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Abstract 
 The main purpose of the following research is to further contribute to the study of demand 

forecasts at the individual household level. In order to do this, nine models were built to predict one-

hour-ahead energy consumption. Three different scenarios were tested in terms of distribution and 

amount of input data: forecast model based on aggregated data, forecast model based on 

disaggregated data collected during direct metering (with one-hour resolution) and  forecast model 

based on data disaggregated by Non-Intrusive Load Monitoring (NILM) algorithm. In addition, three 

different machine learning algorithms were used, namely: random forest, multi-layer perceptron and 

long short term memory. The models were built for one house and additionally tested for four others 

to check their scope of application.  

 The results obtained in the analysis showed that models using NILM data provided similar 

results as models using data with direct measurements of energy consumption by individual devices. 

Moreover, in almost every case considered data containing only aggregated data provided the most 

accurate results to perform aggregated consumption forecast obtaining Mean Absolute Percentage 

Error (MAPE) at the level of 27.6% in the best case scenario. Of the three algorithms tested, random 

forest provided the best results, and was also the fastest and easiest to implement. 

 

Keywords: load forecasting, disaggregated data, NILM, machine learning, individual household 
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Resumo 

 O principal objetivo desta dissertação é contribuir para o estudo das previsões de consumo de 

energia eléctrica no sector doméstico. Para isso, foram desenvolvidos nove modelos de previsãodo 

consumo de energia para o horizonte temporal de uma hora. Três cenários diferentes foram testados 

em termos de distribuição e quantidade de dados de entrada: modelo de previsão baseado em dados 

agregados; modelo de previsão com base em dados desagregados obtidos atravésde medição direta 

(com resolução de uma hora) e modelo de previsão com base em dados desagregados por um 

algoritmo de desagregação não intrusivo (NILM). Par além disso, três algoritmos diferentes de 

aprendizado de máquina foram utilizados: floresta aleatória, perceptrãode múltiplas camadas e 

memória de longo prazo. Os modelos foram construídos para uma habitaçãoe adicionalmente testados 

para outras quatro para verificar seu âmbito de aplicação.  

 Os resultados obtidos na análise mostraram que os modelos que usam dados NILM 

forneceram resultados semelhantes aos modelos que usam dados com medições diretas do consumo 

de energia por dispositivos individuais. Além disso, em quase todos os casos, os dados considerados 

contendo apenas dados agregados forneceram os resultados mais precisos de previsão agregada de 

consumo, obtendo um erro percentual absoluto médio (MAPE) de 27,6% para omelhor cenário. Dos 

três algoritmos testados, a Floresta Aleatória (Random Forest) obteveos melhores resultados, sendo 

também aquele que é mais rápido e fácil de implementar. 

Palavras-chave: previsão de consumo, dados desagregados, NILM, aprendizado de máquina, 

consumodoméstico de electricidade  
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1. Introduction 

 

1.1. Problem definition 

According to the data provided by European Commission[1], buildings are one of the largest 

energy consumers in Europe. In 2017 [2], the residential sector contributed to consumption of 27.2% 

of final energy in the European Union, which made it the second most energy-intensive sector, right 

after transport (34.2%). Moreover, numerous factors indicate the rising trend in energy consumption, 

such as growth of number of electrical appliances in homes, increased demand of comfort as well as 

overall rise in the number of households [3][4]. The above presented numbers and trends suggest 

that there is a vast potential for energy efficiency gains in the residential sector. 

To achieve the ambitious goal of reaching net-zero carbon economy in Europe by 2050, the 

European Union has set specific targets to be reached by the Member States by 2030 [1]: at least 

40% cuts in greenhouse gas emissions (from 1990 levels), at least 32% share for renewable energy 

and at least 32.5% improvement in energy efficiency. To achieve this and still be able to retain 

secure, competitive and sustainable energy systems, significant changes in both energy production as 

energy consumption sectors must be implemented. 

In addition, the use of renewable sources such as solar or wind power is characterized by high 

volatility in the production of electricity, therefore, one of the biggest challenges to increase the 

integration of energy coming from renewable sources into transmission networks is to accurately 

control the system. The installation of reserve capacity, investments in electricity storage units such as 

batteries, or utilising future electric vehicles as storage are a few of several proposals to deal with 

negative effects of variable electricity production [5]. To effectively balance real-time demand and 

supply, and avoid the congestion of the grid, the development of methodologies that allow as 

accurate as possible to forecast production as well as consumption of the electricity may prove to be 

crucial.  

Moreover, there has been a significant drop of prices of solar panels and battery-based storage 

systems. Together with a variety of incentives offered by the governments, this created a great 

demand and interest in installing these systems in the residential sector resulting in an increased 

number of residential energy self-producers, prosumers and local energy communities. All of these 

factors, connected with the general trend of switching from energy sales market to services based 

market, created a new business sector, where the production and sale of energy between a typical 

producer - consumer model is not the dominant model anymore. The prosumer model has disturbed 

the current market and opened the way for a new system where energy management will become 

one of the most important elements of the chain. 
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 Further control over electricity supply and demand can be achieved by continuous 

investments and improvements in technologies such as Advanced Metering Infrastructure (AMI) [6]. 

In recent years, projects related to smart networks in Europe have grown significantly - currently, the 

database contains more than 950 R&D and demonstration projects, which totalled over 5 billion euro 

investment. Smart meters deployment is already completed in Italy, Finland and Sweden, and is 

planned or underway by Austria, Denmark, Estonia, France, Greece, Ireland, Latvia, Luxemburg, 

Malta, Netherlands, Poland, Spain, Romania, Portugal and UK[7]. They can be used as one of the 

instruments that allow us to get closer to the goals set by the European Union. 

With the smart meter deployment, the sector dealing with Non-Intrusive Load Monitoring (NILM) 

has significantly developed over the last years, as it allows to extract the energy consumption profiles 

of individual devices from the total energy profile obtained through smart meters. 

All this indicates an increasing demand for accurate control of electricity production and 

consumption, and this requires accurate forecasting of these two dimensions. Smart sensors and 

increasingly better machine learning algorithms create ideal conditions for the development of this 

field. And indeed, from year to year, more and more articles on forecasting electricity consumption 

can be found. And although the majority of them are still focusing on aggregated data on the system 

demand level, the topic of forecasts with the use of disaggregated data at the level of individual 

houses is discussed more and more frequently. 

 

1.2. Research goal 

 The main purpose of the following research is to further contribute to the study of demand 

forecasts at the household level, striving to improve forecasting by adding consumption data to the 

models at a disaggregated level, and thus checking whether direct measurements of energy 

consumption by individual devices or NILM results improve the forecasting of total energy 

consumption in individual households. In order to obtain the most accurate forecast model, different 

machine learning methods, several configurations of those and various data representation will be 

implemented and compared. For that purpose, five different houses will be compared in three 

following scenarios: 

I. Power consumption forecast model based on disaggregated data collected during 

direct metering. 

II. Power consumption forecast model based on data disaggregated by NILM algorithm 

provided by Watt-IS company. 

III. Power consumption forecast model based on aggregated data.  

 

 All models will be used to forecast household demand one hour in advance.  

  



3 
 

 Furthermore, answers to the following questions will be sought: 

Is the same model sufficient to forecast power consumption of different houses? 

 A model will be built and optimized specially for one single household. After that, the same 

model's performance will be tested on the other households with different power consumption 

patterns. The level of forecast accuracy will be compared. 

Is there an advantage in using disaggregated data over aggregated data?  

 Models built with disaggregated data, thanks to capacity to process more detailed patterns, 

are expected to perform better than models based on aggregated data. However, this group of 

models requires more complex collection of the data and results in higher complexity of the model and 

increased computation time. It will be discussed whether the possible increase in accuracy rewards 

the additional model costs mentioned above. 

Is NILM algorithm necessary to significantly improve the forecast? 

 Despite the fact that models based on aggregated and NILM data require the same data (total 

consumption), the latter approach results in higher complexity because of the additional algorithm 

used for data disaggregation. Again, the level of forecast accuracy of two models will be compared. 

  

1.3. Structure of the document 

 The presented paper is structured as follow: in the first chapter, an overview of the main 

power forecasting drivers are explained. This section also presents the main goal of the research as 

well as the related questions presenting the raised issues in more detail. 

 The second chapter describes selected scientific articles that focus on the topic of power 

consumption forecasting. Their analysis will serve as the main driver to choose individual methods and 

techniques to create the target model. 

 In the third chapter, the individual steps of model creation and applied methodologies are 

presented. In the first two parts, the emphasis is placed on the data itself, and in the remaining four 

on the characteristics and structure of the model.  

 The fourth chapter presents the results obtained for five houses in three previously defined 

scenarios - models built on aggregated, disaggregated and NILM data. Identification of the best case 

is carried out by comparing the selected validation values. 

 In the fifth chapter all the activities and results obtained in the preceding parts of the work 

are summarized. Any conclusions resulting from the analysis are described in the final, sixth chapter. 
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2. Literature review 

 Despite the growing interest in forecasting power consumption, still relatively few scientific 

papers focus on models based on disaggregated data. For the overall view, various methodologies and 

scenarios have been analyzed before proceeding to the target model development. From all the 

literature, a set of 14 articles have been analysed in detail and present in this chapter. Table 1 

summarizes the main characteristics of the papers: the type of model that is used, the time step, the 

number of samples, the share of training and validation and test data, the features, the type of 

building, the summary of evaluation indicators, the prediction horizon, the use of disaggregated data 

or not and finally, the reference indication. 

 

Table 1. Summary of selected scientific articles describing the prediction of electric consumption. 
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FFNN 
SVR 

LS - SVM 
GPR 
GMM 

Hybrid 

5 min N/A 75% 25% 

historical consumption, 

weather data 
geometry of buildings 

residential 

MAPE  

8-16 % (1h) 
10-19 % (24h) 

 

1h  
24h 

no [8] 

2 ANN 1h N/A 75% 25% 

historical consumption, 

weather data, 
no of people 

tertiary 
MAPE  

4,51-14,81% 
1h no [9] 

3 

SVR 
LR 

MLP 

SARIMA 

1 h 12 430 67% 33% 

historical load, 
contectual features (day 
of week, hour of day, 

weather info) 

residential 
NRMSE  

0,56-0.58% (1h) 

0,61-0.67% (24h) 

1h 
 24h 

no [10] 

4 
LSTM 
S2S 

1 min 
1 h 

2 060 600 
(1 min) 

75% 25% historical consumption residential 

RMSE  

0,625 (1h) 
0,667 (24h) 

1h 
24h 

no [11] 

5 

Proposed 
NILM 
ANN 

ARIMA 
SPLF 

1 min 

(*) 
80 640 52% 58% historical consumption residential 

MAPE  

4,7-10.1% 
3 h yes [12] 

6 LSTM 
30 
min 

17 520 70% 20% 

historical consumption 

daily temperature 
time of day 

residential 

MAPE  

3,15% (3d) 
3,76% (15d) 

3 days 
15 days 

no [13] 

7 ANN 
15 
min 

44 640 70% 15% 
historical consumption 

timestamp 
residential 

MSE  
0,0049 - 0,0056 

10 days yes [14] 

8 ANN 1 year 49 80% 20% 
GVA 

exergy 
N/A 

MSE 
0,000165 

10 years yes [15] 

9 CNN 
1 min 
1 h 

 
207 5259 
(1 min) 

75% 25% 
historical consumption 

calendar 
residential 

RMSE  
0,677 

60 h no [16] 

10 ELM 
15 
min 

34 939 N/A N/A historical consumption retail 
RMSE  

22,9 (30m) 

59,18 (1h) 

30 
min1h 

no [17] 

11 ANN 
30 
min 

250 60% 40% 

historical consumption 

air temp 
realtive humidity 
solar radiation 

institutional 
R2 

0,96-0,98 
20 days no [18] 

12 
ANN 

SVR 

15 

min 

 

190 132 
80% 20% 

historical consumption 
weather 

calendar  
class schedule 

institutional 
MAPE  

3,5 -10% 
24 h no [19] 

13 FFNN 
15 
min 

93 744 85% 15% 
historical consumption 

apartment area 
no of occupants 

residential 
MAPE  

10-23% (1h) 
4,2% (24h) 

1h 
24h 

yes [20] 

14 

RF 
ARIMA 

ANN 
SVR 

1 h 8 930 89% 11% 
historical consumption 

behavioral data 

individual 

household 

MAPE 2 

6.8-56.3% 
24 h yes [6] 
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2.1. Residential energy forecast using aggregated data 

  Dong,  Li, Rahman and Vega [8] integrated data-driven and engineering (using laws of 

thermodynamics) models and built an hybrid model, where they test five different machine learning 

algorithms (Artificial Neural Network, Support Vector Regression, Least-Square Support Vector 

Machine, Gaussian Process Regression, Gaussian Mixture Model) to forecast 1 hour and 24 hours 

ahead. They split the data and run two separate forecasts for AC (air-conditioning) power and non-AC 

(plug load, lighting, water heater etc.) power consumption simultaneously. The final result was 

obtained by summing up the two individual predictions. Depending of the tested household, they were 

able to obtain a mean absolute percentage error around 8.16 % for the hybrid model. In their work, 

they emphasize the fact that residential buildings, because of the dynamic change of power usage 

patterns due to stochastic occupancy behaviour, requires better optimized models than commercial 

buildings with quite regular consumption patterns. 

 Benedetti, Cesarotti, Introna and Serranti [9] created a model to allow the automatic 

utilization of a forecasting tool. They propose a method to identify the lack of accuracy in the model 

and compare two different retraining methods.  Moreover, a minimum period of data collection to 

obtain reliable results and the maximum period of usability of the model are calculated. They 

investigated three different model structures that differed from each other in the number of hidden 

layers and neurons. Their model, trained on data obtained from two months of measurements, was 

able to accurately predict the consumption for 60 days after the training period. 

 Wijaya, Vasirani, Humeau and Aberer [10] focused on short-term electricity demand 

forecasting for residential customers at the individual and aggregate level. To create a model for over 

782 households, they apply the Cluster-based Aggregate Forecasting (CBAF) strategy, which consists 

in the initial grouping of similar households, then on forecasting the power consumption of individual 

clusters separately, and finally on the aggregating separate predictions in the overall result. In 

addition, they propose the Correlation-based Feature Selection, which allows the automated selection 

of the most important features for each household. 

 Stefan and Patrick Hosein [11] investigate two deep machine learning methodologies using 

standard LSTM algorithm and LSTM based S2S architecture for electricity consumption for a single 

residential customer. The research was carried out in two different scenarios. While the second 

method gave satisfactory results in both cases, the standard LSTM failed in the one-minute forecast  

and was only useful for the hourly forecast. 

 Al Khafaf, Jalili and Sokolowski [13] propose a model based on LSTM algorithm and use it to 

forecast electricity consumption of 609 households in Australia, which were grouped into four clusters. 

They analyze three scenarios that differ in the number of features and the forecasting horizon. In this 

way they showed that the LSTM algorithm brings satisfactory results in both short and medium term 
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forecasts, and that the number of appropriately selected features significantly affects the accuracy of 

the model. 

 Amarasinghe, Marino and Manic [16] analyse the effectiveness of Convolutional Neural 

Networks (CNN) and compare it against results obtained by LSTM S2S, FCRBM, ANN, SVM. The 

analysis carried out for one-hour resolution data from an individual household showed that the 

proposed technique was comparable with other deep learning techniques, but clearly outweighed the 

forecast obtained under the SVR method. 

 Li et al. [17] propose a model in which two elements are combined: stacked autoencoders 

(unsupervised neural network) and the extreme learning machine. The first one is used to extract 

power consumption features of the building and the other for accurate prediction of power 

consumption. The results were compared with four different models - BPNN, SVR, GRBFNN and MLR. 

Despite the fact that the GRBFNN method provided a more accurate forecast than extreme SAE, it 

was noted that the over-fitting phenomenon in the training process occurred, which is extremely 

undesirable. 

 

2.2. Residential energy forecast using disaggregated data 

 Gajowniczek and Ząbkowski [6] focus on 24 hour ahead electricity consumption forecast for 

individual household. In their paper they confirm that forecast for a single unit generates a larger 

error than forecasting for the cluster of houses. To increase the accuracy of their model, they create 

matrix with the probabilities of "appliance turn ON" events in each hour. 

Dinesh, Makonin and Bajic [12] first decompose the aggregate power signal into individual 

appliance signals. Those signals are used to make a forecast of the power consumption of each device 

separately. Finally, the overall forecast is created by summing up individual projections. Their original 

model is based on identifying ON and OFF states of the appliances - using graph construction, spectral 

representation and clustering, they predict the ON-set of devices at timet. The proposed model was 

compared with four other methodologies (NILM, ANN, ARIMA, SPLF) and in each of the considered 

scenarios it obtained the best results. 

Oprea, Pîrjan et al. [14] used sensor recorded and disaggregated data to forecast electricity 

consumption of 8 residential houses with renewable electricity generation system and smart metering 

system. With mixed ANN model using both non-linear autoregressive with exogenous input (NARX) 

ANNs and function fitting neural networks (FITNETs) they test three different training algorithms (LM, 

BR, SCG) and apply gap-filling technique based on the interpolation. In their paper two case studies 

were investigated: the first one for the total electricity consumption from the grid and the second one 

for the total electricity consumption of all the individual appliances. Both approaches (NARX and 
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FITNETs) offered a very satisfying predictions with correlation coefficient ranging between 0.961 and 

0.998 depending on the scenario and training algorithm. 

Sereno and Alves [15] used data on exergy consumption (disaggregated on different types of 

exergy) collected over nearly 50 years in Portugal to build an ANN model applying the LM algorithm. 

In data pre-processing, all the values were normalized to obtain null average and unitary standard 

deviation. After that, for optimal features selection, correlations analysis and principal components 

analysis were implemented. The accuracy of the model has been compared with models based on 

multiple and multivariate linear regression and a smaller forecast error was recorded while using the 

ANN method. 

Rodrigues, Cardeira and Calado [20] focused on 93 households in Lisbon, Portugal. Their main 

objective was to prove that it is possible to obtain satisfactory results without weather data, which is 

usually used in load forecast models. Using FFNN model and data such as historical consumption, 

apartment area and the number of occupants, they were able to obtain a mean absolute percentage 

error at the level of 10 % for daily consumption forecast. 

 

2.3. Application to other types of buildings 

 Moon, Park, Hwang and Sanghoon [19] use power consumption data of 4 university buildings 

collected over more than 1 year to build two models using two different methods - Feed-Forward 

Neural Network (FFNN) and Support Vector Regression (SVR). Using standardized data, adjusted 

temperature (by annual temperature) and continuous representation of time, they manage to obtain 

error ranging from 3.46 to 10% in an hour ahead forecast. 

 Deb, Eang, Yang and Santamouris [18] present a model build for three institutional buildings. 

To avoid the problem of high variation, they divided the data into five power classes and class 

numbers, which allows to reduce the level of information in the power consumption values. This 

approach resulted in significant improvement in the accuracy of the model. 

 

2.4. Conclusions 

 The analysis of the above papers confirmed the variety of approaches to the issue of energy 

consumption prediction. At the same time, different similarities can be seen, such as the use of 

individual algorithms, the choice of the ratio of training to testing data sets, or the horizon of 

prediction. Therefore, it was decided to continue building a model that would allow forecast of one 

hour forward energy consumption and to test three algorithms, namely: random forest, multi-layer 

perceptron and long short term memory. 
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3. Methodology 

 In this chapter the methodology adopted in this work is presented, which closely follows a 

standard machine learning project workflow [21].The workflow with its various sub-steps is presented 

below (Figure 1): 

 

 

 

 

 

 

 

 

 

 

 The first step is to perform exploratory data analysis in data sets, then it is necessary to carry 

out data processing to prepare the application of the machine learning algorithm. In the next steps, it 

is necessary to select the models that best suit the problem, as well as define parameters that 

describe these models. Finally, models are implemented and evaluated to achieve the final model. 

 

3.1. Exploratory Data Analysis 

 One of the key sub-steps during the machine learning project is to perform an exploratory 

data analysis (EDA). During this process, a preliminary analysis of various attributes of a given data 

set is carried out. It is important to become familiar with their properties, characteristic points and 

dependencies. It is also a step into which data visualization technique should be performed in order to 

better understand the data specificity, as well as to be able to discover previously invisible patterns 

[22]. 

3.1.1. Directly measured datasets 

 Available data comes from 100 residential homes located in France. The collected data 

includes the timestamp, total consumption data, appliances consumption data and weather data. The 

Figure 1. Standard machine learning pipeline. 
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dataset was collected on a similar time span for all houses (slightly over 1 year) with hourly 

resolution, so the number of timestamps is in range from 8955 to 9136.  

 Figure 2 displays the total consumption for two of the households. The simple visualization of 

the data can already show the existence of missing data (in April, July, August in household B and in 

July in household A), outliers (two out-of-value points in household B data) and basic trends like 

intensified consumption in winter months (both households). 

 

Figure2. Total daily electricity consumption of household A (top) and household B (bottom) over the 
measurement time span. 

 

 From the whole dataset, five houses that significantly differ in the level of electricity use were 

chosen to develop and test the methodology. Table 2 describes the details of the 5 households that 

have been chosen. In addition, a different number of devices is monitored - ranging from eight (8) for 

household A and C to twelve (12) for household B.  
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Table 2. Overview of the data available for households. 

Household Start date 
End 
date 

No. of 
samples 

Daily mean 
consumption 

[kWh] 
Measured values 

Weather 
data 

A 
(90) 

24-04-99 
7:00 

03-05-00 
15:00 

9009 14.7 

Total consumption 
Computer site  

Electric heating (altogether) 
Fridge (Kitchen, 236l) 

Microwave oven (2,75kW) 
TV (55cm) 

Vertical freezer (Garage, 291l)  
Washing machine 

Water heater 

Temperature 
Wind strength 
Wind direction 

Humidity 
Radiance 

B 
(28) 

21-02-98 
14:00 

01-03-99 
16:00 

8955 25.7 

Total consumption 
Chest freezer 

Clothes drier (without condenser) 
Dish washer (12 place setting) 

Electric Cooker (hot plate+oven) 
Electric heating (altogether) 

Fridge freezer 
Microwave oven 

Total site light consumption 
TV (61cm) 
TV (36cm) 

Washing machine 
Water heater 

Temperature 
Wind strength 
Wind direction 

Humidity 

C 
(03) 

23-01-98 
12:00 

04-02-99 
15:00 

9052 12.1 

Total consumption 
Chest freezer 
Dish washer 

Halogen lamp 1 
Halogen lamp 2 
Halogen lamp 3 
Halogen lamp 4 

Power supply for fuel boiler 
Washing machine 

Temperature 
Wind strength 
Wind direction 

Humidity 

D 
(36) 

05-03-98 
20:00 

19-03-99 
8:00 

9085 15.2 

Total consumption 
Chest freezer 

Clothes drier (without condenser) 
Dish washer (12 place setting) 
Electric heating (altogether) 

Fridge  
Total site light consumption 

TV (55cm) 
TV (36cm) 

Vertical freezer 
Washing machine 

Water heater 

Temperature 
Wind strength 
Wind direction 

Radiance 

E 
(53) 

16-02-99 
18:00 

03-03-00 
9:00 

9136 41.7 

Total consumption 
Chest freezer 

Dish washer (12 place setting) 
Electric heating (altogether) 

Fridge freezer 
Non halogen lamp 1 
Non halogen lamp 2 

Total site light consumption 
TV (63cm) 
TV (36cm) 

Washing machine 
Water heater 

Temperature 
Wind strength 
Wind direction 

Humidity 
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 Figure 3 plots the average daily profile for the 5 chosen households, which can also be 

explained by the different patterns of use of appliances of the inhabitants. The average energy 

consumption during the day varies considerably in each household. For example, in household A, 

there is a high consumption  in the mornings and a increase in the evenings (before and after work / 

school). In the case of houses B and D, the peak of consumption appears shortly before or after 

midnight (this may be due to the efforts of residents aware of lower electricity prices at night). 

Household C is distinguished by the lowest energy consumption of all the analyzed houses, while 

house E maintains a very high consumption throughout  the day, which may be explain by the 

existence of electric heating.  

 

 

Figure 3. Average power usage during the day in each household. 

 

 Figure 4 presents overall statistics for households A to E. In case of households A, B and D 

only 65% to 70% of the total electricity consumption is described by the direct measurements of the 

appliances. The remaining part, 29.6% in household B, 34.3% in household D and 34.8% in 

household A, respectively, is the consumption of unspecified electric appliances. Extreme cases 

represent the other analyzed households - when it comes to C, as much as 62.3% of energy 

consumed came from unregistered devices. In the case of E, the opposite is true, namely only 6% of 

the total energy was consumed by unspecified devices, and as much as 94% by directly measured 

devices. 
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Figure4.Share of appliances in total electricity consumption in households A-E. The "Other" section represents 
part of the energy consumed by unspecified devices. 

  

 The electric heating has a significant impact in the overall consumption (between 25% for 

household B, 57.4% for household A and 69.9% for household E). In households B and D, the water 

heater represents also a large share of the total demand (18.8% for household B and 34.6% for 

household D). Finally, from the other appliances, the white appliances (fridges and freezers, 

dishwashers and washing machines) represent most of the consumption.  

 

 

  

Chest 

freezer
2.5%

Clothes 

drier
0.7%

Dish 

washer
1.8%

Electric 

Cooker
0.6%Electric 

heating
57.4 %

Fridge 

freezer
3.3%

Microwave 

oven
0.2%

Total site 

light cons.
1.9%

TV (61cm)

1.7%

TV (36cm)

0.2%

Other

29.6 %

13%

Chest 

freezer 
5.5%

Dish 

washer 
11.1%

Halogen 

lamps 
7.7%

Boiler

8.7%

Other

62.3%

Washing 

machine
4.7%

17,9%

Chest 

freezer
4.1%

Dish 

washer
1.0%

Electric 

heating
69.9%

Fridge 

freezer
3.4%

Non 

halogen 
lamp

0.6%

Total site 

light cons.
1.1%

TV 

1.2%

Washing 

machine
0.7%

Water 

heater
12.0%

Other

6.0%

12.1%

Computer 

site 
5.9%

Electric 

heating
25.1%

Fridge

4.0%

Microwave 

oven
1.3%

Vertical 

freezer
5.7%

TV

1.8%

Washing 

machine
2.6%

Water 

heater
18.8%

Other

34.8%

21.3%

A B 

C 

E 

Clothes 

drier
2.6%

Dish 

washer
2.4%

Electric 

heating
1.6%

Fridge

6.8%

Total site 

light cons.
3.9%

TV

2.6%

Other

34.3%

Vertical 

freezer
5.7%

Washing 

machine
5.5%

Water 

heater 
34.6%

24,2%

D 



13 
 

3.1.2. NILM disaggregation datasets 

 Non - Intrusive Load Monitoring (NILM) is a methodology that allows to identify and extract 

the load of the individual appliances from the total aggregated data and thus is a low-cost alternative 

to monitor individual sensors on each device. A file with disaggregated data using NILM was build and 

delivered by Watt-IS. The algorithm divides the total consumption into eleven separate categories, 

which do not necessarily match the original appliances. In addition, data from the original files such as 

temperature and humidity were used. The separated categories are: 

1. Fridge 

2. Cooking 

3. Washing and dishwasher 

4. Heating 

5. Cooling 

6. Water heating 

7. Stand by 

8. Electric vehicle 

9. Lighting 

10. TV 

11. Other 

 
 To check the accuracy of NILM, two of the separated categories were analyzed, namely 

washing and dishwasher (W&D) and water heating (WH). This decision was made due to the fact that 

the devices representing these groups were measured separately in each of the selected houses. After 

comparing available initial data from direct measurements and data generated by NILM, each 

measurement point was assigned one of the four categories described below [23]: 

1. true positive (TP) - model detects something as being true and the actual output is true (e.g., 

in both cases, NILM and direct measurement, the power consumption of the device was 

recorded in a given hour) ; 

2. true negative (TN) - model detects something as being false and the actual output is false 

(e.g., in both cases, the device's energy consumption was not recorded in a given hour); 

3. false positive (FP) - model detects something as being true and the actual output is false (e.g. 

NILM records the device's power consumption at a given time, and the device was not turned 

on in reality); 

4. false negative (FN) - model detects something as being false and the actual output is true 

(e.g. NILM does not record the device's power consumption at a given time, and the device 

was turned on in reality). 

  

 The number of occurrences of individual categories was counted and on this basis the overall 

accuracy was calculated as the ratio of TP events (the number of events correctly recognized by 

NILM) to the sum of TP and FN events (the number of all events that took place in reality). The 

results obtained are presented in the table below (Table 3). 
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Table 3. The overall accuracy of NILM disaggregation of 

two categories in each household. 

 

 

 

  

 

 

 

 

 

 The results obtained differ significantly (almost 60 percentage points of difference in the most 

extreme cases), and the inability to evaluate other categories makes it impossible to check the 

accuracy of the NILM division. Despite this, the numbers above (Table 3) show that there is great 

potential for improving NILM results at the next iterations. Nevertheless, just like direct 

measurements, the features extracted by the NILM algorithm are expected to increase the capabilities 

of forecasting algorithms, by identifying hidden patterns of energy use and thus improve forecasting 

accuracy. On the other hand, attention should be paid to possible additional restrictions. The 

extracted energy consumption profiles of individual devices (or groups of devices) can significantly 

differ from real ones and the consequences can affect the opposite of the intended, namely, confuse 

the algorithm and degrade forecasting accuracy. 

 

3.2. Data processing 

Using directly collected raw data is, in most cases, useless for ML algorithms [21]. This is due 

to the fact that at the very beginning the data is often unstructured and contains missing and noisy 

data, which can significantly confuse algorithms in the training process. Therefore, data processing is 

the process of converting input data into the most suitable form for the ML algorithms. This include 

the following operations: 

1. data cleansing - deleting or assigning new values to the entries that visibly diverge from 

others (outliers) or have been completely omitted (missing values), deleting duplicates; 

2. representation transformation - converting qualitative features to numerical ones or vice 

versa; 

3. feature construction - creating new features using mathematical functions or feature crossing; 

4. feature selection - selecting the most important and influencing subset of the input features; 

5. feature scaling - bringing values of different features into the same ranges. 

 Not all of the steps listed above are always required, their application depends on the state of 

raw data, selected models and the purpose of the study. 

Household W&D WH 

A 6.2% 30.4% 

B 7.0% 42.1% 

C 15.0% 22.5% 

D 17.4% 66.6% 

E 24.1% 47.0% 
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3.2.1. Outliers and missing values 

 Most ML models are highly sensitive to missing values and to outliers, i.e. values that are far 

from the average data, and therefore it is very important to delete or replace them with other values 

at the very beginning.  

 Outliers present in the data were identified using interquartile range (IQR), which is 

commonly used as a measure of how spread-out the values are. The 1.5 x IQR rule implies[24] that 

all values that are outside the range [Q1-1.5xIQR; Q3+1.5xIQR], where Q1 and Q3 represent the 

values of the first and third quartiles, and IQR equals the difference of these quartiles, can be 

considered an outlier (Figure 5). 

 

Figure 5. Visual representation of 1.5 x IQR rule. 

 

 In our specific case, the aggregated data may hide values beyond the expected scale -e.g. 

usage patterns at the lowest level vary widely and adding them can result in a gentle line showing 

overall consumption. In this case, it becomes more difficult to notice any anomalies. Therefore, the 

fact that measurements of individual devices were available was used, so the outliers were detected 

and corrected for individual appliances (Figure 6). The following procedure was used for each device: 

1. the values of the first (Q1), third (Q3) quartiles and their difference (IQR) were calculated; 

2. the values smaller than (Q1-1.5xIQR) were identified and replaced with the value of the first 

quartile (Q1); 

3. the values larger than (Q3+1.5xIQR) were identified and replaced with the value of the third 

quartile (Q3). 
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Figure 6. Identified outliers (left) and new values assigned to them (right). 

 

 Zero values, that in any of the used datasets did not exceed 1%, were completely removed. 

The decision was made on the basis of the fact that the number of samples is just a small fraction of 

the rest of the data and assigning the estimated values to the missing records could introduce errors 

to the data due to the highly  dynamic changing patterns of power use in a single household.  

 

3.2.2. Feature extraction and engineering 

 Feature extraction and engineering is a set of steps that ensures the definition of the best set 

of features that depict various representations of the underlying data. It is common to break down the 

available features into smaller parts, change their form, or combine them into new ones. Thanks to 

this, greater model accuracy, reduction of the possibility of overfitting, and reduction of learning time 

can be obtained. 

 At this stage, the following steps were carried out: 

1. extraction of 4 new feature - number of the month (1-12), day (1-31), hour (0-23) and day of 

the week (0 - Monday, 6 - Sunday) - from the time stamp available in the raw data; 

2. addition of the season designation - value 0 for winter months (1,2,12), 1 for spring and 

autumn months (3-5, 9-11) and 2 for summer months (6-8); 

3. adding a column ('Holiday') containing information on non-working days (value 1 for non-

working days, value 0 for working days); 

4. addition of a column containing the level of power used by unmeasured devices (overall 

consumption minus the sum of the load of measured devices); 

5. combining 'Weekday' and 'Holiday' features into one (by multiplying their value) - this decision 

was made because of the relationship between these two features found during the EDA; 

6. creation of columns containing power consumption in the previous hour of each device (due 

to data with a one-hour time step);  

7. creation of column containing total power consumption at the corresponding day and hour 

from previous week - it was assumed that the weekly plan of the household is quite repetitive, 
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and changes in consumption caused by changes in the seasons are not very significant for 

one week (as opposed to one month). 

 

3.2.3. Feature scaling 

 Data scaling is another step in the initial data processing. It is not required with every dataset, 

but ML algorithms usually do not work well when the input data has attributes that differ significantly 

in scales. For example, in the case discussed in this paper, the power consumption in the previous 

hour may range from 20 W to 4500 W, and temperature fluctuations are on a scale from -9.6°C to 

+31.6°C. Here, the first feature with high magnitude will weigh a lot more in distance calculations 

then the other, smaller in magnitude, feature. To overcome this effect, all features should be brought 

to the same level of magnitudes. There are different ways to scale the available data, but in this work 

the three most popular of them were considered: 

1. mean normalization, 

2. data scaling, 

3. data standardization. 

 Mean normalization scales the data in such a way that all the values fall between -1 and 1 

with their mean equals zero (µ = 0). To achieve this, the following equation is used ( 1 ) : 

 
𝑥′(𝑖)  =

𝑥(𝑖) − 𝑚𝑒𝑎𝑛(𝒙)

𝑚𝑎𝑥(𝒙) − 𝑚𝑖𝑛(𝒙)
 

 

( 1 ) 

where x(i) is the sample i of the total data set x. 

 Data scaling consists of changing the data into values between 0 and 1. The following formula 

is used ( 2 ) :  

 
𝑥′(𝑖)  =

𝑥(𝑖) − 𝑚𝑖𝑛(𝒙)

𝑚𝑎𝑥(𝒙) − 𝑚𝑖𝑛(𝒙)
 

( 2 ) 

  

 Data standardization replaces all the values by their Z-scores, which are the numbers of 

standard deviations from their means. These numbers are calculated with the formula ( 3 ). After this 

process the values have mean equals zero and standard deviation equals 1.   

 
𝑥′(𝑖) =

𝑥(𝑖) − 𝑚𝑒𝑎𝑛(𝒙)

𝜎(𝒙)
 

( 3 ) 

 

 The basic models were tested for each of the three forms of input data, and thus the method 

of data standardization was chosen. 
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3.2.4. Feature selection 

 To select the appropriate features, 4 subsets have been prepared: 1 set with all the available 

features and then 3 subsets that result from the application of 3 feature selection algorithms: 

1. Extra Trees Classifier (ETC) 

2. Recursive Feature Elimination (RFE) 

3. "K-Best" feature selection 

 ETC, which helps to choose the most informative features by calculating the features 

importance, is a variation of a random forest, with the difference that the divisions are selected 

randomly (rather than using specific criteria) and the entire sample is used at each step. "K-Best" 

function enables selecting the best features based on univariate statistical tests. Finally, RFE selects 

the desired number of functions recursively considering smaller and smaller sets of features. It 

requires declaring supervised learning estimator, in this case linear regression was used. 

 The sets created using the above-described functions ultimately contained  the 7 highest-

rated attributes. 

 

3.3. Model  selection 

 Wolpert and Macready wrote in 1997 a famous paper that presents the following statement 

"(...) if an algorithm performs well on a certain class of problems then it necessarily pays for that with 

degraded performance on the set of all remaining problems." [25].  It follows that one cannot be 

guided by the best results of one model in one field and on this basis apply it to problems in other 

areas, because each data and each case requires different setups. For this reason, choosing the right 

algorithms is extremely important and, ideally, testing all possible models to find the one that best 

reflects the issue should be implemented. Unfortunately, due to limitations such as time and processor 

capabilities, a preliminary selection should be made, based on the literature reviewed in Chapter 2 for 

similar problems. 

 For this reason, looking at the current solutions in the subject of forecasting electricity 

consumption, three models were selected for analysis: 

1. Random Forests (RF) 

2. Multi-Layer Perceptron (MLP) 

3. Long-Short Time Memory (LSTM) 
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3.3.1. Random Forest 

Random Forests (RF) are the example of ensemble methods and are among the most 

powerful Machine Learning algorithms available nowadays [26]. The main idea of ensemble learning is 

to combine (ensemble) weak learners to build a strong learner - a robust model, which has a better 

generalization error and is less prone to overfitting [27]. Therefore, RF action is based on training 

many decision-tree models on subsets of the input data and input features (Figure 7). Each decision 

tree includes a random subset of features and only reaches to a random set of the training data 

points. These individual trees then contribute to the total outcome. This can be presented by following 

steps [27] : 

1. random selection of n samples from the training set for k trees, 

2. building a decision tree on the randomly selected d features, 

3. repeating steps 1 and 2 k times, 

4. aggregating the prediction by each tree. 

 

Figure 7. Visualization of Random Forest algorithm. 

 

 RF models are quite robust models resistant to interferences appearing in the data. They also 

do not require fine tuning of many hyperparameters, but in return represent a strong generalization. 

 

3.3.2. Multi-Layer Perceptron 

The Perceptron was introduced in 1957 by Frank Rosenblatt and is known as one of the 

simplest ANN architectures. It is based on the neuron called a linear threshold unit (LTU), where each 

input connection is associated with a weight. The LTU works in the following way: first it computes 

the weighted sum of its inputs, and in a second step, it applies a step function to that sum and finally 

it outputs the result. 
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 Multi-Layer Perceptron (MLP), as the name suggests, is based on combining multiple 

Perceptrons and is compose of three main elements: one input layer, one (or more) layers of LTUs, 

called hidden layers, and one final layer of LTUs called the output layer (Figure 8). This architecture is 

used in wide range of applications from different areas and time series forecasting is among the most 

important ones. The beginning of vast applicability of those networks started with presentation of the 

learning algorithm called backpropagation which is now used for MLP's training. MLP networks are the 

examples of feedforward architecture, which means that the flow within the network occurs only in 

one direction, namely from the input to the output layer. 

 

Figure 8. Structure of MLP network with two hidden layers. 

 

 MLP network training using the backward propagation algorithm usually takes place through 

the implementation of two specific stages [28] : 

1. forward propagation, in which the values from the training set are inserted into 

network inputs and are propagated layer by layer, until appropriate results are obtained, 

2. the responses generated by the network outputs are compared with the appropriate 

available desired responses (this is the assumption of supervised learning) and based on this, the 

weights of all neurons are corrected. 

 

In summary, the use of the above steps enables automatic adjustment of synaptic weights 

and neuron thresholds in each iteration. This consequently leads to a gradual reduction in the sum of 

errors generated by network responses relative to the desired responses. 

 

3.3.3. Long Short-Term Memory 

Long Short-Term Memory (LSTM) network is an example of a Recurrent Neural Network 

(RNN). One of the problems of typical RNN networks is that if the sequence fed into the network is 
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extremely long, then there may be a problem with the transfer of information from earlier time steps 

to later ones. In this way, information from the beginning of the learning process may be lost. LSTM is 

one of the solutions of the short-term memory mentioned above. Thanks to the built-in internal 

elements called gates, it can regulate the flow of relevant information in the learning process (Figure 

9). These gates can decide which data in the sequence is important to keep or discard. In this way, it 

can convey relevant information along a long chain of sequences to make predictions.  

 

Figure 9. Schematic structure of part of LSTM network. 

 

There are three gates in the architecture of the LSTM network: 

1. forget gate - this gate is used to determine what information should be discarded or 

saved for later stages. The sigmoid function helps to regulate the information from the previous 

hidden state and the information from the current input. The values obtained range from 0 to 1, 

where a value of zero means that the information will be forgotten, while the value 1 will keep and 

pass it on. This gate decides what information is relevant to keep from previous steps; 

2. input gate - this gate is used to update the cell status. The previous hidden state and 

current input are again passed to the sigmoidal and, additionally, hyperbolic tangent functions, and 

then both outputs are multiplied. The input gate decides what information is relevant to add from the 

current step; 

3. output gate - this gate decides which part of the current cell is passed to the output. 

Again, both functions (sigmoid and hyperbolic tangent) are used. 

 

3.4. Parameters optimization 

 To provide the best results, it is rarely possible to use the basic set of algorithms available in 

various ML dedicated libraries. These algorithms have various specific parameters whose values must 

be properly tuned to the different data, project requirements, and expected results. Bearing in mind 
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the bias-variance trade-off, a so-called good fit is sought to avoid model underfitting (the algorithm 

does not learn the hidden data structure) or model overfitting (the algorithm is too adapted to the 

training data set).  

 After a preliminary analysis to determine which of the parameters have the greatest impact on 

the selected models, the following of them were selected to optimization: 

1. RF  

a. The number of trees in the forest (a) - higher number of this parameter makes the 

predictions more accurate and stable. However, it should be remembered that 

increasing this number is equivalent to extending the model's learning time. 

b. The minimum number of samples required to split an internal node (b) - increasing 

this parameter makes each tree more constrained (more samples are needed to be 

considered at each node). 

c. The minimum number of samples required to be at a leaf node (c) - the larger this 

parameter, the greater the model's resistance to catch noise in the learning data set. 

[29] 

2. MLP 

a. Activation function (d) - different neuron activating functions work differently for 

different cases. One that maximizes the accuracy of the model and minimizes training 

time should be found. 

b. Parameter alpha (e) - regularization parameter which helps prevent overfitting by 

applying weight sizes. 

c. The number of neurons in each hidden layer (f) - this is one of the most important 

parameters of the model. Too few neurons can result in model underfitting, while too 

many in model overfitting and unnecessarily long training time. 

d. The number of hidden layers (g) - usually 0 (for linear cases), 1 or 2. Models with 2 

hidden layers can represent various functions and there is no need of increasing this 

number. [30] 

e. Maximum number of iterations (h) - this number determines how many times each 

data point will be used during the training. 

3. LSTM 

a. The number of neurons (i) - same as the MLP model. 

b. The number of epochs (j) - determines the number of uses for each data point. 

 The optimization process consisted of three phases in which another set of parameters was 

tested. For RF and MLP models, optimal parameters were found using two additional algorithms: 

Random Search and Grid Search. The first of these allows you to search faster a larger range of 

parameters and their values, so it is possible to quickly gain intuition about ranges and the impact of 

parameters on the model. It was used in the first phase of searching. In the next phase, a second 
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algorithm was used, when the extent to which parameters should be sought was already expected. 

Following the practices of the authors of various studies (like [6] ,[15], [19], [20]) the data for both 

models was divided as follows: 80% for training and 20% for testing. In addition, 5-cross validation 

was used (dividing the training set into 5 subsets and using one of them for validation). In the case of 

the LSTM model, due to the source code, the search for final parameters was carried out manually, 

which was considered to be sufficient for prototyping. In this case, the data has been divided into 

three parts in advance: 70% for the training set, 20% for the testing set and 10% for the validating 

set. 

 Hyperparameter optimization was carried out for household A, and then the best 

configurations were used for the next datasets. 

 

3.5. Model evaluation 

 After building the model, it is important to subject it to an assessment process based on 

specific criteria for assessing its accuracy and performance. This is most often done using pre-defined 

functions that allow you to get a numerical value that helps to decide on the effectiveness of a given 

model and allows to compare models with each other. In order to accomplish that, the following 

parameters were measured and used: 

1. Mean Absolute Percentage Error (MAPE) 

2. Mean Squared Error (MSE) 

3. Mean Absolute Error (MAE) 

4. Coefficient Of Determination (R2) 

3.5.1. MAPE 

The mean absolute percentage error is commonly used in comparing regressive models. It is 

presented as a percentage and calculated on the basis of the following formula : 

 
𝑀𝐴𝑃𝐸 =  

100

𝑛
  

𝐴𝑡 − 𝐹𝑡

𝐴𝑡

 

𝑛

𝑡=1

 
(

(4) 

 At and Ft represent the actual value and forecast value, respectively, while n stands for the 

number of observations.  

 It is important to mention that MAPE imposes a greater penalty on negative errors (At < Ft) 

than on positive errors. This results in a biased behaviour of this parameter, which regularly selects 

models whose forecasts are underestimated in relation to real values. [31] 
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3.5.2. MSE 

The mean squared error, also known as mean squared deviation (MSD) measures the average 

squared difference between the forecasted values (Ft ) and the actual values (At ) of the observations 

(n ). It is expressed in the squared units of measurements and calculated in the following way: 

 
𝑀𝑆𝐸 =  

1

𝑛
  𝐴𝑡 − 𝐹𝑡 

2

𝑛

𝑡=1

 
(

 (5) 

 Like MAPE, MSE is also biased and imposes a greater penalty on large errors than on small 

ones (the result of squaring the value) [32]. Therefore, it is important to pay attention to the 

existence of any outliers in the data. 

 

3.5.3. MAE 

The mean absolute error is calculated by averaging the absolute differences between the 

forecasted values (Ft) and the actual values (At) of observations (n). This value can be represented 

by the formula: 

 
𝑀𝐴𝐸 =

1

𝑛
  𝐹𝑡 − 𝐴𝑡  

𝑛

𝑡=1

 
(

(6) 

 The advantage of MAE is that every error affects it in direct proportion to its absolute  

value [33]. The disadvantage is that as it is an absolute value, cannot be used to compare results 

between different datasets. 

 

3.5.4. R2 

The coefficient of determination, also commonly known as R-squared, is an dimensionless 

indicator and is determined by the formula: 

 
𝑅2 = 1 −

  𝐴𝑡 − 𝐹𝑡 
2𝑛

𝑡=1

  𝐴𝑡 − 𝐴  2𝑛
𝑡=1

 
(

 (7) 

 

 Here, again, At and Ft represent the actual value and forecast value, respectively, n stands for 

the number of observations and Ᾱ is equal to the mean value of the observed data. As can be 

deducted from the formula, a value of R2 equals 1 indicates a perfect fit (At = Ft). 
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4. Results 

4.1. Final parameters 

 Various parameter configurations and evaluations of subsequent optimization steps can be 

found in Annex I. During the evaluation of the models, the results obtained for the test set were also 

monitored, and in the event of an increasing tendency to overfitting, the relevant parameters were 

tuned. The best models were selected based on MSE values. However, when these values differed by 

only 10%, the time needed for the model learning process was taken into account. The final 

parameters used to build individual models are presented in the table below (Table 4): 

Table 4. Final parameters used for RF, MLP and LSTM models. 

  Direct metering NILM Aggregated 

R
F
 

a 500 750 1700 

b 3 2 2 

c 10 7 10 

M
L
P
 

d relu relu relu 

e 0.00001 0.05 0.05 

(f,g) (150, 2) (100, 2) (100, 2) 

h 400 400 400 

L
S
T
M

 i 250 350 3 

j 100 80 200 

 

 The final forecasts were based on data consisting of all available features, because the best 

results were obtained using this particular set. In addition, data standardization has provided better 

results than normalizing or scaling. 

4.2. Forecast  

 Each of the data sets has been analyzed and processed, to prepare them to be used in 

optimized models as best as possible. The following results were obtained for forecasting household A 

one-hour-ahead energy consumption. In addition to the measured evaluation values, the time 

required for the learning process of each model is given. 

 From the data presented below (Table 5), it can be seen that the best results for household A 

were obtained using the RF model for aggregated data. The results are similar for the model using 

data from direct measurements, and in this case, the values do not differ significantly from those 

obtained with the MLP and LSTM models. For NILM and aggregated data, both MPL and LSTM present 

significant higher errors that RF. In addition, RF is the model that required one of the shortest training 

time. In conclusion, it can be said that RF seems to be better model and that for aggregated 
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consumption forecast the use of direct consumption of appliances or NILM information does not 

improve the results.  

Table 5. Evaluation of household A. 

 Direct metering NILM Aggregated 

 RF MLP LSTM RF MLP LSTM RF MLP LSTM 

MAPE 31.9 % 41.6 % 37.0 % 36.4 % 52.2 % 39.2% 30.9 % 40.6 % 59.1 % 

MSE 

[kWh2] 
90.59 98.97 110.58 101.77 141.44 125.55 86.84 105.72 137.45 

MAE 

[kWh] 
0.15 0.18 0.19 0.18 0.22 0.21 0.16 0.19 0.24 

R2 0.74 0.71 0.74 0.75 0.66 0.75 0.64 0.56 0.43 

Time [s] 14.4 15.8 1492.3 14.7 15.5 2539.2 14.7 57.1 107.7 

 

 The graphs presented below show the prediction of power consumption in household A 

grouped by data set (Figure 10)- with direct measurement (top), using NILM (middle) and with only 

total consumption (bottom). It can be seen that all models (for all data sets) had difficulty forecasting 

energy consumption peaks, and in most cases underestimated the actual value. Graph with the 

aggregated data deviate from the other two due to the specificity of the method used to deal with 

outliers. 
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Figure 10. Results of RF, MLP and LSTM models on directly measured (top), NILM (middle) and aggregated 
(bottom) datasets of household A. 

 

 The results from the evaluation of the final models on the other four households are 

presented below (Table 6-9). In all the cases considered, again, the model that provided the most 

accurate results was RF with MAPE = 27.6% in the best scenario and an MAE between 0.1 kWh and 

0.39 kWh depending on the type of data and the household. The MLP model performed a little worse, 
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but in some cases the results of both models are comparable. Also, the training times of both models 

were similar (from 9 to 19 seconds with one exception). The LSTM model turned out to be the least 

accurate, and additionally requires a much longer training time (over 16 minutes on average). The 

reason for this behaviour of the LSTM model may be that relatively few data points were used (less 

than 8000 for each household), and these models require more data for proper training than models 

such as RF. 

Table 6. Evaluation of household B. 

c Direct metering NILM Aggregated 

 RF MLP LSTM RF MLP LSTM RF MLP LSTM 

MAPE 76.6 % 97.9 % 80.4 % 63.5 % 97.4 % 93.6 % 63.9 % 80.9 % 118.7 % 

MSE 

[kWh2] 
453.53 601.13 1198.43 372.92 582.62 1321.37 346.05 425.73 1378.38 

MAE 

[kWh] 
0.39 0.49 0.82 0.36 0.50 0.78 0.33 0.39 0.92 

R2 0.74 0.66 0.38 0.77 0.64 0.30 0.77 0.72 0.32 

Time 13.8 13.9 1253.4 14.4 11.5 1677.3 9.8 12.9 112.6 

 

Table 7. Evaluation of household C. 

c Direct metering NILM Aggregated 

 RF MLP LSTM RF MLP LSTM RF MLP LSTM 

MAPE 37.2% 40.9 % 40.6 % 45.4% 50.2% 49.8% 31.4 % 34.3 % 33.1 % 

MSE 

[kWh2] 
79.87 86.98 122.85 106.14 112.73 110.64 49.38 52.31 107.94 

MAE 

[kWh] 
0.17 0.18 0.23 0.21 0.22 0.28 0.13 0.14 0.20 

R2 0.51 0.47 0.34 0.41 0.37 0.31 0.52 0.50 0.31 

Time 12.6 14.8 1576.2 15.9 14.6 1543.7 9.9 15.0 111.2 

 

Table 8. Evaluation of household D. 

c Direct metering NILM Aggregated 

 RF MLP LSTM RF MLP LSTM RF MLP LSTM 

MAPE 31.0% 41.9% 49.8% 41.1% 50.6% 50.1% 27.6% 29.9% 37.4% 

MSE 

[kWh2] 
100.03 139.06 233.79 127.46 164.37 172.50 28.53 29.00 75.17 

MAE 

[kWh] 
0.15 0.19 0.26 0.19 0.24 0.31 0.10 0.11 0.15 

R2 0.81 0.74 0.63 0.74 0.66 0.53 0.40 0.39 0.27 

Time 18.15 14.77 1328.52 17.5 15.0 1683.5 9.2 14.7 118.9 
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Table 9. Evaluation of household E. 

c Direct metering NILM Aggregated 

 RF MLP LSTM RF MLP LSTM RF MLP LSTM 

MAPE 38.6% 42.1% 68.8% 42.1% 51.6% 51.7% 41.3% 47.8% 81.7% 

MSE 

[kWh2] 
255.21 275.46 700.88 242..82 261.20 274.90 318.88 329.43 1100.00 

MAE 

[kWh] 
0.29 0.31 0.56 0..30 0.32 0.41 0.33 0.36 0.66 

R2 0.88 0.87 0.63 0..88 0.87 0.76 0.85 0.85 0.49 

Time 17.2 14.6 2013.6 16..3 15.1 1621.2 16.5 59 172.8 

 

 Considering only the best performing model (RF), the values of individual evaluation 

parameters are visualized below (Figure 11). With the exception of house E and the MAE values of 

house A and B, again, the lowest MAPE, MSE and MAE values were obtained when forecasting using 

data set only with aggregated data, therefore excluding the power consumption of individual devices. 
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Figure 11. Evaluation parameters visualization : MAPE (top left), MSE (top right), MAE (bottom left) and R2 
(bottom right). 

 Therefore, in all cases, except household E, the use of aggregated data is better or at least as 

good as the use of direct data. Only in household B, the use of NILM information is comparable to the 

aggregated forecast.  Therefore, a significant conclusion can be drawn, namely that for aggregated 

forecast of energy consumption, providing detailed information of the appliances consumption 

(through direct measurements or NILM estimations) does not improve the forecasting results. 
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5. Discussion 

 In the following section, based on the results presented in the previous chapter, an attempt 

will be made to answer the research questions posed in chapter two.  

Is there an advantage in using disaggregated data over aggregated data?  

 It was expected that models based on disaggregated data, due to the possibility of more 

detailed pattern recognition, could work better than models based on aggregated data. Looking at the 

results in figure 11, it turned out that this did not happen in general. In almost every case considered 

(A-E homes; RF, MLP, LSTM algorithms) data containing only aggregated data provided the most 

accurate results to perform aggregated consumption forecast. Moreover, it was easier and faster to 

process, both during data preparation and model training. Less accurate results obtained on 

disaggregated data may be due to insufficient amount of data, which did not allow individual models 

to notice and extract more intricate patterns of device behaviour. This caused that these additional 

features only unnecessarily confuse the model and do not bring the expected benefits. Therefore, the 

number of devices considered should be limited. The more immediate focus should be only on the 

most energy-intensive devices (e.g. heating, air conditioning), and those that are switched on 

sporadically, consume an extremely small amount of energy or are used in the same way throughout 

the year (e.g. TV) should be discarded. 

 Also, this encourages to investigate different approach in the future: focusing more on the 

probabilities of using a given device in a given hour of the day than on the power it consumes. For 

this it is worth using the measured values at shorter intervals (5-30 min), because a large number of 

appliances in the household has a duty cycle shorter than one hour. This approach will, probably, 

allow to better observe different behavioural patterns and obtain more accurate forecasting results. 

Is NILM algorithm necessary to significantly improve the forecast? 

 The results obtained in the analysis showed that models using NILM data provided similar 

results as models using data with direct measurements of energy consumption by individual devices. 

Still, the first option is much easier and cheaper to obtain than the second, which requires expensive 

installation and supervision of a large number of sensors. However, compared to aggregated data, 

results obtained using NILM data are less accurate. Moreover, the latter requires an additional step, 

which is the separation of total consumption into individual devices or device subgroups. 

 Worse results may be due to the fact that the algorithm for obtaining disaggregated data was 

not tuned enough to individual houses. In addition, different cases should be re-examined using the 

approach suggested above - using data from only the most energetically intensive devices with less 

than one-hour time steps. 
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Is the same model sufficient to forecast power consumption of different houses? 

 The created model was built and optimized specifically for a single household (A), and then 

the performance of the same model was tested in other households with different energy 

consumption patterns. Due to the multitude of models, it was decided to focus on the results provided 

by the most accurate model (Table 10).  

 

Table 10. Evaluation of RF model based on aggregated data of 

different households. 

 A B C D E 

MAPE 30.9 % 63.9 % 31.4 % 27.6% 41.3% 

MSE 

[kWh2] 

86.84 346.05 49.38 28.53 318.88 

MAE 

[kWh] 

0.16 0.33 0.13 0.10 0.33 

R2 0.64 0.77 0.52 0.40 0.85 

Time [s] 14.7 9.8 9.9 9.2 16.5 

Daily avr. 
[kWh] 

14.7 25.7 12.1 15.2 41.7 

 

 

 The highest values of MAPE, MSE and MAE were obtained for houses B and E, but it should be 

taken into account that they were also the most energy-intensive cases. On the other hand, they are 

distinguished by the highest R2 result (higher than for house A) - various energy peaks appearing in 

their test data sets have been very well mapped in the model. House D presents a completely 

opposite situation - although it has a similar average daily energy consumption to the reference house 

A, it obtained the best results of MAPE, MSE and IEA, and the worst when it comes to R2. 

 The results obtained indicate that similar results should not be expected even if the format 

and amount of data fed with the algorithm is very similar. Individual houses, which in the vast 

majority of cases, are characterized by exceptional irregularity of energy use and differentiation of the 

energy level, are extremely difficult to reproduce in one universal model. The next step would be to 

compare the accuracy of individual models on different subgroups of houses - clustered by similar 

average energy consumption, a similar pattern of energy use during the day and others. 
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6. Conclusions 

 The main goal of the presented research was to examine whether direct measurements of 

energy consumption by individual devices improve the forecasting of total energy consumption in an 

individual household. In addition, it was checked whether a single model is able to provide results at a 

similar level of accuracy for different houses, where the fed data for the algorithm are of similar 

structure and size. During the search for the most accurate forecast model, various machine learning 

methods, several configurations and different data representations were implemented and compared. 

Five different households were used to verify the results, given by three different datasets: 

aggregated power consumption, disaggregated data collected during direct measurement of power 

consumption of different devices and disaggregated data according to the NILM algorithm provided by 

Watt-IS. The results obtained did not show the superiority of disaggregated data over aggregated 

data. Nevertheless, it is recommended to carry out further research with the following improvements 

proposed below: 

 check larger parameter ranges (more accurate model optimization); 

 analyze other machine learning algorithms (e.g. SVR); 

 create separate models for forecasting the energy consumption of individual devices and then 

add them together to obtain the total electricity consumption; 

 use the measurements of individual devices to create a map of the probability of switching on 

particular devices at a given hour during the week and using it as an additional feature fed in 

the algorithm; 

 use data with less than one-hour time step (e.g. 10 minutes or even 1 minute); 

 use data collected over a longer time period than one year to avoid under- and overfitting of 

the algorithms; 

 carry out research on a more recent data set (different patterns and energy levels may have 

changed significantly over the last 20 years); 

 analyze models with a larger forecasting horizon (e.g.3 hours / 24 hours ahead). 

 The use of energy at higher levels, when many consumers are aggregated, forms a smooth 

pattern with clearly marked and very often repeatable consumption peaks. Accurate estimation of 

energy consumption at the level of a single household provides exceptional difficulties due to the 

extremely variable pattern of energy consumption. Still, due to the increasing penetration of 

renewable energy in the network, increasing efforts to reduce energy consumption, the emergence of 

individual power generators (e.g. through residential solar panels), as well as the need to ensure the 

most secure supply of energy, increased efforts to energy management improvements must be 

undertaken. This in turn may mean a compulsory step towards forecasting energy consumption at the 

level of a single household and NILM disaggregation may be a key to high accuracy of those forecasts. 
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Annex I 
Table 11. Results of parameters optimization for dataset with directly measured appliances consumptions. Yellow area indicates the best parameters sets. 

 

 
Basic conf, Random Search (RS) RS result 

Grid Search 

 

 
Round 1 

R1 results 
Round 2 

R2 results 

 

 

train test Random Grid train test train test train test 

R
F
 

a 10 
[20, 200, 380, 560, 740, 920, 1100, 

1280, 1460, 1640, 1820, 2000] 380 [200, 400, 600, 1000] 600 [ 500, 600, 800] 500 

b 2 [2, 5, 10] 2 [ 2, 3] 2 [ 3, 5] 3 

c 1 [1, 2, 4] 1 [10, 20] 10 [10, 20] 10 

            
MAPE 12.6% 32.5% x 11.6% 31.1% x 25.9% 33.1% x 25.9% 32.9% 

MAE 62.1 168.1 x 55.9 158.1 x 122.8 164.4 x 122.8 164.4 

MSE 16597 109149 x 11906 94465 x 61094 106698 x 61173 107361 

R^2 0.95 0.7 x 0.97 0.74 x 0.83 0.71 x 0.83 0.71 

             

M
L
P
 

d relu ['tanh', 'relu'], relu relu relu relu relu 

e 0,0001 [0,001, 0,0001, 1e-05] 1,00E-05 [0,0001, 0,05] 0,0001 [ 0,0001, 0,00001] 0,00001 

(f,g) (100,1) [(50,), (100,),  (50, 2), (100, 2)] (100,2) [(50,2), (100,2), (150,2)] (100,2) [(100,2), (200,2), (150,2)] (150,20) 

h 200 [200, 300] 300 [200,400] 400 [400,600] 400 

            
MAPE 46.8% 50.8% x 47.7% 51.5% x 34.5% 40.5% x 33.4% 39.6% 

MAE 202.2 204.9 x 197.9 204.1 x 157.0 189.3 x 153.0 185.2 

MSE 132557 132168 x 125295 131681 x 77457 114791 x 73862 112612 

R^2 0.63 0.64 x 0.65 0.64 x 0.78 0.68 x 0.79 0.69 

             

L
S
T
M

 

i 1 [10,50,100] 100 [80, 100,  150] 150 [180, 250] 250 

j 10 [100,500] 100 [100, 150] 100 [80, 100] 100 

            
MAPE 71.0% 64.8% x 12.7% 44.0% x 28.0% 38.1% x 26.3% 35.3% 

MAE 299.0 326.9 x 48.1 230.1 x 164 211 x 152.0 203.7 

MSE 249823 234325 x 5315 139458 x 90772 131792 x 9709 120438 

R^2 0.33 0.24 x 0.99 0.55 x 0.72 0.57 x 0.86 0.73 
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Table 12. Results of parameters optimization for dataset with NILM disaggregation. Yellow area indicates the best parameters sets. 

 

 Basic conf, Random Search (RS) RS result 
Grid Search 

 

 Round 1 
R1 results 

Round 2 
R2 results 

 

 
train test Random Grid train test train test train test 

R
F
 

a 10 
[20, 200, 380, 560, 740, 920, 

1100, 1280, 1460, 1640, 1820, 
2000] 

1820 [600, 1000, 1700, 1900] 600 [550, 650, 750] 750 

b 2 [2, 5, 10] 2 [ 2, 3] 2 [ 2, 3] 2 

c 1 [1, 2, 4] 1 [10, 20] 10 [7,10] 7 

            
MAPE 13.9% 34.4% X 12.6% 33.4% x 28.43% 35.11% x 25.65% 34.37% 

MAE 72.7 175.9 X 63.8 166.0 X 142.7 175.1 X 129.42 172.29 

MSE 20371 100166 X 13439 92900 X 69048.65 101191.19 X 58133.26 98579.68 

R^2 0.95 0.76 X 0.97 0.78 X 0.83 0.76 x 0.86 0.76 

             

M
L
P
 

d relu ['tanh', 'relu'], relu relu relu relu relu 

e 0,0001 [0,001, 0,0001, 1e-05] 1,00E-05 [0,0001, 0,05] 0,05 [0,05, 0,1 ] 0,1 

(f,g) (100,1) [(50,), (100,),  (50, 2), (100, 2)] (50,2) 
[(50,2), (100,2), 

(150,2)] 
(100, 2) [(100,2), (200,2), (180,2)] (200,2) 

h 200 [200, 300] 300 [200,400] 400 [400, 600] 400 

            
MAPE 51.0% 48.7% X 50.9% 48.6% X 38.70% 41.37% X 37.12% 42.33% 

MAE 233.4 218.6 X 227.4 213.5 X 178.48 191.65 X 161.33 193.6 

MSE 157873 128944 X 148490 122686 X 88981.5 99021.16 X 67747.18 94130.81 

R^2 0.62 0.68 X 0.64 0.69 X 0.79 0.75 x 0.84 0.76 

             

L
S
T
M

 

i 1 [10,50,100] 100 [80, 100,  150] 150 [250, 350] 350 

j 10 [100,500] 100 [100, 150] 100 [80, 100] 80 

            
MAPE 62.7% 95.0% X 12.6% 53.2% X 43.7% 49.98% X 8.92% 47.38% 

MAE 289.0 383.6 X 44.7 287.4 X 194.9 274.21 X 34.96 240.63 

MSE 241506 265837 X 3937 208003 X 162948 189086.99 X 3336.89 145719.26 

R^2 0.43 0.27 x 0.99 0.43 X 0.78 0.48 x 0.99 0.6 
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Table 13. Results of parameters optimization for dataset with only total consumption. Yellow area indicates the best parameters sets. 

 

 Basic conf, Random Search (RS) RS result 
Grid Search 

 

 Round 1 
R1 results 

Round 2 
R2 results 

 

 
train test Random Grid train test train test train test 

R
F
 

a 10 
[20, 200, 380, 560, 740, 920, 

1100, 1280, 1460, 1640, 
1820, 2000] 

1820 
[600, 1000, 1700, 

1900] 
1700 [ 1750, 1800, 1850] 1850 

b 2 [2, 5, 10] 2 [ 2, 3] 2 [ 2, 3] 2 

c 1 [1, 2, 4] 1 [10, 20] 10 [7,10] 7 

            
MAPE 12.78% 32.10% x 11.34% 30.78% x 25.74% 31.68% X 23.16% 31.17% 

MAE 61.07 162.65 x 53.34 153.20 x 123.7 161.1 X 111.41 157.92 

MSE 14484.56 90232.00 x 9585.79 81356.65 x 53595.69 86392.72 X 44117.72 82932.92 

R^2 0.94 0.66 x 0.96 0.70 x 0.77 0.67 X 0.81 0.69 

             

M
L
P
 

d relu ['tanh', 'relu'], relu relu relu Relu relu 

e 0,0001 [0,001, 0,0001, 1e-05] 0.001 [0.0001, 0.05] 0.05 [0.05, 0.1 ] 0.05 

(f,g) (100,1) 
[(50,), (100,),  (50, 2), (100, 

2)] 
(100,2) 

[(50,2), (100,2), 

(150,2)] 
(100,2) 

[(100,2), (200,2), 

(180,2)] 
(200, 2) 

h 200 [200, 300] 300 [200,400] 400 [400, 600] 600 

            
MAPE 46.06% 45.06% X 42.76% 41.84% x 38.71% 40.06% X 34.08% 38.72% 

MAE 195.59 191.92 x 187.31 183.67 x 165.58 170.45 X 146.84 167.48 

MSE 113943.37 112524.49 x 107143.93 105746.69 x 76107.46 83821.83 X 58961.95 80341.82 

R^2 0.52 0.54 x 0.55 0.56 x 0.68 0.65 X 0.75 0.67 

             

L
S
T
M

 

i 1 [10,50,100] 10 [5, 10, 20] 20 [20,  30] 20 

j 10 [100,500] 100 [50, 150] 50 [20, 50] 30 

            
MAPE 102.12% 82.03% x 33.45% 39.89% x 39.60% 39.53% X 40.77% 40.33% 

MAE 347.89 299.44 x 142.07 198.83 x 164.05 186.63 X 167.81 186.16 

MSE 277282.39 146674.73 x 57246.10 89162.02 x 77873.49 78347.26 X 80565.84 77711.29 

R^2 -0.04 -0.11 x 0.79 0.33 x 0.71 0.41 x 0.7 0.41 
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