) and VFA concentration (gCOD/L)
versus time during the first accumulation pulse.

(b) PHA content (%) and TSS concentration (g/L) versus
number of pulses in an accumulation assay.

Figure 4.1: Typical trends (a) during the first accumulation pulse in terms of PHA content (%) and VFA concentration
(gCOD/L) versus time elapsed since the pulse feeding; (b) throughout the accumulation regarding PHA content (%)
and TSS (g/L). Samples in (b) were collected before every pulse feeding. The data corresponds to an accumulation
carried out on day 43 of Operation 2 using the same feed and purge as that of Accumulation 14a.

It is worth mentioning, however, that a dilution effect was often detected, mostly when no supple-
mentation was carried out and, thus, a bigger volume was fed to the reactor. This dilution sometimes
cancelled the increase in PHA and TSS concentration. Furthermore, a considerable number of accumu-
lation assays in Operation 2 revealed a slight drop in PHA content with the last pulse, insinuating that the
PHA-accumulating organisms might be reaching their storage limit and, eventually, starting to consume
the polymer. A detailed summary of the PHA content and TSS concentration during each accumulation
assay in Operation 2 can be found in Appendix A.

4.1.2 Mixed Microbial Culture Dynamics

In order to ensure the presence of PHA-accumulating microrganisms in the culture and to confirm
the production of intracellular PHA granules, Nile Blue staining was performed on samples collected
during an accumulation assay. Figure 4.2 illustrates the difference in polymer storage between the be-
ginning (Figure 4.2a) and the end (Figure 4.2b) of the accumulation stage. The fact that fluorescence is
considerably stronger in the latter indicates that PHA was, indeed, being stored intracellularly, since Nile
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Blue is known to be specific for PHA granules and the granules emit strong fluorescence when they are
bound to this fluorescent dye.

(a) Before the accumulation assay. (b) After the accumulation assay

Figure 4.2: Fluorescence images of the biomass samples taken from the accumulation reactor on day 30 (Accu-
mulation 8b), at 1000X. Image a) refers to the sample taken before the first pulse and (b) corresponds to the final
accumulation point, taken by the end of the fifth pulse. The images show the PHA granules stained with Nile Blue,
which are enhanced under fluorescent light.

Furthermore, an analysis of the dynamics of the culture was carried out in order to infer if it had
eventually reached a steady state in terms of its bacterial community. Regarding Operation 1, this anal-
ysis relied exclusively on the SBR performance parameters, namely on the F/F ratio and on the PHA
production and VFA consumption rates. These parameters were obtained through weekly monitorings
of the reactor and are summarized in Table 4.3. The significant decrease in the F/F ratio, along with
the increase in both PHA production and VFA consumption rates over time indicate that the culture was
under enrichment in PHA-accumulating microrganisms. Overall, it can be concluded that the bacterial
community was dynamically changing during most of the first operation period, since data regarding the
last week of operation is not available.

Table 4.3: SBR performance parameters during Operation 1: feast/famine ratio, PHA production rate and VFA
consumption rate. The PHA production rate is a global rate, which takes into account the difference in intracellular
PHA between the beginning and the end of the feast phase and divides it by the length of this phase, whereas the
VFA consumption rate was determined based on the slope of the VFA consumption curve during the same period.

Monitoring
Day since

SBR Start-up

Feast/Famine

Ratio

PHA Production

Rate (gCOD.L−1.h−1)

VFA Consumption

Rate (gCOD.L−1.h−1)

1a 8 0.268 1.50 0.70

2a 16 0.064 2.74 5.18

3a 28 0.050 4.11 7.40

4a 35 0.037 7.78 9.30

For the second operation period, on the other hand, FISH was performed on a biomass sample
collected from the SBR on day 6. The culture was screened for PHA-producing bacteria and it was
possible to conclude that the selection process was effective in only a few days. In fact, the bacterial
community was dominated by the genus Azoarcus, with a strong presence of the genera Thauera and
Plasticiumulans and some traces of Amaricoccus and Paracoccus. Figure 4.3 shows some of the corre-
sponding FISH images. With the (FTIC)-labelled EUBmix probes emitting in the green wavelength region
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and the specific (Cy3)-labelled probes emitting in the red one, the targeted PHA-accumulating bacteria
are depicted in orange. No further FISH analyses were carried out after this day and therefore a dynamic
study of the culture was not possible.

(a) Cy3-labelled Azo644 probe (b) Cy3-labelled THAU843 probe (c) Cy3-labelled ULB450 probe

Figure 4.3: FISH images of the biomass samples taken on day 6 of operation of the SBR, at 1000X. The images
show bacteria hybridized with FITC EUBmix probe (green) and Cy3-labelled probes (red): Azo644 (a); THAU832 (b)
and ULB450 (c). An orange coloration is observed where the general and specific probes overlap, corresponding
to the targeted cells.

4.2 Process Monitoring through Raman Spectroscopy

4.2.1 Preliminary Spectral Analysis

To study the possibility of using Raman spectroscopy as a monitoring tool in the production process,
samples were collected before each pulse in several accumulations and pretreated as described in Sub-
section 3.3.1. It was assumed that the VFAs present in the feed were entirely consumed by the time of
each sample collection and, therefore, samples were exclusively analysed in terms of TSS concentration
and PHA content (see procedure in Section 3.2). Given the inherently weak signals which are charac-
teristic of this technique, the pretreatment mostly relied on concentrating the samples before acquisition.
A total of 95 spectra were considered for this study, all of which are depicted in Figure 4.4 (a). Each
spectrum was taken as the average of quadruplicate measurements and a total of 16 accumulations
were comprehended in this data set.

The first thing to notice is that the shape of the spectra is not constant among the different samples,
although it appears to be coherent within a given accumulation and even within a given week. In order
to establish some trend in this variation, the mean spectrum of every accumulation was estimated and is
represented in Figure 4.4 (b). Firstly, there is a clear distinction between accumulations i and ii, hereby
Group 1, and those who took place after reinoculating the SBR, as the former exhibit a wide band around
1400 cm-1 which is non-existent in any of the others (I). Regarding accumulations 1a to 14a, there also
seems to be an obvious division: accumulations 1a to 5a (Group 2) show a plateau within the first 500
cm-1 (II) and then a descending trend along the rest of the spectral range, whereas accumulations 6a to
14a (Group 3) display the same initial elevation but also a clear peak at around 1200 cm-1 (III). It actually
appears that the signal is evolving in terms of this latter peak, which is absent in the first accumulations
and then starts to increase over time, eventually becoming predominant in the spectra.
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(a) Raw spectra of the 95 samples in the data set.
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(b) Mean spectra of every accumulation in the data set.

Figure 4.4: Raw Raman spectra obtained from at-line monitoring of the accumulation bioreactor during Operation
1. (a) refers to all 95 spectra in the data set, while (b) displays the mean spectra of each of the 16 accumulations.
I,II and III indicate the most evident spectral bands, while A, B and C point out some subtle peaks on top of these
major bands which seem transversal to the different accumulations. The region below 200 cm-1 was discarded.

Since there was no relevant change in the operational parameters of the process (e.g. feeding
strategy), nor any proportional trend in the accumulation performance (e.g. PHA content or TSS con-
centration) during this period, one possible explanation for this signal variation might be in the culture’s
dynamics. As was briefly mentioned before, the results gathered in Table 4.3 clearly indicate that the
culture in the SBR was evolving during Operation 1 and thus, there might have been significant changes
in the bacterial community to justify the different spectral shapes detected. In fact, it has been reported
in the literature that Raman spectra can be treated as fingerprints, providing information on the structure
and composition of microbial cells [163]. Unfortunately, as mentioned above, no FISH data is available
on this operation period to validate this hypothesis.

On the other hand, it is interesting to see that despite these broad bands that dominate the spectra,
a few subtle peaks can be identified on top of these bands which are transversal to the different accu-
mulations. By inspecting Figure 4.4 (b) once more, one can see that the first plateau region presents the
same profile throughout the accumulations, up to a Raman Shift of around 800 cm-1 (A). Furthermore,
two subtle peaks between 1100 and 1200 cm-1 can be detected both on top of the major band in Group
3 as on the other groups which lack this band (B). Similarly, two small depressions can be identified
between 1300 and 1500 cm-1, which stand out on top of the characteristic broad band of Group 1 but
are also subtly present in the others (C). This might indicate that the Raman spectra might indeed be
capturing some common structures beyond these most evident global changes.

4.2.2 Preprocessing Strategy

The spectral range was limited from 200 to 2000 cm-1 because the regions outside this interval
showed excessive noise. Nevertheless, and despite the averaging of quadruplicate measurements, a
significant degree of noise can still be detected. Furthermore, the intensity of the signal was highly vari-
able during acquistion, apparently indicating very low reprodutibility among replicate samples or even
consecutive measurements of the sample. This intensity changes might have been caused by laser
power fluctuations, since the equipment was believed to be close to its end-of-life. No fluorescence
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was detected, however, which was expectable since a red (785 nm) excitation laser was used and fluo-
rescence is common with higher frequency lasers. Given these considerations, a simple preprocessing
strategy based on smoothing followed by standard normal variate (SNV) normalization was applied to the
raw spectra, to reduce random noise and compensate for intensity shifts, respectively. Figure 4.5 shows
the visual effects of these preprocessing tools on the spectra. All spectra were further mean-centered
before moving on to the subsequent qualitative analysis. The ultimate goal of the preprocessing stage
is to remove variation within the data that does not relate to the analytical information of interest.
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(a) SNV normalization
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(b)
Savitsky-Golay smoothing + SNV normalization

Figure 4.5: Preprocessed Raman spectra obtained from at-line monitoring of the accumulation bioreactor during
Operation 1. (a) refers to using SNV normalization alone and (b) corresponds to a Savitsky-Golay smoothing step
followed by SNV normalization. Three different groups are identified on (b), based on their spectral shape: Group 1
includes accumulations i and ii, Group 2 refers to accumulations 1a to 5a and Group 3 comprehends accumulations
6a to 14a. Spectra are truncated between 200 and 2000 cm-1.

4.2.3 Principal Component Analysis

In order to extract further information from the spectral data, a PCA was performed. The 970 Raman
Shifts detected by the spectrometer were inserted as variables, along with the 95 spectra as samples.
Through PCA, this high number of variables was successfully reduced to a few factors, which are com-
binations of the original variables and are capable of describing major trends in the data. In fact, two
PCs were enough to capture 98.5 % of the variance in the data. In this decomposition process, three
important data sets arose: the loadings, which describe how each PC relates to the original variables
(Figure 4.6 (a) and (b)), the scores, which represent each sample in the new coordinate system (Figure
4.6 (c)) and the residuals, which include the variance that was not captured in the model (Figure 4.6 (d)).

The scores plot (Figure 4.6 (c)) clearly points out the grouping that was predicted above, with Group
1 scoring very low both on PC1 and PC2, Group 2 with high scores on PC1 and low scores on PC2 and
Group 3 scoring high on PC2 and spreading across PC1. This was expected, since PCA looks for the
greatest amount of variation in the data, which in this case would undoubtedly be the changing shape
of the spectra. In fact, this can be sustained by comparing the loadings plots and the preprocessed
spectra (Figure 4.5 (b)). Figure 4.6 (a), indicates that PC1 takes into account the initial plateau region,
explaining the high scores for Group 2 and the dispersion on Group 3. Furthermore, the band around
1400 cm-1, or in this case the absence of it, seems to have a considerable weight on this PC, explaining
the low scores for Group 1. The loadings of the second PC, on the other hand, indicate that this variable
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Figure 4.6: PCA model on Raman spectra obtained from at-line monitoring of the accumulation bioreactor during
Operation 1. The preprocessing strategy consisted on Savistky-Golay smoothing followed by SNV normalization
and mean-centering. The spectral range was constrained between 200 and 2000 cm-1. The dashed blue lines in (c)
and (d) represent 95% confidence limits.

is mostly influenced by the peak between 1100 and 1200 cm-1, which provides Group 1 and 2 with low
scores and causes further segregation among Group 3.

Figure 4.6 (d) is particularly useful in outlier detection, as it provides a 95% confidence limit. Essen-
tially, there are two types of outliers, those that result in an exceptionally large score and are, therefore,
far from the rest of the samples in the scores plot, and those with a large residual because they do not
match the PCA model well. A plot of Q residuals vs. Hotelling’s T2 statistics gives a compact view of both
residual and score outliers, respectively. In this case, samples belonging to Group 1 have the highest
Hotelling’s T2 values, some of which are simultaneously outside the Q residuals confidence interval. It is
possible to conclude that the model is particularly inadequate for this group of samples, possibly because
the number of data points belonging to this group (14 out of 95) is too low to provide the model with the
necessary robustness.

A more detailed inspection of the scores on PC1 can be carried out on Figure 4.7. Although no
distinction whatsoever is made within Group 1 and 2, it seems like there is a clear trend among the
samples of Group 3, with increasing PC1 scores along each accumulation. This tendency might be due
to a number of factors, from increasing cell density or PHA content to the build-up of feed particles, or
even some subtle changes in the overall structure and composition of the biomass. Nonetheless, this
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shows significant potential that ought to be further explored through a quantitative analysis, such as PLS
regression.

Figure 4.7: PC1 scores from the PCAmodel on Raman spectra obtained from at-line monitoring of the accumulation
bioreactor during Operation 1: PC1 against sample number. The dashed blue line represents a 95% confidence
limit.

Furthermore, the identification of the above-mentioned subtle peaks that are transversal to the
different sample groups reinforces that, provided with a considerable number of samples from each
group, a quantitative model is worth pursuing. In fact, with the right spectral truncation, the grouping
effect might simply be a surmountable complication. Unfortunately, the reference values in terms of PHA
content obtained throughout Operation 1 are not accurate and, therefore, the development of a PLS
model based on them would most likely lead to unreliable results and conclusions.

4.3 Process Monitoring through NIR Spectroscopy

4.3.1 Preliminary Spectral Analysis

As in the previous section, to study the possibility of using NIR spectroscopy to monitor the produc-
tion process, samples were collected before each accumulation pulse. In this case, no pretreatment was
required and the collected samples were directly measured with the NIR spectrometer, since the NIR
signal is significantly stronger than that induced by Raman scattering. A total of 74 spectra were used
as input, all of which are displayed in Figure 4.8 (a). Each of the represented spectra consists of the
average of quadruplicate measurements and a total of 13 accumulations were included in the analysis.

NIR spectra of microbial cultivation broths are generally challenging to analyze given their complex
matrices. In this case, further complexity is added, since the analyte of interest is intracellular. By
inspecting Figure 4.8 (a), two saturation regions can be identified, between 7000-6400 cm-1 and 5100-
4600 cm-1, which correspond to the O-H bond first overtone and combinations, respectively. In fact, it
is often the case with aqueous matrices that most of the relevant regions are overshadowed by water
absorption bands. Furthermore, the increasing baseline shift that can be observed above 8000 cm-1
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is probably the result of light scattering by the particles in suspension, namely biomass [164]. In fact,
suspended solids are known to induce light diffusion, decreasing the intensity of the incident radiation
reaching the detector and thus raising absorption [165]. Figure 4.8 (b) shows the typical trend observed
in the absorption spectra throughout an accumulation assay. The baseline shift becomes very clear,
reinforcing the hypothesis that it results from increasing cell density.

Generally, raw NIR spectra do not provide information in a clear and direct manner, since they
are the result of overlapping absorption bands and the above mentioned light scattering differences.
They must, therefore, go through an appropriate preprocessing strategy before being used to construct
calibrationmodels, so as to enhance their spectral features and enable the extraction of relevant chemical
and physical information.
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(a) Raw NIR spectra of the 74 samples in the data set.
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(b) NIR spectra of the samples from accumulation 3b.

Figure 4.8: Raw NIR spectra obtained from at-line monitoring of the accumulation bioreactor during Operation 2.
(a) refers to all 74 spectra in the data set, while (b) depicts the spectra from all the samples in accumulation 3b to
illustrate the typical trend along an accumulation.

4.3.2 Spectra Acquisition and Preprocessing

As a primary step, only the second derivative spectra were calculated, since this represents one
of the most common preprocessing techniques found in the literature for NIR spectra of biomass sam-
ples and, in particular, of that containing intracellular PHA [138, 122]. In fact, the second derivative is
especially effective in deconvoluting broad overlapping peaks and removing baseline trends.

It was by inspection of these second derivative spectra that it was possible to optimize the acquisi-
tion parameters. Figure 4.9 (a) displays the second derivative of spectra corresponding to a preliminary
test accumulation. These were acquired with a resolution of 8 cm-1 and a scanner velocity of 10kHz,
which clearly led to a severe degree of noise. In contrast, Figure 4.9 (b), includes spectra obtained with
new and optimized acquisition parameters: noise was decreased at the cost of resolution, which was
changed to 16 cm-1, whereas the scanner velocity was increased to 40kHz, to compensate for some
interferences arising from sample agitation.
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(a) Resolution of 8 cm-1 and scanner velocity of 10kHz.
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(b) Resolution of 16 cm-1 and scanner velocity of 40kHz.

Figure 4.9: Second derivative NIR spectra from at-line monitoring of the accumulation bioreactor during Operation
2, obtained with different acquisition parameters.

The second-order derivative is also characterized by a negative band with minimum at the same
wavelength as the maximum on the original spectrum. For this reason, the differentiated spectra were
used to carry out a detailed analysis of the NIR signal and to identify the various functional groups
responsible for each of the absorption bands. Figure 4.10 portraits the second derivative spectra, on
which each spectral region is properly identified with the corresponding overtone or combination.
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Figure 4.10: Second derivative NIR spectra from at-line monitoring of the accumulation bioreactor during Operation
2 and absorption bands of relevant functional groups in the NIR region. Red indicates the O-H stretching absorption
bands and orange refers to the C-H stretching absorption regions. Adapted from [166]
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The combinations and first overtone of water (O-H stretching) are very easily identified, with a
strong positive peak followed by a major negative peak around 5,100 and 7,000 cm-1, respectively. This
was expected, since these regions were already prominent in the raw spectra. However, it is interesting
to see that a pair of very subtle positive and negative peaks seems to be present around 10,500 cm-1,
which might correspond to the second O-H overtone. Regarding the functional groups of interest, these
mostly come down to aliphatic hydrocarbons, since the effects of any carboxylic or amine groups are
completely masked by water absorption bands. Thus, only three more spectral regions were identified:
the C-H stretching combinations (4,500-4,100 cm-1), its first overtone (6,150-5,500 cm-1) and second
overtone (9,100-7,800 cm-1). All three of these intervals comprehend fine peaks with variable intensity,
indicating that they might contain useful chemical information regarding the intracellular PHA polymer.

4.3.3 Principal Component Analysis

Just like for Raman spectra, a PCAwas performed for better data visualization and before moving on
to a more quantitative sort of analysis. Primarily, only the second derivative was used as preprocessing
and the whole spectral region was investigated, since the goal was to get a broad notion of data trends,
sample relationships and variable influence. Again, all samples were further mean-centered.
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(c) Scores plot: PC2 against PC1.
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Figure 4.11: PCA model on 2nd derivative NIR spectra obtained from the accumulation reactor during Operation 2.
The dashed blue line represents a 95% confidence limit.

In this case, two PCs were able to account for 99.04% of the variance in the data. Figure 4.11
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exhibits the most relevant plots of the PCA model, including the loadings of both PC1 (a) and PC2
(b), the scores plot (c) and the Q residuals vs Hotelling T2 plot (d). The scores plot reveals that the first
accumulations (1b to 8b), which correspond to the period of higher cell densities prior to changing the C:N
ratio, group on the first and fourth quadrants, with positive scores on PC1. The remaining accumulations
(9b to 13b), comprehending lower cell densities, score negatively on PC1 and seem to spread somewhat
randomly across the second and third quadrants, mostly due to the scores on PC2. In fact, from this
second set of accumulations, only the samples of accumulation 10b group together, in clear contrast to
those of accumulations 12b and 13b, which are particularly scattered.

Figure 4.11 (d) shows that accumulations 12b and 13b perform badly in terms of the Hotelling
T2 and Q residuals, respectively, further emphasizing their lack of fit in the PCA model. It should be
highlighted that these two assays were the only ones in the data set which made use of real fermentate
solely, thus implying higher feed volumes and, consequently, more accentuated changes in the mixed
liquor matrix. It is possibly the case that not enough comparable samples were introduced to the model
and, thus, it lacks robustness regarding accumulations with non-supplemented feed.

Regarding the model loadings, depicted in Figure 4.11 (a) and (b), it is clear that they strongly relate
to the second derivative spectra and are both dominated by the water absorption peaks, with some subtle
influence of the C-H regions. This validates that the model is indirectly focusing on biomass variation. In
fact, the water peaks might serve as an indirect meaure for biomass, since the higher the cell density of
the sample, the lower the water absorption will be.
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Figure 4.12: PC1 scores from the PCA model on NIR spectra obtained from at-line monitoring of the accumulation
bioreactor during Operation 2: PC1 against sample number. The dashed blue line represents a 95% confidence
limit.

A closer look at the scores across PC1 can be taken on Figure 4.12. Apart from the previously
mentioned segregation between high and low cell densities, it is now possible to detect some trend among
each of the accumulations. In fact, it seems to be the general case that samples increase their PC1 score
along the accumulations, stressing out, oncemore, the hypothesis that the data is mostly being compared
in terms of its biomass concentration. It is worth noticing, however, that accumulation 12b and 13b cover
a considerable range across PC1, with the latter reaching positive PC1 scores, comparable to those of
the first accumulations. It is believed that this is not because of a significant cell density increase, which
is not supported by the analytical data, but because of a considerable change in the coloration of the
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mixed liquor. Indeed, the feed exhibited a very dark color as a result of pH ajustment, and considering
the feed volume and the number of pulses, it inevitably led to the gradual blackening of the mixed liquor.
It is admitted that the darker the sample the higher the absorption, making it comparable with high cell
density samples. Sample 13b-1 was considered an outlier, since no justification was found for its overly
high PC1 score and its Q residual had previously been found above the confidence limit.

Before moving on to the subsequent quantitative model development, the PCA results were further
used to decide on which accumulation assays to leave out as an external validation set. It was determined
that two assays would be excluded, one corresponding to the first period with high cell densities and the
other to the latter period after biomass concentration dropped. Based on the scores plot, accumulations
5b and 10b were chosen for this purpose.

4.3.4 Partial Least Squares Regression

PLS is an extension of the PCA method. While PCA extracts factors (PCs) describing the greatest
amount of variance in the predictor (X) variables, PLS attempts to find factors (LVs) that both capture
variance and achieve correlation with the predicted (Y) variables. In other words, during PLS regression,
the spectral information is compared with analytical reference values, so that changes in both data point
structures are recognized and correlated.

Given that one of the most useful decision tools for process monitoring is the knowledge of real-time
PHA content in the biomass, two different strategies were considered for the development of a quanti-
tative PLS model. The first option was to build a model capable of directly predicting the PHA content
(%), whereas the second option was based on building two separate models, one for TSS concentration
(g/L) and another for PHA concentration (g/L), and combining these two to obtain PHA content values.
These three sets of reference data can be found in Appendix A and each was applied independently
in the model development stage. The quality of this reference data is of central importance, since poor
chemometric models often result from insufficient accuracy of the reference technique.

Preliminary Model Development

Following the PCA model, a first PLS model for PHA concentration (g/L) was built, under the same
preprocessing conditions: second derivative and mean-centering were applied and the whole spectral
region was used. The only difference relied on the removal of accumulations 5b and 10b, along with
a few extra samples, from the calibration set. Data points 12b-0 and 12b-1 were considered outliers,
based on their unusal scores on the previous PCA model, and so was the previously mentioned sample
13b-1. On the other hand, sample 4b-4 was excluded based on its extremely high PHA concentration,
which placed it very far from the other data points. Lastly, sample 13b-0 was also removed, after noticing
that this led to a better fitted model. Hence, a total of 57 data points composed the calibration spectral
data block. The following model mostly aims to exemplify the several steps and strategies applied during
the development of a PLS regression model. The most relevant plots are illustrated in Figure 4.13.

After selecting the spectral data set and the preprocessing method, the selection of the appropriate
number of factors follows. Too few factors will lead to a poor explanation of the changes and correlations
in the data, while too many may lead to an ”overfitting” scenario, in which the model ends up accounting
for the smallest changes in the data set (e.g. spectral noise). The optimal number of LVs was determined
based on the minimum of the RMSECV. Thus, it should be highlighted that before moving on to a test set
validation, the calibration models were validated with the PLS toolbox default cross-validation method

53



(venetian blinds with 8 splits and 1 sample per split). Figure 4.13 (c) shows that the minimal RMSECV
was obtained at 12 LVs, which was then chosen as the optimal number of LVs. This was also the number
of LVs that yielded the highest cross-validation coefficient of determination (R2 CV), as depicted in Figure
4.13 (d).

With 12 LVs, the model was able to capture 99.98% and 98.86% of the X-block and Y-block vari-
ance, respectively. It also presented a RMSEC of 0.147 g/L and a calibration R2 of 0.989. Despite
these promising calibration parameters, the low cross-validation R2 value of 0.616 and the substantial
RMSECV of 0.8660 g/L obtained imply that the present model has a poor prediction capacity and is not
able to extract the relevant information from the spectral data. This is evidentiated by Figure 4.13 (a),
which shows the discrepancy between the slope of the fitted curve and the ideal slope of 1, as well as
the scattering of the data points around this curve. However, there do not seem to be any strong outliers,
judging by Figure 4.13 (b), and thus no further samples were excluded from the data set.

0 1 2 3 4 5 6 7
Y Measured [PHA (g/L)]

-1

0

1

2

3

4

5

6

Y 
Pr

ed
ic

te
d 

th
ro

ug
h 

C
V 

[P
H

A 
(g

/L
)]

Fit
1:1
 4
 5
 6
 7
 9
10
11
12
14
15
16

1b
2b
3b
4b
6b
7b
8b
9b
11b
12b
13b

(a) Predicted against measured PHA concentration (g/L).

0 0.2 0.4 0.6 0.8 1
Hotelling T^2 Reduced (99.98%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q
 R

es
id

ua
ls

 R
ed

uc
ed

 (0
.0

2%
)

(b) Reduced Q residuals against reduced Hotelling T2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Latent Variable Number

0

0.2

0.4

0.6

0.8

1

1.2

R
M

SE
C

V,
 R

M
SE

C
 [P

H
A 

(g
/L

)] RMSECV PHA (g/L)
RMSEC PHA (g/L)

(c) RMSEC and RMSECV against LV number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Latent Variable Number

0.2

0.4

0.6

0.8

1

C
V 

R
 , 

C
al

 R
  [

PH
A 

(g
/L

)]

CV R2 PHA (g/L)
Cal R2 PHA (g/L)

(d) Calibration and cross-validation R2 vs LV number.

Figure 4.13: PLS model calibration results for PHA concentration (g/L) based on the 2nd derivative NIR spectra of
57 samples collected from the accumulation bioreactor during Operation 2. Preprocessing was based on second
derivatization and mean-centering. An optimal LV of 12 was chosen, capturing 99.98% of X-block variance and
98.86 of Y-block variance. The dashed blue line represents a 95% confidence limit.

The results suggest that further optimization should be seeked, since the prediction performance of
the present model is far from satisfactory. The same was noted for the preliminary models for TSS con-
centration and PHA content, and thus the following section will focus on exploring different optimization
strategies for each of the models.
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Model Optimization

The first step towards model optimization was to introduce and explore new preprocessing options,
looking to enhance the spectral signal. Considering the preprocessing techniques mentioned in Sub-
section 1.5.3 and their corresponding effects, five different methods were studied: SNV, first derivative,
second derivative, first derivative followed by SNV and second derivative followed by SNV.

These preprocessing strategies were further combined with spectral truncation. In fact, the selec-
tion of spectral ranges is often of central importance, since the absorption bands of interfering compo-
nents, for instance, will be accounted for by the PLS algorithm, deteriorating the quality of the model and
its subsequent results. Four different spectral truncations were specifically selected for the TSS concen-
tration model and for the PHA content and PHA concentration models. Hence, by combining both the
preprocessing options and the spectral ranges, a total of 20 models were developed and evaluated for
each predicted variable.

Regarding the models for PHA prediction, both content and concentration, the four spectral ranges
selected include the whole spectrum, the C-H stretching first overtone (6150-5500 cm-1), the first and
second overtones simultaneously (6150-5500 cm-1+9100-7800 cm-1) and, lastly, both overtones together
with the combinations region (6150-5500 cm-1+9100-7800 cm-1+4500-4100 cm-1). Tables 4.4 and 4.5
summarize the most relevant details of all the models developed for PHA concentration and content,
respectively. Each model was mainly evaluated in terms of the following parameters: RMSEC, RMSECV,
calibration R2 and cross-validation R2. This analysis was visually aided by applying a color gradient to
each of the columns, in which dark green indicates the best performances (i.e. highest R2 and lowest
error) and red refers to the worst results (i.e. lowest R2 and highest error) within the 20 models.

Table 4.4: Models for PHA concentration (g/L) with corresponding parameters and results: preprocessing strategy
selected, spectral regions included, optimal number of LVs, % variance captured from the X-block and Y-block,
calibration and cross-validation RMSE (g/L) obtained and calibration and cross-validation R2 achieved. The color
gradient indicates the worst (red) to best (green) models in terms of calibration and cross-validation RMSE and R2
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By inspection of Table 4.4, it is clear that differentiation is essential to extract relevant spectral
information, since all models relying on SNV exclusively (model 1 to 4) had poor calibration and prediction
performances. Overall, it can also be concluded that when only applying first or second derivatization,
the model improves with the addition of further C-H stretching absoption bands, i.e, the best results
are obtained when all three regions are selected (model 8 and 12). Furthermore, applying SNV after
differentiation (model 13 to 20) did not seem to improve the models when comparing with differentiation
alone (model 5 to 12). In fact, implementing a SNV normalization after differentiation seems to deteriorate
the signal, with model 18 showing particularly bad results. On the other hand, the best performance is
achieved with model 12, although it should be noted that the number of LVs is significantly high and
this might not lead to equally good results when applying an external validation set. It is also worth
highlighting that model 9 corresponds to the PLS model exemplified in the previous section.

Ultimately, models 8, 11, 12, 19 and 20 were chosen as the five most promising models for pre-
dicting PHA concentration, to be used in the subsequent test set validation. The selection was mostly
based on the RMSECV and cross-validation R2, while still considering the calibration parameters.

Table 4.5: Models for PHA content (%) with corresponding parameters and results: preprocessing strategy selected,
spectral regions included, optimal number of LVs, % variance captured from the X-block and Y-block, calibration and
cross-validation RMSE (%) obtained and calibration and cross-validation R2 achieved. The color gradient indicates
the worst (red) to best (green) models in terms of the calibration and cross-validation RMSE and R2.

Regarding the models for PHA content, the trends are very similar to those found for the previous
PHA concentration models: normalization alone does not perform well, better results are obtained for
differentiation alone than for differentiation followed by normalization, with second derivative plus SNV
(model 38) performing particularly bad. On the other hand, the first derivative models proved to be
specially adequate for predicting PHA content, with model 25 achieving some of the best results while
using the entire spectra. Finally, models 25, 28, 31, 32 and 36 were selected to be further validated.
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Moving on to the optimization of the TSS concentration model, the selected spectral regions were
significantly different from the previous ones. Apart from the whole spectral range, the region between
9000 and 7200 cm-1 was one of the studied options, to evaluate how the baseline shift in that region
was indicative of TSS concentration changes. Furthermore, the water absorption peaks (7200-6800
cm-1+5300-5000 cm-1) were also chosen for the same purpose, since they might serve as an indirect
measure of biomass concentration. Lastly, the C-H stretching regions (6150-5500 cm-1+9100-7800
cm-1+4500-4100 cm-1) were also one of the selected truncation solutions, since biomass comprises
a significant fraction of organic matter. Just like for PHA concentration and content, these four spectral
ranges were combined with the five preprocessing strategies and yielded twenty different models, which
are detailed in Table 4.6

Table 4.6: Models for TSS concentration (g/L) with corresponding parameters and results: preprocessing strategy
selected, spectral regions included, optimal number of LVs, % variance captured from the X-block and Y-block,
calibration and cross-validation RMSE (g/L) obtained and calibration and cross-validation R2 achieved. The color
gradient indicates the worst (red) to best (green) models in terms of the calibration and cross-validation RMSE and
R2.

The best performances are achieved when selecting the water absorption intervals, followed by
the global spectra. Overall, the baseline shift does not seem to be the best predictor for TSS variation.
Regarding the preprocessing options, no major conclusions can be drawn, except that SNV alone does
not perform very well. It should be noted, however, that the results obtained for TSS concentration
models are all considerably positive and the cells colored in red or orange do not necessarily imply poor
performance parameters, just worse in comparison with the rest. In fact, all models exhibit RMSECV
values below 0.9 g/L and cross-validation R2 above 0.8. In the end, models 48, 52, 53, 57 and 60 were
selected for subsequent validation.
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Test Set Validation

In the final phase of model development, accumulations 5b and 10b, which had been previously
excluded from the calibration block, were used as an independent set for validation. Prediction was
carried out for all 5 models selected for each variable and the best model was chosen based on the
minimal RMSEP. Figures 4.14 to 4.16 illustrate the predictive capacity of the final models for PHA con-
centration (g/L), PHA content (%) and TSS concentration (g/L), respectively. The figures depict both
the cross-validation performance, by plotting the predicted values against the measured ones, and the
external validation outcome, by plotting the predicted values, together with the measured ones, against
the samples in the test set. This latter representation allows for the visualization of the trend of predicted
values along the accumulation.

The final PHA concentration model (model 8) refers to a preprocessing comprising the first deriva-
tive alone, and uses all three C-H stretching absorption regions (6150-5500 cm-1+9100-7800 cm-1+4500-
4100 cm-1)). Very good calibration was achieved, with R2 of 0.976 and a RMSEC of 0.211 g/L. Cross-
validation, on the other hand, yielded R2 of 0.775 and a RMSECV of 0.663 g/L, which are certainly worse
than those of calibration but are still satisfactory. Lastly, the test set validation led to R2 of 0.888 and a
RMSEP of 0.693 g/L. The RMSE of cross-validation and prediction are comparable and the prediction R2

is actually higher than that of cross-validation. This is probably because the desired trend can be found
across the predicted values, but these values are slightly underestimated, especially for accumulation
10b. Overall, the model seems to perform better for accumulation 5b and is particularly inappropriate
for very low PHA concentrations, predicting a negative concentration for the first sample in accumulation
10b. In fact, the model is likely to be poor at predicting low PHA concentration, namely those obtained
after the first few accumulation pulses, given that the RMSEP is considerably high. However, it should
provide a more or less significant prediction of the final accumulation pulses. It should be noted that the
PHA concentration range in the calibration data set was between 0.16 g/L and 6.16 g/L, which means
that sample 10b-0 (0.10 g/L) was extrapolated.
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(a) Cross-validation prediction against measured value. (b) Predicted and measured values vs sample number.

Figure 4.14: Prediction performance of the final model for PHA concentration (g/L) - model 8. Samples 5.0 to 5.5
and 10.0 to 10.5 in (b) refer to accumulations 5b and 10b, respectively.

Regarding the PHA content prediction, the final model (model 28) also refers to a preprocessing
strategy based on the first derivative alone, and to a spectral truncation including all three C-H stretching
absorption regions (6150-5500 cm-1+9100-7800 cm-1+4500-4100 cm-1). Again, very good calibration
was achieved, with R2 of 0.967 and a RMSEC of 3.97%. Cross-validation, in turn, led to R2 of 0.830 and
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a RMSECV of 9.14%, which are rather promising. Lastly, the test set validation yielded R2 of 0.864 and
a RMSEP of 14.55%. Again, the prediction R2 is higher than that of cross-validation and the underlying
reason is probably the same. In this case, the underestimation is more accentuated and negative PHA
concentrations are predicted for the first samples of both accumulations. However, it should be noted
that sample 5b-0 (2.95%) is slighly outside the PHA content range of the calibration set, which covers
from 3.16% to 88.95%.
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(a) Cross-validation prediction against measured value. (b) Predicted and measured values vs sample number.

Figure 4.15: Prediction performance of the final model for PHA content (%) - model 28.

Likewise, the final TSS concentration model (model 53) refers to a preprocessing strategy based
on the first derivative followed by SNV normalization, and made use of the whole spectral range. The
calibration yielded a R2 of 0.967 and a RMSEC of 0.355 g/L. Cross-validation, in turn, led to a R2 of 0.897
and a RMSECV of 0.627 g/L, which are very satisfactory results. Lastly, the test set validation resulted
in a R2 of 0.863 and a RMSEP of 1.029 g/L, still fairly decent. Unlike with the previous two models, there
does not seem to be any underestimation (nor overestimation) of the concentration values and, in this
case, accumulation 10b seems slightly better adjusted. However, since there are no major variations in
the TSS concentration values of the test set samples, it is not clear how well the model would react to
significant changes and trends in the data. It should be noted that the TSS concentration values in the
calibration set ranged between 2.50 g/L and 11.12 g/L and that the reference values of the test set are
all within this interval.
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(a) Cross-validation prediction against measured value. (b) Predicted and measured values vs sample number.

Figure 4.16: Prediction performance of the final model for TSS concentration (g/L) - model 53.
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Lastly, since it was stipulated that one of the most relevant parameters to be monitored was the
PHA content in the biomass, a final scenario was evaluated, regarding the combination of the final mod-
els for PHA and TSS concentration. Hence, the PHA concentration values predicted by model 8 were
divided by the TSS concentration values predicted by model 53 and the resulting PHA content predictions
were also plotted against the test set samples, along with the true measured values (see Figure 4.17).
The final model was surprisingly accurate at predicting the PHA content in accumulation 5b, although a
considerable underestimation was again noticed in accumulation 10b. It is probably the case that the
model performs better at predicting the samples from high cell density accumulations because a higher
number of samples belonging to this period was included in the calibration set. A RMSEP of 18.46% was
determined for this combined model. However, this value is almost exclusively the result of predicting
accumulation 10b. In fact, a RMSEP of 4.52% and R2 of 0.960 are achieved if considering accumulation
5b alone.

Nevertheless, the results are extremely promising and clearly confirm the applicability of NIR spec-
troscopy as a monitoring tool for PHA concentration, PHA content and TSS concentration, particularly in
a pilot-scale 3-stage process with MMCs and fruit pulp waste as a feedstock.

Figure 4.17: PHA content (%) predicted through the combination of model 8 and model 53 and measured val-
ues against sample number in test set. Samples 5.0 to 5.5 and 10.0 to 10.5 refer to accumulations 5b and 10b,
respectively.
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5 Conclusions and Future Work

The pilot-scale production of PHA with MMC using fruit pulp waste as feedstock was successfully
demonstrated. A microbial culture with high PHA accumulation capacity was selected in two different
operational periods. A FISH analysis carried out during the second operation indicated the presence
of genera Azoarcus, Thauera and Plasticicumulans, which are well-known for their PHA-accumulating
capacity. The subsequent accumulation assays led to very positive results, with PHA contents above
70%and cell densities up to 17 g/L. TheHV content wasmost frequently between 20%and 30%, although
some extreme cases were observed, with HV reaching up to 50% in the final polymer, mostly due to some
inconsistencies in the feeding strategy.

Regarding the application of Raman spectroscopy in process monitoring, the present thesis was
unable to answer most of the initially raised questions. Unfortunately, difficulties regarding the reference
analytical techniques prevented the development of a quantitative model and thus the suitability of the
technique for measuring PHA could not be inferred. Nevertheless, a qualitative analysis of 95 Raman
spectra, corresponding to 16 accumulation assays, revealed some interesting shifts in the shape of the
signal over the weeks. This was believed to be caused by changes in the bacterial community, which
was not yet stable by the end of the operation period. Since no FISH analyses were carried out during
this time, it was also not possible to corroborate this hypothesis. Furthermore, a PCA model was de-
veloped, which clearly separated the samples into three groups according to the shape of the spectra.
A rising trend in PC1 scores was observed within the accumulations belonging to the last group, point-
ing out some potential regarding a quantitative analysis. Lastly, a few subtle peaks were found to be
transversal to all spectra, regardless of their main shape, which might also indicate the presence of rele-
vant chemical information. Hence, future work should fall upon gathering accurate analytical information
on PHA content, in order to develop a quantitative model and conclude about the applicability of Raman
spectroscopy in this context. It might be necessary to perform a rigorous spectral truncation, given the
apparent susceptibility of the equipment to changes in the culture. It is also suggested that FISH analy-
ses are performed on a regular basis in order to conclude about this issue. However, it should be kept
in mind that the modular Raman equipment available will unlikely lead to a predictive model as success-
ful as those reported in the literature, which make use of more powerful techniques like micro-Raman
spectroscopy [128, 129].

On the contrary, NIR spectroscopy showed great promise for the monitoring of the PHA production
process. A total of 74 samples, with their corresponding reference values, was gathered. Even though
the NIR spectra were dominated by strong water absorption bands, it was still possible to identify the
C-H stretching overtones and combinations. A PCA model using the second derivative spectra revealed
some sample grouping based on biomass concentration which essentially separated the data in two sets
of accumulations: before and after decreasing the nitrogen levels in the SBR feed. As for the quantita-
tive analysis, three different approaches were explored: a model for predicting PHA content (%) directly,
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and the combination of two models for predicting PHA and TSS concentration (g/L), separately. Model
optimization was carried out by investigating different preprocessing strategies and several spectral trun-
cations. Apart from cross-validation, external validation was performed on the most promising models
for each predicted variable. The test set comprised two accumulation assays which had been previously
excluded from the calibration set, one from each of the above mentioned PCA groups. The best models
for prediction of PHA concentration made use of all three C-H stretching absorption regions (6150-5500
cm-1+9100-7800 cm-1+4500-4100 cm-1) with first derivative alone as preprocessing and yielded a RM-
SEP of 0.69 g/L and R2 of 0.89. The chosen model for PHA content used the same spectral regions
and preprocessing and led to a RMSEP of 14.6% and R2 of 0.86. The final TSS concentration model,
on the other hand, made use of the whole spectral range and its preprocessing involved the first deriva-
tive followed by SNV normalization, which resulted in a RMSEP of 1.0 g/L and R2 of 0.86. Overall, the
models performed better at predicting the accumulation belonging to the high cell density group (before
decreasing nitrogen levels in the SBR feed), since more calibration points were available regarding this
period. Finally, the model combining the PHA and TSS concentration models performed rather poorly
for the second accumulation in the test set but revealed extraordinary results when considering the high
cell density accumulation only, with a RMSEP of 4.52% and a R2 of 0.96.

It is clear that NIR spectroscopy seems a very promising tool for predicting PHA concentration,
PHA content and TSS concentration in the present production process. It is believed that the RMSEPs
obtained can be significantly improved by gathering more samples in the calibration set, because it
seems like the model is simply not robust enought at this point. It might also be the case that the linear
relationship between the NIR signal and the analyte concentration depends on the TSS concentration
range and then two different models would have to be developed for higher and lower cell densities.
On the other hand, the analytical methods still present some accuracy issues and might be hindering
the application of the NIR technique to its full potential. Finally, it might also be interesting to further
investigate the prediction capacity for each monomer individually, as perhaps the NIR technology might
be able to predict the HB:HV ratio in the final copolymer.

Ultimately, once a more robust and reliable calibration model has been developed, the next step
should be to insert the probe inside the accumulation reactor to test the applicability of the model in
an online situation. This might require further calibration but, once established, will enable real-time
measurements and, consequently, a more comprehensive study of the production dynamics. It should
be noted, however, that regular reference analytical data will always be needed in order to guarantee the
long-term validity of the method.

As far the author is aware, this is the first time that a NIR-based quantitative model has been re-
ported for the monitoring of a pilot-scale production of P(3HB-co-HV) polymer using MMC and a complex
feedstock as substrate.
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A Data Sets and Reference Values

The Raman spectral data set used for the PCAmodel is summarized in table A.1, below. 95 spectra
are included. The reference values used for the development of the NIR quantitative models are detailed
in tables A.2 to A.4), below. All 74 data point used for both PCA and PLS models are included.

Table A.1: Raman spectral data set. In indicates the samples from each accumulation included in this data set.

Accumulations

i ii 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a 15a

Sample

number

0 In In In In In In - In In In In In In In In In -

1 In In In In In In - In In In In In In In In In -

2 In In In In In In - In In In In - In In - In -

3 In In In In In In - In In In In In In In In In -

4 In In In - In In - In In In In In In In - In -

5 In In In In In In - In In In - In In - In In -

6 - In In - In In - - - - - In - - - - -

7 - In - - - - - - - - - In In - In - -

Table A.2: Reference values for TSS concentration (g/L) obtained through the quantification method detailed in
section 3.2. Sample 0 refers to the initial point, before feeding the first pulse, sample 1 refers to the sample collected
by the end of the 1st pulse, and so on. Missing data indicates inaccurate or not-available analytical results, meaning
the corresponding spectra were not included in the NIR models.

Accumulation

1b 2b 3b 4b 5b 6b 7b 8b 9b 10b 11b 12b 13b

Sample

number

0 5.27 5.69 6.07 8.25 5.82 6.65 - 6.79 2.5 2.61 3.03 2.06 3.18

1 5.38 5.04 6.92 8.23 6.59 6.99 6.94 7.35 - 2.74 3.73 2.95 3.40

2 5.57 5.44 7.47 9.52 8.01 7.25 5.88 7.52 3.45 2.81 4.37 - 3.91

3 5.85 5.95 8.16 10.22 8.64 6.82 6.21 8.46 3.45 3.32 - 3.11 -

4 6.09 6.46 8.39 11.05 8.81 7.56 - 8.79 3.58 3.58 - 3.34 3.92

5 6.25 6.39 8.31 11.12 9.69 - - - - 3.34 6.29 4.16 4.14

6 6.24 - - - - - - - - - - 3.74 4.12

7 - - - - - - - - - - - 3.63 3.72

8 - - - - - - - - - - - - 3.93

9 - - - - - - - - - - - - 4.57
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Table A.3: Reference values for PHA content (%) obtained by GC, as detailed in section 3.2. Sample 0 refers to
the initial point, before feeding the first pulse, sample 1 refers to the sample collected by the end of the 1st pulse,
and so on. Missing data indicates inaccurate or not-available analytical results, meaning the corresponding spectra
were not included in the NIR models

Accumulation

1b 2b 3b 4b 5b 6b 7b 8b 9b 10b 11b 12b 13b

Sample

number

0 6.8 3.2 4.5 6.2 3.0 10.4 - 27.2 7.3 3.8 5.4 4.0 3.7

1 11.7 18.2 22.2 17.5 17.9 30.7 46.1 42.9 - 27.5 20.3 32.1 24.1

2 23.7 38.8 31.0 37.0 37.6 45.6 59.9 50.3 36.4 45.0 31.7 - 44.1

3 34.3 47.8 36.0 52.6 52.7 54.5 55.7 41.7 46.5 47.6 - 27.6 -

4 50.0 48.8 39.5 77.2 60.1 47.7 - 62.0 70.6 63.2 - 48.4 60.0

5 58.7 50.5 47.4 55.4 52.2 - - - - 45.8 65.3 66.8 64.8

6 50.0 - - - - - - - - - - 78.8 79.6

7 - - - - - - - - - - - 75.1 81.0

8 - - - - - - - - - - - - 84.7

9 - - - - - - - - - - - - 89.0

Table A.4: Reference values for PHA concentration (g/L) obtained from the product of the PHA content (%) and the
TSS concentration (g/L). Sample 0 refers to the initial point, before feeding the first pulse, sample 1 refers to the
sample collected by the end of the 1st pulse, and so on. Missing data indicates inaccurate or not-available analytical
results, meaning the corresponding spectra were not included in the NIR models

Accumulation

1b 2b 3b 4b 5b 6b 7b 8b 9b 10b 11b 12b 13b

Sample

number

0 0.36 0.18 0.27 0.51 0.17 0.69 - 1.85 0.18 0.10 0.16 0.08 0.12

1 0.63 0.92 1.54 1.44 1.18 2.15 3.20 3.15 - 0.75 0.76 0.95 0.82

2 1.32 2.11 2.31 3.52 3.01 3.31 3.52 3.78 1.26 1.27 1.39 - 1.72

3 2.01 2.84 2.93 5.38 4.55 3.72 3.46 3.53 1.60 1.58 - 0.86 -

4 3.04 3.15 3.31 8.53 5.30 3.61 - 5.45 2.53 2.26 - 1.61 2.35

5 3.67 3.23 3.94 6.16 5.05 - - - - 1.53 4.11 2.78 2.68

6 3.12 - - - - - - - - - - 2.95 3.28

7 - - - - - - - - - - - 2.73 3.01

8 - - - - - - - - - - - - 3.33

9 - - - - - - - - - - - - 4.07

In the case of PHA content (Table A.3), triplicate measurements were performed through GC and
the final PHA content reference value is either the average of the three measurements, the average of
two consistent measurements or just one measurement when the other two were clear outliers from the
accumulation trend.
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