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Abstract—Machine learning algorithms are now being de-
signed and applied to data to help humans in their everyday
needs. These algorithms can bring major benefits to many areas
and are capable of conducting predictions, clustering and clas-
sification on data. They could be used, for example, on medical
databases to help in treatments and diagnosis of patients. One
major concern that threatens the efficiency of these algorithms
are missing values. Many algorithms which are in place today
are not prepared to handle these missing values, which means
they have to be handled in other ways. In this paper it is aimed
to compare two imputation algorithms that could be used in
filling these missing values. Both methods use sequence alignment
to find matches with which the missing values could then be
imputed. One of the algorithms uses dynamic time warping while
the other uses Needleman-Wunsch. Both of these algorithms were
suitable when it came to data imputation. Imputation done using
dynamic time warping was accurate, although it lacked in speed,
while the Needleman-Wunsch imputation was faster, but not quite
as accurate as the dynamic time warping imputation. The results
show that both of these algorithms should be further tested
due to their potential in the imputation of values, as well as
some suggestions to strengthen the weaknesses of both of these
algorithms.

I. INTRODUCTION

Nowadays, there is an increased necessity in handling large
volumes of data, particularly when it comes to medical data.
This data can be used to extrapolate useful information and,
as a consequence, aiding medical professionals [1]. Many
algorithms were designed in order to extract useful patterns
from medical databases, which would be impossible for a
medical team to analyze due to the immensity of the data. This
process is called data mining [2, 3] and one of the fields that is
used to perform these operations is machine learning [4]. This
field is dedicated to the classification, prediction and clustering
of data, among others [5]. All of these can be applied to med-
ical databases in various situations requiring data handling,
depending on the circumstances. Besides medical databases
many other fields benefit from the use of these techniques in
many ways [6].

Regarding the usefulness of these algorithms in the medical
fields there is a number of ways on which they excel:
• Diagnosis - Many classification algorithms have been

developed to provide with an answer with haste [7].

By applying these, many lives could be saved, not only
because of the speed on which a diagnosis could be
achieved, but also on the accuracy, preventing a wrong di-
agnosis. Of course these can be merely suggestive, being
regarded as a second opinion to the medical professionals.
Another important tool for diagnosis is image recognition
which can lead to a quick diagnostic by analyzing image-
related diagnostic tools.On the field of prediction, many
options are being explored, one of which is the capability
to predict the appearance of a certain disease or an injury,
based on data from the patient. Thus, diagnosis is possibly
the one with the most direct impact regarding the health
of a patient, since these will define the treatment applied.

• Treatment - There have been many changes when it
comes to treating patients as well, such as making use of
patient data, so that professionals can choose a specific
treatment for an individual with specific and similar fea-
tures [8]. Research and drug manufacturing is also being
affected with these algorithms, since they are starting to
be produced not only based on past results, but also base
on predictive data.

As time passes, a lot of applications using these machine
learning techniques have encountered some issues regarding
data quality. Given the fact that the amount of data collected
is enormous (and regarding the data itself, the amount of
variables/features captured is also very big), the probability
that the collected data is one hundred percent accurate is very
low [9]. This effect is even more critical when it comes to
medical data, given the sensibility the algorithms have to have
with these type of data. Mistakes are bound to happen, whether
it is by the hand of man, which is considered to be very
common, whether it is done by machine errors. These mistakes
can range from non-existing values to simply absurd values
that were found because someone misplaced a simple comma.
The problem that is faced nowadays is that with the amount
of data in existence it is impractical to identify and correct all
mistakes by hand. Thus, methods to identify these situations
and correctly handle them are needed, or else, whenever these
kinds of situations occur, the data would need to be disposed



of, losing valuable information.
Due to the fact that many of the machine learning algorithms

require their data intact, a lot of effort is being put into
creating accurate imputation algorithms, capable of filling out
data with values that could represent the missing value, while
still maintaining data coherence [10, 11]. The purpose of this
work is to find a suitable way of dealing with missing values
in time series data, particularly in medical databases. To do
so, a method of imputation will be proposed that will focus
on a single feature, which makes this algorithm usable with
multivariate and univariate time series, by using an approach
based on the similarity measurement of time series using the
Dynamic Time Warping (DTW) algorithm [12]. A comparative
analysis with the Needleman-Wunsch (NW) algorithm [13, 14]
will also be made, due to the similarity in behaviour of both
of these algorithms.

II. BACKGROUND

Nowadays, many steps are done to validate and perfect the
data that will be used by many machine learning algorithms
to solve many types of issues. One of these important prepro-
cessing steps is to deal with missing data, which can be done
in a multitude of ways [15, 16]. The easiest way would be
to completely ignore the missing data. However, by doing so,
the information regarding this value would be completely lost.
The other way of dealing with this problem is by attempting
to fill in the missing values. To do so, many methods can be
considered, mainly statistical and machine learning methods
[17], which use a predictive model based on the available data
to infer the missing values. Some of these methods include:
k-nearest neighbours [18, 19] and Bayesian approaches [20].
Other simple approaches can be used to tackle this issue, as
for example using the mean of the non-missing values to fill
in the missing values.

A. Time series analysis

This work will focus on the imputation of missing values
in time series, which have a component that differentiate them
from the rest of the data - time. Data is to be acquired over
time and indexed in accordance to the passage of time, usually
with equal time intervals, so that it forms a sequence of time-
stamped data. This kind of data is used on many applications
nowadays as, for example, in the stock market or medical
records, amongst many other fields [21, 22] . Data mining
applied to time series share the same concerns as if it were
applied to the generality of data: classification, clustering, and
forecasting. This last one refers to forecasting future values in
time series and is a highly explored field.

A time series is a sequence of data points indexed in time
t ∈ {1, . . . , N} with the result X = (x1, x2, . . . , xN ). Thus,
a forecast of a time series, at a further time t, would be xN+t.

Whichever is the goal of the data mining process, there
is another procedure that can help filling a time series data.
It is called trend analysis [23] and mainly consists of 4
components: trend, seasonal, cyclic and random variations.

• Trend variations refer to the general direction taken over a
time interval as, for example, the trend to rise at a certain
moment.

• Seasonal variations represent a certain event that re-
occurs within a time interval, with a time interval as-
sociated with a calendar period, such as monthly or daily
routines.

• Cyclic variations are very similar to seasonal variations,
being the main difference the interval of time associated
- these events use to have a duration longer then. a year

• Random variations, as the name implies, is associated
with random events that occur, possibly modifying the
previously discussed components.

The existence of these components in time series is very
important, since they will enable the use of many algorithms
that can analyze the patterns made by them. This is especially
important when it comes to matching or aligning time series
with one another. Medical databases will benefit greatly from
these components because of the big sample of patients they
hold, which in turn will increase the diversity of behaviour of
many features, making it easier to find connections between
the features of some patients.

Time series may need to be handled differently depending
on the number of variables, especially when it comes to
forecast an event. When a time series is only represented by
a single variable, the forecast can only depend on the past
and present values. These are called univariate time series.
As opposed to this, the multivariate time series are composed
by two or more features that are registered along time [24].
An example of this type of time series are medical records,
which can hold many variables taken from the variety of exams
patients undergo.

B. Dynamic time warping - DTW

The DTW algorithm consists in the alignment of two data
series by trying to explain variability in the Y-axis with
variability in the X-axis [12]. An example of this can be seen
in Figure 1.

Fig. 1: Example of the dynamic time warping algorithm [25].

This algorithm takes two time series (Equations (1) and
(2)), not necessarily with the same size, and builds an m-
by-n matrix in order to align both of these sequences. Each
of the elements of this matrix will correspond to a distance
δ(ai, bj) between two points ai and bj , for i ∈ {1, ..., n}



and j ∈ {1, ...,m}. The goal of this matrix is to help to
determine a path in which the distance between both sequences
is minimized. This is called a warping path and an example
of one is given in Figure 2, and it would be represented as in
Equation (3).

A = a1, a2, ..., ai, ..., an (1)

B = b1, b2, ..., bj , ..., bm (2)

W = w1, w2, ..., wk, ..., wt (3)
max(n,m) ≤ t < n+m− 1

Fig. 2: The alignment of two sequences (Equations (1) and
(2)) in a matrix, and the respective warping path (Equation
(3)) [26].

The warping path elements wk represent the alignment of
two points of the sequences to be aligned (i, j)k. A warping
path must obey certain conditions [12]:

• Continuity - There is a limit in the steps that can be
given: If wk = (i, j) and wk−1 = (i′, j′) then we must
have i − i′ ≤ 1 and j − j′ ≤ 1. In short terms this
means the warping path must only progress in the matrix
through adjacent cells (horizontally or diagonally).

• Monotonicity - The points of the warping path must be
monotonically ordered in time such that for wk = (i, j)
and wk−1 = (i′, j′) we have i ≥ i′ and j ≥ j′

• Boundary Conditions - The first point of the warping
path and the last should refer to the respective first and
last points of the sequences to be matched: w1 = (1, 1)

and wt = (n,m). Although this is one of the conditions,
sometimes there are exceptions that are introduced by
giving offsets that could be used to initiate/terminate the
warping path.

Many paths can be determined using these conditions,
however the goal is to minimize the warping path as much
as possible, as presented in Equation (4).

DTW (A,B) = min


√∑t

k=1 wk

Z

 , (4)

Z is a coefficient used to compensate for the difference in
size of the warping paths. One of the possibilities for this value
is the size of the found warping path Z = t. Having wk as the
distance between elements of the time series wk = δ(i, j), two
commonly used distance measures are presented in Equations
(5) and (6).

δ(i, j) = |ai − bj | (5)

δ(i, j) = (ai − bj)2 (6)

The path can then be found by applying dynamic pro-
gramming to calculate the cumulative distance γ(i, j) for
each point, which will be the distance for the current points
δ(i, j) added to the minimum of the cumulative distances of
the adjacent elements in the matrix (both horizontally and
diagonally), as shown in Equation (7).

γ(i, j) =δ(ai, bj)+ (7)
min[γ(i− 1, j), γ(i, j − 1), γ(i− 1, j − 1)]

When the algorithm is completed, the optimal warping path
will be found by tracing backwards through the minimum
found values. When the warping path is found a score will be
attributed to the match, which will reflect upon the distance of
the full warping path to both sequences (in this case reflecting
how good the fit was).

C. Derivative Dynamic Time Series - DDTW

Although DTW is able to align many sequences with great
proximity, excelling particularly when it comes to variations
in the X-axis (variations in time), there are many sequences
in which it will encounter certain issues. One of the problems
it will encounter is when it comes to variations in the Y-axis.
With the presence of local features, such as peaks and valleys,
the alignment will be affected. The DTW algorithm will
attempt to justify these local features by making corrections in
the X-axis, thus producing singularities which will affect the
alignment in the places where these features are located. The
issue falls on the alignment being made depending solely on
the distance of the sequence points, and not considering the
waveform/shape of the sequence. To mitigate this problem,
DDTW was created [25]. This algorithm would be using the
derivative of the sequences, which will have more significant



results in terms of aligning the waves using their shape. In
Figure 3 it is visible the differences when aligning the same
sequence with DTW and DDTW.

(a) DTW alignment

(b) DDTW alignment

Fig. 3: The alignment of two sequences by using DTW (a)
and by using DDTW (b) [25].

The algorithm will behave in the same way as before,
however the alignment will happen on the derivative of the
sequences. Usually, for simplicity, the derivative is calculated
based on the slopes of the point in question with the point on
the left and the one on the right. Thus, the derivative, D[ai]
at any given point, ai, of the sequence will be as presented in
Equation (8).

D[ai] =
(ai − ai−1) + (ai+1−ai−1)

2

2
(8)

By having the derivative calculated as shown in Equation
(8), there could be loss of information when it comes to the
first and last points of the sequence. Another problem is the
exact issue trying to be solved: missing values. Missing values
will not only have a direct impact in the point where they
are missing, but also in their surroundings, specifically to
their immediate right and left. This can have a big impact
particularly when it comes to short sequences.

D. Dynamic time warping-based imputation - DTWBI

Having both of the previous sections in mind we can now
look at Dynamic time warping-based imputation or DTWBI
for short [27]. This method was developed with imputation of
gaps (a continuous group of missing values) as a goal. This
method was originally applied in univariate time series, and
would compare the sequence with the missing gap with other
time series of the same dataset, trying to find the most similar
sequence to the one with the missing value.

To perform this imputation, the first step would be to extract
a sub-sequence, before or after the gap. Then, the DDTW
algorithm would be applied in other time series, locally, as a
sliding window, to find the best match possible. The final step
would be to copy the values associated with the best match,
which was found in the previous step, at the relative position
of the gap and the sub-sequence used to find the best match.
For instance, if there was a gap from positions a20 to a25
and the sub-sequence a14 to a19 was used to find a match,
then if the best match were to be found (on a different time
series) at positions b7 to b12 then the values to be used for
the imputation would be from b13 to b18. An example of this
algorithm can be seen in Figure 4.

Fig. 4: An example of the DTWBI algorithm using a sliding
window to find the optimal match. [27].

E. Needleman-Wunsch algorithm - NW

This algorithm was chosen due to the similarity in terms
of behaviour, comparing to DTW algorithm, in the sense that
both perform sequence alignment. The NW algorithm [14] was
mainly created with the purpose of aligning discrete sequences
in the field of bioinformatics such as protein or nucleotide
sequences (related with DNA).

It will also behave in a similar way to the DTW algorithm,
with the construction of a matrix using both sequences. The
difference will be that, in DTW, the distance between data
points is used to build the alignment matrix. In NW, a
similarity matrix will be used to build the alignment matrix,
with given scores between two data points ai and bj , for
i ∈ {1, ..., n} and j ∈ {1, ...,m}.This similarity matrix must
be consulted to define the scores of each cell of the matrix. The
similarity matrix can be custom made or it can be built based
on the scores attributed to matches, mismatches and gaps.
Typically the score for matches is 1, while for mismatches
is 0 (this is considered a penalty). Besides these factors there
are also two types of gap penalties. These can be gap openings,
which refer to when a gap must be introduced to a sequence,
and the gap extension penalty which is used when a gap (which
was already open) extends. When using a custom similarity
matrix certain matches of characters could be assigned a
greater score, thus favoring the matching/mismatching with
certain characters.

When the matrix is filled with all the values, the traceback
phase will occur, in similarity to what happens in DTW. Then,
it will generate the alignment by finding the path, starting at
the bottom right cell of the matrix and ending at the top left



cell. To find this path the movements from one cell to another
can be made upwards, diagonally or to the left. When a move
is made diagonally it will correspond to a match/mismatch,
and when it moves either to the up or left a gap is to be
introduced. In Figure 5 a representation of the Needleman-
Wunsch algorithm is shown. On the left the scoring matrix is
represented along with the traceback (path in orange), which
was made by following the blue lines which were added during
the building of the matrix, while on the right side we have
the similarity matrix with the scores for the matches and
mismatches.

An alternative to this method could be the Smith-
Waterman algorithm [28], which is a variation of the NW
algorithm. The main difference between these algorithms
is that, while the NW algorithm operates globally on
a sequence, the Smith-Waterman will act using a local
approach. In the traceback phase, instead of aligning both
sequences globally it will analyze the best score in the
matrix and build the best local path it can find. This means
that certain parts of both sequences may not belong to
the alignment if they negatively impact the best score.

Fig. 5: Example of the result of the Needleman-Wunsch
algorithm applied to align two DNA sequences with a gap
value of -1.

III. PROPOSED METHOD

This work will consider two main approaches to data
imputation, focusing on time series, which will be explained in
this section. These methods were chosen due to the similarity
in methodology, and will both be compared in a later section.

A. DTW imputation

The first method will be based on DTW to perform im-
putation of missing values. The algorithm will resemble the
DTWBI algorithm explained in the previous chapter, although
it will suffer some adjustments.

Firstly, the number of points of the window that will be used
to find a match will be chosen, and this number will also have
impact in the amount of windows to be analyzed. For instance,
by analyzing a window of size 5 we will have a maximum of 6
different windows to analyze placed around the missing value.
An example of this is represented in Figure 6. The size of the
window should be influenced by the size of the time series

analyzed, as well as the amount of missing values in the series.
If the missing value is placed in the beginning or ending of a
time series the amount of windows to be used will be reduced
due to the non-existence of points to analyze surrounding the
missing value. If there are other missing values surrounding
the analyzed missing value, the amount of windows will also
be adapted to whichever number of windows that are able to
utilize in the algorithm.

Fig. 6: Example of the result of the windows to be compared
with DTW. Blue circles represent the window to be analyzed,
red circles represent the missing value, and the white circles
are the remaining data points.

After the windows which are to be used for the comparison
are chosen, they will be compared against other samples of
time series. The objective is to find (regarding the same
feature) the most similar sub-sequence in all of the data
available against the chosen windows. Needless to say that
the more data to be compared, the better due to increased
diversity of samples that this could bring. The algorithm must
of course not be applied in the presence of missing values in
the other data for the alignments to be accurate. Additionally,
the position from which the value to fill for the missing value
will be retrieved must not contain a missing value.

In this algorithm, the DDTW will be applied, and as such
the derivative of the time series must be calculated. One of the
problems which was already described would be the loss of
information regarding the initial and final points of the time
series, as well as loss of information on the points surrounding
missing values. To counter this, the derivative was calculated
by using two points whenever it was necessary. This was done
because, in order for this work to be applied in short time
series, the amount of information that would be lost because
of the derivative using three points would be impactful in the
efficiency of the algorithm.

Regarding the imputation of the actual value, instead of
copying the exact values as done in the DTWBI algorithm,
the value will be calculated by using (8). The objective will
be to calculate ai, having D[ai] as the value found (in the same
place of the missing value when compared to the window to
be searched), and the values of ai+1 and ai−1 as the values
surrounding the missing value to be imputed.

B. Needleman-Wunsch Imputation

The other method to be analyzed will rely on the
Needleman-Wunsch algorithm. In order to use this method on
the imputation of continuous time series, a pre-processing step



of discretization must be taken. The dataDiscretize function
from the R package bnspatial was used. The discretization was
made with equal sized classes, being the number of classes to
be used based on the number of data points available in the
sequences. Another important factor is that the discretization
for each individual is made independently, which will be
beneficial in terms of creating matches between sequences
with similar shapes instead of only considering the values of
the data points.

To perform this algorithm on a sequence with missing
values, the missing values will be assigned a special char-
acter: ‘?’. Also, when building the similarity matrix, we must
consider that the objective of this algorithm is to match the
missing values (‘?’) with another character (a suitable one)
in order to discover its value. To do so, the similarity matrix
must be built with such objective in mind, which means the
matrix should consider the following:
• All matches between characters (except for the matches

between ‘?’) will have a score of 1.
• All mismatches between characters (except for the ones

involving ‘?’) will have the score of -1.
• The match between ‘?’ characters is unwanted, because

it would mean that two missing values are being aligned,
which is not the objective of the algorithm. As such, the
value assigned to the match of ‘?’ will be the same as a
mismatch (-1).

• Mismatches with ‘?’ must be considered beneficial in
order to find the values used to replace the missing
values. As such, this value must be higher than the normal
mismatch value, being the chosen value -0.5.

• The gap introduction penalty was set to -0.8 in order to
prioritize finding a mismatch for the missing value instead
of opening a gap.

• The gap extension penalty was set to -0.3, so that if a gap
opened beforehand a missing value is not mismatched.
This means that the missing values will not have a
correspondence to a data point inside a gap.

Having the matrix built in such a fashion the algorithm will
behave in the usual way, and the best possible match will be
the one used to retrieve the missing values. However, there is
a possibility that the missing values could align with a gap,
which would not be useful to this algorithm. When this occurs
the algorithm will have to run again with a feature enabled
which will not allow the algorithm to align missing values at
the first missing value. It will run as many time as necessary
to fill all the missing values.

IV. RESULTS

In this section the results obtained with the previously
described methods will be presented. Besides this, some infor-
mation on the used data will be given as well as a comparison
on the performance of both algorithms.

A. Datasets

In this work, three datasets were used: two synthetic
datasets, ECG and CMUsubject16 [29] and a real dataset,

Epileptic Seizure Recognition [30]. This last dataset is a
recording of brain activity in several patients under different
situations with the main goal of studying people suffering of
epileptic seizures, which is helpful when trying to perform
the imputation, due to the variety of data, even though this
dataset holds only one feature. This dataset is also the one
with the highest range, with values from -1885 to 2047. The
ECG dataset contains data on 200 individuals with only two
features. Although the time series are short (39 datapoints),
there is a wide range of values in the sequences (going from -
438 to 430). CMUSubject16 is a database with few individuals
but with many features (62). The data has a range from -137.54
to 437.35, although the range is shorter on each characteristic.
A brief overview on the features of these datasets is presented
in Table I.

Dataset Individuals Length Features

CMUsubject16 58 127 62
ECG 200 39 2

Seizures 11500 178 1

TABLE I: Overview of the used datasets.

B. Single missing values imputation
Firstly, tests were made with a single missing value (picked

at random) in a certain individual and feature (also picked at
random). To test this, a missing value was inserted in each
of the datasets, and once found these would be compared
against the original values. In order to be able to compare both
procedures, the missing values used for the DTW imputation
will be the same used in NW imputation.

As for evaluations measures, the Root Mean Squared Error
(RMSE) will be used as a way of measuring precision and
accuracy by calculating the deviation between the real values,
x and the prediction made x′.

The prediction accuracy (PA) indicator will also be used
which is a performance indicator that can be used to evaluate
whether the imputation is done correctly or not. It can take
values that range from 0 to 1, being a value closer to 1 a better
fit than if it were closer to 0.

Finally, the last evaluation measure discussed will be the
coefficient of determination (R2), which is also used to
evaluate imputation processes. In similarity with the previous
performance indicator, it can take values that range between 0
and 1, being 1, once again, a better fit than 0. This coefficient
can be used to assess the variability in the imputed data in
relation to the actual values.

The following subsections will discuss the tests made in
both approaches.

1) DTW Imputation: The results of the single missing
values imputation using DTW is shown on Table II.

By analyzing Table II it is shown that the algorithm worked
well overall on all the datasets. The ECG dataset was the one
with which this method was least effective, and this could be
due to the high range of the data (in the case of ECG data
ranges from -438 to 430), as well as the amount of data avail-
able to compare in order to search for the missing values. Even



Dataset RMSE PA R2

CMUsubject16 0.307 0.999 0.766
ECG 13.72 0.993 0.756

Seizures 3.491 0.999 0.875

TABLE II: Evaluation measures of the single imputation using
DTW.

so, the obtained result for this dataset was mostly accurate. The
seizures dataset also had good results even though the RMSE
is higher when compared to the CMUsubject16 dataset. This
could be once again caused by the range of the data (which
in the case of the seizure dataset ranges from -1885 to 2047).
Regardless, considering this dataset contained real data, the
algorithm could impute data with good precision. In Figure 7
an example of an alignment can be visualized. The sequence
in blue is the one with the missing value, represented by the
cross, and the sequence in orange is the best match found in the
dataset. This work used a window size of 5 in the algorithm,
and because it analyses the surroundings of the missing value
(with the window size given) the charts will have the missing
value position in the middle, and will also have the 5 prior
and following datapoints. Take in consideration also that any
of the windows could have been used to find the best match,
and that this match is based on the shape of the waves instead
of the values.

Fig. 7: Example of the result of the DTW algorithm applied
to align two sequences of the Seizures dataset.

2) NW Imputation: The results of the single missing values
imputation using NW are shown on Table III.

Dataset RMSE PA R2

CMUsubject16 0.523 0.999 0.765
ECG 39.02 0.946 0.685

Seizures 12.99 0.997 0.872

TABLE III: Evaluation measures of the single imputation
using NW.

The NW imputation algorithm shown in Table III shows that
for the CMUsubject16 dataset the results were quite good.
Regarding ECG and Seizures datasets the results were not
as good. Once again, the ECG dataset suffered the worst
imputation, which could be associated with the amount of
datapoints for each individual. The size of the sequences

directly affects the discretization, as was mentioned in the
earlier chapter, because the amount of classes created depends
directly on the size of the sequences. Because this particular
dataset has short sequences and a big range, the boundaries of
each class will have a big range, which will make this method
more inaccurate (because the values will be imputed with the
intermediate value of the range of the class assigned to the
missing value).

As for the Seizures dataset, the results could be explained
by the same reason. Because this dataset has bigger sequences,
the effects of the discretization were not as noticeable as on
the ECG dataset, nonetheless the effects of the range of the
data of the Seizures dataset and the size of the sequences also
affected the performance of the algorithm. The CMUsubject16
dataset had the best imputation out of the three, which can
be explained by the size of the sequences (having a size
that facilitates a good amount of classes) and the range of
the values, which in this case is smaller than the other two
datasets (ranges from -137.54 to 437.35, although the ranges
for each feature it has are much smaller). Although the results
for the NW were the best for this dataset, when examining the
alignment of the discrete values, we could observe that some
of the matches were not correct, but due to the proximity
in class (and having each class a low range of values), the
imputation was not as affected by the wrongful alignment
of the sequences, as the other two datasets. In Figure 8 an
example of the discretized alignment is given. The missing
value is represented by a ”?”.

Fig. 8: Example of the result of the NW algorithm applied to
align two sequences of the Seizures dataset.

3) DTW vs NW: Comparing both of these algorithms it
can be said that DTW is the most accurate one, although on
large sequences with low range of data the results are quite
close. Regarding speed, the NW imputation is faster than DTW
imputation. It was more noticeable on the Seizure dataset, due
to the amount of individuals it had. The NW algorithm also
had an issue due to the alignments of missing values with gaps.
This was surpassed when forcing the algorithm on finding the
best possible alignment which would not align the missing
value with gaps.



C. Multiple missing values imputation

On the second part of this work , the imputation of data
when multiple missing values are present in a sequence will
be analyzed. This will be done by following the same steps
as before, although instead of removing only one datapoint at
random, an individual and feature will be chosen at random,
and from the elected sequence we will have 5%, 10%, 15%
and 20% of missing values in randomly picked positions. This
will be done in four different runs for each missing percentage,
with the exception of the Seizure dataset which will be done
in a single run, due to the high computation time of the DTW
imputation on this dataset. For effects of comparison the same
positions will be applied on DTW and NW imputation.

1) DTW imputation: The results of the DTW imputation
with multiple missing values are shown on Table IV.

Dataset Missing % RMSE PA R2

CMUsubject16

5% 0.221 0.999 0.934
10% 1.802 0.997 0.965
15% 2.08 0.997 0.973
20% 1.8 0.997 0.978

ECG

5% 24.01 0.979 0.734
10% 36.24 0.934 0.766
15% 45.82 0.965 0.856
20% 42.05 0.948 0.844

Seizures

5% 13.4 0.998 0.787
10% 53.44 0.997 0.888
15% 29.66 0.907 0.764
20% 25.98 0.894 0.757

TABLE IV: Evaluation measures of the multiple imputation
using DTW.

The CMUsubject16 had the expected behaviour with the
increase in the RMSE, even though for the 20% missing
values the RMSE value decreased. Overall the values were
in accordance to what was seen in the single imputation for
this dataset, having a good accuracy and low errors, even
in the presence of many missing values. Regarding the ECG
dataset, there were also no surprises, because in similarily to
what happened with the single imputation, this was the dataset
which had the worst performance. Both of these datasets had
a relatively fast execution time, which was not the case for
the Seizures dataset, which required a lot of processing time
to handle the imputations. Due to these long execution times,
only one execution of the algorithm was done, causing the
values on Table IV to be not as compliant to the expected
when compared to the ECG and CMUsubject16 datasets.
Although it was to be expected for the RMSE to be the
lowest for the 20% missing values, this was not verified,
with the highest RMSE on the 10% missing values. In terms
of the prediction accuracy, the values were particularly good
in the CMUsubject16 dataset. Both the Seizures and ECG
dataset also had good results, although the Seizures dataset
struggled with a higher missing percentage. An example of
the imputation with 20% missing values is shown on Figure
9.

2) NW imputation: The results of the NW imputation with
multiple missing values are shown on Table V.

Fig. 9: Alignment of the sequence using DTW with 20%
missing values for the Seizures dataset.

Dataset Missing % RMSE PA R2

CMUsubject16

5% 1.873 0.998 0.931
10% 3.784 0.991 0.952
15% 3.622 0.992 0.963
20% 3.088 0.994 0.973

ECG

5% 39.8 0.942 0.78
10% 40.54 0.889 0.727
15% 45.5 0.925 0.809
20% 57.81 0.862 0.713

Seizures

5% 39.76 0.998 0.787
10% 289.2 0.855 0.652
15% 36.17 0.891 0.627
20% 55.19 0.502 0.238

TABLE V: Evaluation measures of the multiple imputation
using NW.

During the tests, in order to impute all missing values in a
sequence, the algorithm had to run multiple times, due to the
alignment occurring globally, which means that sometimes a
certain amount of missing values would align with gaps. In the
following runs the already imputed values would be used and
a restriction to find the best matching sequence which could
have a match for any missing value would be implemented in
order to fill the missing value.

By inspecting Table V we can verify that for the CMUsub-
ject16 dataset the RMSE was generally low. It is also to
be noticed the accuracy for the 20% missings was better
than the 15% and 10% missings which was not according
to expectations. Although this behaviour was not expected,
even though this result may have happened due to the low
number of tests performed, this could mean the algorithm can
still show acceptable results with a large amount of missing
values. Regarding the ECG dataset the same could be verified,
although with lesser accuracy due to the size of the classes
made by the discretization, leading to imputed values with
less accuracy. This behaviour also repeats itself in the seizures
dataset, although the 10% RMSE results are far from the
expected because of the presence of an outlier in the data (and
because this algorithm ran only once), and having difficulties
with the imputation with the 20% of missing values. An
example of the imputation the Seizures dataset is done on
Figure 10

3) DTW vs NW: By analyzing the results on Tables IV
and V, it is possible to see that both algorithms behave in
a similar way (although there are some exceptions such as



Fig. 10: Alignment of the sequence using NW with 20%
missing values for the Seizures dataset.

the results for the Seizures with 10% missing values). The
DTW algorithm is mostly the one with the biggest accuracy,
although the NW algorithm has shown good accuracy when
facing a big percentage of missing values in the ECG and
CMUsubject16 datasets. Although DTW had the biggest ac-
curacy it was the slowest when compared to the NW algorithm.
With multiple values missing the difference in execution time
is more noticeable, because the DTW algorithm analyzes the
missing values one by one, while the NW algorithm matches
the sequences globally, although more runs of the algorithm
may be necessary to fill the missing values aligned with gaps.

While analyzing the imputations in the DTW algorithm
it was seen that in the presence of gaps of missing values
the imputation accuracy would drop the most, which can be
explained by the calculations made for the derivative using
only two available points (which is less effective than the
derivative using three points). In the NW algorithm these
effects were not as noticeable.

D. DTW Discussion

This algorithm gave off the best accuracy overall when
compared to the NW algorithm. A few factors could have
influenced this such as the fact that this algorithm fills the
missing values, and then uses these filled missing values to
proceed in finding the next ones. Also, due to the algorithm
being applied locally and with several windows, better results
were found, which could be overlooked if the algorithm acted
on a global scale. That being said, because this algorithm has
an exhaustive local analysis, it will also take a long time
to complete, especially with multiple missing values on big
sequences and a lot of individuals to analyze, which was the
case for the Seizures dataset. In order to improve on this aspect
a threshold could be established on the scores of the DTW
match. Another solution could be comparing all sequences
globally in order to determine the ones most likely to succeed
in an alignment, and use those on the algorithm. There should
also be made attempts to discover a relation between the
window size and the size of the sequences being analyzed,
as well as the number of windows to be analyzed.

E. NW Discussion

In terms of accuracy, the NW algorithm was lacking when
compared to DTW, even though the results were still appro-
priate when compared to the original values. The positive

point is that it takes less time than the DTW algorithm.
This is because the algorithm compares sequences globally
which makes the process faster. A downside of this is that,
when comparing sequences globally, some missing values
might only match with gaps, which was countered by adding
certain validations, although this means the algorithm will
need to process more alignments. Even with this extra step
it was still much faster than the DTW algorithm. One of the
biggest problems could be the discretization of the sequences.
When applying discretization, information will be lost, which
could be troublesome when retrieving the final values for the
imputation. This issue comes from the fact that the number of
classes are chosen based on the size of the sequences being
analyzed, which will affect short series with high variability
in their data. For example, regarding the ECG and Seizures
dataset the size of the sequences and the high variability
resulted in a discretization in which classes had a wide range
(this happened specially in the ECG dataset).

An additional improvement would be re-designing the sim-
ilarity matrix. Instead of using the same mismatch value for
whenever a mismatch between two characters occur, a score
could be assigned to reflect the proximity between the classes.
For example, class ‘C’ would have a higher mismatch score
with classes ‘B’ and ‘D’ and the mismatch scores would
worsen from these on out. This would promote mismatches
with the nearest classes, instead of with any class.

Another suggestion of an upgrade for this project is the
use of a local version of this algorithm to be compared with
DTW which acts locally. To achieve this, the Smith-Waterman
algorithm could be used.

V. CONCLUSION

In this paper, it was intended to analyze the behaviour of
two algorithms when applied to input missing values in a
continuous time series. This analysis is considered extremely
important, given the fact that there are already some predictive
algorithms applied to data that have this missing values, and
this happening is not being taken in proper consideration, that
could be leading to wrong conclusions. Thus, the algorithms
implemented were DTW and NW, applied to three different
datasets. In addition, some tests were also performed regarding
the number of missing values: single missing values imputa-
tion and multiple missing value imputation, placing 5%, 10%,
15% and 20% of the dataset as missing values. Results showed
both algorithms can be used for imputation, each with their
respective strengths - accuracy, when speaking about DTW,
or speed, when speaking about NW. Some improvements
have been suggested in the previous chapter, which could
help lessen the weaknesses of these algorithms. Both of these
algorithms should be further tested as well in order to attest
them to be used in the imputation of real data.
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