
Learning Tasks Faster using Spatio-Temporal Abstractions
(extended abstract of the MSc dissertation)

Miguel Fidalgo Martins
Departamento de Engenharia Informatica

Instituto Superior Tecnico

Advisor: Professor Manuel Fernando Cabido Peres Lopes

Abstract—Simple reinforcement learning algorithms, such
as Q-learning, are great in learning how to solve problems
while being provided minimal information and definition of
the problem domain, which is powerful because it allows the
use of a single algorithm to solve different problems. However
simple approaches like Q-learning don’t try to understand the
problem nor the world they are in, they solve it by trying
everything and learning/memorizing what to do in each step.
This approach will rapidly show its flaw when trying to learn
more complex tasks, where it might not be able to solve in
useful time.

In this work I present an approach that integrates rein-
forcement learning with Spatio-Temporal Abstraction, with the
objective of allowing a faster learning of tasks specially as
their complexity increases. This approach’s focus is always in
understanding the world by creating and updating a knowledge
base that is then exploited and considered when making a
decision. This approach autonomously creates, represents and
learns knowledge of higher complexity and generalization than
common reinforcement learning methods like Q-learning. I
also present an implementation of this approach which I call
Abstraction Agent, this agent being the result of the integration
of a Q-learning agent with my approach.

Experimental results show that this approach increases the
learning speed of the agent, reducing the total amount of steps
necessary for the agent to consistently reach the goal and solve
the task. This performance increase is also shown to remain
even in worlds with no intuitive abstraction.

I. INTRODUCTION

Classic logic based A.I. methods, e.g. expert systems,
are based on creating knowledge representations of do-
mains/worlds in order to solve problems or perform tasks
in them, but creating this representations of the knowledge
domain is a very complex and time consuming task.

Modern methods like reinforcement learning take a dy-
namic and behavioral approach, trying to learn how to
behave instead of basing it on a knowledge domain. In
reinforcement learning instead of using a definition of the
knowledge domain to know how to behave and decide,
it tries to learn how to behave and make decisions by
trial-and-error. However, by avoiding the definition of the
knowledge domain these methods are more limited in terms
of generalization and representation of complex behavior,
hurting their effectiveness when learning more complex
tasks.

This work’s motivation is to try to integrate of the qual-
ities of logical based systems into reinforcement learning

and testing to discover if it allows for a faster learning
of complex tasks, without the manual, complex and time
consuming definition and representation of the knowledge
domain that is necessary in logical based systems.

A. Background
Logical based systems have higher generalization capa-

bilities then machine learning methods because information
about the world and a model or representation of it are
painstakingly manually coded into those systems. Some
logical based systems have tools which use concepts such
as inference to derive new information from the information
given but, although this helps alleviate the need to explicitly
explain the world, when the world or domain changes all
that information is of no use.

Machine learning methods, such as reinforcement learning
which is the focus of this work, have a higher adaptability
then logical based systems because they rely on none to little
previous knowledge of the domain/world to be able to learn
what to do and find a solution, allowing the use of a single
algorithm to solve different problems. A simple approach
that is able to learn solutions from 0, is to simply learn what
action to take in each state by randomly exploring the world,
however this approach doesn’t understand the world and as
such isn’t able to generalize what it learns, it has a very
”shallow learning” similar to memorization. This approach is
the best approach when the world is not very big or complex
because exploring the world without stopping is faster then
stopping to understand it, however as the world gets bigger
and more complex it will gradually stop being efficient and
eventually stop being effective.

A different approach is required, an approach where the
agent autonomously tries to actually understand the world,
an approach where the agent instead of trying to learn
directly what action to do in a state, tries to understand the
state, reasoning the implications of the values of a state and
generalizing the state, performing a state abstraction. There
are many ways to perform a state abstraction, some works
create abstract states by ignoring specific state features and
grouping the different states that match after the change,
others create abstract states by grouping states ”closer” to
each other relying on state transition data. In summary, an
abstract state is a generalization of states, i.e. it is a group
of states that have something in common, e.g. the same

1

reaction/state change to an action or a similar location for
behaviour/action decision purposes. It provides additional
meaning to a state, the state stops being just itself, but itself
and part of a group of states.

State abstraction is an essential step towards providing
generalization capabilities to behavioral approaches.

In ”The gardens of learning: a vision for AI” [1] the
authors discuss not only what learning is and ”shallow learn-
ing” or memorization, but they also discuss how learning
should build upon itself in order to keep expanding the range
of doable tasks, and one of the proposals to achieve this is
the concept of adding macro-actions to the action-space to be
able to learn and represent more complex behaviour. These
macro-actions are simply a list of actions to be performed in
order, they are the simplest forms of a temporally abstract
action which are sometimes referred as skills. One work
deeply related to this concept is the options framework
[2], where an option is added to the action-space like in
the gardens of AI proposal, but instead of being a simple
macro-action it is a closed-loop control rule, i.e. instead of
being a specific sequence of actions to perform, it is a new
independent policy that at each time-step chooses an action
to perform based on the state, which means it is responsive
to state changes and has no specific number of actions and
as such doesn’t abstract a specific time interval.

Temporal abstraction, such as options, allow the rep-
resentation of behaviour of higher complexity, which when
learned accelerates the overall learning speed of complex
tasks.

There are many factors that can affect the complexity of
a task and how difficult it is to learn it, some of them are:

1) the dimension of the world or state-space;
2) the specificity of the behaviour required to achieve a

goal or simply how difficult it is to reach a goal;
3) the scarcity of rewards or feedback given.
The impact of factor 1 and 2 can be mitigated by state

abstraction and temporal abstraction respectively and the
impact of factor 3 can be mitigated by using intrinsic
motivation.

Intrinsic motivation provides an agent the capability
of learning and acting independently of external feedback.
Intrinsic motivation and it’s integration with temporal ab-
straction has been discussed in works like [3] and it is
even discussed with reinforcement learning in mind in
”Intrinsically Motivated Reinforcement Learning”[4].

The approach we are looking for, an approach that pro-
vides a higher understanding of the world and generalization
capabilities to reinforcement learning that could help it solve
tasks faster and solve more complex tasks, should be a
combination of state abstraction, temporal abstraction
and intrinsic motivation.

In my approach the ultimate goal is the same but the
focus is always in understanding the world and later exploit
this knowledge. My approach merges some qualities of
logical based systems with behavioral approaches by in fact
a combination of state abstraction, temporal abstraction and

intrinsic motivation.

B. Contributions

In this work I present my approach, implement a rein-
forcement learning agent that integrates this approach with
a Q-learning agent, which I call ”Abstraction Agent”, and
also evaluate this new agent as being able to learn complex
tasks faster then the original Q-learning agent it was built
upon.

The Abstraction Agent autonomously creates and updates
a knowledge base constituted by both space and temporal
abstractions. This knowledge base will represent the under-
standing the agent has of the world. This knowledge base
will be composed of 2 separate abstraction systems: World
Abstraction and Knowledge Abstraction.

1) World abstraction: This abstraction system will be the
main focus of this work. It will exploit the locality aspect of
states to create and continuously update an abstract model of
the world as the agent explores and learns the existing model
of the world. This abstract model of the world is similar to
the actual model of the world, but it is an abstraction of it,
where instead of states it has abstract states and instead of
actions it has abstract actions. This abstract model is created
independently of rewards, allowing it to abstract the world
even when there is only a single reward signal, the reward
for the goal.

2) Knowledge abstraction: This abstraction system will
complement the approach. It consists of the use of a neural
network to abstract a state using its features and then try to
predict the immediate reward of each action. It does this
by learning correlations between the feature values of a
state and the reward received when performing an action.
This allows the agent to generalize this knowledge between
multiple states that share feature values. It is constructed
based on the work in [5].

C. Document Organisation

In the section II I will discuss various concepts and
components used in my work, and other works that served
as a base or inspiration for them.

In the section III I will provide a description of both my
approach and the implementation of the Abstraction Agent.

In the section IV I will evaluate the Abstraction Agent
against the Q-learning agent it was build upon in order to
evaluate the impact of my approach on the performance of
the agent.

In the section V I will provide a quick summary of the
work.

II. RELATED WORK

In this section it’s reviewed various concepts used in my
work and various works related to them.

2

A. Integration

The motivation of this work is integrating the qualities
of logical based systems into reinforcement learning. The
approach taken was basically: make a reinforcement learning
agent that is able to autonomously create its own knowledge
base of the world from its observations. So the problem
to solve or the objective is in creating an agent that au-
tonomously creates its own knowledge base of the world.

A world is constituted by states and actions, and as
such the knowledge base of the world contains, hopefully
generalized, information of the states and actions in the
world. This additional information of the world, the one that
constitutes the knowledge base, is obtained or represented
by performing what is usually called an abstraction of the
world and as such, because the world is constituted by states
and actions, there are 2 types of abstraction: State Abstrac-
tion and Temporal Abstraction. Both these abstractions are
essential to the solution I propose in this work.

Another essential concept in this work is intrinsic moti-
vation. Many complex tasks are complex because they are
scarce on reward signals. The agent is expected to create the
knowledge base using intrinsic motivation, and then exploit
it for extrinsic motivations.

There are many works about both State and Temporal
abstraction and also intrinsic motivation. Some of them have
approaches similar to this one, combining these concepts
and even creating their own ”knowledge base”. I will now
discuss this concepts in more detail, noting work related to
them and their impact in my work.

B. Temporal Abstraction

Temporal Abstraction consists in the creation of abstract
actions (groups of actions) which represent behaviour that
takes undetermined steps to end (which is why its called
”Temporal” abstraction) and is composed by the original or
”primitive” actions which always take a single step to end.

The simplest form of temporal abstraction is a macro-
action, which is simply a list of actions to be performed in
order. One work deeply related to temporal abstraction is
the options framework [2], where an option is an abstract
action and is added to the action-space like in the gardens of
learning [1] proposal, but instead of being a simple macro-
action, it is a closed-loop control rule, as refered before.

”Intrinsically Motivated Reinforcement Learning”[4] is a
work that integrates and discusses the use of options with
reinforcement learning in more detail and also integrates the
use of intrinsic motivation. In [4] the agent finds ”salient
events” and creates options whose goal is to reach or create
this ”salient events”. The definition of what constitutes a
”salient event” is manual and dependent on the world, and
as such not a good fit for the approach we are looking for,
for the Abstraction Agent.

The Abstraction Agent also uses options, but uses them in
a way different from the options framework, some examples
are:

• it integrates them with the concept of abstract state;

• it doesn’t actually add them to the action-space, and as
such;

• the option’s policy only contains ”primitive” actions.

C. State Abstraction
State Abstraction consists in the creation of abstract states

(group of states) which contain information relevant to the
original or ”primitive” states it’s constituted by.

A temporal abstraction, or option or sometimes called
skill, exists for a reason, it has a goal, its policy representing
the behaviour to achieve it. However finding those goals
autonomously has been the discussion of many works.

Q-cut[6] and L-cut[7] use graph theory to analyse the
agent’s state transitions and find bottleneck states, this bot-
tleneck states being the ”border states” of strongly connected
areas that would disconnect the graph if removed. Creating,
learning and using options whose objective is to reach the
bottleneck states allows an agent to search and navigate the
state space more efficiently. Q-cut analyses the global state-
space transitions known while L-cut only stores and analysis
a local subset of the global state-space transitions known.

”Learning Purposeful Behaviour in the Absence of
Rewards”[8] also analyses the agent’s state transitions to find
correlated features (features whose values change together),
it then clusters this feature changes into a ”purpose” or
goal and creates an option whose goal is to perform the
purpose. In sum, the algorithm creates an abstract state from
correlated feature changes and creates an option to enter or
leave that abstract state.

When this works divide a graph or state-space into 2 they
are performing a state abstraction which creates 2 abstract
states, however this works perform state abstractions with
the sole purpose of finding good goals for the options, so
some of them don’t even store the abstract states found.
The Abstraction Agent, however, stores and integrates the
abstract states with the notion of options to perform spatio-
temporal abstractions of the world, the abstractions that
compose the abstract model of the world that is the core
of the ”world abstraction” component.

”Human-level control through deep reinforcement
learning”[5] is a work which consists on the creation and
usage of a neural network to learn and predict the Q-values
of a state, a network which they call Q-network. This work
and its integration of neural networks with reinforcement
learning were the base for the creation of the ”Knowledge
Abstraction” component of the Abstraction Agent.

D. Spatio-Temporal Abstraction
Spatio-temporal Abstractions are an integration between

space and temporal abstractions.
In HEXQ[9] the underlying model of the world is ab-

stracted into separate layers or abstract states and the agent
learns policies or temporal abstractions to navigate through
this layers. HEXQ abstracts the state-space of a single
feature into an ’abstract state-space layer’, from now on just
’layer’, abstracting each single feature one at the time. The
maximum number of layers is thus equal to the number of

3

features. HEXQ seems to be a good approach only in specific
worlds that don’t have many ”exits”, where the states are
already constructed in a format where it’s features already
have a hierarchy (like s = (room position, room number,
house number)).

”Hierarchical Reinforcement Learning using Spatio-
Temporal Abstractions and Deep Neural Networks”[10] is
a work that creates an abstraction structure and spatio-
temporal abstractions similar to the Abstraction Agent. In
this work[10] the agent stores it’s state transitions into a
transition matrix (a graph), uses spectral clustering to find
suitable state abstractions of the graph and then creates
temporal abstractions or policies to go from one abstract
state to another one. The resulted abstraction should be
somewhat similar to HEXQ[9] without the need for a built
in hierarchy in the state’s features.

The idea, present in both works, of abstracting the state-
space into abstract states and then creating abstract actions to
navigate from one abstract space to another was a clear idea
on how to integrate state and temporal abstractions and thus
create spatio-temporal abstractions and their representation.

The Abstraction Agent also creates abstract states and then
abstract actions to navigate from one abstract state to another
one.

E. Intrinsic Motivation
Intrinsic motivations are motivations that lead the agent

into performing actions that might not be aligned with their
extrinsic value, i.e. it leads the agent into performing actions
that the agent doesn’t consider the best action to reach the
goal. This can be helpful because performing a not ”optimal
action” now, and thus reaching the goal later, might provide
information and experience that allows the agent to reach
the goal even faster in future.

In ”Intrinsically motivated learning of hierarchical col-
lections of skills”[3] it’s said that it’s not concrete in the
psychology literature what drives intrinsic motivation but it
should probably involve novelty, surprise, incongruity and
complexity. As is said in this paper, ’It (surprise) cannot
account for what makes many forms of exploration and
manipulation ”interesting”, thus other factors like novelty,
incongruity and complexity might be necessary to be taken
into account when learning on bigger and more complex
worlds’.

This was taken into account when creating the Abstraction
Agent and their impact is:

• when considering an action, the agent overvalues the
option’s value by pretending that the agent can always
reach the option’s goal in 1 step - this represents
”complexity”, it allows the agent to start choosing
complex actions sooner

• when starting an option, the agent doesn’t stop fol-
lowing the option’s policy even when it’s bad and
contradicts the global extrinsic policy - this represents
novelty, it allows the agent to follow a new option’s
policy and improve it faster even if it delays reaching
the goal

• when discovering a bridge (transition between 2 ab-
stract states) it has never seen before, the agent will
sometimes recheck if the abstraction is ”good” - this
represents incongruity, it allows the agent to reunite
abstract states that are later found to be connected or
that should have never been separated.

III. LEARNING TASKS FASTER USING
SPATIO-TEMPORAL ABSTRACTIONS - ABSTRACTION

AGENT

In this section I present my approach which I called
the ”Abstraction Agent”, an agent that is able to learn
complex tasks faster (in fewer steps) by integrating state
abstraction, temporal abstraction and intrinsic motivation
with Q-learning.

In reinforcement learning methods the ultimate goal is
for the agent to learn how to get as much reward as
possible, with simple methods like Q-learning going for the
straightforward approach of learning/memorizing what to do
in each step. In my approach the ultimate goal is the same
but the focus is always in understanding the world, creating
a knowledge base that is then exploited and considered when
making a decision.

The most important concepts are:
• State Abstraction - Not every state is completely

different from one another, being possible to generalize
knowledge or a behaviour to multiple states.

• Temporal Abstraction - It doesn’t need to exist only
an action that takes 1 step and a policy to reach the goal,
there can be actions that take multiple steps, these being
policies to intrinsic goals or sub-policies (in this work
these are called ”options”, but other names include
temporal abstraction and abstract action).

The abstraction agent will be composed of mainly 3 parts:
• World Abstraction - Abstracts the state space into

multiple abstract states. This abstract states are sep-
arated by bottleneck states. Options are created with
this bottleneck states as intrinsic goals. By separating
the state space into smaller abstract states and creating
policies/options to go from one abstract state to another,
the agent learns to navigate the state space indepen-
dently of extrinsic rewards and explore the state-space
more efficiently.

• Knowledge Abstraction - Uses a neural network to
abstract the state, separating a state into its features
and then providing them independently to the neural
network as input. The neural network will predict the
reward of each action based of the individual features
and the relation between them instead of basing it on
the state as a whole. This allows the neural network
to learn about relations between individual feature
values and the action’s reward, knowledge that can be
generalized to multiple states that share those individual
feature values, allowing it to estimate the reward of
each action in states it has never seen before.

4

• Integration - the core of the agent where it decides
which action to take and learns. This part consists of
the usual Q-learning implementation with additional
considerations in order to integrate it with the world
and knowledge abstraction.

A. World Abstraction

This component integrates both state and temporal ab-
straction, creating an abstract representation of the state
space that allows it to learn how to better navigate the state
space independently of extrinsic rewards and explore the
state-space more efficiently, thus learning tasks faster.

In this component’s spatio-temporal abstraction represen-
tation, abstract states are divisions of space (or subsets of
S) separated by bottleneck states, and options always belong
to an abstract state and are policies on how to go from the
abstract state they belong to into a neighboring abstract state,
through the bottleneck states that separate them. Abstract
states are basically containers of options that are useful for
traversing the state-space through its bottleneck states.

B. Options - temporal abstraction

In normal reinforcement learning approaches, such as Q-
learning, the agent is trying to learn a policy to maximize the
rewards it receives. If we give a task for the agent to learn
in the way of a reward, it will learn a policy that says what
to do to in each state to get that reward. However, it’s hard
to learn complex behaviour directly because the agent needs
to perform the complex behaviour at least once to receive
the reward, and even when it does, it takes time to converge
into a desirable policy.

A better method to learn how to achieve a complex goal
(or solve a complex problem) is to split it into smaller pieces.
The abstraction agent learns multiple policies to achieve sub-
goals. This policies are temporal abstractions or options
which could be sub-policies of the desired global policy
and in turn accelerate learning of complex behaviour. These
options also allow the agent to instead of just considering
actions that take him 1 step away and whose value might
be fairly similar, consider following a policy that will take
him multiple steps away to someplace in the state space that
can be more valuable, which allows the agent to explore the
state space more efficiently by being able to navigate to more
valuable places quicker.

The temporal abstraction or options used in the agent are
based on the options or option framework presented on this
works [2], [4]. Formally an option on the options framework
is a triple o = (I, p, T) :

• I : initiation set : the set of states in which the option
can be chosen or started

• p : is the policy followed while the option is being
followed

• T : termination conditions: declares when the the option
ends

In my approach some changes are made to the options
that simplify and differentiate them and their use from the

traditional options from the works[2], [4]. Some differences
are:

• My options always belong to an abstract state and can
be started anywhere on that abstract state but only on
that abstract state. Therefore my options are only a pair
o = (p,g), p being the policy and g the goal states of the
option. This is because the I: initiation set is not only
already implicit but somewhat static, the initiation set
doesn’t grow like the usual options, it is always equal
to the set of states that constitute the abstract state and
only grows as a side effect of the abstract state growing;

• My options don’t have an option model, they don’t have
a transition probability model nor a reward model. The
value of an option is updated similarly to a normal
action when the option ends;

• My options learn and store the extrinsic value of
each bridge transition so the agent can make a choice
between multiple bridges if necessary;

The problem is finding useful intrinsic goals or subgoals
to perform the desired task. We humans usually know the
goal we want to achieve when we create subgoals, but the
agent doesn’t. As such, the agent will need to autonomously
discover useful subgoals based on its observations and with
no knowledge of the goal.

1) Segmented S-cut - state-space abstraction and subgoal
discovery: The state space abstraction and sub-goal discov-
ery, or Segmented S-cut, is based on the Segmented Q-cut
[6] with inspiration on other works [7], [10].

The agent autonomously discovers useful subgoals based
on its observations and with no knowledge of the goal. It
does this by saving the state transitions of the agent in the
form of a graph and then using spectral clustering to find
the 2 clusters that best divide the graph, i.e. to find the best
cut of the graph. Each cluster will be an abstract state. The
state transitions from one cluster/abstract state to another,
or bridges of the graph, will be an approximate equivalent
to the bridges that would be found in a Min-Cut/Max-Flow
of the graph, and if a cut is ”good” they will provide good
bottleneck states to be used as subgoals.

The algorithm initializes with 1 abstract state that contains
only the first state. When the agent finds a state that has
never seen before (that doesn’t belong to any abstract state)
he attributes that state to the abstract state that contains the
previous state. After performing a spectral clustering on the
graph corresponding to that abstract state, if a ”good” cut is
found, the abstract state and it’s state transition graph will
be divided into 2 abstract states, each with its own graph,
and 2 options will be created using the bottleneck states as
intrinsic goals (subgoal of the global policy), this options
being policies to go from one abstract state to the other and
vice-versa.

The calculation of the quality of a cut or how ”good” it
is, is similar to the one in Q-cut[6], i.e.

(Nr of states in 1st cluster)∗(Nr of states in 2nd cluster)
Nr of bridges

The only difference is that in the Abstraction Agent, the
Nr of Bridges is equal to the number of bridges in the

5

cut plus the number of bridges (to other abstract states) that
the abstract state being cut already had. This will allow the
agent to consider the connectivity of the abstract state being
cut to other abstract states in the calculation of the quality of
the cut, not cutting abstract states whose cut quality might
only be significant in the local spectrum.

I will call S-cut the process of dividing an abstract state
into 2 using spectral clustering and creating the correspond-
ing options.

This process will repeat itself recursively, i.e. if S-cut finds
a good cut and splits an abstract state into 2, an S-cut will
also be performed in each of the new 2 abstract states, and in
being able to find good cuts those 2 new abstract states will
again be each split into 2 and an S-cut will be performed on
them. This recursion ends when an S-cut was performed on
all abstract states and no more good cuts were found. This
recursion is equivalent to the one in Segmented Q-cut in [6],
where each segment in Segmented Q-cut will correspond to
an abstract state in Segmented S-cut.

The differences between Segmented S-cut and Segmented
Q-cut are:

• Segmented S-cut uses spectral clustering to find a good
cut, which doesn’t need a source state nor a target state
like in Segmented Q-cut;

• For the spectral clustering algorithm, the arcs in the
graph have a fixed capacity of 1 or no capacity. This
is because it’s beneficial to consider arcs equal to
one another instead of rating them on some measure
(like frequency) that is normally exploration based
and doesn’t necessarily hold any information about the
underlying state transition structure that can be helpful
in abstracting it;

• The state transition’s frequency are saved and used
when calculating if a cut is good. Regardless of the
cut’s quality, there are 2 conditions that need to be
met in order for the S-cut to proceed (in the following
examples the S-cut is trying to split an abstract state
into abstract state A and abstract state B):

1) There needs to be at least 1 bridge from abstract
state A to B and another from abstract state B to
A. This exists so a cut can’t happen without the
knowledge that both abstract states can reach the
other.

2) All bridges from A to B or from B to A need
to have a certain minimum frequency value. This
exists to make sure that the cut is real and the
abstraction good, and not just an illusion created
by a lack of exploration. A minimum frequency
value of 3 is used because the lower the value
the sooner the abstractions are made, which is
beneficial, and values above 3 show the same
results.

• With each cut only 2 options are created, one to go from
one abstract state to the other and vice-versa. The way
the goals are attributed to options is explained in further
detail in the implementation part of the dissertation.

2) Intrinsic Motivation - incongruity: The goal of the
world abstraction is to create and update a spatio-temporal
abstraction representation of the state space, and the sooner
the representation evolves, this is, the sooner the world is
partitioned into abstract states and options, the faster its
benefits will be of use to the Abstraction Agent, and as such
the faster the Abstraction Agent will learn the task.

It’s then important that the agent abstracts the world as
soon as possible, however the faster it tries to abstract the
world the worst the abstractions will be. It’s a trade off
between abstraction speed and the abstraction’s quality.

This is where incongruity comes in, when the agent finds
a new bridge between 2 abstract states, whether its between
abstract states that already had bridges between them or
discovering that 2 abstract states are actually connected, it
will reassess the quality of the cut between those 2 abstract
states, reuniting them if the quality is no longer sufficient.
This allows the agent to abstract the world as fast as possible
without lowering the abstractions quality, because when and
if bad abstractions happen they can always be fixed later.

C. Knowledge Abstraction
As said above, not every state is completely different from

one another, being possible to generalize a behaviour to
multiple states.

To do this the agent constantly updates a neural network
with observations, the neural network trying to estimate
the immediate reward of performing an action on a state.
More specifically, the user manually classifies the features
that it wants the neural network to pay attention to and
their feature size (number of different values the feature can
have). Generally the user will tell the neural network to pay
attention to all features that are not continuous and each of
those feature’s size. This is a sort of manual pre-abstraction
that is common to all states.

After this pre-abstraction the state is fed as input to
the neural network, which will then try to find suitable
abstractions and correlations from the feature value’s input
in order to justify the immediate reward it observed. This
allows the agent to be able to generalize behaviour to
different states that have similar individual feature value’s,
including states it has never seen before. Example: the state
is made of 4 features (x,y,z, HasLavaInFront). The objective
is for the knowledge abstraction to learn that moving forward
is bad when HasLavaInFront is true, regardless of x,y,z.

This neural network integration with reinforcement learn-
ing is similar to the one on the work[5], with some differ-
ences being:

• The use of a normal neural network is used, in compar-
ison with the convolutional neural network used in [5],
because there is no ”locality” present in the features,
i.e. the states are not image pixel information whose
feature distance in the state is relevant

• The agent creates 2 databases of observations and
updates them every step. Every X steps the agent
will update the neural network using the timesteps
saved in this databases. One database stores timesteps

6

whose reward is (approximately) 0 and the other one
stores all other timesteps. This separation exists so
the timesteps with reward don’t become diluted in the
much larger number of timesteps that have no reward
signal, allowing the agent to keep updating the neural
network with useful timesteps that have a reward signal
without overfitting. Other details are explained in the
implementation part of the dissertation.

• This neural network will predict only the immediate
reward of an action, not the Q-values which take future
action’s Q-value into consideration.

D. Integration
This integration component is the core of the agent, where

the base Q-learning will integrate the options from the world
abstraction and the immediate reward estimates from the
knowledge abstraction, where the inner mechanics of how
the agent chooses an action and learns are. The integration
of the options with Q-learning is based on the work ”In-
trinsically motivated reinforcement learning”[4] with some
differences, a major one being:

• Options aren’t added to the action space, and as such
the action space is fixed and all policies only con-
sider the actions in the action space. Options aren’t
considered in any policy. Learning an option’s value
and considerations for choosing an option (when an
action needs to be chosen) are done separately. This is
explained in further detail in the implementation part
of the dissertation.

A simplified overview of how the agent chooses an action:
• With epsilon chance it chooses a random action - end,

otherwise
• If an option is active

– Check if the option is still available in the current
state
∗ If not available, deactivate the option
∗ If available, choose the option’s highest value

action - end
• If no option is active

– Find the action with the best value
– Check the options available, if the highest valued

option has higher value than the action found
∗ That option becomes active and the option’s

highest valued action is chosen (an option has
it’s own policy) - end

– Else
∗ The previously found action is chosen. - end

(”- end” signifies the action step ends, returning the action
chosen).

A pseudo-code of this action step is showed in the
dissertation. The value of an action, regardless of the policy
it’s present on, is an addition of the learned action-value or
Q-value and an estimation of the immediate action reward
given by the knowledge abstraction.

The way the agent learns is:

• Timestep update is received (timestep update is (state,
action, next-state, reward, episode-ended);

• Timestep update is sent to both world and knowledge
abstraction components;

• All options available in that state use the timestep
update to update their policy;

– If an option has reached it’s goal, and therefore
ended, its option value (in the global spectrum) is
updated.

• The Q-learning global policy uses the timestep to
update its policy.

IV. EVALUATION

I now present the parameters and systems used to evaluate
the agent and then discuss the results that came from the
Abstractions Agent’s evaluation. Most demonstrations and
graphs are confined only to the dissertation for space saving
reasons.

A. Domain

This agent is implemented for performing a task in a
world with discrete actions, discrete states and an episodic
setting. A task is characterized by a number of specific
states, the goals, which the agent needs to achieve in order to
perform the task. An episode ends after a task is completed
(the goal was reached) or after a certain timeout has been
reached. The timeout generally used is 1.000.000 timesteps
or 20 seconds.

The world doesn’t need to be deterministic, for optimal
performance a learning rate of 1 is used for deterministic
worlds and 0.01 or 0.1 for stochastic worlds.

The discount factor can be between]0,1[but it needs to
be high enough that the reward for achieving the goal can
propagate to the entire state space. The abstraction agent is
meant for complex tasks that sometimes require more than
1000 steps to reach the goal, so a discount factor of 0.999
is used.

B. Performance evaluation graphs and parameters

Most graphs to demonstrate and compare the performance
of different agents are in the format:

• reward - cumulative rewards the agent receives in a
episode (y-axis);

• timesteps - cumulative timesteps of the agent over the
entire run, or, episodes - the episode count (x-axis).

Parameters used in the worlds unless otherwise specified:

• epsilon = 0.1
• discount factor = 0.999
• learning rate = 1
• nrEpisodesForError = 200
• Graphs are an average of 10 runs
• Timeout = 1.000.000 timesteps or 20 seconds.

7

C. Worlds and maps

3 worlds are used for the evaluation of the agent in the
dissertation, however only the most important one is present
here: a toy world with different maps mostly composed of
rooms.

This toy world has the agent travel through a 2 di-
mensional world and try to reach a goal position in the
world. The states are s = (position x, position y, orientation,
spaceInFront), e.g. s = (6, 56, up, ”Lava”) means the agent
is in the coordinates (6,56) in the world, is facing up (or
north) and has a lava pit in front of him. The action space
is composed of only 3 actions: move forward, turn right and
turn left. A position (x,y) in the map can be either: an empty
space where the agent can be, a wall or obstacle, or a lava
pit. The agent’s spawn/source position and goal position are
special empty places with those properties. Each position in
the map has a correspondent ”spaceInFront” feature value of:
empty space - ” ”, wall - ”X”, lava - ”L”, source - ”S” and
goal - ”G”. There exists many maps with different layouts to
test different principles but most of the maps are composed
of rooms.

D. Toy world evaluation

Lets now explore and see how the world abstraction and
the knowledge abstraction affect the agent’s performance.
The abstraction agent’s core is also Q-learning. The abstract
agent’s world and knowledge abstraction can be individually
deactivated, and if both are deactivated then only the Q-
learning core remains, thus making the abstraction agent
equal to a simple Q-learning agent. As such a simple Q-
learning agent was used as baseline for comparison in order
to evaluate the impact of the components.

1) World abstraction: As explained previously, the world
abstraction abstracts the world into abstract states separated
by bottleneck states, and options are policies on how to
go from the abstract state they belong into a neighboring
abstract state through the bottleneck states that separate
them.

As such, optimal maps to show the world abstraction’s
strength and usefulness are maps constituted of rooms,
where the agent needs to go through several bottlenecks to
achieve the goal.

It is expected and demonstrated in 1 that in such maps
the abstraction agent is able to learn faster how to reach the
goal then the Q-learning agent.

A visual representation of the abstraction done in the
world can be seen in Fig.1.

The world abstraction and its options allow the agent to
learn faster by improving its exploration and allowing a
faster ”policy to goal” convergence. By having an option
that allows the agent to go to a neighboring abstract state
the agent has always available an action which can take it
multiple steps away from where it is, rapidly allowing it
to explore higher valuable localizations (which also contain
other options), and because an option value is also affected
by the value of other available options, then the value of

an option represents the value of its abstract state and the
discounted value of its neighboring abstract states, similar
to how a state is valued in Q-learning. This is demonstrated
in 1 by looking at the frequency maps of both agents in the
same map.

Another benefit of the world abstraction is that the agent
is learning options/sub-policies independently of extrinsic
rewards and it’s updating and improving them all at the same
time (in the same episode). In a way, the abstraction agent
instead of trying to learn the whole global policy is learning
multiple sub-policies at the same time and then joining them.

The improvement in the exploration of the agent and
the ”simultaneous solving of sub-problems” benefit of the
world abstraction allows it to actually improve the learning
speed of the abstraction agent even when the map has no
rooms or no apparent good abstractions. What this means
is that the improvement provided by the world abstraction
is affected by the map, but even in maps with no apparent
good abstractions the state-space is still abstracted and the
improvement in the learning speed still exists.

This is also demonstrated by using an ”open room” map,
where there is no ”rooms” and no bottleneck states, and still
the world abstraction abstracts the state-space and improves
the learning speed of the abstraction agent.

E. Knowledge Abstraction

The knowledge abstraction tries to find extra meaning
in the features of a state from the agent’s observations.
More concretely the knowledge abstraction (or its neural
network) tries to predict the reward the agent will receive
for each action using the state as input. In order to evaluate
the knowledge abstraction lava pits were added to the 24-
rooms map. The map has 2 versions, one where the lava
kills (a negative reward is given and the episode immediately
ends) and one where it doesn’t kill (just a negative reward
is given). The input states are s = (position x, position y,
orientation, spaceInFront).

The knowledge abstraction is able to abstract the states,
learn and then predict that when in a state with the feature
spaceInFront = ”L” the action ”MoveForward” gives a
negative reward. By doing this it is able to generalize this
knowledge to all states that have the feature spaceInFront
= ”L”, even in states it has never seen or visited. The Q-
learning agent has to first fall into a lava pit to learn that
in that specific state the action ”MoveForward” is bad. As
such the Q-learning agent will fall into every lava pit it has
never seen, while the Abstraction Agent after learning that
generalized knowledge will not fall into lava pits anymore.

F. World and Knowledge Abstraction

A joint evaluation of both components working together
was performed. The evaluation can be seen in demonstrated
in 1 and it shows that the Abstraction Agent with both
components active is able to learn faster then the Q-learning
agent. However a flaw was found on the world abstraction
component. This flaw affects the agent when the maps

8

contain negative reward signals (such as lava pits), it cre-
ates instabilities and sometimes, depending on the random
exploration provided by e-greddy, can even prevent the agent
from reaching an optimal solution or even converge into a
solution.

G. World Abstraction flaw
There can be seen some instabilities at the end (cumulative

reward) result of the policy from the Abstraction Agent in
the maps where the lava doesn’t ”kill”. This instabilities
were not expected when performing this evaluation and they
were a warning that allowed for a flaw to be discovered
upon further analysis. This instabilities are created by the
option’s policy grading. In summary, because an option’s
policy is independent of the extrinsic goal, the objective of
an option’s policy will be to lead the agent to any goal of
that option while maximizing intrinsic reward, regardless
of the extrinsic value of that goal. This usually results in
leading the agent to the closest goal of that option even if
that goal is worse (in the global spectrum) in relation to
others. This affects the agent’s performance in worlds with
negative rewards (like the maps with lava that were used),
where the choice of intrinsic goal of an option might lead
the agent to a part of the state-space where it has to receive
a negative reward in order to reach the goal.

V. CONCLUSIONS

The objective of this work is to integrate the qualities of
logical based systems into reinforcement learning so that
it’s able to learn more complex tasks and faster without
a manual, complex and time consuming definition and
representation of the knowledge domain that is necessary
in logical based systems.

In the introduction I it’s discussed that the approach we
are looking for, to perform the objective mentioned above,
should be a combination of state abstraction, temporal
abstraction and intrinsic motivation.

In the related work II, multiple works are mentioned
that already use this concepts and integrate them with
reinforcement learning. Many parts of my approach are
based on this works.

It is then, in section III, that I present my approach
or ideas for an integration of reinforcement learning with
the autonomous creation, representation and learning of
knowledge of higher complexity and generalization then
common reinforcement learning methods like Q-learning,
by using the 3 concepts above. My approach is composed
of 3 components: the world abstraction, the knowledge
abstraction and its integration with reinforcement learning.

The world abstraction autonomously discovers bottleneck
states by analysing state transition graphs. These bottlenecks
are seen as potential subgoals. It abstracts the state space into
multiple abstract states, which are separated by these bot-
tleneck states, and creates temporal abstractions or options
using this bottleneck states as intrinsic goals. The world ab-
straction thus integrates both state and temporal abstraction
and intrinsic motivation to create an abstract representation

of the underlying model of the world, an abstract model that
allows it to learn and represent more complex behaviour on
how to navigate the state space independently of extrinsic
rewards. This abstract model allows it to explore the state-
space more efficiently and thus learn tasks faster.

The knowledge abstraction uses a neural network to
abstract the state, separating a state into its features and
then providing them independently to the neural network as
input. This neural network is able to learn knowledge that
can be generalized to multiple states that share individual
feature values, allowing it to estimate the reward of actions
in states it has never seen before.

The integration component is where the world and knowl-
edge abstraction are integrated with the learning process
and decision making of reinforcement learning, specifically,
where the base Q-learning will be integrated with the op-
tions from the world abstraction and the immediate reward
estimates from the knowledge abstraction.

I implement this approach and thus create an agent which
I call Abstraction Agent, this agent being the integration of
a Q-learning agent with my approach.

The Abstraction Agent is compared with a Q-learning
agent in order to evaluate the impact of my approach in
the agent’s performance.

Experimental results show that:
The world abstraction is able to autonomously create a

useful abstract model of the world which contains learned
representations of more complex behaviour on how to
navigate in it, increasing the learning speed of the agent
mainly by increasing the efficiency of its exploration. This
performance increase is shown to remain in different worlds,
even in worlds with no ”rooms”, i.e. with no intuitive
abstraction.

The world abstraction is also shown to have a flaw, which
is discussed in greater detail in the dissertation.

The knowledge abstraction is shown to able to learn
generalized knowledge that allows the agent to predict the
value of actions in states it has never been in, thus increasing
its performance.

In summary, the experimental results conclude that my
approach, that integrates spatial-temporal abstraction and
intrinsic motivation with reinforcement learning, allowing
an agent to autonomously create, represent and learn knowl-
edge of higher complexity and generalization then common
reinforcement learning methods like Q-learning, is able to
increase the overall learning speed, reducing the total amount
of steps necessary for the agent to consistently reach the goal
and solve the task.

REFERENCES

[1] O. G. Selfridge, “The gardens of learning: a vision for ai,”
AI Magazine, vol. 14, no. 2, p. 36, 1993.

[2] R. S. Sutton, D. Precup, and S. Singh, “Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning,” Artificial intelligence, vol. 112, no.
1-2, pp. 181–211, 1999.

9

Figure 1. 1st image: Comparison between the Q-learning agent and the Abstraction Agent with world abstraction active in the 24-rooms map. 2nd
image: Comparison between the Q-learning agent and the Abstraction Agent with both components active in the ”Lava 24-rooms” map, that has lava that
doesn’t kill. 3rd image: Visual representation of the abstraction done over the world. 4th image: Comparison of the state frequency (Q-learning is left and
Abstraction Agent is right). The brighter a position in the map the more it was visited.

[3] A. G. Barto, S. Singh, and N. Chentanez, “Intrinsically
motivated learning of hierarchical collections of skills,” in
Proceedings of the 3rd International Conference on Develop-
ment and Learning, 2004, pp. 112–19.

[4] N. Chentanez, A. G. Barto, and S. P. Singh, “Intrinsically
motivated reinforcement learning,” in Advances in neural
information processing systems, 2005, pp. 1281–1288.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski et al., “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[6] I. Menache, S. Mannor, and N. Shimkin, “Q-cut - dynamic
discovery of sub-goals in reinforcement learning,” in Euro-
pean Conference on Machine Learning. Springer, 2002, pp.
295–306.

[7] Ö. Şimşek, A. P. Wolfe, and A. G. Barto, “Identifying useful
subgoals in reinforcement learning by local graph partition-
ing,” in Proceedings of the 22nd international conference on
Machine learning. ACM, 2005, pp. 816–823.

[8] M. C. Machado and M. Bowling, “Learning purpose-
ful behaviour in the absence of rewards,” arXiv preprint
arXiv:1605.07700, 2016.

[9] B. Hengst, “Discovering hierarchy in reinforcement learning
with hexq,” in ICML, vol. 2, 2002, pp. 243–250.

[10] R. Krishnamurthy, A. S. Lakshminarayanan, P. Kumar, and
B. Ravindran, “Hierarchical reinforcement learning using
spatio-temporal abstractions and deep neural networks,” 05
2016.

10

