EDITE: Voice-based mobile text editing

Beatriz Portugal
Técnico Lisboa
biamnportugal @ gmail.com

ABSTRACT

The reduced size of virtual keyboards and the lack of tactile
clues make them difficult to use, error-prone and slow. This
is particularly relevant for blind users. The use of voice in-
terfaces for mobile text entry and editing has proved to be
a viable alternative. However, despite its advantages, blind
users face challenges revising the text and spend 80% of their
time editing, being forced to use the virtual keyboard [3]. In
this dissertation, we propose Edite, a voice-based system that
allows users to edit text in a simple and fast way, with speech
recognition error recovery. Three formative studies were con-
ducted that allowed us to deduce the requirements for a voice
editing system. We infer that operations such as read, insert,
delete, replace, and redo the last operation are desired by users
and that both speech recognition error recovery and clues to
system state would improve users’ experience. In order to
evaluate our solution’s usability, we conducted a user study
with 8 screen reader users, in which we compared our solution
to the traditional text editing method provided by Android’s
Talkback. Results show that Edite is faster than Talkback and
users prefer voice interaction to review and correct text. Fi-
nally, implications for the design are suggested to improve
mobile text editing voice interfaces.

Author Keywords
Visual impairment; Mobile devices; Text editing; Voice-based
interaction; Mobile accessibility; Error Recovery

1. INTRODUCTION

In the past decade, mobile touchscreen devices such as smart-
phones have been widely adopted by blind people thanks to
screen readers like VoiceOver! and Talkback?. A blind user
can explore and select items on the screen as the screen reader
tells the action result, allowing efficient use of applications.
Alongside smartphone adoption, speech interface has been
widely used, mainly because of the launch of virtual assistants
like Siri, Google Now, Cortana and Alexa. The integration of
speech recognition in mobile devices allowed users to perform
tasks that do not require visual feedback, in a more natural

Uhttps://support.apple.com/pt-pt/HT204783
Zhttps://support.google.com/accessibility/android/

manner. Blind users tend to prefer this interaction modal-
ity mainly in text entry tasks, which, performed through a
virtual keyboard, although using a screen reader, becomes
time-consuming and error-prone. Azenkot et. al. [3] explored
speech input by blind people on mobile devices and found
that speech was nearly 5 times as fast as the keyboard. De-
spite the advantages of using speech for text input, people face
challenges when reviewing and editing a speech recognizer’s
output, often resorting to using the keyboard, spending 80.3%
of their time editing.

Reviewing text can be challenging because users depend on
audio feedback to do it and the system is likely to output words
that sound like the user input but are incorrect. To edit text,
there are some complex tasks like cursor navigation, access to
context menus to perform clipboard and selection operations
and adjust the navigation granularity (character, word, line),
that depend on gestures that can be hard to perform. To our
knowledge, no one has explored speech as a non-visual text
editing modality, as this is still an accessibility problem. In
order to improve user experience in this context, we propose
Edite, a voice-based system that allows users to edit text in
a simple and fast manner, with speech recognition errors’ re-
covery. We explored relevant and desirable functionalities
through three formative studies. The results led us to the de-
sign guidelines and user requirements to implement Edite. To
evaluate our solution, we conducted a user study with 8 people
that depend on screen readers to use mobile touch screen de-
vices. In this study, we compared Edite to Android’s Talkback
method with the QWERTY keyboard. Results show that Edite
is faster than Talkback and users prefer this voice-based inter-
action to review and correct text. Our main contribution is the
characterization of the current nonvisual text editing problems,
analysis of voice interaction by blind people, elicitation study
on how blind people would edit text by voice and the results of
the comparison between Edite’s novel interface and Talkback.
We finish with implications for the design of future mobile,
voice-based, text editing interface.

2. RELATED WORK

In this section, we discuss previous work in four topics: we
analyze related research on text entry, text editing and use of
voice user interfaces for blind people, as well as metrics used
to evaluate text entry and editing performance. Finally, we
describe the existing gap in non-visual techniques.

2.1. Text Entry for Blind Users

Currently, most of the mobile devices have accessibility ser-
vices, like Apple’s VoiceOver and Android’s Talkback, to al-
low blind users to perform several tasks like text input. Users
can explore the keyboard by dragging their finger and have the

keys to read aloud as they touch them. While sighted users see
the keyboard before pressing the pretended key, blind users,
apart from not having physical references of the keys, rely
on their mental model of the keyboard and the size of the
device. Insertion of punctuation marks, special characters and
numbers is also a challenge, as it requires keyboard change.
In order to reduce the number of targets in mobile text entry,
some solutions have been proposed. Braille-based keyboard
favors users in the target location and precision because of
the reduced number of keys. A traditional Braille keyboard
consists of 7 main keys paired with each of the six dots of the
Braille code and a space key. In solutions like Perkinput[4],
BrailleTouch[5], and HoliBraille[9], the system generate a
braille keyboard on the screen and the user places one finger in
each dot. Trindade et. Al.[11] takes into account the user pref-
erence for physical buttons, and proposed Hybrid-Brailler, an
input solution that combines physical and gestural interaction
to provide fast and accurate Braille input.

Regarding the voice input, mobile device users can dictate
text in any text entry scenario on iOS and Android devices,
as automatic speech recognition is well integrated on mobile
platforms.

2.2. Text Editing for Blind Users

Nonvisual mobile text editing has few contributions in the sci-
entific community. Accessibility services like VoiceOver and
Talkback allow users to perform editing operations like cursor
movement, text selection, and clipboard operations (i.e. copy,
cut, and paste) through contextual menus and gestures. With
these menus, “rotor” in VoiceOver and inverted “L” gesture in
Talkback, users can define navigation granularity (character,
word, line), enable selection operations and perform typo-
graphical operations. To move the cursor, users can use the
volume keys or perform vertical (iOS) or horizontal(Android)
swipes.

Although these solutions enable users to perform any editing
tasks, they depend on complex gestures, leading users to delete
all the entered text and start over instead of reviewing and
correcting the text.

With the braille keyboard on the back of the device, Hybrid-
brailler[11] uses the touchscreen for gestural interaction for
editing operations. Editing operations start by pressing the
edit mode key. After that, the user can move the caret with
horizontal gestures, select text by holding one of the thumbs
on the screen and performing caret movements and perform
clipboard operations by holding the selection thumb and per-
forming a vertical gesture.

Some braille-based solutions like BrailleType[10] and Brail-
leTouch[5] offer a delete option for the last inserted chord.

EDITalk[7] is an eyes-free word processing interface that en-
ables users to revise the text by using Text-to-speech and to
perform actions like highlight, comment, insert, delete and
replace without depending on cursor movement. The system
can read all the contents in the text field and provides feedback
for operations performed by the user.

Dragon? solutions offer editing, formatting and text correction
methods just by using voice. Most of the editing operations,
such as text deletion or replacement, text formatting, and
annotations require visual feedback, making them unsuitable
for eyes-free use. None of these two solutions were designed
for visually impaired users.

2.3. Voice user Interfaces

Speech has been widely used in applications and tools like
voice-activated personal assistants, like Siri and Google Now
and mobile devices navigation tools. Abdolrahmani et. AL[1]
says that these virtual assistants are used mainly for tasks like
creating alerts/setting reminders, searching for information
and checking the weather. This can reduce the time and effort
needed to access applications and does not require the target
location on the screen, improving the blind users’ experience.
Speech interaction has the disadvantage of misinterpreting
commands in noisy environments. Besides personal assistants,
there are navigation and control solutions like CaptiSpeak[2]
and JustSpeak[12]. JustSpeak is a voice control solution for
non-visual access to the Android operating system that enables
system-wide voice control to any application and provides
more efficient and natural interaction with support of multiple
voice commands in the same utterance. CaptiSpeak is a voice-
enabled screen reader that is able to recognize commands like
“click <name> link,” and “find <name> button,”.

2.4. Evaluation Metrics

Regarding text entry efficiency metrics, Word Per Minute is
the most used metric. User actions are not considered in this
measure, only the number of words in the transcribed sentence
as well as the time the user spent on it. Some researchers
use other metrics like Characters Per Second, Keystrokes per
second and Gestures per second. To measure the error rate,
usually, researchers use the Minimum String Distance Method
method. The algorithm yields the minimum distance between
two strings defined in terms of editing primitives. The prim-
itives are insertion, deletion, and substitution. The idea is to
find the smallest set of primitives that applied to one string
(transcribed text) produces the other (presented text). The
number of primitives in the set is the minimum string distance
(MSD). Regarding speech as a text entry modality, researchers
consider metrics that distinguish between errors made by the
user when pronouncing incorrect words and errors by the
speech recognizer.

Concerning text editing, Fuccella et. AL.[6] proposed a set of
phrases and editing tasks that cover all the editing operations
(cursor movement, text selection, and clipboard operations).
Trindade et. Al. [11] used a similar set of phrases that would
require several editing operations. During the initial sentence
with errors were read to the participant and he was asked
to correct the phrase. Although this procedure guarantees
internal validity, Trindade et. AL.[11] says that performance
and overall error awareness may be different when users edit
their own sentences. To evaluate text editing tasks, researches
measure the task time, task success rate, number of edit events,
editing ratio, calculated using the Minimum String Distance

3https://www.nuance.com/dragon.html

(MSD) measure. This measure indicates how far participants
are from finishing the editing tasks considering the original
sentences.

Usability text entry and editing methods can also be measured
through subjective user impressions, using a SUS test (System
Usability Scale).

Nonvisual text entry has been actively explored in the last
decade and we can find efficient modalities like speech, a
popular alternative to the on-screen keyboard with VoiceOver.
Yet, nonvisual text editing is still a difficult and complex task
and users tend to avoid editing operations. To our knowledge,
no one has explored speech as a text editing modality for blind
users.

3. PERCEPTION OF VOICE-BASED INTERACTION PRO-
CESS

3.1. Observations

We performed 15 observations sessions, over 18 months, on
the challenges blind people face when interacting with touch-
screen mobile devices. All participants were visually impaired
and their experience with mobile devices with the touchscreen
was variable. The main results regarding text manipulation
and voice interaction are as follows:

Text entry with QWERTY keyboard. Novice users find
this technique complex. Keyboard keys are small and have no
physical cues. This modality requires a long exploration until
the desired key is found and memorizing the position of the
characters in the keyboard. For expert users, this is an efficient
solution. Still, it is not faster than voice input.

Voice input. To perform voice text input, Android’s and iOS’s
keyboards have a dictate button. Although this is a fast way
to input text, the reduced size of the dictate button, usually
smaller than the other keys, slows down the task.

Voice Interaction. During the sessions, many participants
showed interest in virtual assistants and text dictation. Despite
this, users had difficulty understanding when speech recog-
nition ends when entering text, which led to the insertion of
unwanted text.

Text Revision. Most participants did not revise the text. Those
who did it tended to hear the word as soon as they hit the space
key. In most cases, the resulting text turned out to have errors
that went unnoticed, as extra characters in words.

Text editing. The most commonly used technique for editing
text is to use the backspace key to delete text until they find
the error and rewrite. In most cases, the error is detected as
soon as the character or word is typed, and users then proceed
to edition. Users rarely resort to clipboard operations and most
of them do not know much about its existence.

Character navigation. Character navigation is not a popular
technique given the way users review and correct text. Still,
some users use the volume keys to navigate the text. The
biggest challenge when navigating through the text is that
users are not aware of the cursor position regarding the output
word.

Access to the context menus. Revision, navigation and edit-
ing tasks became more efficient when using Android’s and
i0S’ context menus. Most of the participants did not use these
menus because of the complex gestures they had to make to
access them.

3.2. Workshop "Speak with your mobile phone"

To better understand how blind users interact with mobile
devices just by using their voice, their needs and challenges
in this context, we conducted a workshop: “Speak with your
mobile phone”.

3.2.1. Participants

We recruited 12 blind participants (six males, six females). All
of them were smartphone users except for participant P10 that
had a physical keyboard phone. We needed 4 collaborators in
order to guide the workshop in 4 groups of 3 people.

3.2.2. Procedure Apparatus

We used 8 Android mobile phones with voice-activated Google
Assistant installed. Concurrent use with Talkback is limited
as the two solutions provide simultaneous audio feedback,
making it impossible to perceive virtual assistant feedback.
Therefore, Talkback was turned off during the session. The
session was about 2 hours long. At the beginning of the
sessions, we asked participants how they perform text entry
and editing tasks and how often they use speech as input. We
then explained what are virtual assistants and how to interact
regarding dictation, voice volume and command composition.
Then, we configured voice recognition in each mobile device.
After that, in each group, participants were asked to perform
a set of representative daily tasks: Ask the time; Check the
weather for the day after; Set an alarm; Set a reminder; Make
a call; Write an SMS; Search something on internet.

Every participant in each group had a chance to perform each
task as many times as they wanted. Collaborators gave sug-
gestions on how they could interact with the virtual assistants
and participants were encouraged to try other commands. At
the end of the session, we showed the limitations of this kind
of virtual assistants and we helped them install the Google
Assistant on their mobile phone if they wanted. We recorded
the session audio, with users’ consent, and then we deduced
the success rate and the challenges participants faced during
the session.

3.2.3. Results and discussion

Participants achieved a success rate of 96,43%. After analyz-
ing the session and taking into account participants consid-
erations while performing the tasks, we present the system
advantages that led to efficient voice interaction:

Command versatility. Participants used different types of
commands and expressions and the system was able to recog-
nize different types of commands to perform the same action
like “I want to know the weather for tomorrow”, “What is the
weather forecast for tomorrow?”, “Is it going to rain tomor-
row?”

Audio feedback with earcons. The system play sounds de-
pending on the system state to let the participant know what
kind of action they can do. For example, when participants

said the wake phrase “Ok Google”, the system played an
earcon to let them know it is listening. When participants
finished the command, a new earcon was played to show the
voice caption is over and the command is being processed.

Continuity of speech. The system allows interactivity when
it needs confirmation from users using questions like “Do you
want to send or change?” “Do you want to save the reminder?”

Filtering cordial expressions and speech errors. The sys-
tem supports the use of cordial expressions in the command
formulation like “please” and word repetitions like "What is
the weather forecast for for tomorrow?"

On the other hand, users faced some challenges when using
the system, described as follow:

Unnatural system activation. A lot of participants used to
forget to say the wake phrase “Ok Google” before the com-
mand. In these cases, the collaborator asked them to repeat
the command using the wake phrase.

Inconsistent feedback. Users got confused with the differ-
ent feedback system gave in response to the same actions or
commands.

Enlightening feedback. In some cases, the system feedback
was not enough for users to perceive the action performed.
For example, when they set alarms for 9 o’clock, the system
responded with an “alarm set” without specifying the exact
time.

Wake phrase repetition triggers unwanted action. In some
cases, the system did not respond immediately to the wake
phrase, leading participants to repeat “Ok Google” until they
ear the feedback. In these cases, the system triggered a search
on google about “Ok Google”. With visual feedback, this does
not happen because the system informs visually that voice
caption is starting.

Lack of feedback to unknown commands. when users tried
to perform commands the system does not provide, the com-
mand was used to make a google search without any audio
feedback.

Inefficient speech continuity. When the interaction required
more than one command due to the lack of information given
by the participant, the system did not always deal with re-
sponses efficiently, leading to the failure to perform the action.
The interaction ended with no audio feedback, presenting a
time out message on the screen.

Guaranteed efficiency only for tasks related to mobile
phone applications. In case tasks required the use of non-
mobile applications such as Internet searches on close phar-
macies or restaurants, the feedback was not enough.

Commands and interaction limitations. Although there is
speech flexibility in the supported command set, the system
does not handle complex commands like “Awaken me tomor-
row at 9 am”,” Tomorrow I want to be awake at 9 am” or”
What is the weather forecast for tomorrow at lunchtime?". In
addition, the system does not support user interaction with the

feedback it presents. For example, given this system feedback

“Tomorrow the maximum temperature is 20 degrees ”, there is
no response from the system to questions such as“ What time
less than 20 degrees?

Voice caption finished too early. The system assumes com-
mands as completed before the user finished the request.

Diction. One of the participants had some diction problems
and the system did not understand most of her commands
in the first attempts. It was necessary that the collaborator
often asked her to speak slowly. This situation led to some
frustration and discomfort in the use of voice interfaces.

3.3. Elicitation Study

After understanding how blind people interact with mobile
devices using their voice, we wanted to study what are their
strategies to recover from speech text errors by voice, what
kind of command they associate with editing actions and how
they deal with bad speech recognition.

3.3.1. Participants

For this study, we recruited 6 participants (3 male, 3 female)
with visual impairments. All of them used to write on the
computer, but only 4 use smartphones to write.

3.3.2. Procedure and Apparatus

For this study, we needed a smartphone and a computer. The
smartphone was used for the user interaction with a device,
through an app that contained only a button that covered the
entire screen. They had to tap the button to start and end the
voice caption. Each time the button was clicked, the system
played a different sound depending on whether the sound cap-
ture was being turned on or turned off. With the computer, we
simulated all the audio feedback to every action the user could
make. This feedback was generated using ResponsiveVoice
JS, a Text-to-speech application. Most of the interactions were
previously predicted, so we had ready to use feedback on the
application.

At the beginning of the session, we explained to participants
that it is possible to interact with mobile devices by voice and
how this interaction should be performed. After that, we asked
them some information about how they enter and edit text and
if they perform any task by voice. We, then, explained that
in this study we would simulate text entry by voice and error
correction through 11 tasks. In each task, users were asked
to dictate a specific sentence and then we introduced errors
in the sentence that was transcribed, with their knowledge.
Then, they had to correct the sentences with the commands
they consider suitable in each situation. We only asked them
to use commands simple and concrete. We chose tasks that
would require simple actions, like delete a word or a character;
actions with text references, like delete a repeated word or
replace the first occurrence of a word; navigation actions,
introducing non-audible errors, users had to navigate through
the characters; and simulation of bad speech recognition, by
not recognizing one specific word, forcing users to find other
correcting strategies. We started with test tasks with no errors
to simulate all the procedures: listen to the sentence they
had to dictate, start voice capture, dictate the sentence, end

voice capture, listening to the transcribed sentence. Then users
would have to find the errors and correct them.

We record the session audio, with participants’ consent, to
deduce the task success rate. We also observed the challenges
participants faced during the session for further analysis.

3.3.3. Results and discussion

Some participants struggled to find the error in the sentence
or decide what strategy they should adopt to correct the error.
In these cases, we suggested strategies and encouraged them
to finish the task, considering the task incomplete. Regarding
error detection, they only found it difficult to detect the non-
audible error, where we suggested them to read character by
character. When they asked for help in error correction, we
suggested them to perform operations on a character level,
to tell the system where to write the text and to adopt a new
correcting strategy other than repeating an imperceptible word.

Said that participants achieved a task success rate of 8§9,4%.

Command structure. Concerning commands formulation,
in every request, they used a verb followed by an expression.
Some participants used courtesy expressions like “please”.

Verbs: Participants used several verbs to refer to the same
action. These verbs were used in infinitive mode or imperative
mode. When they wanted to insert text, users sometimes
omitted the verb, saying only the text they wanted to insert.

Expressions: Depending on the tasks, users chose to per-
form actions on different granularities (characters, word, line,
phrase). Most of the commands used a transcription of the text
to refer the what they wanted to edit. In some cases, the tran-
scription was preceded by a granularity (like “word fly”). In
some cases, participants mentioned the expression position in
the text using words like first, second and last followed by the
granularity, like “first word” or “last character”. Sometimes,
the expression mentioned above was used with position refer-
ences to other text portions with words like after and before.
Users also mentioned where to write the text with expressions
like “at the beginning” and “at the end”.

Command segmentation: Participants tended to combine com-
mands above described like “command and command” or
“command and after command”. Besides this structure, some
participants added courtesy expressions on the end of the
commands or showed their intentions to perform actions with
expressions like “I want...”

Correcting strategies. Overall users resort to four types of
commands: insert, delete, replace and read. They combine all
these operations to perform all the required actions. Regarding
the bad recognition simulation task, those who completed
the task started by trying to replace the word and then, after
noticing that it is being misunderstood, they chose to spell the
correct word.

Observed behaviors. At the beginning of the session, partici-
pants were reluctant that the system did not understand their
requests. Throughout the session, they got more confident
and tried new commands. We observed some other interest-
ing users’ behaviors when performing the tasks, described as

follows.

Using the voice activation button: At the beginning of each
task, participants tended to press the button to start voice cap-
tion so that they could utter the command. In the following
statements, the use was not so efficient. Participants P3 and
P5 always forgot to tap the button at the end of the utterance.
Participants P2 and P6 simply uttered the commands with-
out pressing the button. For the remaining participants, the
sound for starting and ending voice caption made it easy to
understand when they could make the requests.

System intelligence expectation: Participants P3 and P4
showed that they did not trust the system, questioning if it
would understand their commands. By contrast, participant P2
asked the device to correct the error instead of giving detailed
instructions.

Precision assumption: We asked participants to always review
the final sentence. Participant P6, in most cases, assumed that
the command had been well interpreted and that the action had
been successfully performed, by not confirming the final result.
In some of these occurrences, the sentence still contained
erTors.

Human perception and dialog expectation: While most partici-
pants uttered commands independent of each other, participant
P5 tended to assume continuity of speech. Her interaction
contained expressions like “again”, assuming the system re-
membered her last actions. This participant also used courtesy
expressions in the middle and at the end of commands.

Assumption of cursor existence: Throughout all sessions, there
were only two references to the cursor, from participant P3.
He requested the cursor to be placed at a certain location and,
after that, uttered commands referring to the text and not the
Cursor.

3.4. Dragon Evaluation

Dragon Naturally Speaking is an intelligent speech recognition
solution that allows the creation and edition of documents
using speech as a modality of interaction.

The major disadvantage of this solution, in the context of this
work, is that it was not designed for blind people, but rather
to assist daily tasks in a faster and more effective way. The
solution does not provide audio feedback, demanding visual
search of the text to be edited, for button identification and for
system state perception.

The solution is limited to some idioms: English (US), English
(UK), Canadian English, and German.

In order to explore the solution and the feasibility of combining
it with an accessibility service, we tested the mobile version
of this product, Dragon Anywhere. This application presents
a main dictation screen with a text field, an action bar where
it is possible to perform document management actions and a
menu to access documents, auto-texts lists, word lists, settings,
and help. For dictation or command execution, it iS necessary
to activate the voice caption with a tap on a microphone button.
After that, the system only provides visual feedback, changing

the button color. No sound is played to show if the system is
listening or ended the capture.

All the text and commands have to be uttered in the idiom
defined. Before every command that involves a text portion,
this has to be selected through the command “‘select —text-*.
After that, it is possible to perform actions like “delete that”,
“bold that”, “Copy that” and “correct that”.

After the text is selected, if the user does not say the com-
mand exactly as expected, the selected text is deleted and the
command is entered. For example, if all text is selected and
the user says “ delete” instead of “delete that”, the text is
deleted and the word is written. If the command is uttered
without selecting text, it is also entered in the text field as
speech input. Always having to select text doubles the number
of commands, increasing the solution complexity. We tried
to use this application with Android’s accessibility service,
Talkback.

When the text field is selected, the screen reader outputs the
content in the text field. Not all buttons displayed on the screen
are labeled, such as the microphone, making it impossible to
recognize its functions. Talkback informs the user of some
of the changes in text. If this happens and the microphone
is active, the Talkback’s feedback is perceived as an input,
and an infinite cycle of capture and insertion begins. Using
earphones, this situation does not happen.

Besides the lack of audio feedback, some commands open
windows without user knowledge and the Talkback’s feedback
does not provide any information about the cursor location,
making it impossible for a blind user to perceive this informa-
tion.

3.5. Design Guidelines

Through the formative studies conducted, we saw that users
tend to prefer speech voice input and find it easier to perform.
Regarding text editing, they struggle when using the context
menus provided by Android and iOS. In most of the cases,
they just use the backspace key to erase all and start over.
Concerning the voice interaction, it is essential to provide a
complete and efficient audio feedback of all performed actions
and system state. The wake phrases are not effective because
of diction problems. The disadvantage of button activation
is the target location. Users do not understand when voice
caption is over and end up inserting unwanted text. Taking
all the results and user behaviors into account, we defined the
design guidelines for our solution, described as follow:

e Allow reading the text field content in a simple way, en-
abling error perception;

e Voice capture should be activated in an easy and fast way
and should be turned off when the user finishes the utter-
ance;

o All actions should generate audio feedback;

o It should be possible to perform actions on every text gran-
ularity (character, words, phrase, all text).

e The system should support command conjunction;

e Undo the last action performed;
e The system should be semantically intelligent;

o It should be possible to refer text by direct reference or
transcription;

o Allow use of text position references to refer expressions;

o It should be possible to refer place of text editing or text
insertion without using a cursor;

o It should be possible to recover from error through user-
system interaction;

e During interaction, minimize chances of speech recognition
errors by asking yes or no questions;

e Handle with incomplete commands;

4. EDITE: A VOICE-BASED TEXT EDITING SYSTEM

In order to provide the blind community with a fast and easy
way to edit text in mobile devices, with a particular focus on
the difficulties and needs we observed in the previous referred
studies, we propose Edite, a voice-based text editing system
with error prevention and recovery.

4.1. Solution Conceptualization

4.1.1. System design

The purpose of the system is to make the execution of the
editing tasks easy and fast. That said, dictation and editing
command are performed through voice commands. The sys-
tem has the ability to end the voice caption when the user
finishes the utterance, as well as the user. The command is
processed, the action performed and the system returns the
result of the action via audio.

4.1.2. Feedback

Complete audio feedback is essential for the efficient use of
a system in this context. Edite provides audio feedback after
all commands, telling the results of the triggered actions or
reading text field content if required.

Based on Audio Signifiers for Voice Interaction 4 article, we
included Voice-Interaction Signifier to help users understand
what kind of requests they can make and when. We use Ex-
plicit verbal signifiers to recover from incomplete commands
by asking questions that lead users to give the information
system needs. Implicit verbal cues are used when the sys-
tem is speaking and the user shows the intention to request
something. In this case, the system stops speaking to let the
user know that it is listening. We also adopted two Nonverbal
sounds or earcons. These are used when the voice caption is
turned on and turned off to let the user know that the system
is ready to receive commands.

“https://www.nngroup.com/articles/audio-signifiers-voice-
interaction/

4.1.3. Command structure:

According to the actions used in the elicitation study, the input
and text editing actions were grouped into a set of five com-
mands through which users will be able to perform all actions:
insert, delete, replace, read and undo. Users can read the text
in three different ways: read, read word by word, with pauses
between each word, and spell. The general structure of a com-
mand requires an action (insert, delete, replace, read , read
words, spell) and an argument, except for “read words” that
does not require any argument. “read” and “spell” command
can also be invoked without arguments and the “insert” action
can be omitted for text input. The system also accepts a set of
commands in the same utterance, up to two commands.

Regarding the arguments, this can be inputs, for insertions
or replacements, or a combination of the following: a tran-
scription, a granularity (character, word, phrase, text) or the
position the expression occupies in the text, through expres-
sions like first, second and last. These expressions can also be
combined with references to an absolute position in the text or
in relation to other expressions.

4.1.4. Error recovering:

In order to make our solution semantically intelligent, regard-
ing the command construction, we allow the use of a limited
set of synonyms for each action, expression, or reference. This
set was based on the commands used by the participants in
the elicitation study and aims to give the user flexibility and
enable a natural discourse.

One of the biggest problems associated with voice interfaces
are speech recognition errors. Some expressions are replaced
by others with a similar sound and go unnoticed. This system
provides a speech recognition error recovering functionality
and can also recover from commands not anticipated by the
system. This process is done through three recovering levels
and user interaction. At each level, the system tries to infer a
new command and asks if the user wants it run. All questions
require yes or no answers in order to minimize the chance of
new speech recognition errors. If the system does not find a
match in a specific level, move to the next level. If the user
answer is “no”, the system move to the next level. If there
is a match and the user answer is “yes”, the system process
and executes the new command. The recovering levels are as
follow:

Command repetition. In order to make the experience more
natural and closer to speech, in the first level of recovery the
system prompts the user to repeat the command. the user will
have the chance to say it again more carefully, as in the study
of elicitation, which will allow the perception of other words
by the speech recognizer. This way, the new command could
correspond to the set command possibilities offered by the
system.

Verification of the most confidently recognized words.
With the speech recognizer used, it must be possible to consult
the list of recognized words with greater confidence in the ut-
terance. At this level of recovery, various combinations of new
commands are made with the words returned by the speech
recognizer and check if there are matches with the possible

Text field

l:l .
N Voice command AsR
r * com.google.cloud.speech.v1
{

‘Audio feedback

Figure 1. Edite interface (left); Edite architecture (right)

commands.

Edit distance verification. In this level, the command fields
are compared with the possible options through the Leven-
shtein algorithm, which calculates the similarity between text
portions based on the number of characters inserted, removed
or replaced.

If the first word (action) has no match, the utterance is per-
ceived as an input. If the first word corresponds to an action,
the system will check the arguments according to the three
levels mentioned and if there is no match, the system outputs
a message of unrecognized command.

If an incomplete command is issued, the system interacts with
the user in order to complete the command.

4.2. Implementation

4.2.1. Architecture
This system was implemented as an Android application. So-

lution implementation is based on three functional modules
(Figure 1):

Automatic Speech Recognition (ASR). This module allows
the reception of voice commands and dictated text. the solu-
tion does not include natural speech processing, so we used
Google’s text-to-speech recognizer. Google Cloud Platform
provides an API that allows speech recognizer access, we
used the com.google.cloud.speech.v1 version. All the content
received in this module is sent to the logic module, which
processes the information and triggers actions.

Logic Module. It this module, all the utterances recognized
by the ASR module are processed according to the solution
grammar. It is also in this module that is stored a record of all
text changes and performed actions, allowing the execution
of redo command, and the set of synonyms supported in the
commands.

Text-To-Speech (TTS). This module allows the vocalization
of all the feedback provided by the application. It allows
the user to read and review the text on the screen and give
feedback on all actions performed. In case ASR is enabled,
TTS stops immediately and the system starts listening to the
user commands. We used the TTS API provided by Android,
android.speech.tts.texttospeech.

4.2.2. Interface.

Our system contains two text fields. One of them is located in
the lower half of the screen (Figure 1, marked with 3), where
all the inserted text is visible; the other shows the text being
inserted, at the top of the screen (Figure 1 marked with 1).
The only application button has the function of activating and
deactivating voice recognition and covers about 90% of the
screen (Figure 1 marked with 2).

4.2.3. Speech capturing function.

Speech capturing is activated with a tap on the only existing
button. After that, the systems play an earcon, to let the user
know they can speak. the user finishes the utterance, the
system detects the absence of speech and ends the capture
immediately. The user also has the possibility to finish the
capture with another tap on the button. When the voice capture
ends, the system plays another earcon to inform the user.

4.2.4. Command processing and feedback.

The utterance analysis and correspondence with the possible
commands were mostly done through manipulation and com-
parison of strings. Initially, we check the number of existing
commands. After that, we check if the first word of the com-
mand is an action. After, we process the arguments, if any, to
locate the text portion to be changed. The system does all the
possible command combinations, according to grammar. If
there is a match, the command is executed, if not, the system
starts the recovery mode. Regarding the recovering mode,
from speech recognition errors, we implemented command
repetition and edit distance verification, as well as incomplete
commands recovery.

5. USER TESTS

The usability of the system proposed by us was compared
with the most used method for blind text input and editing,
the QWERTY keyboard using an accessibility service. In
this case, the performance was tested on a mobile phone with
an Android operating system using Talkback. Following we
described the study conducted and the results.

5.1. Participants

We recruited 8 participants (4 male, 4 female), from Fundagao
Raquel e Martin Sain, that depend on screen readers to use
mobile touchscreen devices. We required participants who
have experience in using smartphones, who could use screen
readers and who could write on a QWERTY keyboard. All
of them are used to write and revise text, after entering each
word, but only two of them (P6 and P8) perform all editing
operations. The remaining participants use the backspace key
to erase and rewrite.

5.2. Procedure and Apparatus

We used a Nexus 5X to perform all the tasks in our solution
and with qwerty keyboard and Talkback. We used AZ Screen
Recorder to record the screen for future analysis.

The sessions took place in a quiet room and had a duration of
45 minutes. We started by telling users that we were going to
compare two solutions to write and edit text through a set of
seven tasks for each solution. Tasks were designed so that the

participant had to correct sentences with speech recognition
errors, previously written on the screen. The errors introduced
in sentences simulated the following scenarios, some of them
referenced by Hong et. al. [8]:

e T1: speech recognizer ends the voice capture before the end
of the utterance;

e T2: extraneous words or sounds are captured

e T3: user says a semantically wrong word in the context of
the sentence, corrects it, and both are inserted;

e T4: user utters a word, speech recognizer perceives a word
with a similar sound

e T5: user dictates a word, speech recognizer perceives two
words with similar sound

e T6: user says two words, speech recognizer perceives a
word with a similar sound

e T7: user says a word set, speech recognizer perceives a new
word set similar sound

For each condition, we trained the participant on how to use
that specific solution and then participants were asked to per-
form the task set. For Talkback, we taught them how to read
the text, the writing technique and how to navigate. Regarding
Edite solution, we explained how to turn the microphone on
and off, what kind of commands they could do and that the
system could ask questions in order to recover from errors.
For practice, we suggested tasks that involved all the possible
actions in the two conditions.

Before each task, the type of error entered was mentioned,
without specifying the error or the location. Then the user was
told the correct sentence and they had to correct it using the
techniques we taught for each condition. The task time started
as soon as the participant touched the screen, or any other key,
for the first time.

At the end of the session, we asked participants to rate on a
Likert scale from O (nothing) to 7 (very) how fast, easy and
useful they found both solutions. They were also asked to say
which of the solutions they prefer to enter text and edit text.

5.3. Dependent Measures

From the screen and session records, with participants’ con-
sent, we collected task time, number of edit events, counting
each command for Edite and each touch or key press for Talk-
back and edit distance between the correct sentence and the
final sentence. We also collected qualitative measures like
users feedback.

5.4. Design and Analysis

We performed a within-subjects so, to avoid learning between
conditions, we had two versions of each task. The order of
the testing conditions was random, as well as the order of the
tasks. Overall we had 8 participants x 2 conditions x 7 tasks =
112 sentences.

Success rate Task time

o [I
ER |
o E|
bt \‘ .|
| M |
|| |
BB
| o |
. L \

Figure 2. Success rate results for each participant (left); Task time in
seconds (right); significantly Edite interface (left); Edite architecture
(right); statistically significant values are market with *

We performed Shapiro-Wilk tests on all dependent measures.
For normally distributed values(Shapiro-Wilk p<0.05), we ap-
plied a Paired T-Test. For the measures that were not normally
distributed, we applied the Wilcoxon test.

6. RESULTS AND DISCUSSION

In this section, we show the comparison between Edite and
Talkback regarding success rate, task time, edition event rate
and satisfaction. We then perform a detailed analysis of Edite’s
performance.

6.1. Success rate

Overall, success rate (2 was high for both solutions, with
the same values of mean and standard deviation (X =
98,25%,0=0,0463). Participants P3 and P4 didn’t achieve
a 100% success rate due to incomplete completion of task T7
in Edite and Talkback, respectively. In both cases, the final
sentence had a distance of 3 from the correct phrase.

6.2. Task time

The task time (2) was measured from the participant’s first tap
on the screen until the task ended. This measure is expressed
in seconds. As for the time analysis of each task tested, partic-
ipants were significantly faster in performing tasks T5 and T7
using Edite.

The only task that took longer to perform on the Edite system
than with Talkback was task T6, due to the occurrence of
speech recognition errors during sentence correction. The
same speech recognition errors that the user was trying to
correct. Even so, the tasks were completed using only the
voice as a modality.

6.3. Edition event rate

We deduce edition event rate by combining the number of
editing events that participants held in each task in each solu-
tion with the minimum number of events required through the
metric :

#occurredevents

#minimumrequiredevents

The result of this metric (Figure 3) represents the relationship
between the number of events performed and the number of
necessary events. The optimum value is 1, meaning that the
task was performed with the minimum number of events. The
higher the value, the greater the difference between the number
of events held by the participant and the number of events
required to accomplish the task. Edite achieved a significant

Edition event rate Satisfaction
(#oceurred events \ #minimum required e (1-nothing | 7-very)

3
’i |
ihﬁiﬁ I I I

Figure 3. Edition event reate for each task (left); Satisfaction results
(right); significantly Edite interface (left); Edite architecture (right); sta-
tistically significant values are market with *

difference (t(8)=-2,56; p<0,038) only in task T4. We can
conclude that the Edite system is more efficient in replacing a
single word for another.

In the first tasks, the difference may not have been signifi-
cant due to the fact that the correction does not require many
navigation events when using Talkback. In the last tasks, it
could be because of the occurrence of speech recognition er-
rors when trying to correct or insert more than one word. Even
s0, although there are no significant differences for most tasks,
Editing is significantly faster than Talkback.

6.4. Satisfaction

Overall, users consider the Editing system to be the easiest
method to use (Z =-2.232, p<0.05), faster (Z = -2.558, p<0.05)
and more useful (Z = -1.807, p = 0.071), although this last
metric is not statistically significant (Figure 3). When asked
which system they preferred to type and edit text, all partici-
pants answered Edite for both techniques.

During the session, some participants shared their thoughts.
Regarding Talkback, they said that they were “focusing on
many things at the same time”. Concerning Edite, users shared
comments like “I want this on my mobile phone”, “this would
make life easier and better for a lot of people”, “it just takes a
tap to write and it’s done”.

6.5. Edite accuracy evaluation

Throughout the evaluation, excluding training tasks, 223
commands were used, of which 86.55% were well recog-
nized and were expected by the system. From the remaining
13.45%, 7,62% were misunderstood by the speech recognizer
and 5,83% were understood but not predicted by the system
(5.83%). In both cases, the system tried to recover the com-
mands, which 8,07% were recovered and executed success-
fully.

The accuracy of Google’s voice recognizer used in the Edite
system can be measured using the number of well-recognized
commands (206) and the total number of commands (223),
which results in an accuracy of 92.4%

Regarding Edite’s accuracy in the recovering of misunder-
stood command by the speech recognizer, we analyzed the
number of misrecognized commands and those that have been
recovered, resulting in a recovering accuracy of 58,8%.

Although both methods achieved high success rates, the speech
method has been shown to be 1.8 times faster and also more
efficient, taking into account the task time and the rate of
editing events. In the tasks where the goal consisted in the

correction, insertion or removal of a single word, the users
were 2.7 times faster to perform tasks with the Edite system
over Talkback, while tasks that involved correcting word sets
with similar sounds, they were 1.3 times faster to complete
tasks with Edite.

In addition, it was considered by the participants the easiest
and fastest method for editing text.

7. CONCLUSION AND FUTURE WORK

Given the adoption of speech as a text entry modality and
the gap in the nonvisual text entry field, we proposed Edite,
a speech-based mobile text editing system that allows users
to perform editing operations in a simple and fast manner.
We compared this solution with the traditional text editing
modality, Android’s Talkback. Results show that Edite is 1,8
faster than Talkback and users find this solution a fast and easy
way to edit text.

The need for improvements are mainly due to misunderstood
and unrecovered commands. We would like to increase com-
mand flexibility, commands retrieval quality and implement
clipboard operations. In addition, and taking into account
feedback from participants, we would like the blind commu-
nity to be given the opportunity to use a system with these
characteristics.

ACKNOWLEDGEMENTS
We thank Fundac¢do Raquel and Martin Sain in Lisbon (Portu-
gal) and all participants for their collaboration.

REFERENCES
[1] Ali Abdolrahmani, Ravi Kuber, and Stacy M. Branham.
2018. "Siri Talks at You". (2018), 249-258. DOI:
http://dx.doi.org/10.1145/3234695.3236344

Vikas Ashok, Yevgen Borodin, Yury Puzis, and I V
Ramakrishnan. 2015. Capti-speak: A Speech-enabled
Web Screen Reader. Proceedings of the 12th Web for All
Conference (2015), 22:1-22:10. DOI:
http://dx.doi.org/10.1145/2745555.2746660

Shiri Azenkot and Nicole B. Lee. 2013. Exploring the
use of speech input by blind people on mobile devices.
In Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and
Accessibility - ASSETS °13. 1-8.DOI:
http://dx.doi.org/10.1145/2513383.2513440

[4] Shiri Azenkot, JAcob O. Wobbrock, Sanjana Prasain,
and Richard E. Ladner. 2012. Input finger detection for
nonvisual touch screen text entry in Perkinput.
Proceedings of Graphics Interface (GI ’12) d (2012),
121-129. DOI :http://dx.doi.org/2305276.2305297

[2

—_—

[3

—

[5] Brian Frey, Caleb Southern, and Mario Romero. 2011.
BrailleTouch: Mobile texting for the visually impaired.
In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 6767 LNCS.
19-25.D0I:
http://dx.doi.org/10.1007/978-3-642-21666-4{_}3

V Fuccella, P Isokoski, and B Martin. 2013. Gestures
and widgets: performance in text editing on multi-touch
capable mobile devices. Proceedings of CHI 2013
(2013), 2785-2794. DOI:
http://dx.doi.org/10.1145/2470654.2481385

[6

—_

[7

—

Debjyoti Ghosh, Pin Sym Foong, Shengdong Zhao, Di
Chen, and Morten Fjeld. 2018. EDITalk: Towards
Designing Eyes-free Interactions for Mobile Word
Processing. (2018), 1-10. DO :
http://dx.doi.org/10.1145/3173574.3173977

[8

[}

Jonggi Hong and Leah Findlater. 2018. Identifying
Speech Input Errors Through Audio-Only Interaction.
Proceedings of the 36th Annual ACM Conference on
Human Factors in Computing Systems (2018), 1-12.
DOI:http://dx.doi.org/10.1145/3173574.3174141

[9

—

Hugo Nicolau, Kyle Montague, Tiago Guerreiro, André
Rodrigues, and Vicki L. Hanson. 2015. HoliBraille:
multipoint vibrotactile feedback on mobile devices.
Proceedings of the 12th Web for All Conference on -
WA4A °15 (2015), 1-4. DOTI:
http://dx.doi.org/10.1145/2745555.2746643

[10] Jodo Oliveira, Tiago Guerreiro, Hugo Nicolau, Joaquim
Jorge, and Daniel Gongalves. 2011. BrailleType:
Unleashing Braille over touch screen mobile phones.
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 6946 LNCS, PART 1 (2011),
100-107. DOI:
http://dx.doi.org/10.1007/978-3-642-23774-4{_}10

[11] Daniel Trindade, André Rodrigues, Tiago Guerreiro, and
Hugo Nicolau. 2018. Hybrid-Brailler : Combining
Physical and Gestural Interaction for Mobile Braille
Input and Editing. (2018).

[12] Yu Zhong, T V Raman, Casey Burkhardt, Fadi Biadsy,
and Jeffrey P Bigham. 2014. JustSpeak: Enabling
Universal Voice Control on Android. Proceedings of the
11th Web for All Conference on - W4A "14 (2014), 1-4.
DOI:http://dx.doi.org/10.1145/2596695.2596720

http://dx.doi.org/10.1145/3234695.3236344
http://dx.doi.org/10.1145/2745555.2746660
http://dx.doi.org/10.1145/2513383.2513440
http://dx.doi.org/2305276.2305297
http://dx.doi.org/10.1007/978-3-642-21666-4{_}3
http://dx.doi.org/10.1145/2470654.2481385
http://dx.doi.org/10.1145/3173574.3173977
http://dx.doi.org/10.1145/3173574.3174141
http://dx.doi.org/10.1145/2745555.2746643
http://dx.doi.org/10.1007/978-3-642-23774-4{_}10
http://dx.doi.org/10.1145/2596695.2596720

	1. Introduction
	2. Related Work
	2.1. Text Entry for Blind Users
	2.2. Text Editing for Blind Users
	2.3. Voice user Interfaces
	2.4. Evaluation Metrics

	3. Perception of Voice-based Interaction Process
	3.1. Observations
	3.2. Workshop "Speak with your mobile phone"
	3.2.1. Participants
	3.2.2. Procedure Apparatus
	3.2.3. Results and discussion

	3.3. Elicitation Study
	3.3.1. Participants
	3.3.2. Procedure and Apparatus
	3.3.3. Results and discussion

	3.4. Dragon Evaluation
	3.5. Design Guidelines

	4. Edite: A Voice-based Text Editing System
	4.1. Solution Conceptualization
	4.1.1. System design
	4.1.2. Feedback
	4.1.3. Command structure:
	4.1.4. Error recovering:

	4.2. Implementation
	4.2.1. Architecture
	4.2.2. Interface.
	4.2.3. Speech capturing function.
	4.2.4. Command processing and feedback.

	5. User Tests
	5.1. Participants
	5.2. Procedure and Apparatus
	5.3. Dependent Measures
	5.4. Design and Analysis

	6. Results and Discussion
	6.1. Success rate
	6.2. Task time
	6.3. Edition event rate
	6.4. Satisfaction
	6.5. Edite accuracy evaluation

	7. Conclusion and Future Work
	ACKNOWLEDGEMENTS
	References

