
1 

 

Fleet Management Cross Platform Application 

Bruno Miguel Nascimento Carola 
 
 

ABSTRACT 

This document aims to showcase the development of a 

cross-platform mobile application focusing on Google's 

Android operating system and Apple's iOS. It’s a car fleet 

management application called FleetMobile from Tecmic 

S.A.. This application was only available for Android 

systems, so this document intends to show the entire 

process of migrating it to the iOS system and consequently 

to a multiplatform system, displaying the decision making 

process and choices made along the way, working 

simultaneously with the growth, needs and demands of the 

technological world and users of the FleetMobile app. 

This paper addressed the need urgency to make code 

reusable and a way to facilitate future maintenance and 

upgrade actions evenly for both target systems of interest, 

using various techniques and technologies, from Mvvm-

Cross, Xamarin to Android and iOS. Additionally, Signal-R 

technology was used to satisfy the requirement of having 

real-time information on some application features. 

Index Terms 

Mobile Application, Fleet Management, Cross-Platform, 

iOS, Android, Design Pattern, Real Time Communications, 

Xamarin, Mvvm-Cross 

  

INTRODUCTION 

Tecmic - Tecnologia De Microeletrónica, a Portuguese 

multinational company founded in 1988, specialized in fleet 

control and management, developed in 2015 a native 

Android application called FleetMobile that extends the 

iZiTraN Web product. It allows real-time knowledge of the 

precise position of vehicles in a fleet on a map and their 

information, such as detailed data on driving times, 

kilometers traveled, fuel consumption, vehicle history and 

more. FleetMobile also allows fleet operators to contact 

their drivers via text messages and receive alerts of various 

incidents that may arise, as well as deal with them. 

 

This project focuses on meeting the requirements and needs 

of users of the FleetMobile application. It studies the best 

methodology for modularly and interoperable developing 

this application to minimize future maintenance and 

upgrade costs on all required platforms (Android and iOS). 

It involves the study of several peculiar paradigms such as: 

• The best tools for multiplatform development. 

• The study of the use of iOS guidelines to 

interfaces already developed in Android. 

• The best technology for real time communication.  

• The best design pattern and techniques to make 

code reusable which will also facilitate future 

maintenance and upgrade actions evenly for both 

target systems of interest (Android and iOS). 

 

STATE OF ART 

Frameworks and design patterns 

Native Development – Xcode 

Currently, as already mentioned, the FleetMobile 

application is developed on Android using the Android 

Studio framework. It is possible to follow a line where the 

work already done is maintained and the iOS version is 

developed natively. 

In 2003, Apple introduced an integrated development 

environment called XCode. In newer versions, this 

environment comes with modern but powerful features that 

provide a complete package for developers. XCode 

provides developers with an interface design mode, an 

intuitive and user-friendly development environment, as 

well as a UI testing environment. XCode's most powerful 

feature is the runtime, which continuously tracks and alerts 

programmers about syntax errors, providing 

recommendations and memory alerts. In addition, with the 

latest version, XCode provides a large number of 

extensions that can be easily and intelligently integrated 

into XCode. 

 

In addition to a strong design component, Apple has 

developed a strong testing and simulation component. It 

enables the testing and simulating of the debug mode 

application on a simulator of any Apple-made device, from 

iPhone 4 to the latest iPhone, Smartwatches and iPods.  

 

XCode supports several programming and scripting 

languages, including C, C ++, Objective-C, Objective-C 

++, Java, AppleScript, Python, Ruby, ResEdit, and Swift. 

Nonetheless, Apple has decided to make Swift the main 

programming language of XCode. [2] - Swift is a modern 

and user-friendly language that is designed by users for 

users. It has the power of low-level programming languages 

like C or C ++ and the smoothness of high-level languages 

like C # or JavaScript. In addition, Swift is light and comes 

with a fairly complete predefined library. 

 



2 

 

Xamarin 

Xamarin is a multiplatform framework that presents many 

features for building mobile applications, either more 

natively with Xamarin.Droid and Xamarin.iOS, or with 

Xamarin.Forms. 

This framework combines the full power of native 

platforms by adding several powerful features by itself. 

Using the C # language, API, and data structures, on 

average it is possible to develop code where 90% of 

solution code is shared across all major platforms and with 

Xamarin.Forms interfaces it is possible to share 

approximately 100%. [3]  

In Xamarin there are several methodologies that can be 

used to share cross-platform projects code such as .Net 

Standard Libraries, Shared Projects and Portable Class 

Libraries, better known as PCL, which will be detailed 

below. [4] 

• .NET Standard Libraries - provide a well-

defined set of base class libraries that can be 

referenced in different types of projects, including 

multiplatform projects such as Xamarin.Android 

and Xamarin.iOS. .NET Standard 2.0 is 

recommended as it provides maximum 

compatibility with existing .NET Framework code. 

• Shared Projects – allows the writing of common 

code that is referenced by several different 

application projects. The code is compiled as part 

of each reference project and may include compiler 

directives to help incorporate platform-specific 

functionality into the shared code base. 

• PCL - Portable Class Library – When an 

Application Project or Library Project is created, 

the resulting DLL is restricted to the specific 

platform for which it was created. A combination 

of platforms on which to run the code can also be 

chosen. However, these libraries are obsolete in 

newer versions of Visual Studio. 

 

 

 

 

 

Apart from these methodologies there are several plugins 

and frameworks that can be used in both Xamarin Studio 

and Visual Studio, such as: 

 

NuGet is a very popular Package Manager in the C # 

developer community that is available in both Xamarin 

Studio and Visual Studio. It allows developers to create, 

share, and consume .Net project code and libraries, 

providing all the tools they need for each of these functions. 

 

Mvvm-Cross is a framework based on the MVVM design 

pattern (Model-View-ViewModel) which allows an 

increased code reusability on all platforms where the 

application will be developed. 

 

The MVVM design pattern, Figure 1, separates the logic of 

a View object into two separate objects, one called View 

and the other called ViewModel. The View object is 

responsible for the user Interface and ViewModel is all 

about the main classes where all the common logic to all 

platforms is described. 

  

Figure 1 – MVVM design pattern; 



3 

 

PhoneGap 

PhoneGap is a mobile application development framework 

based on an open source project (Apache Cordova). This 

framework allows developers to build HTML, CSS and 

JavaScript applications only once and deploy them to 

different mobile devices without losing the capabilities of a 

native application. 

This framework offers multiplatform development with the 

freedom of custom development. As a cloud-based service, 

all applications will be built with the latest SDK for each 

target platform. PhoneGap Build supports multiple 

platforms including Android, iOS, Windows Phone and 

webOS with a single codebase. 

The resulting applications are hybrid in the sense that they 

are neither native mobile nor purely web-based 

applications. Instead of using the native UI of each 

platform, all layout rendering is done through webviews, on 

the other hand these are not just web applications as they 

have access to the native APIs of each device. 

 

React Native Framework 

React and React Native both use an architecture that 

follows a flow methodology to handle the passing of all 

data in the application called Flux. This was created by 

Facebook as an alternative to the conventional model MVC 

- Model View Controller. The biggest difference from Flux 

to MVC is that it uses a one-way model to pass data 

between the various layers making it easier to identify 

errors - as depicted in Figure 2. 

 The Flux architecture has reduced data passing 

complexity compared to MVC by not using bidirectional 

data binding and by requiring all actions to pass through the 

centralized Dispatcher - as seen with the Action to 

Dispatcher binding in Figure 2. Dispatcher handles all 

changes from different data sources by updating the Store - 

application data layer - so the View - apresentation layer - 

will be updated and redrawn according to the new changes. 

 

 

 

React Development - React Native uses a lot of Web 

development logic, when using HTML logic, the language 

is Javascript and has a style component identical to CSS. 

React Native, unlike React, does not use standard HTML 

tags, instead it created similar components. 

 

Real-time Communication Technologies 

The FleetMobile application has a wide range of features 

and real-time data on the fleet, such as indicators of its 

location, speed, current status (off, stopped, in transit, in 

motion), kilometers traveled, among others. 

 

SignalR 

The SignalR library simplifies the process of adding real-

time communication functionality to the ASP.NET 

framework adopted in existing web services. 

ASP.NET SignalR is an ASP.NET library that simplifies 

the process of adding real-time functionality to applications. 

Real-time features consist in having the content resulting 

from running code on the server-side available instantly to 

the client-side, rather than the server waiting for client 

requests to get new information. This technology 

automatically selects the best method of transport based on 

the analysis of the client connection, choosing between 

WebSockets, Long Pooling and Pooling. 

 

SignalR contains two models of client-server 

communication - Persistent connections and Hubs. 

 

 

  

Figure 2 – Information flux in a React app that uses Flux Architecture to build interfaces; 



4 

 

Topics Overview 

With its strong compatibility with multiplatform 

development coupled with freedom in choosing the IDE, 

Xamarim is one of the biggest alternatives. This tool lets 

you share approximately 96% of the code across all 

platforms and features a community of around 1.4 million 

developers. It is based on the .NET framework and, as 

already mentioned, C# is a very mature and evolved 

language which can be used in parallel with many useful 

development technologies such as LINQ, Lambdas and 

asynchronous programming. 

Unlike conventional web-based hybrid development 

solutions, a cross-platform application created using 

Xamarin can still be classified as native. Its performance 

has been constantly improved from update to update to get 

as close to native as possible, a little due to the fact that it is 

open source and has a constantly growing community. 

 

PROPOSED SOLUTION 

The solution was partly decided by the Tecmic 

development team, the most important points being detailed 

below: 

1. This application is developed using Xamarin in 

Visual Studio and not in Xamarin Studio, and 

against PhoneGap and Xcode. 

2. To design iOS interfaces will be used XCode, 

which must be imported into Visual Studio, having 

the native components of XCode and Apple 

Guidelines in the developed solution, having the 

best of both worlds. 

3. It was decided to use the Mvvm-Cross plugin 

available in the NuGet component, described in the 

previous section, therefore using the MVVM 

design pattern. All in the effort to make code 

reusable for other applications and to streamline 

future maintenance and upgrade actions evenly for 

both target systems of interest (Android and iOS). 

4. In terms of Real Time communication technology, 

it was decided to use SignalR. The communication 

model option was for Hubs to use, due to the 

development team's experience and use in most 

applications, even recommended by Microsoft 

itself. 

This solution has been supplemented over time with more 

plugins and enhancements. 

 

IMPLEMENTATION 

Among the main operating systems for smartphones, the 

company opted for the mobile application to be developed 

on the Android platform with use in versions equal to or 

greater than KitKat 4.4. Meanwhile for the iOS systems the 

app will be available equal or superior to iPhone 5 and 

minimum system version 10.3 but keeping in mind that it is 

recommended to have the latest update. 

For the development of the entire solution of FleetMobile 

application was used Microsoft Visual Studio tool, similarly 

to the developed Web services was also used Microsoft 

Visual Studio tool adopting the ASP.NET framework. 

 

Protocols and Communication Techologies 

REST (Representational State Transfer) was used for 

communication. REST is simple to understand and has as 

one of its key features a strong compatibility with any client 

or server that supports HTTP / HTTPS, being flexibility the 

biggest advantage of the REST architecture and the fact that 

it gives the developer the option to choose the most 

appropriate format according to the specific needs. The 

most common formats are JavaScript Object Notation 

(JSON), eXtensible Markup Language (XML), and plain 

text, but in theory any format can be used. This leads to 

another performance advantage, given that Web services 

can use the JSON format leads to increased performance 

due to communication package size. That is, they require 

less bandwidth, which is very useful for mobile 

communications. However, it is worth highlighting the 

growth in the use of binary protocols, a subject much 

debated in the Internet of Things (IoT) theme. [1] 

Due to the needs of various users to have constantly 

updated information about vehicles, messages, trips and 

alarms, these same real-time features of the application, it 

was used the ASP.NET framework API, Signal R [5]. This 

framework was chosen to reduce the number of connections 

and requests to the server, to help determine how the server 

handles all requests and to ensure that the information 

arrives in a timely manner reducing any constraints on real-

time communications. 

 

  



5 

 

System Infrastructure 

This project arose from the need for an iOS version of the 

Fleetmobile application from Tecmic S.A.. As such, it was 

naturally integrated into the existing system infrastructure. 

Following is Figure 3 which describes this same 

infrastructure called iZiTraN. 

. 

The iZiTraN infrastructure consists in the various Tecmic 

devices and equipment present in the fleet vehicles. In the 

lower left corner of the figure are represented the Tecmic 

equipments that allow to deduce and remove all the 

necessary information for each vehicle. (XTraN and 

iZiTraN web, among others). Requests from these clients 

are sent to the Web Server which in turn communicates 

with the host, Application Server. In the lower center 

section are the Mobile Clients, which communicate with the 

Mobile Server. 

 

Mobile Application Architecture  

The multiplatform version, in turn, was developed using the 

Xamarin framework integrated with the Mvvm-Cross 

framework, in a logic of data modulation and its flow 

between layers. So the multiplatform FleetMobile 

application has the following architecture, Figure 4. 

Figure 4 – FleetMobile app architecture using Xamarin e 

Mvvm-Cross; 

 

Xamarim features an architecture where all code is 

approximately 96% reusable and common to both Android 

and iOS platforms and where the business, communications 

and data access layers are the same, as detailed in Figure 4 

with “Business Layer” and “Communication Layer” layers. 

On the other hand, the non-common layers are the platform 

specific “FleetMobile.Droid” and “FleetMobile.Ios”, 

considered as the view layers. In red is represented the 

integration with the Mvvm-Cross framework. 

 

Interface Guidelines 

For the development of interfaces of any application or 

system it is essential to follow the various usability and 

design guidelines of the various platforms. For a 

multiplatform mobile application it is then necessary to 

validate the different guidelines, in this particular case the 

guidelines of both Android and iOS. 

Generally speaking there are some basic principles that help 

creating impact and determining the identity of an app, be it 

Android or iOS. They are - Aesthetic Integrity, 

Consistency, Feedback, Metaphors and User Control. 

Beyond these are three principles that Apple claims that 

differentiate iOS platforms from all other platforms - 

Clarity, Deference and Depth. 

 

Graphic Interfaces 

All Android interfaces were already created and as such 

were reused. Regarding the interface design for the iOS 

platform, XCode was used using the XCode Interface 

Builder. This tool uses the native iOS UIKit framework, 

which allows applications to get a consistent interface to the 

total system while also offering a great level of 

customization. They are adaptable, allowing developers to 

create a single application ready for any iOS device and 

Figure 3 – iZiTraN system infrastructure architecture; 



6 

 

screen, moreover UIKit elements automatically update 

when the system introduces updates. 

Afterwards the interfaces developed in XCode were 

imported into the Visual Studio project, thus having 

coherent interfaces that followed Apple's styles and 

guidelines. 

Prior to implementation, some non-functional prototypes 

were designed to study possible changes between existing 

Android interfaces and new iOS interfaces, as the iOS and 

Android guidelines are somewhat different. After their 

validation, the final interfaces were implemented following 

the guidelines already mentioned. 

 

TESTS AND ANALYSIS 

This section presents the tests that were performed, namely 

unit tests, integration, performance and usability tests.  

 

Unit Tests 

The development of these tests consists in validating the 

code by inputting and outputting data in a small, isolated 

code excerpt. These tests were performed throughout each 

iteration, in order to test each functionality developed by 

validating whether or not it returns the expected result. 

Unit tests, as already mentioned, performed throughout 

each iteration, were divided into four iterations 

corresponding to the end of each of the following modules, 

“Vehicles”, “Travel”, “Alarms” and “Messages”. When 

each of these modules was closed these tests were then 

performed. Said tests obtained the expected result. 

 

Integration Tests 

Integration tests are software tests used to test integration 

between multiple modules and layers. In these tests full 

functionality was tested, specifically, for example, sending 

a message and receiving the reply, as well as updating the 

speed and geographical position over time in a vehicle in 

“moving” state. Using the message example, with this test it 

was possible to test both the functionality itself and the 

SignalR framework by testing the reception and notification 

of the response. 

 

Performance Tests 

Performance testing was also quite important, assuming 

there are customers with fleets of thousands of cars, which 

means that, for example, getting conversations from these 

vehicles can be quite a costly operation if not implemented 

in an exemplary manner. Therefore, tests were made in this 

perspective, which obtained the results represented in 

Figure 5. 

 

Usability Tests 

Throughout the development of this application several 

usability tests were planned and performed, initially with a 

group of employees of a Tecmic S.A .client (10 people). In 

a second phase to more advanced users, a selected group of 

company employees (15 people), as they have a strong 

knowledge about the business model where the application 

fits. Several task guides were then written for them to 

perform. 

These tests were partially in vain because the entire 

audience of this application already had a huge experience 

on the native Android version of this application, whereby 

the results were 100% successful. 

 

Results Discussion 

With unit tests it was possible to validate small and isolated 

code excerpts of the various functionalities aiming to ensure 

the cohesion and reliability of their code. The system 

passed accurately in all tests. 

Regarding the integration tests, with sending and receiving 

messages, it was possible to verify that the integration 

between all layers - layers that concern to the integration 

between Mvvm-Cross, Xamarin and the ASP.Net 

framework - was successful. It was also possible to test the 

integration with the SignalR framework in the reception of 

the message. 

Based on the results of the load tests, Figure 5, it was 

possible to see that in most list screens - message list, travel 

list or even the alarm list - when the number of fleet 

vehicles scales to hundreds or even for the thousands it had 

excessive loading times for fluid use. As such, data access 

layers were optimized to bring only fields that are visible in 

the interface, thus presenting practically instantaneous load 

values. 

Figure 5 – Performance tests; 



7 

 

It is also important to note that in addition to these tests, at 

the time of application submission in the various stores of 

each platform (Apple - AppleStore, Android - Play Store), 

especially in the Apple Store, the app was subjected to 

several intensive tests by Apple, for at least two days, 

passing with distinction in all and as such is now available 

on the Apple Store. 

 

CONCLUSION 

This project addressed the need for Tecmic S.A. customers 

to have a version of the FleetMobile mobile app for their 

iOS devices. For the development of said app were detailed 

requirements to be studied and met starting with the best 

tools for multiplatform development, study of the use of 

iOS guidelines to interfaces already developed on Android, 

which is the best technology for real-time communication 

and what is the better design pattern and techniques for 

making code reusable and facilitating future maintenance 

and upgrade actions evenly for both target systems of 

interest (Android and iOS). 

As presented in this paper, we studied technologies, 

frameworks and design patterns that would allow the 

development of a multiplatform application. It was then 

chosen, in the development phase, the Xamarin and the 

Mvvm-Cross framework for multiplatform development 

with the aid of the SignalR framework for real-time 

application functionality. A scalable architecture that meets 

customer needs was achieved, as well as the enabling of 

future additions to the customer's business process. This 

architecture has achieved the intended goals of having a 

system with reusable code that facilitates future 

maintenance and update actions uniformly for both 

platforms. Based on the native android version of this app 

and apart from the designed architecture, it was also 

possible to have an iOS interface that followed the iOS 

guidelines without major changes. 

This project resulted in the publication and availability of 

the FleetMobile application for iOS systems, which is the 

main requirement of this project, fulfilling simultaneously 

the need for the company's customers to have an iOS 

version of the application and all the objectives detailed by 

the company before the development of the same. However, 

the system presents potential for evolution and need for 

future work. 

 

Future Work 

As mentioned in the previous section, this project has great 

potential for evolution, however there is also a need for 

future work. That’s what this last section will focus on with 

the following enumerated, keeping in mind that the first 

points still come from the first native version. [1]:  

• The addition of more modules, such as energy 

efficiency, driving times and driver scoring, using 

the Gamification concept [1]; 

• The addition of voice communications to fleet 

vehicles through the mobile device voice API. 

This addition was not considered a priority 

because many vehicles do not yet have voice 

communication via the Tecmic drivers console [1]; 

• Identifying the actions that the application can 

execute offline in order to implement a database in 

the mobile application. This point was not 

considered a priority since the main purpose of the 

application is to provide real-time information 

such as locations, alarms, messages, among others 

[1]; 

 

• Improve some details of the application interface 

design; 

• Finalize the development of the Android version 

on this multiplatform system and consequently run 

all necessary tests and analysis. This point was not 

a priority because the main requirement was the 

availability of the iOS version; 

• Make the Android version available on the 

Android app store - Play Store. 

 

REFERENCES 

1. João Miguel Henriques Domingos – Fleet Mobile 

Management – Relatório de Estágio – 2015. [accessed 

Oct 7 2019] 

2. Triet Le, iOS Development with Swift programming 

language, Available from 
https://www.theseus.fi/bitstream/handle/10024/124255/Triet-

Le-Thesis-Final-05042017.pdf?sequence=1 [accessed  Oct 7 

2019] 

3. Mukesh Prajapati & Dhananjay Phadake & Archit 

Poddar, STUDY ON XAMARIN CROSS-

PLATFORM FRAMEWORK, 
https://www.academia.edu/37016885/Study_on_Cross_-

Platform_Mobile_App_Development_With_Xamarin 
[accessed Jul 26 2019] 

4. Craig Dunn & Brad Umbaugh, Sharing code overview, 
https://docs.microsoft.com/en-us/xamarin/cross-

platform/app-fundamentals/code-sharing . [accessed Aug 

20 2019] 

5. Techbrij, SignalR, https://techbrij.com/database-change-

notifications-asp-net-signalr-sqldependency . [accessed Sep 

06 2019] 

 

https://www.theseus.fi/bitstream/handle/10024/124255/Triet-Le-Thesis-Final-05042017.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/124255/Triet-Le-Thesis-Final-05042017.pdf?sequence=1
https://www.academia.edu/37016885/Study_on_Cross_-Platform_Mobile_App_Development_With_Xamarin
https://www.academia.edu/37016885/Study_on_Cross_-Platform_Mobile_App_Development_With_Xamarin
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/code-sharing
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/code-sharing
https://techbrij.com/database-change-notifications-asp-net-signalr-sqldependency
https://techbrij.com/database-change-notifications-asp-net-signalr-sqldependency

