FaultSee: Reproducible fault injection
in distributed systems

Miguel Antdo Pereira Amaral
Instituto Superior Técnico, Universidade de Lisboa

Abstract—Distributed systems are getting more important in
modern society, often operating on a global scale with availability
requirements close to 100%. Achieving high levels of availability
requires quality-focused development processes with rigorous
and thorough testing. Distributed systems, due to having several
components, are quite difficult to evaluate and test in a systematic
and reproducible manner. When analyzing a study or paper of
a distributed system in operation, often there are statements
about fault injection in system nodes, which are neither ex-
plained nor contextualized to allow reproduction in an alternate
test environment. Since system behavior can vary substantially
depending on the injected fault, it is virtually impossible for a
researcher or engineer to reproduce the behavior observed in a
test. Without reproducibility, correct comparison of alternatives
is unobtainable, and technical progress becomes slower and
more expensive. In this thesis, we propose the FaultSee platform
that allows to evaluate real systems in a more systematic and
reproducible way than the state of the art. We also propose a
language, used by FaultSee, for distributed system specification
and fault injection that accurately capture variables such as the
test environment, workload and fault type. These features are
demonstrated in realistic scenarios using the Apache Cassandra
database and the BFT-Smart system as case studies.

I. INTRODUCTION

Technology is taking a central role in modern society. In
developed countries, everywhere we look we can see the
presence of software. An example is the software that helps
emergency responders control all active operations and receive
new distress calls.

Often, applications are running in a global scale with
availability requirements close to 100%. To handle the global
scale, distributed systems are increasingly in the total num-
ber of components. Achieving high levels of availability re-
quires quality-focused development processes with rigorous
and thorough testing. Distributed systems, due to having
several components, are quite difficult to evaluate and test in a
systematic and reproducible manner. Furthermore, as software
is developed by humans, and because the environment is
unpredictable, it can be faulty. Faults can lead to catastrophes,
especially when dealing with critical applications. Last July,
Cloudflare had an outage that impacted millions worldwide,
due to a bad software deployment that was not properly
tested [1].

To test software, developers must be able to introduce bad
inputs to check how the program will react. In a perfect world,
developers will have considered, and tested, all possible inputs,
so that all the logic the programmer has inputted into his code
can be tested, leading them to assert, with confidence that their
software is bug-free.

Throughout the years we have seen a bigger investment
from the community to build tools with the objective to help
developers creating software faster and with fewer bugs, for
example JUnit, a Java framework to automate tests. There are
many areas where this has been happening, such as Integrated
Development Environment (IDE), where nowadays multiple
IDE exist for the most popular languages. Continuous Integra-
tion (CI) and Continuous Development (CD) allows developers
to decrease the time elapsed between writing the code and
its deployment to production environments, automating the
validation steps in the test phase. However, as the problems
presented to developers grow, so does the complexity of the
respective solution, and the existing tools may no longer be
sufficient. Unfortunately, when dealing with multiple compo-
nents a new type of errors appears: faults in components,
such as a disk failing or power outage. If not accounted for,
a single machine crash can lead to catastrophic results. As
the number of possible faults increases, so does the strain on
developers to be able to test all possible combinations that
could lead to an error. To be able to effectively test components
failures developers need better tools, which represents a good
opportunity.

When the code is properly tested the number of error
decreases. Nagappan et al. [2] studied how Test Driven Devel-
opment (TDD) improved code quality in four industrial teams.
They showed that the number of errors present in the code
decreased between 40% and 90%. George and Williams [3]
show that TDD created code that passed 18% more functional
black-box tests.

Components failure can be so severe that they result in
long downtime or even lead to data loss. Therefore, it is
important to validate how systems will react in the presence
of failures, to avoid, or at least mitigate, the consequences
of components failure. The academic community is actively
working to build more resilient systems and has developed
several fault-tolerant techniques over the years [4]. However,
the community has yet to build the necessary tools to properly
test their systems, using these techniques. There are two main
challenges to be able to inject faults into systems: deploy the
system into a running configuration, and inject faults when
required. Docker-Swarm and Kubernetes are two tools that
automate the deployment of complex distributed architectures
into several physical hosts. Additionally, these tools reduce
the time required to deploy new versions of software, thus
they help developers to iterate versions of their software faster.
Nevertheless, they lack the ability to inject faults. FaultSee is

a tool we created that simulates components failures patterns,
which helps developers mimic faults that might affect their
systems in production.

Reproducibility of results is important. In the industry,
whenever there is an error that developers need to correct,
first they must identify what is the cause for the error, and
then correct it. This process is faster if developers are able to
reproduce the causes of the error. Furthermore, when the error
is fixed developers can then reproduce the causes of errors to
validate this no longer affects their systems. Reproducibility
is also very relevant to academia, as it allows researchers to
validate claims made by other researchers. When someone
claims they designed a new algorithm that is one order of
magnitude faster than the state of the art other researchers will
want to validate said claims. Docker-Swarm and Kubernetes
enable researchers to create configuration files that allow
other researchers to easily deploy the same system, however,
as these tools lack fault injection capabilities, researchers
need to inject faults manually, which hinders reproducibility.
Additionally, it removes the possibility for the creation of
automated benchmarks.

Depending on the environment, an error may or may not
lead to a failure. For example, different implementations of
the same software library in different operating systems can
have distinct results. Docker containers precisely describe the
environment in which the software will run, enabling the
developer to control the environment. Combined with the
ability to inject faults in specific nodes at precise moments
this enables developers to create reproducible results that are
easier to analyse.

There is a need for a tool that enables fault injection
automation, in order to study the behaviour of systems when
a failure occurs. This opens a good opportunity to combine
the deployment flexibility of tools such as Docker Swarm,
with the need to have a judicious evaluation platform that is
able to subject distributed application to faults. This document
presents

II. RELATED WORK

In this section we summarily discuss the related work,
focusing on fault injection and deployment.

Cords [5] is a framework developed with the purpose of
injecting faults in file systems in order to test distributed
applications. Ganesan et al. [5] show that redundancy, in fact,
does not imply fault tolerance by uncovering a series of bugs
in eight popular distributed file system. This shows the need
for incorporating better mechanisms into the development life-
cycle to test distributed applications, as even applications with
large communities have dormant bugs. The team identifies two
problems related with file systems, blocks being inaccessible
and corrupted data.

To motivate its engineers to build more fault tolerant tools,
Netflix created the SimianArmy [6] set of tools. These tools
can inject faults, with a given probability, into production
systems on a business day. The motivation behind this tool is
that systems will eventually fail, developers just do not know

when. By ensuring engineers that components will fail on a
daily basis, this tool provides them with extra motivation to
build systems that are more robust to faults. Moreover, with the
iterative lifecycle of software development, some faults might
be introduced in a system by human error, laying undetected
until the worse possible moment. SimianArmy ensures the
faults will become failures when engineers are most prepared
to deal with any issue that may arise. SimianArmy comprises
a set of tools, built with fault tolerance as its primary focus:

e Chaos Monkey - The original tool, responsible for ran-
domly terminating virtual instances;

e Chaos Gorilla - Tests problems related with an availability
zone. It supports two distinct modes, terminating all
instances in data center or creating a network partition, in
which the instances inside that data center are unable to
communicate or be reached by services hosted outside;

e Chaos Kong - Enables developers with terminating all
services in all datacenters in an entire region;

o Latency Monkey -Simulates partly healthy instances,
which increase latency in requests.

The SimianArmy represents a step towards fault tolerance
testing, however, it is intended to ensure that a production
system is resilient against faults, rather than helping developers
at a debugging phase.

Pumba [7] is another tool developed to inject faults into
running systems. After a system is deployed, the user is
able to inject faults into Docker containers by running the
desired command in the console line. This tool supports both
Docker-Swarm and Kubernetes, however it does not support
running scripted experiments, the user has to manually run its
experiences.

When compared to FaultSee, these two tool do not enable to
user to create scripts to describe fault scenarios, which could
be used to reproduce experiments. Additionally, FaultSee
enables its users to gather resource usage metrics, that are
available at the end of the experiment in a dashboard.

FEX [8] is a framework that aims at running benchmarks,
taking care of the whole life-cycle: deploy, run and plot
results. The system leverages Docker to deploy similar nodes
of a system in a host. Additionally, Docker ensures better
reproducibility of statements made by users. This is achieved
because other researchers can replicate original docker images,
therefore they can repeat the experiment in the same condi-
tions.

Dfuntest [9] is a framework developed with the intent to
automate experiments with distributed systems. It allows the
execution to be done in a single host or in a testbed. It makes
use of a centralized host to orchestrate tests, therefore cannot
scale indefinitely. Nevertheless, it allows a user to interact with
the system while it is being tested.

FaultSee is a tool that is built with the objective to help its
users to improve their applications, enabling them to extend
FaultSee and create custom faults for their application, that
easily integrated into FaultSee. Additionally, FaultSee enables
its users to reproduce their experiments, as the fault scenarios
are described in files, as well as the deploy configuration,

which leverage Docker capabilities. This way it is possible
to recreate the same experiment environments. Finally, as
FaultSee injects its faults from each node in the cluster, instead
of using a central node, it has fewer problems to scale to bigger
experiments, reduces the network usage during experiements
and the faults are injected with more accuracy, as the network
latency is removed.

III. FAULTSEE

In this section we describe FaultSee design and specify the
FDSL language. We conclude with a discussion highlighting
FaultSee main features and how they address the requirements
of this work.

A. FaultSee Domain System Language

FaultSee Domain System Language (FDSL) is the language
used to describe fault scenarios. Its key concepts is that it
describes the experiment properties and the experiment events
throughout time.

The FaultSee Domain System Language (FDSL) contains
two main sections, environment and events. Environment
defines the resources required for the experiment and its
configuration options that are specific to each experiment and
Events describes the experiment throughout time, as show in
Example 1.

1 environment:
2 seed: seed_value
3 ntp_server: URL
4 events:
5 - event_1
6 - event_2
7 - e
8 - event_N
Code Example 1: FDSL main structure

Currently, there are two properties that FaultSee recognises,
the experiment seed and the NTP' server to be used when
synchronising clocks. However, if the need arises, FDSL can
easily be extended to include other properties.

Events describes the experiment timeline. There are three
types of events: beginning, end and moment. The beginning
event describes the initial state of the experiment. For each
service of the experiment, it defines the number of initial
containers. The end event indicates when the experiment
ends. Moments describe a point in time in which something
happens in the experiment, in Example 2 we can see its
structure, which has three components, time, mark and the
services. Time represents the moment in seconds, mark is the
message to appear in logs when this moment is processed and

IRFC 1059 - Network Time Protocol (NTP) provides the mechanisms to
synchronise time and coordinate time distribution in a large, diverse internet
operating at rates from mundane to lightwave. It uses a returnable-time design
in which a distributed subnet of time servers operating in a self-organizing,
hierarchical master-slave configuration synchronizes logical clocks within the
subnet and to national time standards via wire or radio. The servers can also
redistribute reference time via local routing algorithms and time daemons.

services holds the Service Events for every service in the
experiment. Services are the Docker Services running in the
experiment, that is, the set of docker containers running the
same configurations.

1 — moment:

2 time: number_of _seconds
3 mark: custom_message

4 services:

5 service_name_1:

6 - service_event_1
7 - e

8 - service_event_N
9

10 service_name_N:

11 - service_event_1
12 - e

13 - service_event_N

Code Example 2: Moment structure

During an experiment there can be three types of Service
Events: start, stop and fault. Start adds nodes to a service
and Stop gracefully removes nodes. Fault is a service event
that allows to inject abnormal behaviour into the System Under
Test (SUT). All faults have a common structure, depicted
in Example 3. This structure includes the farget and the
fault_type. The target can be set to amount, percentage or
specific, these options are mutually exclusive. The first is an
absolute quantity, picked randomly, the percentage also acts
upon an absolute quantity randomly, this value is calculated
as the round up percentage of the expected healthy containers
in the service, while specific is the indication of the exact
containers that are affected.

1 — fault:

2 target:

3 # amount, percentage and specific
4 # are mutually exclusive

5 amount: amount_number

6 percentage: percentage_number
7 specific:

8 - ID_1

9 - .

10 - ID_N

11 fault_type

Code Example 3: Fault structure

Currently there are three types of faults, covering the
fundamental fault types that are relevant to distributed systems
in operations: CPU exhaustion, KILL containers, and Send
a Signal to the container. Additionally, there is the Custom
Fault that is extensible with more specific behaviours. It
enables the user to run a script inside the containers, using
any executable available inside the container, with any argu-
ments. This allows the user to do everything he may need.
In Example 4 we can see the structure, which includes six
fields. kills_containers informs FaultSee if this fault kills the

container or not. fault_file_name is the script filename, while
fault_file_folder is the path inside the container where the
script is located, FaultSee, by default mounts, faults scripts in
/usr/lib/faultsee/, therefore, if this field is omited, this is the
default value. Nevertheless, the user may create a container
with a fault in a different path. fault_script_arguments stores
the scrits arguments, if omited this field is empty. By default
FaultSee injects the fault by executing the script with /bin/bash
without any argument, however, the user may specify a differ-
ent executable or set its arguments in executable_arguments.

1 custom:

2 kills_container: yes / no

3 fault_file name: fault_file _name

4 fault_file folder: fault_file_folder
5 # default - /usr/lib/faultsee/
6 fault_script_arguments:

7 # default - empty array

8

- arg_1
9 - e
10 - arg_N
11 executable: executable
12 # default - /bin/sh
13 executable_arguments:
14 # default - empty array
15 - arg_1
16 - .
17 - arg_N

Code Example 4: Custom Fault structure
B. FaultSee

FaultSee has four main components. These are the Mas-
ter Controller (Section III-B2), Dashboard (Section III-B4),
Infrastructure (Section III-B1), Local Controller (Sec-
tion III-B3).

In Figure 1 we can see the whole system and the interactions
each component will have when an experiment is being
executed.

Infrastructure

Server #N

Dashboard

1
1 -
1 Local Controller

Logs 4o o o - -
Master | '
Controller Local Dock
Orchestrator ocker
Containers]

Operating System ‘ —

Server #2

Server #1

Fig. 1: Overview of the FaultSee system. Dotted arrows repre-
sent produced logs or metrics, while normal arrows represent
control messages.

1) Infrastructure: To run an experiment there must exist
an infrastructure. The user must have access to a cluster. The
cluster access is described in a configuration file, where the
user details the hosts authentication information for remote
access. FaultSee supports two authentication mechanisms:
password authentication and public key authentication.

2) Master Controller: This is the main component of the
system and it is responsible to orchestrate the whole experi-
ment. To run experiments, the user only needs to interact with
this component.

While preparing an experiment, this module will transmit
the scripts to all the hosts in the cluster, in order to be
possible to trigger faults in the same moment throughout the
components of the SUT without compromising scalability. Due
to Docker-Swarm constraints, this is the only node with the
ability to launch new nodes of the SUT. Therefore, the Master
Controller is responsible for deploying the SUT nodes in the
available infrastructure and preparing the network. Before the
experiment starts, the initial nodes of the SUT are deployed.

However, to avoid injecting the same fault in two distinct
moments, clocks need to be synchronised. As such, before
starting any experiment, this module synchronises all clocks
using NTP. Finally, it coordinates the starting moment with
all Local Controllers, described in detail in Section III-B3, so
that all hosts start the experiment at the same time.

As the Master Controller is the component which the user
uses to interact with the system, this component also gives a
visual progress of the current status of the experiment.

During the experiment, log messages are created with a
timestamp, which is fetched from each host clock. At the end
of the experiment, FaultSee merges and sorts chronologically
all log messages.

3) Local Controller: As depicted in Figure 1, the Local
Controller runs in every host of the cluster.

The Local Controller has many responsibilities. At the
beginning of the experiment, it receives the experiment script,
parses it thoroughly, and sets all the internal control variables
so that it can inject the faults in the correct moments.

During the experiment, the Local Controller is responsible
to inject any faults described in the fault configurations. Ad-
ditionally, this module is also responsible for collecting logs.
During the experiment, FaultSee produces generic metrics, not
only per user container but also per infrastructure host. These
will include CPU usage, Memory usage and Network usage.

At the end of the experiment, the Local Controller will
then send all SUT logs to the Master Controller, so they can
be consulted by the user. This is not performed during the
experiment due to performance reasons, as it would clog the
network and negatively impact the results of the experiment.

Below are the faults supported by the Local Controller:

o CPU-intensive tasks - Exhaust CPU of the container;

¢ Kill nodes - Kill a container;

o Send Signals - Send a signal to the container;

o Custom Faults - Run any script inside the container.

These faults were chosen as a proof of concept, by support-
ing custom faults FaultSee can be used to inject any fault the

user may require, as it can run any script the user develops.
The other faults were developed as they are generic faults that
can be used in every experiment.

4) Dashboard: The Dashboard displays visual information
to the user. After the Local Controller processes the logs of
the experiment, smaller files are created with the logs. This
way, when the Dashboard is loading telemetry, it only needs
to load smaller files, and therefore being more performant.
Nevertheless, longer experiments will produce bigger files,
leading to longer times for the dashboard to complete.

There are five files:

o Container Information - This file holds identification in-
formation about the containers that ran in an experiment,
such as its full id, the service the container belonged to
and the slot inside the service.

o Container Events - This file includes the information
about the lifecycle of containers, such as when they
started and stopped.

o Container Logs - This file holds all the applicational
logs produced by the containers of the SUT

o Container Stats - This file has the metrics produced
during the experiment about the resource usage of each
contaiener.

« Hosts Stats - Like the previous file, this file holds metrics
of the experiment resource usage, however this metrics
are stored by host in the experiment.

From the files, the Dashboard component can create plots,

in Figure 2 we can see an example of a plot of the number of
outgoing packets during the experiment, for each containers.

Fig. 2: Example of number of outgoing packets during an
experiment

C. Overview

In this section we presented FaultSee, a tool that leverages
Docker functionalities to enable its users to create reproducible
scnenarios that emulate components failures. The experimental
results are then displayed in a dashboard that creates plots
automatically. Additionally, we spectified FDSL, a language
that describes fault scenarios, that can be shared among users,
thus making experiments reproducible.

IV. EVALUATION

The evaluation has two main objectives, show that simple
configuration files can model complex behaviours in the SUT
and show that after creating an experiment, the user can easily
repeat the experiments.

We created two sets of scenarios. The first set uses the
database Apache Cassandra [10], that is heavily used by the

industry, while the second set uses the academic library BFT-
Smart [11]. Both systems are set up in a cluster of four nodes
and then subject to the Yahoo! Cloud Serving Benchmark
(YCSB) [12], which is a database benchmark used for NoSQL
databases. While the benchmark runs we inject different faults
to see how it affects the system. In order to run the benchmark
we first had to load the data, so that we can then run the
benchmark. In all the experiments we used the YCSB (version
0.14) and run the Workload A (Operarions: 50% Read and 50%
Write). The experiements were performed on Ubuntu 16.04.6
LTS, with Docker 19.03.4. Additionally, all plots displayed in
this section are downloaded from the FaultSee dashboard.

A. Cassandra

We ran this experiment in a Google Cloud Platform (GCP)
cluster, with six nl-standard-1 servers. The servers have 1
vCPU and 3.75 GB memory. We used Cassandra version
3.11.4 and the YCSB ran 5 750 000 Operarions. The Cassan-
dra cluster has 4 nodes, each running in a separate host. One
of the remaining hosts controls the experiment and the other
runs the YCSB benchmark, both the Load and Run clients.

1) Inject Fault: The first scenario we decided to study is
how Cassandra reacts when a fault that kills one of the nodes
is injected. Then, after a brief period we then launch a new
container, so that we can also study the impact of adding a
new node to a running system.

The experiment can be summarized in the following points:

o Start 4 Cassandra nodes;

o Load the necessary data to run the benchmark, with data
being replicated into 3 nodes;

o Start the YCSB benchmark;

o Kill one of the nodes in the cluster 600 seconds later;

o Start a node 700 seconds later.

In Figure 3 we can see the variation in number of nodes
in the cluster of Cassandra servers throughout the time of
the experiment, blue line, and of the service YCSB, the load
stage is the yellow line and the run phase is the green line.
In the plot we can see that only a node at a time is started
until the second 600. At the second 900 the YCSB Load client
is started and lasts around 100 seconds. At the second 1 400,
two YCSB - Run clients are started, each one with 10 threads,
this service runs for approximately 2 000 seconds, and each
client performs 5 750 000 operations, half of the operations
are updates of existing records, while the other half is reading
the stored information. At 2 050 seconds, one of the containers
of the service Cassandra is killed, this container is replaced
700 seconds later, when another node is started.

In Figure 4 we can see the average of operations per second
the YCSB clients perform. After a few seconds the system
stabilizes at around 3 250 operations per second. At second
2 150 we can observe that Cassandra cluster performance
plunges. This is a direct result of the cluster restoring the
replication factor to 3. The reason this dip in the performance
only happens at 100 seconds after the node crashes is due to
how Cassandra operates: when a node crashes it is not yet
considered failed, as it may be a simple power outage, and

Fig. 3: Number of containers running throughout the Cassan-
dra experiment, in the scenario of killing a node

Fig. 4: Average number of operations performed by YCSB-
Run Clients throughout the Cassandra experiment, in the
scenario of killing a node

then the node would recover and receive a small batch of the
updates it missed. Instead, 100 seconds after the node crashes,
the cluster receives the information that the dead node will
not recover, as such, the cluster uses the available 3 nodes to
achieve a replication factor of 3. This information is received
through the injection of a custom fault: a script that runs a
command that instructs the cluster to consider the dead node
as failed.

After the restoration of the replication factor is concluded,
the cluster stabilizes at a new value of 2 750, a substantialy
lower value than the previous 3 250 operations per second.
This can be explained by the fact that now there are only 3
live nodes to answer the clients’ requests. At 2 700 seconds, a
new node is started, to replace the dead one. As a consequence
of this operation, Cassandra performance once again plunges.
This a direct result of the cluster transfering a part of the data
stored into the new node, this way utilizing resources that
could be used to answer clients’ requests. Approximately 100
seconds later, this operation ends and performance improves
once again, stabilizing around 3 250 operations per second.

At the end of the plot we can see a sudden spike in
throughput, this is explained to one of the two containers ends
its 5 750 000 operations before the other. As a result, there are
only half of the concurrent requests, therefore more resources
are available to the remaining client requests, significantly
improving its troughput.

2) Resources Exhaustion: In the second scenario we intend
to show how the exhaustion of resources affects the perfor-
mance of a Cassandra cluster. During this scenario, we run the
same YCSB benchmark and during 700 seconds we exhaust
the CPU of all the containers in the Cassandra’s cluster.

The experiment can be summarized in the following points:

o Start 4 Cassandra nodes;

o Load the necessary data to run the benchmark, with data
being replicated into 3 nodes;

o Start the YCSB benchmark;

o Exhaust CPU for 700 seconds.

In Figure 5 we can see the variation in number of nodes
in the cluster of Cassandra servers throughout the time of the
experiment, blue line, and of the service YCSB, the load stage
is the yellow line and the run phase is the green line. This
figure is very similiar to Figure 3, however, in this scenario
the number of nodes in service Cassandra remains constant.

In Figure 6 we can see the average number of operations
per second of the YCSB clients, similar to Figure 4. After a
few seconds the system stabilizes at around 3 250 operations
per second. At second 2 000 a fault is injected that starts
consuming CPU, and it lasts for 700 seconds. We can see that
the performance plunges to approximately 2 750 operations
per second. As soon as the CPU stops being exhausted, at
second 2 700, the performance improves rapidly, stabilizing
around 3 250 again. Similarly to the previous scenario, at the
end of the plot we can see a sudden spike in troughput, as one
of the YCSB clients ends its 5 750 000 earlier than the other.

3) Discussion: Analysing the results in both experiments
we can conclude that injecting faults has a real impact in the
performance of Apache Cassandra. Comparing both scenarios,
the CPU exhaustion had a bigger impact than removing one of
the nodes of the cluster. Even though both scnearios resulted
in reducing performance from 3 250 to 2 750 operations per
second, Apache Cassandra was able to recover from one of the
nodes crashing, whilst it was unable to recover from the CPU
exhaustion until it terminated. We can see this by comparing
Figure 6 with Figure 4.

' =

Fig. 5: Number of containers running throughout the Cassan-
dra experiment, in the CPU exhaustion scenario

Fig. 6: Average number of operations performed by YCSB-
Run Clients throughout the Cassandra experiment, in the CPU
exhaustion scenario

With this experiment we were able to demonstrate that with
a few lines of configuration files we can modulate complex
behaviours. These complex behaviours can then easily be
repeated, even by other people, without much human effort.
Additionally, we were able to demonstrate that FaultSee sup-
ports both AWS and GCP, without the need for any additional
configurations.

V. CONCLUSION

In this section we conclude the document, draw the main
conclusions of the work and discuss future work.

In this dissertation we created FaultSee, a tool that enables
the execution of fault scenarios in distributed systems, which
represents an increasing necessity, as distributed systems are
operating at an increasing bigger scale and with a bigger
number of components. The automation of the execution of
fault scenarios enables the improvement of the lifecycle of
software development, as defects can be detected sooner.
FaultSee also comes with a dashboard so that its users can
see plots of resource usage generated automatically, or even
extend this dashboard with custom plugins.

Moreover, this system improves the area of investigation
in the science of distributed systems, as it allows scenarios to
be reproductible by independent investigators, which will only
require the configuration files used in the original experiment
and access to servers with equivalent computational power.

In this dissertation we showed FaultSee supports all cloud
providers that rent virtual machines, we ran the experiments in
both Amazon Web Services (AWS) and GCP. We also showed
that experiments created in FaultSee are easily reproduced by
other users by sharing the configuration files. Additionally, we
showed that with simple configuration files it was possible to
emulate complex behaviours. Moreover, reusing most of the
fault scenario configuration file, changing only the names of
the services and the deployment configurations, we were able
to create a benchmark of a CPU exhaustion scenario for two
different systems, Apache Cassandra and BFT-Smart.

This work also resulted in a published paper in the INFO-
RUM 2019 conference: FaultSee: Avaliacdo Reproduzivel de
Sistemas Distribuidos Sujeitos a Faltas. The paper authors are
Miguel Amaral, Miguel L. Pardal and Miguel Matos.

A. Future Work

This work represents a leap forward in the state of the
art, as FaultSee enables independent researchers to reproduce
experiments created by other researchers. However, the work
in this area is far from complete. FaultSee itself could be
improved in several ways. As future work we suggest in-
creasing the number of available faults to the users, such as
emulating network failures. Another useful feature would be
the support for different experiment flows, currently FaultSee
only supports temporal events, however, triggering events
based on the application state could enrich the tool. In the
current model, faults are injected based on how many seconds
have elapsed since the beginning of the experiments, when
replaying the same experiment, faults can then be injected in
different application states, which can hinder the experiment
reproducibility. Due to this fact we can only atest to the valid-
ity of results by repeating the same experiment several times,
to be able to confidently take conclusions. An improvement
would be to be able record the application state on the first
run of the experiment, then faults could be inject in the same
application state, this would increase the reproducibility of the
experiments.

The dashboard was not the core focus of the work, as such
it can be improved. As future work the dashboard could be
improved in order to be able to interact with the cluster to run
experiments and have an experiment editor. Additionally, the
dashboard could include features to accompany the experiment
in real time, such as the running containers in the cluster or
event the resources being used by every container or host,
by displaying information sampled every period of time, such
as 10 seconds. Finally, the dashboard should also enable the
user to compare results from two different experiments side
by side, in order to take conclusions faster.

REFERENCES
[1] J. Graham-Cumming, “Details of the Cloudflare
outage on July 2, 2019,” 2019. [Online]. Awvailable:

https://web.archive.org/web/20190712160002/https://blog.cloudflare.com/details-

of-the-cloudflare-outage-on-july-2-2019/

[2] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams,
“Realizing quality improvement through test driven development:
Results and experiences of four industrial teams,” Empirical Software
Engineering, vol. 13, no. 3, pp. 289-302, jun 2008. [Online]. Available:
http://link.springer.com/10.1007/s10664-008-9062-z

[3] B. George and L. Williams, “A structured experiment of test-
driven development,” Information and Software Technology, vol. 46,

no. 5 SPEC. 1ISS., pp. 337-342, 2004. [Online]. Available:
www.elsevier.com/locate/infsof

[4] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing
Dependability with Software Fault Injection,” ACM Computing
Surveys, vol. 48, no. 3, pp. 1-55, 2016. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=2856149.2841425

[5]1 A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Redundancy Does Not Imply Fault Tolerance,” ACM
Transactions on Storage, vol. 13, no. 3, pp. 1-33, 2017. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3141876.3125497

[6] A. Tseitlin, “The antifragile organization,” Communications of the
ACM, vol. 56, no. 8, p. 40, aug 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2492007.2492022

[7] “Pumba: Chaos testing tool for Docker,” 2016. [Online]. Available:
https://github.com/alexei-led/pumba

[8] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, and C. Fetzer, “Fex: A
Software Systems Evaluator,” in Proceedings - 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks,
DSN 2017. 1IEEE, jun 2017, pp. 543-550. [Online]. Available:
http://ieeexplore.ieee.org/document/8023152/

[91 G. Milka and K. Rzadca, “Dfuntest: A testing framework for

distributed applications,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). Springer, Springer Nature,

mar 2018, vol. 10777 LNCS, pp. 395-405. [Online]. Avail-

able: http://arxiv.org/abs/1803.04442%0Ahttp://dx.doi.org/10.1007/978-

3-319-78024-5_35

A. Cassandra, “Apache cassandra,” Website. Available online at

http://planetcassandra. org/what-is-apache-cassandra, p. 13, 2014.

A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for

the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks. 1EEE, 2014,

pp- 355-362.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proceedings of the

1st ACM symposium on Cloud computing. ACM, 2010, pp. 143-154.

[10]

(11]

[12]

