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Abstract - The main purpose of the following research is to 

further contribute to the study of demand forecasts at the 

individual household level. In order to do this, nine models 

were built to predict one-hour-ahead energy consumption. 

Three different scenarios were tested in terms of distribution 

and amount of input data: forecast model based on aggregated 

data; forecast model based on disaggregated data collected 

during direct metering (with one-hour resolution) and  forecast 

model based on data disaggregated by NILM algorithm. In 

addition, three different machine learning algorithms were 

used, namely: random forest (RF), multi-layer perceptron 

(MLP) and long short term memory (LSTM). The models were 

built for one house and additionally tested for four others to 

check their scope of application. The results obtained in the 

analysis showed that models using NILM data provided similar 

results as models using data with direct measurements of 

energy consumption by individual devices. Moreover, in almost 

every case considered data containing only aggregated data 

provided the most accurate results to perform aggregated 

consumption forecast obtaining MAPE at the level of 27.6% in 

the best case scenario. Of the three algorithms tested, RF 

provided the best results, and was also the fastest and easiest to 

implement. 

Keywords: load forecasting, disaggregated data, NILM, machine 

learning, individual household 

I. INTRODUCTION 

 

According to the data provided by European 

Commission [1], buildings are one of the largest energy 

consumers in Europe. In 2017 [2], the residential sector 

contributed to consumption of 27.2% of final energy in the 

European Union, which made it the second most energy-

intensive sector, right after transport (34.2%).  Moreover, 

numerous factors indicate the rising trend in energy 

consumption, such as growth of number of electrical 

appliances in homes, increased demand of comfort as well 

as overall rise in the number of households [3]. The above 

presented numbers and trends suggest that there is a vast 

potential for energy efficiency gains in the residential sector. 

In addition, the use of renewable sources such as solar 

or wind power is characterized by high volatility in the 

production of electricity, therefore, one of the biggest 

challenges to increase the integration of energy coming from 

renewable sources into transmission networks is to 

accurately control the system. To effectively balance real-

time demand and supply, avoid the congestion of the grid, 

and be able to retain secure, competitive and sustainable 

energy systems, the development of methodologies that 

allow as accurate as possible to forecast production as well 

as consumption of the electricity may prove to be crucial.  

Moreover, there has been a significant drop of prices of 

solar panels and battery-based storage systems. Together 

with a variety of incentives offered by the governments, this 

created a great demand and interest in installing these 

systems in the residential sector resulting in an increased 

number of residential energy self-producers, prosumers and 

local energy communities. All of these factors, connected 

with the general trend of switching from energy sales market 

to services based market, created a new business sector, 

where the production and sale of energy between a typical 

producer - consumer model is not the dominant model 

anymore. The prosumer model has disturbed the current 

market and opened the way for a new system where energy 

management will become one of the most important 

elements of the chain. 

 Further control over electricity supply and demand 

can be achieved by continuous investments and 

improvements in technologies such as Advanced Metering 

Infrastructure (AMI) [4]. In recent years, projects related to 

smart networks in Europe have grown significantly - 

currently, the database contains more than 950 R&D and 

demonstration projects, which totalled over 5 billion euro 

investment.  

With the smart meter deployment, the sector dealing 

with Non-Intrusive Load Monitoring (NILM) has 

significantly developed over the last years, as it allows to 

extract the energy consumption profiles of individual 

devices from the total energy profile obtained through smart 

meters. 

All this indicates an increasing demand for accurate 

control of electricity production and consumption, and this 

requires accurate forecasting of these two dimensions. Smart 

sensors and increasingly better machine learning algorithms 

create ideal conditions for the development of this field. And 

indeed, from year to year, more and more articles on 

forecasting electricity consumption can be found. And 

although the majority of them are still focusing on 

aggregated data on the system demand level, the topic of 

forecasts with the use of disaggregated data at the level of 

individual houses is discussed more and more frequently. 

 



 

A. Research goal 

 The main purpose of the following research is to 

further contribute to the study of demand forecasts at the 

household level, striving to improve forecasting by adding 

consumption data to the models at a disaggregated level, and 

thus checking whether direct measurements of energy 

consumption by individual devices or NILM results improve 

the forecasting of total energy consumption in individual 

households. In order to obtain the most accurate forecast 

model, different machine learning methods, several 

configurations of those and various data representation will 

be implemented and compared. For that purpose, five 

different houses will be compared in three following 

scenarios: 

1. Power consumption forecast model based on 

aggregated data.  

2. Power consumption forecast model based on 

disaggregated data collected during direct metering. 

3. Power consumption forecast model based on data 

disaggregated by NILM algorithm provided by Watt-IS 

company. 

 All models will be used to forecast household 

demand one hour in advance. 

 Furthermore, answers to the following questions 

will be sought: 

 Is the same model sufficient to forecast power 

consumption of different houses? - A model will be built 

and optimized specially for on single household. After 

that, the same model's performance will be tested on the 

other households with different power consumption 

patterns. The level of forecast accuracy will be 

compared. 

 Is there an advantage in using disaggregated data over 

aggregated data? - Models built with disaggregated 

data, thanks to capacity to process more detailed 

patterns, are expected to perform better than models 

based on aggregated data. However, this group of 

models requires more complex collection of the data and 

results in higher complexity of the model and increased 

computation time. It will be discussed whether the 

possible increase in accuracy rewards the additional 

model costs mentioned above. 

 Is NILM algorithm necessary to significantly improve the 

forecast? - Despite the fact that models based on 

aggregated and NILM data require the same data (total 

consumption), the latter approach results in higher 

complexity because of the additional algorithm used for 

data disaggregation. Again, the level of forecast accuracy 

of two models will be compared. 

 

II. LITERATURE REVIEW 

 Despite the growing interest in forecasting power 

consumption, still relatively few scientific papers focus on 

models based on disaggregated data. For the overall view, 

various methodologies and scenarios have been analyzed 

before proceeding to the target model development.  

 Gajowniczek and Ząbkowski [4] focus on 24 hour 

ahead electricity consumption forecast for individual 

household. In their paper they confirm that forecast for a 

single unit generates a larger error than forecasting for the 

cluster of houses. To increase the accuracy of their model, 

they create matrix with the probabilities of "appliance turn 

ON" events in each hour. Testing models like RF, ARIMA, 

ANN and SVR they were able to obtain MAPE in the range 

26.8-56.3%. 

 Rodrigues, Cardeira and Calado [5] focused on 93 

households in Lisbon, Portugal. Their main objective was to 

prove that it is possible to obtain satisfactory results without 

weather data, which is usually used in load forecast models. 

Using FFNN model and data such as historical consumption, 

apartment area and the number of occupants, they were able 

to obtain a mean absolute percentage error at the level of 10 

% for daily consumption forecast. 

Oprea, Pîrjan et al. [6] used sensor recorded and 

disaggregated data to forecast electricity consumption of 8 

residential houses with renewable electricity generation 

system and smart metering system. With mixed ANN model 

using both non-linear autoregressive with exogenous input 

(NARX) ANNs and function fitting neural networks 

(FITNETs) they test three different training algorithms (LM, 

BR, SCG) and apply gap-filling technique based on the 

interpolation. In their paper two case studies were 

investigated: the first one for the total electricity 

consumption from the grid and the second one for the total 

electricity consumption of all the individual appliances. 

Both approaches (NARX and FITNETs) offered a very 

satisfying predictions with correlation coefficient ranging 

between 0.961 and 0.998 depending on the scenario and 

training algorithm. 

Dinesh, Makonin and Bajic [7] first decompose the 

aggregate power signal into individual appliance signals. 

Those signals are used to make a forecast of the power 

consumption of each device separately. Finally, the overall 

forecast is created by summing up individual projections. 

Their original model is based on identifying ON and OFF 

states of the appliances - using graph construction, spectral 

representation and clustering, they predict the ON-set of 

devices at time t. The proposed model was compared with 

four other methodologies (ANN, ARIMA, SPLF) and in 

each of the considered scenarios it obtained the best results. 

Sereno and Alves [8] used data on exergy consumption 

(disaggregated on different types of exergy) collected over 

nearly 50 years in Portugal to build an ANN model applying 

the LM algorithm. In data pre-processing, all the values 

were normalized to obtain null average and unitary standard 

deviation. After that, for optimal features selection, 

correlations analysis and principal components analysis 

were implemented. The accuracy of the model has been 



compared with models based on multiple and multivariate 

linear regression and a smaller forecast error was recorded 

while using the ANN method. 

III. METHODOLOGY 

 The methodology adopted in this work strictly 

adheres to the standard workflow in a machine learning 

project [9]. The first step was to conduct exploratory data 

analysis in data sets, then it was necessary to process the 

data to prepare the application of the machine learning 

algorithm. In the next steps, the models that best fit the 

problem were selected, and the parameters describing these 

models were defined. Finally, the models were implemented 

and evaluated to obtain the final model. 

A. Exploratory Data Analysis 

 One of the key sub-steps during the machine 

learning project is to perform an exploratory data analysis 

(EDA). During this process, a preliminary analysis of 

various attributes of a given data set is carried out. It is 

important to become familiar with their properties, 

characteristic points and dependencies. It is also a step into 

which data visualization technique should be performed in 

order to better understand the data specificity, as well as to 

be able to discover previously invisible patterns [10]. 

 Available data comes from 100 residential houses 

in France. The collected data includes the timestamp, total 

consumption data, appliances consumption data and weather 

data. The dataset was collected on a similar time span for all 

houses (slightly over 1 year) with hourly resolution, so the 

number of timestamps is in range from 8955 to 9136. From 

the whole dataset, five houses that significantly differ in the 

level of electricity use were chosen to develop and test the 

methodology. The average daily power usage profile of 

them are presented below (Figure 1). 

 

Figure 1. The average power usage during the day in each 

selected household (A-E). 

 In case of households A, B and D only 65% to 70% 

of the total electricity consumption is described by the direct 

measurements of the appliances. The remaining part, 29.6% 

in household B, 34.3% in household D and 34.8% in 

household A, respectively, is the consumption of 

unspecified electric appliances. Extreme cases represent the 

other analyzed households - when it comes to C, as much as 

62.3% of energy consumed came from unregistered devices. 

In the case of E, the opposite is true, namely only 6% of the 

total energy was consumed by unspecified devices, and as 

much as 94% by directly measured devices. 

B. Data processing 

 

 At the very beginning, data is often unstructured 

and contains missing and noisy data, which can significantly 

confuse the algorithms in the training process. Therefore, 

data processing, i.e. the process of transforming the input 

data into the most appropriate form for ML algorithms, has 

been carried out. These included the following operations: 

1. Identifying missing values and removing them: zero 

values, that in any of the used datasets did not exceed 

1%, were completely removed. The decision was made 

on the basis o the fact that the number of samples is 

just a small fraction of the rest of the data and 

assigning the estimated values to the missing records 

could introduce errors to the data due to the highly  

dynamic changing patterns of power use in a single 

household. 

2. Identifying outliers and assigning new values to them: 

outliers present in the data were identified using 

interquartile range (IQR), which is commonly used as a 

measure of how spread-out the values are. The 1.5 x 

IQR rule implies [11] that all values that are outside 

the range [Q1-1.5xIQR; Q3+1.5xIQR], where Q1 and 

Q3 represent the values of the first and third quartiles, 

and IQR equals the difference of these quartiles, can be 

considered an outlier.   

3. Feature extraction and engineering: the following 

steps were carried out: 

 extraction of 4 new features - number of the month 

(1-12), day (1-31), hour (0-23) and day of the week 

(0 - Monday, 6 - Sunday) - from the time stamp 

available in the raw data; 

 addition of the season designation - value 0 for 

winter months (1,2,12), 1 for spring and autumn 

months (3-5, 9-11) and 2 for summer months (6-8); 

 adding a column ('Holiday') containing information 

on non-working days (value 1 for non-working 

days, value 0 for working days); 

 addition of a column containing the level of power 

used by unmeasured devices (overall consumption 

minus the sum of the load of measured devices); 

 combining 'Weekday' and 'Holiday' features into 

one (by multiplying their value); 

 creation of columns containing power consumption 

in the previous hour of each device; 

 creation of column containing total power 

consumption at the corresponding day and hour 

from previous week. 

4. Feature scaling: in the case discussed in this paper, the 

power consumption in the previous hour may range 

from 20 W to 4500 W, and temperature fluctuations 

are on a scale from -9,6°C to +31,6°C. Here, the first 

feature with high magnitude will weigh a lot more in 

distance calculations then the other, smaller in 

magnitude, feature. To overcome this effect, all 



features should be brought to the same level of 

magnitudes. The three most popular methods have 

been tested (mean normalization, data scaling, data 

standardization), of which data standardization was 

ultimately chosen for the best prediction results. 

5. Feature selection: 4 subsets have been prepared: 1 set 

with all the available features and then 3 subsets that 

result from the application of 3 feature selection 

algorithms: Extra Trees Classifier (ETC), Recursive 

Feature Elimination (RFE), "K-Best" feature selection. 

The final models were built using all available features 

due to the best predictive results. 

 

C. Model Selection 

 

 Looking at the current solutions in the subject of 

forecasting electricity consumption, three models were 

selected for analysis: 

1. Random Forests (RF) - an example of ensemble 

method where the main idea is to combine (ensemble) 

weak learners to build a strong learner - a robust 

model, which has a better generalization error and is 

less prone to overfitting [12]. Therefore, RF action is 

based on training many decision-tree models on 

subsets of the input data and input features. Each 

decision tree includes a random subset of features and 

only reaches to a random set of the training data points. 

These individual trees then contribute to the total 

outcome. RF models are quite robust models resistant 

to interferences appearing in the data. They also do not 

require fine tuning of many hyperparameters, but in 

return represent a strong generalization. 

2. Multi-Layer Perceptron (MLP) - based on combining 

multiple Perceptrons and composed of three main 

elements: one input layer, one (or more) layers of 

LTUs, called hidden layers, and one final layer of 

LTUs called the output layer. This architecture is used 

in wide range of applications from different areas and 

time series forecasting is among the most important 

ones. The beginning of vast applicability of those 

networks started with presentation of the learning 

algorithm called backpropagation which is now used 

for MLP's training. MLP networks are the examples of 

feedforward architecture, which means that the flow 

within the network occurs only in one direction, 

namely from the input to the output layer. 

3. Long-Short Time Memory (LSTM) - an example of a 

Recurrent Neural Network (RNN). One of the 

problems of typical RNN networks is that if the 

sequence fed into the network is extremely long, then 

there may be a problem with the transfer of 

information from earlier time steps to later ones. In this 

way, information from the beginning of the learning 

process may be lost. LSTM is one of the solutions of 

the short-term memory mentioned above. Thanks to 

the built-in internal elements called gates, it can 

regulate the flow of relevant information in the 

learning process. These gates can decide which data in 

the sequence is important to keep or discard. In this 

way, it can convey relevant information along a long 

chain of sequences to make predictions. 

 

D. Parameters optimization 

 To provide the best results, it is rarely possible to 

use the basic set of algorithms available in various ML 

dedicated libraries. These algorithms have various specific 

parameters whose values must be properly tuned to the 

different data, project requirements, and expected results. 

Bearing in mind the bias-variance trade-off, a so-called good 

fit is sought to avoid model underfitting (the algorithm does 

not learn the hidden data structure) or model overfitting (the 

algorithm is too adapted to the training data set). After a 

preliminary analysis determining which of the parameters 

has the greatest impact on selected models, 3 parameters in 

the RF model were selected for optimization (the number of 

trees in the forest, the minimum number of samples required 

to split an internal node, the minimum number of samples 

required to be at a leaf node), 5 in the MLP model 

(activation function, parameter alpha, the number of neurons 

in each hidden layer, the number of hidden layers, maximum 

number of iterations) and 2 in the LSTM model (the number 

of neurons, the number of epochs). 

 The optimization process consisted of three phases 

in which another set of parameters was tested. For RF and 

MLP models, optimal parameters were found using two 

additional algorithms: Random Search and Grid Search. 

Following the practices of the authors of various studies 

(like [4], [5], [8], [13]) the data for both models was divided 

as follows: 80% for training and 20% for testing. In 

addition, 5-cross validation was used (dividing the training 

set into 5 subsets and using one of them for validation). In 

the case of the LSTM model, due to the source code, the 

search for final parameters was carried out manually, which 

was considered to be sufficient for prototyping. In this case, 

the data has been divided into three parts in advance: 70% 

for the training set, 20% for the testing set and 10% for the 

validating set. 

 Hyperparameter optimization was carried out for 

household A, and then the best configurations were used for 

the next datasets. 

E. Model evaluation 

 After building the model, it is important to subject 

it to an assessment process based on specific criteria for 

assessing its accuracy and performance. This is most often 

done using pre-defined functions that allow you to get a 

numerical value that helps to decide on the effectiveness of a 

given model and allows to compare models with each other. 

In order to accomplish that, the following parameters were 

measured and used: 

1. Mean Absolute Percentage Error (MAPE) 

2. Mean Squared Error (MSE) 

3. Mean Absolute Error (MAE) 



4. Coefficient Of Determination (R2) 

 

IV. RESULTS 

 The following results were obtained for forecasting 

household A one-hour-ahead energy consumption. In 

addition to the measured evaluation values, the time 

required for the learning process of each model is given. 

 From the data presented below (Table 1), it can be 

seen that the best results for household A were obtained 

using the RF model for aggregated data. The results are 

similar for the model using data from direct measurements, 

and in this case, the values do not differ significantly from 

those obtained with the MLP and LSTM models. For NILM 

and aggregated data, both MPL and LSTM present 

significant higher errors that RF. In addition, RF is the 

model that required one of the shortest training time. In 

conclusion, it can be said that RF seems to be the best model 

for the case considered and that for aggregated consumption 

forecast, the use of direct consumption of appliances or 

NILM information does not improve the results.  

Table 1. Evaluation of household A. 

  MAPE 
MSE 

[kWh2] 

MAE 

[kWh] 
R2 Time [s] 

D
ir

ec
t 

m
et

er
. 

RF 31.9 % 90.59 0.15 0.74 14.4 

MLP 41.6 % 98.97 0.18 0.71 15.8 

LSTM 37.0 % 110.58 0.19 0.74 1492.3 

N
IL

M
 

RF 36.4 % 101.77 0.18 0.75 14.7 

MLP 52.2 % 141.44 0.22 0.66 15.5 

LSTM 39.2% 125.55 0.21 0.75 2539.2 

A
g

g
re

g
. 

RF 30.9 % 86.84 0.16 0.64 14.7 

MLP 40.6 % 105.72 0.19 0.56 57.1 

LSTM 59.1 % 137.45 0.24 0.43 107.7 

 

 The results of the assessment of the best scenarios 

in the other four households (RF built on aggregated data for 

houses B, C, D and RF built on data from direct 

measurements for house E) are presented below (Table 2). 

In all cases considered again, the model that provided the 

most accurate results was RF with MAPE = 27.6% in the 

best scenario and an MAE between 0.1 kWh and 0.39 kWh, 

depending on the type of data and the household. The MLP 

model worked slightly worse, but in some cases the results 

of both models are comparable. Also the training times of 

both models are similar (from 9 to 19 seconds with one 

exception). The LSTM model proved to be the least accurate 

and additionally requires a much longer training time (over 

16 minutes on average). The reason for this behaviour of the 

LSTM model may be that relatively few data points (less 

than 8000 per household) have been used, and these models 

require more data for proper training than models such as 

RF. 

 

 

Table 2. Evaluation of the best scenario in the houses B-E. 

 MAPE 
MSE 

[kWh2] 

MAE 

[kWh] 
R2 Time [s] 

B 63.9 % 346.05 0.33 0.77 9.8 

C 31.4 % 49.38 0.13 0.52 9.9 

D 27.6% 28.53 0.10 0.40 9.2 

E 38.6% 255.21 0.29 0.88 17.2 

 

 Considering only the best performing model (RF), 

the values of individual evaluation parameters are visualized 

below (Figure 2). With the exception of house E and the 

MAE values of house A and B, again, the lowest MAPE, 

MSE and MAE values were obtained when forecasting 

using data set only with aggregated data, therefore excluding 

the power consumption of individual devices.  

 

 

 

Figure 2. Evaluation parameters visualization : MAPE (top 

left), MSE (top right), MAE (bottom left) and R2 (bottom 

right). 

 Therefore, in all cases, except household E, the use 

of aggregated data is better or at least as good as the use of 

direct data. Only in household B, the use of NILM 

information is comparable to the aggregated forecast.  This 

means that for aggregated forecast of energy consumption, 

providing detailed information of the appliances 

consumption (through direct measurements or NILM 

estimations) does not improve the forecasting results. 

 

V. DISCUSSION 

 In the following section, based on the results 

presented in the previous chapter, an attempt will be made to 

answer the research questions posed in section one.  
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Is there an advantage in using disaggregated data over 

aggregated data?  

 It was expected that models based on disaggregated 

data, due to the possibility of more detailed pattern 

recognition, could work better than models based on 

aggregated data. Looking at the results in Figure 2, it turned 

out that this did not happen in general. In almost every case 

considered (A-E homes; RF, MLP, LSTM algorithms) data 

containing only aggregated data provided the most accurate 

results to perform aggregated consumption forecast. 

Moreover, it was easier and faster to process, both during 

data preparation and model training. Less accurate results 

obtained on disaggregated data may be due to insufficient 

amount of data, which did not allow individual models to 

notice and extract more intricate patterns of device 

behaviour. This caused that these additional features only 

unnecessarily confuse the model and do not bring the 

expected benefits. Therefore, the number of devices 

considered should be limited. The more immediate focus 

should be only on the most energy-intensive devices (e.g. 

heating, air conditioning), and those that are switched on 

sporadically, consume an extremely small amount of energy 

or are used in the same way throughout the year (e.g. TV) 

should be discarded. 

 Also, this encourages to investigate different 

approach in the future: focusing more on the probabilities of 

using a given device in a given hour of the day than on the 

power it consumes. For this it is worth using the measured 

values at shorter intervals (5-30 min), because a large 

number of appliances in the household has a duty cycle 

shorter than one hour. This approach will, probably, allow to 

better observe different behavioural patterns and obtain 

more accurate forecasting results. 

Is NILM algorithm necessary to significantly improve the 

forecast? 

 The results obtained in the analysis showed that 

models using NILM data provided similar results as models 

using data with direct measurements of energy consumption 

by individual devices. Still, the first option is much easier 

and cheaper to obtain than the second, which requires 

expensive installation and supervision of a large number of 

sensors. However, compared to aggregated data, results 

obtained using NILM data are less accurate. Moreover, the 

latter requires an additional step, which is the separation of 

total consumption into individual devices or device 

subgroups. 

 Worse results may be due to the fact that the 

algorithm for obtaining disaggregated data was not tuned 

enough to individual houses. In addition, different cases 

should be re-examined using the approach suggested above - 

using data from only the most energetically intensive 

devices with less than one-hour time steps. 

Is the same model sufficient to forecast power consumption 

of different houses? 

 The created model was built and optimized 

specifically for a single household (A), and then the 

performance of the same model was tested in other 

households with different energy consumption patterns. Due 

to the multitude of models, it was decided to focus on the 

results provided by the most accurate model (Table 3).  

Table 3. Evaluation of RF model based on aggregated data 

of different households (A-E). 

 MAPE 
MSE 

[kWh2] 
MAE 

[kWh] 
R2 

Time 

[s] 
Daily avr. 

[kWh] 

A 30.9 % 86.84 0.16 0.64 14.7 14.7 

B 63.9 % 346.05 0.33 0.77 9.8 25.7 

C 31.4 % 49.38 0.13 0.52 9.9 12.1 

D 27.6% 28.53 0.10 0.40 9.2 15.2 

E 41.3% 318.88 0.33 0.85 16.5 41.7 

 

 The highest values of MAPE, MSE and MAE were 

obtained for houses B and E, but it should be taken into 

account that they were also the most energy-intensive cases. 

On the other hand, they are distinguished by the highest R
2
 

result (higher than for house A) - various energy peaks 

appearing in their test data sets have been very well mapped 

in the model. House D presents a completely opposite 

situation - although it has a similar average daily energy 

consumption to the reference house A, it obtained the best 

results of MAPE, MSE and IEA, and the worst when it 

comes to R
2
. 

 The results obtained indicate that similar results 

should not be expected even if the format and amount of 

data fed with the algorithm is very similar. Individual 

houses, which in the vast majority of cases, are 

characterized by exceptional irregularity of energy use and 

differentiation of the energy level, are extremely difficult to 

reproduce in one universal model. The next step would be to 

compare the accuracy of individual models on different 

subgroups of houses - clustered by similar average energy 

consumption, a similar pattern of energy use during the day 

and others. 

VI. CONCLUSIONS 

 The main goal of the presented research was to 

examine whether direct measurements of energy 

consumption by individual devices improve the forecasting 

of total energy consumption in an individual household. In 

addition, it was checked whether a single model is able to 

provide results at a similar level of accuracy for different 

houses, where the fed data for the algorithm are of similar 

structure and size. During the search for the most accurate 

forecast model, various machine learning methods, several 

configurations and different data representations were 

implemented and compared. Five different households were 

used to verify the results, given by three different datasets: 

aggregated power consumption, disaggregated data collected 

during direct measurement of power consumption of 

different devices and disaggregated data according to the 

NILM algorithm provided by Watt-IS. The results obtained 



did not show the superiority of disaggregated data over 

aggregated data. Nevertheless, it is recommended to carry 

out further research with the following improvements 

proposed below: 

 check larger parameter ranges (more accurate model 

optimization); 

 analyze other machine learning algorithms (e.g. SVR); 

 create separate models for forecasting the energy 

consumption of individual devices and then add them 

together to obtain the total electricity consumption; 

 use the measurements of individual devices to create a 

map of the probability of switching on particular 

devices at a given hour during the week and using it as 

an additional feature fed in the algorithm; 

 use data with less than one-hour time step (e.g. 10 

minutes or even 1 minute); 

 use data collected over a longer time period than one 

year to avoid under- and overfitting of the algorithms; 

 carry out research on a more recent data set (different 

patterns and energy levels may have changed 

significantly over the last 20 years); 

 analyze models with a larger forecasting horizon (e.g. 

3 hours / 24 hours ahead). 

 The use of energy at higher levels, when many 

consumers are aggregated, forms a smooth pattern with 

clearly marked and very often repeatable consumption 

peaks. Accurate estimation of energy consumption at the 

level of a single household provides exceptional difficulties 

due to the extremely variable pattern of energy 

consumption. Still, due to the increasing penetration of 

renewable energy in the network, increasing efforts to 

reduce energy consumption, the emergence of individual 

power generators (e.g. through residential solar panels), as 

well as the need to ensure the most secure supply of energy, 

increased efforts to energy management improvements must 

be undertaken. This in turn may mean a compulsory step 

towards forecasting energy consumption at the level of a 

single household and NILM disaggregation may be a key to 

high accuracy of those forecasts. 
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