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Abstract

The amount of information produced by the immense activities of today’s world has been increasing
exponentially. With this increase, the exploration and the analyzes of representations that allow the
visualization of this vast amount of information have been growing to follow its evolution. However,
with the emergence of real-time Big Data, it has become imperative to simplify its analysis due to the
huge amount of information so that the user can interpret the various patterns in the data as it evolves
rapidly and can still react to possible variations of data flow trends, always maintaining the context of
the information that is represented in the visualization. We propose the VisMillion and Change that
focuses on the study of smooth animated transitions between different visualization techniques, allowing
the analyzes in real-time of large amounts of information comprised in multiple modules positioned side
by side, following the concept of graceful degradation. It provides different time intervals to each
module in which the data flows through, from right to left, and gets aggregated as it evolves in time
ensuring a bigger history and a detailed visualization for the most recent data. It is intended to provide
a visualization of real-time Big Data and a set of smooth transitions that make it easier to analyze
large amounts of information as it crosses over different visualization techniques associated to various
statistical measures and their matching aggregation levels over time.
Keywords: Visualization Technique, Real-Time, Big Data Pattern, Streaming, Animated Transitions

1. Introduction

The automation of various activities performed
nowadays is producing more and more information.
This increase is largely due to the data that is gener-
ated every day and anywhere, from simple personal
records to complex networks and financial trans-
actions [10]. Also, sensors and other electronic sys-
tems have a huge impact on the volume of produced
information because they are constantly producing
more data at smaller intervals. As a result of this
rapid and exponential increase, exploring this vast
density of information has become a complex task
and a lot of research has been done to find a way
to extract only useful information.

Given the importance of facilitating the analysis
and interpretation of Big Data, visualizations play
an essential role, allowing a better understanding
and recognition of interesting patterns, behaviours
and correlations between the various data [1]. How-
ever, representing large amounts of data may con-
strain the user’s ability to analyze their entire do-
main. Likewise, the resolution of conventional dis-
plays itself, which is already limited, may be insuf-
ficient to view all this information. As a solution
to this problem, some systems have been applying
data reduction methods, statistical measures to ag-

gregate information and also scalability character-
istics at both detail and visualization levels.

When the data is continuously generated with a
connection to its temporal context, existing tools
that once processed static information and allowed
it to be visualized, now have to adapt their tech-
niques to follow the evolution of this data received
in streaming, so that they can generate real-time vi-
sualizations. However, most of the current systems
have not yet adapted to this imposition of stream-
ing data, making the analysis of these visualizations
difficult or even suffering from too dense represen-
tations which can lead the system to ”freeze” for a
certain period or even making it crash [3].

The domains and types of each data set should be
considered and reduced using multiple aggregation
techniques, as well as the modifications and visual-
ization changes should be minimized and smoothed
to avoid visual leaps during the analysis and also
avoid the loss of context of data.

To tackle these challenges, we propose VisMillion
and Change, a set of transitions between visualiza-
tion techniques targeted at time series, in order to
represent large amounts of information in real-time,
with its data comprised between multiple visualiza-
tions associated to different aggregation methods
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and time intervals allowing the users to perceive
the global context of the information, as well as a
more detailed analyses of the most recent data and
its patterns evolution. For this, the representation
of the information was provided through elements
that perform a graceful degradation metaphor, ag-
gregating the information as it gets older in the vi-
sualization, passing it to another visualization type
through transition techniques. This gives the user
a more detailed view of the latest data while reduc-
ing the older one, saving memory but keeping its
context and patterns always available. As such, the
contributions of this work are:

1. A set of conceptualized visualization and tran-
sition techniques to allow the representation of
Streaming Big Data.

2. A prototype to exhibit each technique.

3. An evaluation to deal with the efficiency of the
developed techniques.

4. A user evaluation to check whether the tech-
niques are effective or not.

The rest of the document is organized as follows.
Section 2 presents and discusses the related work
about the current techniques to visualize Streaming
Big Data. Section 3 describes the conceptualized
visualization and transition techniques. In Section
4 we detail the architecture of the developed pro-
totype and its implementation process. Section 5
summarizes the performed evaluation of the system.
Finally, in Section 6 we present the conclusions of
this work, as well as some future work pointers.

2. Background

Regarding the visualization of real-time Big Data, a
lot of new challenges have been imposed. Although
many existing systems can represent streaming
data, the amount of information that can be repre-
sented while maintaining the coherence state of the
visualization is quite limited. It is, therefore, neces-
sary to reconcile these types of visualizations with
the amount of data obtained in real-time. Stream
Squeeze [11], MeDICi [4] and Event Visualizer [6]
systems can display data volumes in 105 data/hour
(≈ 28, 63 and 145 data per second, respectively),
which is a limitation when viewing larger densities
of information at smaller time intervals. According
to the amount of information, the type of data also
affects how it is represented.

Most systems are limited to the representation
of numerical value sequences, i.e. quantitative
data. Although Topic-aware [12] and Streaming
LogData [15] systems can represent heterogeneous
data, they end up imposing the existence of lengthy

pre-processing, due to the need to standardize all
received formats, in addition to solving potential
problems that may exist, both in the structure and
formatting of each one.

Given the amount of information to be visual-
ized, as well as the limitations imposed by the data
types, there is a need to use simplification and re-
duction methods. It is crucial to ensure no loss
while viewing the results from the application of the
previous methods, compared to the original state.
Sometimes, even after performing these techniques
of simplifying, clearing or reducing existing data, its
magnitude may still be too large to be represented
on current devices due to limited screen space. As
such, some systems like I2 [13] instead of processing
all the values and fit them into a single pixel column,
uses the M4 aggregation technique [8] to generate
four values per pixel column, MeDICi [4] reduces
the dimensions of streams using the Symbolic Ag-
gregate Approximation technique and generates a
set of glyphs showing the trends of the data, un-
derlining the importance of data aggregation and
simplification methods.

Other systems choose to use techniques that pro-
vide visualizations to fit the available screen space,
like News Streams [9] and Event Visualizer [6] that
select the more interesting categories and events
and remove the others to optimize the efficiency,
Density Displays [7] uses a secondary view that
hides a small part of the primary one showing the
incoming data before inserting it into the main
view. However, these systems can cause some loss
of information that could be crucial to the mental
pattern created by the user during analysis.

Transitions play one of the most important roles
while keeping the user up-to-date on transforma-
tions that can occur in the visualization, as well
as on the entire context of the information. Hav-
ing smooth transitions help the user to not lose the
context of the view throughout changes that may
exist and make sure the existing patterns are al-
ways available. Systems like Event Visualizer [6],
Streaming LogData [15] and StreamSqueeze [11]
adopted smooth transitions to help tracking the in-
formation while data is added to the visualization
and then evolves. Streamit [2] uses gradual and an-
imated transitions to help maintaining the mental
image of the visualization created by the user while
its data gets aggregated by similarities. There must
be a greater concern about how new data is ob-
tained and represented so that the user maintains
the “big picture” and at the same time sees new
data and compares it with the existing history.

In short, it appears that the systems that exist
today still have some difficulty representing dynam-
ically large flows of information, either because their
goal is to represent smaller amounts of data, or be-
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cause the systems are not prepared for such dimen-
sions or to create visualizations that in their compo-
sition have large chunks of information, obtained in
real-time. Given the relevance of transitions, there
is still some development to help the users analysing
and exploring the information while it evolves.

In this work, we propose a set of smooth transi-
tions that make it easier to analyse large amounts
of information as it crosses over different visual-
ization techniques associated to various statistical
measures and their matching aggregation levels over
time, allowing a dimensional data reduction and an
easier recognition of the latest data but at the same
time, maintaining all the patterns of the previous
records, so that they can be compared during the
analysis of the information in real-time.

3. VisMillion and Change

Targeting a set of transitions between pairs of vi-
sualization techniques, we propose VisMillion and
Change. This set is composed of multiple transition
alternatives to create a single and uninterrupted
view that joins multiple visualization types asso-
ciated to modules organized side by side and rep-
resenting simultaneously all the data that has been
received and a history that can hold a larger inter-
val of time. Those visualization techniques repre-
sent data that has been aggregated with some kind
of statistical measure. Based on VisMillion [5], it
follows the concept of graceful degradation, aggre-
gating the older data and showing the recent one in
a more detailed visualization.

Based on visualization types, VisMillion and
Change presents the data in different techniques:
Scatterchart, Linechart, Heatmaps, Streamgraph
and Barchart. We chose to use Scatterchart as a
technique that presents the raw data, i.e. without
aggregation, facilitating the analysis of the most re-
cent data visualized in maximum detail before it
gets transferred to next modules. Linechart was
used to represent the average value of data per time
interval. Streamgraph was used to represent multi-
ple boxplots [14] over time, joining the values from
each boxplot and creating coloured areas represent-
ing the maximum and minimum values per time in-
terval, as well as its median and interquartile range.
Finally, Heatmaps and Barchart were used to group
multiple values in order to measure their density.
The first one has two options, a normal Heatmap
to represent a matrix relating two variables (time
and value intervals) with different tones of colours
to show the frequency and an accumulator Heatmap
that only have one variable (just like the Barchart),
relating value intervals with its frequency.

Between the Scatterchart and the other visual-
ization techniques that can be applied to create a
single representation of the data, we applied multi-

ple techniques in order to make the transition more
appealing to the user and easier to understand as
the time evolves.

3.1. Scatterchart - Heatmap Transition

Heatmap squares are formed after the transition of
the points corresponding to the most recent data
and according to their density by time interval.
That is, squares get toned depending on how many
points there are in that range.

(a) Non-Animated (b) Fade-in Fade-out

Figure 1: Non-Animated and Fade Transitions

Starting from a transition without animations,
as depicted in Figure 1(a), we created a set of al-
ternatives focused on differences in time intervals
and resulting velocities of the two halves of the
visualization, like the Fade-in Fade-out technique
that fades the dots while they decelerate into the
Heatmap, gradually forming the squares (Figure
1(b)). In order to present the points that belong
to each square, the Agglomeration in Squares tech-
nique forms squares of multiple aggregated points,
clustering them in small groups, which themselves
have a form of a square, then moving the points with
the correct acceleration and direction, each group
will fit into the Heatmap squares (Figure 2(a)).

(a) Agglomeration in
Squares

(b) Data Columns

Figure 2: Agglomeration in Squares and Data Columns Tran-
sitions

Similar to the previous technique, the Data
Columns transition (Figure 2(b)) allows to observe
the position of the points relative to the vertical axis
and thus a better relation to their values. The dots
corresponding to the last column of the Heatmap
are decelerated until all of them are between the
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Figure 3: Grainy Transition

beginning and the end of that column. Finally, the
Grainy transition intends to make the dots bigger
and bigger as the time evolves until they have the
same dimensions of a Heatmap square, inducing the
creation of these squares gradually, like the Figure
3 illustrates.

3.2. Scatterchart - Linechart Transition

The Linechart is formed after the transition of the
points corresponding to the most recent data and
according to their average by time interval. That
is, the higher the average in a given time interval,
the higher (relatively to the vertical axis) will be
the connection point of the line in that interval.

(a) Non-Animated (b) Fade-in Fade-out

Figure 4: Non-Animated and Fade Transitions

Starting from a transition without animations, as
depicted in Figure 4(a), we created a set of alter-
natives focused on differences in time intervals and
resulting velocities of the two halves of the visualiza-
tion, like the Fade-in Fade-out technique that fades
the dots while they decelerate into the Linechart
gradually forming the line (Figure 4(b)). To allow
the convergence of the points in multiple intervals
and generate a new dot that will later be joined
with the line, we created the transition Bottleneck
(Figure 5(a)). This one intends to accumulate the
points that belong to a time interval, to later start
converging them to the point that represents the
average value of that interval.

Similarly to the Bottleneck transition, Points
Contraction transition (Figure 5(b)) contracts each
group of points from the previous intervals, concen-
trating them and forming a shrinking set of points
that will end up on a single one representing the

(a) Bottleneck (b) Points Contraction

Figure 5: Bottleneck and Points Contraction Transitions

average of values on that set and then will merge
him with the existing line.

3.3. Scatterchart - Streamgraph Transition

The Streamgraph is formed after the transition of
points and is intended to illustrate the maximum
and minimum values, median, 1st and 3rd quartiles
per time interval.

(a) Non-Animated (b) Fade-in Fade-out

Figure 6: Non-Animated and Fade Transitions

Starting from a transition without animations, as
depicted in Figure 6(a), we created a set of alter-
natives focused on differences in time intervals and
resulting velocities of the two halves of the visualiza-
tion, like the Fade-in Fade-out technique that fades
the dots while they decelerate into the Streamgraph
gradually forming the areas (Figure 6(b)). As an
alternative, we created the Narrowing transition to
delimit which points will be relevant for the Stream-
graph areas, converging them into the areas repre-
senting the first and third quartile of each interval.
The dots are initially slightly increased in size and
change colour to match the colour of the area they
represent as shown in Figure 7(a). The points repre-
senting the maximum and minimum values of each
interval are represented in the visualization without
being converged into the previous areas.

Finally, the Stamping transition (Figure 7(b))
contrary to the last technique, keeps all points re-
ceived in the transition and at the same time tries
to adapt them to the Streamgraph areas, i.e. chang-
ing the colours to correspond with the ones from the
Streamgraph. Also, to reduce the visual leap it was
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decided to gradually increase the area of each point
providing slight modifications in their position so
that at the time of the transition into the Stream-
graph, the points were aligned with the areas.

(a) Narrowing (b) Stamping

Figure 7: Narrowing and Stamping Transitions

3.4. Scatterchart - Barchart Transition

Each bar from the Barchart is formed and incre-
mented after the transition of points corresponding
to each interval of values. That is, considering that
the Barchart was used as an accumulator, the big-
ger the number of points in that range, the larger
the representative bar.

(a) Non-Animated (b) Fade-in Fade-out

Figure 8: Non-Animated and Fade Transitions

Starting from a transition without animations, as
depicted in Figure 8(a), we created a set of alter-
natives focused on differences in time intervals and
resulting velocities of the two halves of the visu-
alization, like the Fade-in Fade-out technique that
fades the dots while they decelerate into the Bar-
chart gradually forming the bars (Figure 8(b)). To
allow a better and more accurate tracking of the
points while they move into the bars, inducing that
they are being routed into the bars, we created the
technique Pilot Lines (Figure 9(a)) which firstly in-
creases the size of the points so that they end up
with the same dimension as the height of the bars
from the Barchart, reducing the visual leaps dur-
ing the transition. This technique also uses lines
that disappear gradually providing the idea of a pi-
lot line or a route which points the direction of the
bars to the dots.

With the purpose of moving the points into the
bars but keeping their vertical position unchanged

(a) Pilot Lines (b) Points Consump-
tion

Figure 9: Pilot Lines and Points Consumption Transitions

before the bars increase and at the same time avoid-
ing the visual leap of the direct transition from the
points to the bars, we decided to create a transi-
tion (Figure 9(b)) that would cause a slight increase
in the points, thus avoiding the formation of large
groups that could overlap the others and adapting
their color to the color of the bars. Finally, the
points are moved into each bar, suggesting an effect
of their consumption.

3.5. Scatterchart - Heatmap Accumulator Transi-
tion

The Heatmap Accumulator has an infinite time
range which leads to one column with multiple in-
tervals on the vertical axis, resembling horizontal
bars that have the same behavior as the Heatmap.
These bars change their colors after the transition
of the points according to their concentration.

(a) Non-Animated (b) Fade-in Fade-out

Figure 10: Non-Animated and Fade Transitions

Starting from a transition without animations, as
depicted in Figure 10(a), we created a set of alter-
natives focused on differences in time intervals and
resulting velocities of the two halves of the visualiza-
tion, like the Fade-in Fade-out technique that fades
the dots while they decelerate into the Heatmap
gradually forming the squares (Figure 10(b)). To
increase the size of the dots and reduce the visual
leap, the Point Forwarding technique (Figure 11(a))
intend to route the points into each bar while in-
creasing its size and while they grow toward the cor-
responding bars, they gradually change their colour
to the coincident one. Then, the points are shifted
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(a) Point Forwarding (b) Electrocardiogram

Figure 11: Point Forwarding and Electrocardiogram Transi-
tions

into each bar causing a consumption effect on them.

The Electrocardiogram transition (Figure 11(b))
divides the data in the Heatmap Accumulator
ranges, where for each one the respective points in-
terconnect, forming as many lines (with the colour
of the corresponding bar) as the number of bars in
the Heatmap. For each interval, the user can see the
variation and the peaks in the values before they co-
incide with the bars. Finally, the Dilation transition
(Figure 12) intends to increase the points until they
have the same height of the bars and changes their
colours so that they match the colour of the inter-
val to which they belong in the Heatmap. When
there are a lot of points in a row belonging to the
same range, the idea of a bar is projected right at
the transition.

Figure 12: Dilation Transition

4. Prototype

To demonstrate and evaluate the conceptualized
transition techniques, we developed a prototype to
represent large amounts of data in real-time di-
vided into multiple modules associated with the
various visualization types described earlier in Sec-
tion 3. The prototype architecture is based on a
client-server approach. The server (streamer) cre-
ates and sends data packets to the interface, sim-
ulating an information source that distributes data
in real-time to the receiver. The client presents the
visualization interface to the user.

4.1. Server-side Implementation

The server is based on the VisMillion concept [5]
and is implemented as a python script to send data

packets to the interface via Web Sockets. This tech-
nology is a two-way connection that allows a simple
but persistent exchange of information between the
client and the server, operating between a single
communication channel. After reading CSV files
containing the information, data streams are gener-
ated and then sent to the interface with the corre-
sponding configured delay between packages. Since
our main focus is the data representation, the server
is not responsible for any kind of data simplification
or reduction. However, the server is ready to send
packets of data even though its records have an old
timestamp, making it possible to view information
regardless of the original timestamps.

4.2. Client-side Implementation

The interface is implemented as a browser-based
application, thus allowing the user to analyse the
prototype developed using only a browser. It is
defined by a configurable area in an HTML doc-
ument, where through specific methods for each
desired technique, one can draw elements on the
screen. This using the HTML5 Canvas API which
allows numerous changes to figures, colours, sizes,
etc. Nevertheless, this API doesn’t have any prede-
fined transitions or animations.

There is a Manager entity responsible for man-
aging all the modules of the prototype and it is
also through him that the domains are defined. It
receives the packets from the server and transfers
the data to the first module and then to the sub-
sequent ones, once the data no longer belongs the
its temporal domain. The Manager unifies the var-
ious modules and is responsible for the invocation
of their update and redraw methods.

Each Module can be initialized as a normal or a
transitional module, as well as one can define the
dimensions and time interval that it is intended to
represent the information. Each module can be as-
signed with a visualization or a transition technique
that can be changed in real-time. After the manager
starts the updating and drawing threads, it will also
update and draw on the associated visualization or
transition technique, which will only chain alter-
ations if they are sufficient to move the represented
particles on the screen. Every module has a start
and end time, corresponding to its duration, and
if the data doesn’t belong to that interval, then it
will be filtered, leaving the older one for the Man-
ager to transfer to the next module and this way
there won’t be repeated data stored in the memory
of the browser.

The visualization techniques implemented on the
prototype have some configurations that can be
modified to define specific measures and colours ac-
cording to users’ preferences. Since the horizontal
axis corresponds to a timescale, and time passes to
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maintain its relationship with real-time, all the ele-
ments drawn in the visualization are also evolving,
thus moving left to the corresponding original time.
This movement follows the Uniform Rectilinear Mo-
tion formula, presented in Equation 1.

x = x0 +
width

duration
∗ elapsedT ime (1)

The transition techniques implement on the pro-
totype are responsible for aggregating the informa-
tion that is obtained by the Scatterchart, to transfer
it to the next module.

Figure 13: Aggregation by time intervals

The aggregation technique applied (Figure 13)
depends on a pre-configured dimension in pixels
that will divide its width into multiple intervals,
each one containing an initial and final timestamp
that will then be used to aggregate the information
that belongs to the existing range. For each inter-
val, the statistical measures of that data set are cal-
culated using D3 methods, finding their values and
associating them to the respective variables. Thus,
this data will, together with the others that belong
to the range, define the mean, maximum and min-
imum value, first and third quartile, as well as the
median. If it is a transition to a Heatmap, then the
bin to which the data belongs will also be detected
to increment its data counter and update the cor-
responding colour through a linearly scaled colour
interpolation of the data, using d3-scale API.

The movement of the graphical representation of
the data in the transition is given through a formula
that calculates the position of the points according
to their relation with time. Just as in visualization
techniques we used the Uniformly Varied Motion
formula, as shown in Equation 2b. The duration of
the transition had to be calculated using the Equa-
tion 2a to calculate the acceleration used in the de-
termination of the position.

t =
2 ∗ position
vi + vf

(2a)

x = x0 + vi ∗ elapsedT ime+
1

2
∗ a ∗ elapsedT ime2

(2b)
Given the complexity of the proposed transitions,

the position calculation using the Uniformly Var-
ied Motion formula only allowed to reach the next

module velocity at the end of the transition, which
turned out to be a disadvantage for transitions
where it was intended to achieve this velocity in an
earlier phase. As a solution, we applied an inter-
val before and after the time interval in which the
deceleration occur. Thus, it would be possible to
have an initial interval where the velocity was equal
to the initial one, then a deceleration moment and
again a final interval with the velocity equal to the
final one, as depicted in Figure 14 and the resulting
position as follows, position = vi∗ti+posa+vf ∗tf .

Figure 14: Velocity as the time evolves on the transition

5. Evaluation

To understand if VisMillion and Change fulfils its
objective, we tested the usability and the efficiency
of the developed techniques. We used the Google
Chrome browser (version 64.03865.90 ) installed
on a Windows 10 Pro system with an Intel Core
i7-4770K processor (3.50 GHz), 16 GB of RAM
and a 1920x1080 resolution. The rendered view
(1110x512 px) was divided into three modules with
widths of 455, 200, and 455 px.

5.1. Usability

We conducted a set of usability tests to compare
each transition developed and understand which
techniques were preferred by the participants.

1) Method: The tests consisted of a Google
Forms’ questionnaire. First, we introduced the
questions to the participants. Then, we did a
brief introduction to the utilized visualization tech-
niques, as well as the different modules and the
movement of the data flow. Participants were then
encouraged to ask questions, followed by their ex-
planation so that they could start the questionnaire.
It started with a set of profiling questions and over
the followed sections, they had to watch a video (1
minute each) for each transition. Then, they had
to answer a set of questions about that transition.
In the end, participants were asked to give some
suggestions.

2) Data sets and Settings: We created multiple
data sets using a data generator to avoid their rep-
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etition over the various techniques. The duration
and domain used to create each of these data sets
were chosen to create 1-minute videos where the
desired patterns were verified.

3) Tasks: During the completion of the question-
naire, participants were asked to answer a set of
questions about each video. Videos made it possible
to view trends and compare them with the evolution
of data over time. Each set of questions consisted
of 4 multiple choice questions on observed trends
and 2 questions which were answered according to
a Likert scale. The question sets were repeated over
the various existing transitions for each pair of vi-
sualization techniques. Each question corresponded
to different aspects:

1. Compare Trends - Analyse the data flow
and compare the evolution of the trends over 1
minute.

2. Finding Trends: Incoming data - Analyse
of trends as they were evolving over the right
module.

3. Finding Trends: Previously received
data - Analyse of trends visible in the left mod-
ule.

4. Identifying statistical measures - Analyse
of statistical measures resulting from aggrega-
tion in the left module.

5. Rate: Understanding Data Flow - Rate
using a Likert Scale (1-5), the ease of analyzing
data flow evolution with the transition tech-
nique in question.

6. Rate: Overall Transition Rating - Rate us-
ing a Likert Scale (1-5), to understand whether
the participant liked the transition or not.

7. Global Rank - At the end of each group of
transitions, the participants were asked to rank
them in their according to their preference.

4) Participants: We had a total of 28 participants
(11 female and 17 male), whose ages ranged from 17
to 26 and from 51 to 56 years (82% between 17-26
years, 18% between 51-56 years). 89% already knew
the term Big Data. 10 participants took the test in
person, while the remaining 18 took it remotely.

5) Results: After a statistical comparison be-
tween the answers given by the participants to the
questionnaire, the answers given to the Heatmap
transitions were the ones that allowed the largest
number of significant differences, but none of them
were enough to draw big conclusions about the
users’ favourite transitions. The trends visualized
in the left module proved to be better interpreted

as they evolve in transitions where there are ani-
mations for visualization types that maintain a re-
lationship with time. Except for Linechart transi-
tions, most animated techniques showed better re-
sults in trend comparisons. However, in the tran-
sitions developed for Streamgraph, Heatmap Accu-
mulator and Barchart, participants marked through
the ratings provided, their favourite transitions:

• Stamping - transition to Streamgraph

• Point Forwarding - transition to Heatmap
Accumulator

• Pilot Lines - transition to Barchart

Table 1 lists each Streamgraph transition tech-
nique developed with the various aspects addressed
in the questionnaire, showing the percentage of
right answers up to the fourth aspect and from
the fifth, the median and interquartile range values.
Checking the relation between right and wrong an-
swers to the first aspects considered in the question-
naire, we applied the Cochran test, which showed
significant statistical differences in the identification
of trends in older data (χ2(2)=18,439, p<.0005).
Comparing the various pairs of transitions, when
performing McNemar tests with Bonferroni correc-
tions, we concluded that transition A (rate=32%)
was worse than transition C (rate=75%, p=.048)
and transition D (rate=79%, p=.012) to identify
trends in the old data. For the final three aspects,
the Friedman test was applied, which showed sig-
nificant statistical differences in the overall classifi-
cation according to the participant’s order of pref-
erence (χ2(2)=26,527, p<.0005). Comparing the
various transition pairs, when performing Wilcoxon
tests with Bonferroni corrections, we concluded that
transition D was the one with the best overall clas-
sification, beating transition A, B and C (transi-
tion A: Z=-3.281, p=.006; transition B: Z=-4167,
p<.0005; transition C: Z=-3.676, p=.0014).

TA TB TC TD

P1 68% 71% 75% 61%

P2 36% 61% 61% 57%

P3 * 32% 43% 75% 79%

P4 32% 36% 32% 29%

P5 4 (2) 4 (1) 4 (2) 4 (1.75)

P6 4 (2) 4 (1) 4 (2) 4 (1)

P7 * 3 (1) 3 (1.75) 3 (2) 1 (0)

Table 1: Percentage of right answers up to P4. The median
and interquartile range values for transitions to Streamgraph,
from P5 onwards. * denotes significant statistical differences.

Table 2 lists each Heatmap Accumulator transi-
tion technique developed with the various aspects
addressed in the questionnaire, showing the per-
centage of right answers up to the fourth aspect
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and from the fifth, the median and interquartile
range values. Checking the relation between right
and wrong answers to the first four aspects of the
questionnaire, we applied the Cochran test, which
showed significant statistical differences in trend
comparison (χ2(2)=16,393, p=.003). Comparing
the various pairs of transitions, when performing
McNemar tests with Bonferroni corrections, it was
concluded that transition C (rate=82%) was better
than transition E (rate=39 %, p=.02) to compare
trends across the data stream view. For the three
final aspects, the Friedman test was applied, which
showed significant statistical differences in the over-
all classification considering the participant’s or-
der of preference (χ2(2)=36,652, p<.0005). Com-
paring the various transition pairs, by performing
Wilcoxon tests with Bonferroni corrections, we con-
cluded that transition C was better than the other
transitions in terms of the overall ratings given
by participants (transition A: Z=-4.107, p<.0005;
transition B: Z=-4,364, p<.0005; transition D: Z=-
4,378, p<.0005; transition E: Z=-4,365, p<.0005).

TA TB TC TD TE

P1 * 54% 79% 82% 68% 39%

P2 64% 54% 71% 89% 54%

P3 68% 54% 61% 75% 57%

P4 50% 54% 57% 50% 43%

P5 4 (2) 4 (1.75) 4 (2) 4 (2) 4 (1.75)

P6 3.5 (2) 4 (2) 4 (1) 4 (1.75) 4 (2)

P7 * 4 (3) 3 (1) 1 (1) 3 (2) 3 (2.75)

Table 2: Percentage of right answers up to P4. The median
and interquartile range values for transitions to Heatmap Ac-
cumulator, from P5 onwards. * denotes significant statistical
differences.

5) Difficulties and Suggestions: In the open ques-
tions, participants were asked to report their biggest
difficulties during the realization of the tasks. Some
participants reported difficulties in the interpreta-
tion of statistical measures represented in some of
the visualization types. Others found it difficult to
follow the data from modules where there was no
relation with time, such as Barchart and Heatmap
Accumulator.

As for suggestions, participants suggested the ad-
dition of a colour representation mechanism for data
representation, to signal (or alert) when there is a
change in trends of the data flow. To allow a better
analysis of some transition techniques, it was also
proposed to increase the associated width, making
it easier to interpret some visual transformations
and clarify the identification of the statistical mea-
sures represented in the next module. In addition,
it was all participants’ opinion that the use of ani-
mated transitions allows a better understanding of
the evolution of the data flow.

5.2. Performance

We conducted a set of efficiency tests applied to
each of the developed transition techniques to un-
derstand their limitations regarding the drops in
frames per second (FPS).

1) Method: We chose the various visualization
techniques that allow the assignment of time in-
tervals and the transitions developed, to verify the
resulting FPS using generated streams of data and
tested the prototype for 20 seconds after all modules
were filled with information. Finally, we tested the
streams with different flows: 100, 200, 1000 data
points per second and also different time intervals
on the left module: 20, 50, 100, 200, 300, 400 sec-
onds and 1 second for the right module.

2) Results: The best results were obtained when
the flow was no higher than 200 data points per sec-
ond, which corresponds to 720,000 data points per
hour. The duration of the Heatmap, Linechart and
Streamgraph, was normally better when it did not
exceed 3 minutes. However, increasing flow speed
and the module’s duration may influence the sys-
tem’s ability to maintain its fluidity while moving
graphical representations of the data. The complex-
ity of the developed animations aggravates the num-
ber of operations that are required to animate the
visual transformations. Although the techniques
can be used, the transitions that had least influ-
ence on the system performance, were the Fade-in
Fade-out techniques for the Heatmap, Linechart
and Streamgraph transitions and their FPS val-
ues were very similar. The FPS variation for the
Heatmap is depicted in Figure 15. The fact that
these techniques do not apply computation to ver-
tical movements, increases in size or variations in
colours, avoids complex operations while the other
techniques have to apply them.

Figure 15: Frames per second achieved by VisMillion and
Change for Fade-in Fade-out Transition between Scatter-
chart and Heatmap

Regarding the users’ preferred transitions in the
usability tests, the Stamping Transition between
Scatterchart and Streamgraph (Figure 16) didn’t
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obtain the best performance for flows over 200 data
points per second, maintaining a history of over 3
minutes. For the Heatmap Accumulator and Bar-
chart, there is no limitation imposed by the perfor-
mance of the prototype. It reflects that future work
is needed to make some user’s preferred techniques
more efficient, such as the transition to Stream-
graph.

Figure 16: Frames per second achieved by VisMillion and
Change for Stamping Transition between Scatterchart and
Streamgraph

6. Conclusion and Future Work

Faced with the challenge of data visualization im-
posed by the amount of existing information and
the difficulty of clearly maintaining data patterns
and trends over time and as new data is obtained
in real time, we proposed a set of multiple transi-
tion techniques with smooth animations that allow
the transformation and movement of the data to
be followed along various visualization techniques
associated to different aggregation levels, velocities
and time intervals, in order to maintain a coherent
state of the visualization.

To validate the conceptualized techniques, we im-
plemented a browser-based prototype following a
graceful degradation metaphor. This prototype al-
lowed the development of the transitions and the
creation of efficiency and usability tests. We tested
the prototype with 100, 200 and 1000 data points
per second and obtained the best records using a
history of 3 minutes, receiving 200 data points per
second (720000 data points per hour), even though
it’s not a big flow, it was sufficient to check the effi-
ciency of the developed transitions. Usability tests
were conducted with 28 participants and showed
that to achieve some users’ preferred techniques
there is still space for efficiency improvements as
a future work and also showed that the number of
complex operations and variations in sizes and col-
ors is directly related to the breaks of the frames per
second and therefore to the fluidity of the system.

As future work, we intend migrate the system
into another technology like WebGL since it can use
the GPU to speed up processing. It is also proposed

to create a set of animated and smooth transitions,
to follow the changes of a specific visualization type
inside a module, as well as the consecutive change of
the created transitions between modules described
in this dissertation.
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