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Abstract—As the world’s population continues to increase,
cities get exponentially more crowded, which means new prob-
lems arise. This phenomenon results in the aggravation of road
traffic in most of Europe’s capital cities, making the mobility
of passengers not yet efficient. One way to improve this issue
is to deploy an Intelligent Transportation System (ITS) which is
an application that aims to provide accurate information to the
users and enabling them to make a better and more informed
use of transport networks. In this context, Traffic flow prediction
is considered a critical element for the successful deployment of
an ITS. In order to create an accurate traffic flow prediction
model, a stable and consistent database is required. Motivated
by this necessity, the Lisbon City Council is developing an effort
to collect and provide mobility data. In the context of this project,
the main source of road data will be from loop counters placed
at intersections throughout the center of Lisbon as well as other
publicly available data from major traffic monitoring operators.
The main goal of this project is to develop traffic predictive
models, from the available data, in order to understand which
produces the most accurate results.

Index Terms—Short-term Traffic Flow Prediction. Machine
Learning. Time-Series Forecasting. Spatio-Temporal Traffic Pat-
terns.

I. INTRODUCTION

As it is common knowledge, the human population has
been increasing in the last few millennia. This tremendous
growth has been, and still is, thoroughly studied by researchers
throughout the world. These studies are motivated by multiple
factors such as environmental, economic, sociological or even
organizational. Although there are studies [1] claiming that the
rate at which population is growing is decreasing, the world’s
population is still growing immensely. According to this study,
the UN projections for the human population show that it
should surpass the 10 Billion mark by 2055. The generalized
increase in purchasing power is one of the factors that have led
to the increase, in number, of personal vehicles in large urban
centers. The problem of this increase, from an urbanistic point
of view, is the fact that the number of cars that can flow in a
city is finite. The analysis of this set of factors allows us to
better understand the growth in traffic congestion in the last
few decades.

A. Motivation

The topic of urban mobility has been extensively studied
and it is central to the planning of a city since it affects all of
its inhabitants. The decrease in urban mobility leads to more
traffic jams and consequently a reduced quality of life for its
occupants. This is a problem that concerns traffic operators of

large cities around the world and because of this, numerous
investments have been made to find and develop methods to
mitigate these occurrences. From improving the city’s urban
transportation system to building and deploying an Intelligent
Transportation System (ITS) there are multiple ways to ad-
dress this issue. An Intelligent Transportation System aims to
provide accurate information to the users and enabling them to
make better and more informed use of transportation networks.
Recently, it has been shown that Traffic Flow prediction is a
crucial factor in the success of these systems.
As technology evolves, new traffic sensor technologies are
emerging, making the amount of traffic data increase exponen-
tially as we enter the era of big data in transportation systems.
Traffic management and control are becoming increasingly
data-driven [2], [3], which created a renewed interest in the
field of traffic flow prediction.

The city of Lisbon shows many of the aforementioned
problems. Namely, traffic mobility in the center of Lisbon has
been significantly decreasing in recent years. Therefore, there
is a real need to develop strategies that will improve traffic
flow.

B. Goals

The main objective of this project is to develop a traffic
prediction system and applying it, as a case study, in some of
the most congested locations in the city of Lisbon.

Traffic prediction systems have been proved to be an es-
sential technique in traffic flow optimization. These systems
serve as auxiliary methods to provide accurate information to
traffic operators so that they can apply dynamic strategies in
response to the predicted traffic conditions. Moreover, given
that traffic flow is unstable and is prone to sudden changes
due to external events, (e.g. vehicle collisions causing traffic
jams) a larger prediction window would decrease the accuracy
of the predictions.

In order to develop a system of this nature, traffic flow data
is needed. Therefore, the City Council of Lisbon (CML) is
developing an effort to gather and provide traffic flow data,
namely, through traffic loop counters located strategically in
multiple locations throughout the city of Lisbon.

C. Organization

This document describes the work done during the school
year of 2018/2019 in order to achieve the goals that were set
for the master thesis in the first semester. Section II contains
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the basic concepts on which these methods are based on.
Section III surveys literature on the most commonly used
approaches for short-term traffic flow prediction. In Section
IV, a thorough description and analysis of the data is pre-
sented. Section V contains all the developed models for traffic
flow prediction that were developed during the past semester,
as well as the due results for each model. Lastly, Section
VII contains an overview on the obtained results and a few
final remarks about the work that was done during these past
months as well as some considerations about future work that
could be done to extend this project.

II. BACKGROUND RESEARCH

In this section of the paper, the focus will be on reviewing
some of the key concepts and Machine Learning algorithms
that enable the implementation of traffic prediction systems.

A. Data Collection Techniques
According to Guillaume Leduc [4], until recently, the most

widely used data collection techniques relied on fixed road
sensors (e.g loop counters). However, these are not sufficient
due to the expensive costs of implementation and maintenance.
In light of these limitations, alternative crowdsourced tech-
niques based on vehicle location (Floating Car Data) have been
emerging.

FCD techniques rely on collecting real-time traffic informa-
tion by locating the vehicle through mobile phones or GPS.
TomTom and Waze are relevant examples of the application
of these techniques, where, with the consent of the users,
traffic flow information is collected using GPS probe data.
These sources are not meant to replace but to serve as a
complement source of high-quality data to traditional methods,
thus allowing the development of more robust traffic prediction
systems.

B. Performance Metrics
In order to evaluate and compare the prediction accuracy

of the models presented below three performance metrics
will be considered. Namely, Mean Absolute Percentage Error
(MAPE), Root Mean Square Error (RMSE) and the Mean
Absolute Error (MAE). These are determined by the following
expressions:

MAPE = MRE(%) =
100%
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Where predi represents the predicted value and obsi rep-
resents the observed value at time instant or interval ti. In
the context of traffic flow prediction, predi and obsi represent
traffic information such as speed or volume of vehicles per
unit of time. Since traffic flow observations vary from a few
hundred vehicles per hour in the off-peak to several thousand
vehicles per hour during the peak periods, absolute percentage
error (MAPE) provides the most useful basis for comparison.

C. Neural Networks

Artificial Neural Networks (ANN) are among the most used
and studied topics in Machine Learning. These Networks are
vaguely inspired by the way that the information in our brains
is processed and stored. The elementary units of an ANN are
called neurons and looking at them separately, they are just
small processing units that transform one input to one output
with respect to a predefined activation function. Structurally,
ANNs are very similar to the way the human brain processes
information since they are composed by neurons organized in
various layers with a varying degree of connections with the
adjacent layers (Weights). These weights measure the relative
influence between two neurons. The last layer of an ANN is
the output layer, which, in the context of value prediction,
presents the predicted value(s). The training of these networks
consists in minimizing an error function. The predicted values
are compared to the real values and an error value is usually
calculated based on the difference between these values (loss
function). These errors are then sent back through the network,
layer by layer, and, for each neuron, the derivative of this loss
function is calculated. Each weight is then changed according
to the derivative’s rate. The main objective is to minimize the
error function, therefore, the error will be at its lowest when
the derivative is zero. If the derivative rate is positive then it
means that an increase in the weight will increase the error,
so this weight should be smaller. Inversely, if the derivative
rate is negative, an increase in the weight should decrease the
error. The training of a Neural Network is an iterative process
and given that the adjustments in the weights are very small, it
may need several iterations in order to converge. The number
of iterations that it takes to learn is not predictable and it
depends on several factors, such as the quality of the training
set and the chosen weight update rule.

D. Long Short-Term Memory Networks

Traffic flow shows a strong temporal dependency on the
recent past of the state of traffic flow. In an attempt to better
capture these dependencies an Long-Short Term Memory
Network was developed, which is a type of Recurrent Neural
Network (RNN). RNN’s, unlike feed-forward neural networks,
don’t only take as its input the current input example but also
the previous outputs of the network.

This means that in an RNN, the output at t-1 affects the
decision at timestep t. These networks have a feedback loop
connected to their past decisions, which can be identified as
the Memory of the network. The reason behind the addition
of memory to neural networks is the belief that, in some
problems, there is valuable information in the past occurrences.

The sequential information is stored in a hidden state,
which manages to span many time steps as the simulation
moves forward to affect the processing of each new input.
The correlations between events separated by many timesteps
are called long-term dependencies.

Each LSTM unit is composed by three main gates, namely,
the forget gate, the input gate and the output gate as is shown
in Fig. 1. The forget gate is used by the network to control
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Fig. 1. Diagram of a LSTM unit, adapted from [5]

whether to forget or keep old information. The current input
and the previous hidden state are combined and passed through
the sigmoid function. The output values come out between
0 and 1 where 0 means that the information is completely
”forgot” and 1 means that the totality of the information is
kept. The input gate decides which new information is going
to be stored in the cell state and the output gate determines
what is going to be the next hidden state.

E. K-Nearest Neighbors

This algorithm is a non-parametric method mostly used in
classification and regression. The basis of this algorithm lies
in finding, for each sample, the k-nearest samples that are
closest to each other according to a distance metric. The most
commonly used distance metric for numerical values is the
Euclidean distance. In the context of traffic flow prediction,
the main idea behind the application of this algorithm is that
traffic flow is periodic and therefore it is very likely that
patterns in the past are going to be similar to future ones.
Therefore, for this algorithm to predict what’s going to happen
at a given day (Subject Profile) it identifies the k most similar
patterns (Candidate Profiles) and then combines those patterns,
providing future, unobserved patterns.

F. Stochastic time-series models

According to [6], a time-series is a sequential set of data
points, typically measured successively. Time-series forecast-
ing techniques are a very important field of machine learn-
ing since prediction problems inherently depend on a time
component. For some machine learning problems, such as
the one studied in this project, the time dimension in the
dataset provides a new source of information. A time-series is
usually affected by three main components, namely, Seasonal,
Trend and Random components. Trend dictates the general
tendency of a time-series to increase, decrease or stagnate
over time. In a time-series, the fluctuations within a year
that follow similar patterns year after year are called seasonal
variations. In the context of traffic flow, one of these variations
is the increased traffic affluence during holiday seasons like

Christmas. Through the analysis of time-series, it is often
observed that it is affected by some unpredictable factors that
are not regular and do not repeat in a particular pattern. These
are called irregular or random variations.

The most commonly used linear time-series models are
Autoregressive (AR) and Moving Average (MA), presented in
[7], [8]. In an AR model AR(p), the future value of a variable
is assumed to be correlated with the past t observations of the
same variable, which, according to [9] is given by:

wt = φ1wt−1 + φ2wt−2 + ...+ φpwt−p + at (4)

Where wt represents the current observation of the time series
and at represents the error between the forecast and the
real value. The regression coefficients, φi, i = 1, ..., p are
parameters to be estimated from the data. A Moving Average
model is used as a filter to smooth the data. The basis of
moving average models is to simply average time points. A
simple example of a moving average is illustrated by Eq. 5
where p represents the size of the window of time-points.
Predicting time-points based only on past observations has
some problems. For example, if the time-series being modeled
is increasing, averaging the past observations will produce
estimations that are always smaller than the real values. In
light of this limitation, these models are usually used over the
error component at, as shown in Eq. 6

x′t = (xt−1 + xt−2 + ...+ xt−p)/p (5)

An MA(q) models the averages of past and present noise terms
and can be defined by:

wt = at + θ1at−1 + θ2at−2 + ...+ θqat−q (6)

Where wt represents the current observation of the time series
and at represents the error term. The regression coefficients,
θi, i = 1, ..., q are parameters to be estimated from the data.
This removes noise in the data and facilitates the forecasting.
The combination of these two models originated the ARMA
model. These models can only be used to describe station-
ary time-series data. A Stationary time-series is one whose
properties don’t depend on the time point at which the series
is observed. Usually, a stationary time-series has no long-
term predictable patterns and its time plot is roughly hori-
zontal. However, many time-series, such as traffic data, show
non-stationary behavior. The ARIMA model was developed
precisely to solve this problem, as it can deal with non-
stationary data. This model is defined by three parameters,
where each of them refers to the Autoregressive, integrated
and moving average part of the model, respectively. When
the seasonality of the data is known, an extension of ARIMA
that models seasonal data can be developed (SARIMA [10]).
Although ARIMA methods are the most popular in time-
series forecasting, exponential based methods such as the Holt-
Winter models [11] have also shown to be useful prediction
techniques.
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III. RELATED WORK

There are two main approaches on traffic flow prediction.
The most classical methods, such as time-series forecasting,
that tried to accomplish this were based on statistical methods.
ARIMA is the most commonly used approach within this
family of methods. The other methodology is the development
of Deep Learning based models such as Neural Networks in
order to predict the future of traffic flow. This section contains
a summary of a few of the main contributions in the field of
traffic flow prediction.

A. Time-Series Forecasting

The work developed by S. Vasantha Kumar and Lelitha
Vanajakshi [10] addresses the problem of limited input data
in Traffic Flow prediction by proposing a traffic prediction
system using a seasonal ARIMA model (SARIMA). This
model is only applicable if the span of seasonality is known.
Seasonality can be defined by a pattern in the data that repeats
over S time periods, where S defines the number of time
periods until it repeats again. The difference of SARIMA in
respect to ARIMA is that the former models the seasonality of
the data. In a SARIMA model the predictions are calculated
using data values at times with lags that are multiple of S.
Through the observation of the plot of the data (Fig. 2) from
the three consecutive days, it is clear that there is a seasonality
of 24h in the data. Thus, the seasonal period S is 144 (24h
× 6 points/hr). As a case study for the effectiveness of the
proposed methodology, a very busy 3-lane arterial roadway in
Chennai, India was selected and only three consecutive days
were used as the input data for the model development.

The parameters necessary for the application of the
SARIMA were found using the maximum likelihood method
[12]. After the developing part, the model was validated by
performing 24h ahead forecast and comparing the actual values
with the predicted ones. Fig. 2 also shows that the morning

Fig. 2. Time-series data of observed traffic flow in three consecutive days
(from [10]). ScenarioID represents the number of days that were used as
historical data for the prediction.

and evening peak hours were clearly repetitive and showed
similar variation across the days. This piece of information
is crucial since it shows that traffic flow data is periodic and
therefore can be modeled using SARIMA. Initially, the model
was tested with the aforementioned input data and the results

were encouraging, with a MAPE of 9,22%. After the analysis
of the results, it was found that the model performed worse
in off-peak hours since their patterns are more random thus
making it harder for a time-series model to perform at its best.

In order to check whether the results would improve with
an increase in the input data, 6 new scenarios were tested.
Instead of the initial 3 days, the model was tested with up to
9 previous days as input.

Through the analysis of Fig. 3 it can be seen that, initially,
the MAPE increases slightly, however, when the past week,
including the same weekday as the target day, is considered as
the input the MAPE suffers a sudden drop. This reinforces the
idea that same weekdays follow similar patterns. The overall

Fig. 3. Variation of the MAPE across the different scenarios (From [10])

results were encouraging and the proposed model for traffic
prediction could be an effective solution in situations where
only limited observations are available.

B. Traffic prediction with Neural Networks

The study presented in [13] was conducted by Yisheng
Lv Et al. in 2015 in the United States and proposes a
Deep Learning approach to address the issue of Traffic Flow
Prediction.

The basis behind the application of this family of algorithms
lies in the ability that the architectures used by Deep Learn-
ing algorithms have to extract inherent features in the data,
discovering hidden structure in the data.

This model uses Autoencoders as building blocks to create
a deep network. Autoencoders are a type of Artificial Neural
Network generally used for dimensionality reduction and are
usually not used in forecasting models. In this work, a SAE
is used to extract traffic flow features and a logistic regression
layer is applied for the prediction.

The proposed method was applied to data collected from
freeways in the United States as a performance benchmark for
this algorithm. For the experimental part of the paper, three
months worth of data was collected. The first two months were
used as a training set and the remaining month as a validation
set. This model was tested for multiple windows of prediction,
namely, 15, 30, 45 and 60 minutes. Interestingly, after running
the system multiple times, it was found that, for any of the
aforementioned prediction horizons, the performance peaked
when, at most, the previous hour of data was used as an input
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for the network. After the analysis of the results, it was evident
to conclude that the system had a better performance in heavy
traffic over low traffic conditions. One possible reason for this
phenomenon is that, in low traffic conditions, small deviations
can cause a larger relative error.

The performance metrics used to test the effectiveness of
the system were the MAE, MRE and RMSE. This algorithm
achieved very impressive results, given that the MRE remained
relatively constant with the increase in prediction horizons
(contrarily to the work developed by Filmon G. Habtemichael
and Mecit Cetin [14]).

From the observation of Table I it is possible to conclude
that the MRE(%) (= MAPE) values are in the range between
[6.2%,6.75%] which shows the aforementioned stability of the
proposed algorithm. It is also interesting to point out that the
values of the MRE have shown a tendency to be smaller with
larger prediction horizons, which is unusual since in larger
prediction spans its more likely to see an increase in prediction
errors. There are many other deep learning based methods that

SAE
MAE MRE (%) RMSE

15-Minute
Traffic Flow
Prediction

34.1 6.75 50.0

30-Minute
Traffic Flow
Prediction

64.1 6.48 95.2

45-Minute
Traffic Flow
Prediction

92.0 6.17 138.1

60-Minute
Traffic Flow
Prediction

122.8 6.21 183.9

TABLE I
PERFORMANCE OF THE TRAFFIC PREDICTION MODEL PROPOSED IN [13]

also achieved promising such as Corrado de Fabritiis Et al.
[15], [16], B. Gültekin Çetiner Et al. [17], Yuankai Wu Et al.
[18] and Yaguang Li Et al. [19].

IV. DATA SOURCES

The focus of this section will be on the description of the
available data sources and their structure.

A. Lisbon Sensor data

The interest in urban mobility is not new, there has always
been a need to improve and optimize the flow of traffic in
city centers since they are usually the most densely populated
areas in the city. Back in the 80’s, traffic flow optimization
was already a pressing concern for Lisbon’s city council and
a considerable investment in cutting edge, intelligent, stoplight
control was made, culminating with the implementation of
the GERTRUDE system. This system depended on, among
other things, loop sensors in order to estimate the traffic
intensity in specific locations so that certain stoplights could
have their loops optimized dynamically according to traffic
flow conditions.

The Lisbon City Council (CML) has been collecting urban
flow data in multiple arterial junctions throughout the city for
several years using the aforementioned road sensors.

These sensors are installed in the pavement, usually near
stoplights or important junctions. Each and every one of these
sensors keeps track of the total number of cars that pass over
them and stores this value every 15 minutes, which adds up
to 4 data points per hour, meaning that, every day, 96 new
counts are recorded.

These sensors are labeled by zones, the identifier of the
junction and the identifier of the sensor itself. In order to
understand what kind of information was available, all the data
points were integrated into a single dataset. Each row of the
data set corresponds to an entire day of traffic data, following
the structure shown in Fig. II. The first column contains the
date of the data point, the second shows the zone in which
the sensor is located, the third specifies the identifier of the
sensor. Each of the following 96 (24h × 4 data points/hour)
columns contains the number of cars that passed through this
sensor in intervals of 15 minutes.

Date Zone Counter SensorID 0h00 0h15 0h30 0h45

1/09/2018 2 1 CTs ct1 117 320 103 95
TABLE II

STRUCTURE OF THE LOOP SENSOR DATA

The raw data consists in a collection of text files where each
file contains the daily traffic flow data, aggregated in intervals
of 15 minutes, of one of the predefined zones. The first task
that had to be done was the integration of these data points in
a single dataset, so that a more thorough analysis of the data
could be performed.

Each zone has multiple sensors and they can be identified
by a sensor id which is unique in the context of the zone but
not in the global scope of the city. In order to unquestionably
identify the sensors an unique id was created using the
pair (zone, sensor id). These zones and the corresponding
sensors are mapped in an Excel file that was made available
by the city council and it contains the coordinates of each
sensor. However, given that there is no indication or additional
information on the orientation of the sensor it can be somewhat
difficult to accurately identify the direction of traffic flow that
each sensor is measuring. This makes it more challenging
to find confluent sensors that might be correlated and could
improve the prediction results.

In order to develop a deeper understanding of the data, a
statistical analysis was performed. The output of this analysis
allowed us to identify which are the non-mapped sensors and
which were mapped initially but do not exist anymore in more
recent data as well as identify the average counts for each
sensor per time of day.

With the help of this new information it was found that
some of the data seemed inconsistent, some sensors showed
counts of over five thousand cars in the span of 15 minutes
which amounts to over 5 cars per second. Keeping in mind
that these sensors are placed in an urban context and are
mainly near stoplights, which for a considerable amount of
time remain closed, not allowing any cars through, it seems
unlikely. Furthermore, some of these extreme events happen
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in the middle of the night, which strongly suggests that they
are in fact erroneous.

The plot shown in Fig. 4 is an example of one of these
extreme scenarios. The blue line shows the traffic flow counts
measured by the sensor throughout Monday, 3rd of December
2012 while the red line shows the average traffic flow recorded
by the same sensor on Mondays. Just through the analysis of
the plot it is clear that the data is very noisy and that there
are some instants where the traffic flow is much larger than
the average flow. This particular sensor is located at a very
important street in the city center that has 3 lanes. Even if the
sensor is measuring traffic flow for the 3 lanes, these values
are disproportional according to the average flow in this same
location.

Fig. 4. Example of a malfunctioning sensor.

When working with real data such as traffic data, it is
extremely common to have sporadic missing values or errors
in some data records. Several possible reasons explain this
phenomenon, such as, the occurrence of an error in the
transmission of the data from the sensor to the central database
or even random objects that cause interference with the
sensors, causing it to malfunction temporarily. Consequently,
these occurrences have to be dealt with. Imputation is a very
commonly used method in machine learning and consists of,
basically, filling in the missing data according to a predefined
technique.

There are multiple imputation techniques for dealing with
missing or erroneous data, studied in numerous articles such
as [20], [21]. Even though there are some missing values, the
main challenge on the data is the detection of outliers since if
they exist in abundance they can hurt badly our predictions. In
the scope of this project, outliers are identified with a heuristic
based on the average and standard deviation, concretely if a
value (X) at a specific time of day (T) is greater than the
average plus two times the standard deviation at the same time
of day then X is considered an outlier. As shown in Equation
7 where µ(T) represents the average flow at time of day T and
σ(T) represents the standard deviation of the flow at time of
day T.

X > µ(T ) + 2× σ(T ) (7)

When an outlier is detected, the next step is to decide how to
replace it for a more reasonable value. In this case the heuristic

that was used consists in averaging the value of the current
time step (T) with values of the previous (T-1) and next time
step (T+1).

B. Freeway Data

Most of the work performed in traffic flow prediction uses
freeway data as the primary data source and the results are
encouraging. In order to be able to validate the developed
models, a more stable and tested dataset is needed.

Accordingly, I asked Drs. Guo and Williams if they could
provide the data that was used in Guo et al. [22] which
they promptly and kindly agreed. This data is a collection of
multiple datasets from different regions in the United States
and in the United Kingdom. Each of these datasets contains
traffic flow information collected by a single sensor aggregated
in intervals of 15 minutes. The sensors measure the number
of cars that passed through them and each traffic flow record
reflects the average flow by lane.

Fig. 5. Average flow on weekends versus average flow on business days.

Naturally, this data source also had some missing values
that had to be addressed. A statistical analysis was performed
in order to identify the percentage of missing values in each
dataset and, more importantly, to deal with these occurrences.
It was found that the missing values in each dataset were not
statistically significant, which is a good indicator on the quality
of the collected data, given that the missing values percentage
sits in the range between 0% and 6%.

Whenever a missing value is found it is replaced by an
average between the previous and the next value. After the
imputation process a more thorough analysis on the data was
performed and, as it is shown in Fig. 5 there seems to be a
clear difference between the flow on business days and traffic
flow on weekends. This is a phenomenon that was mentioned
in Chapter III and it is a good indicator on the robustness of
the data at hand.

Through the analysis of Fig. 5 it can be seen that on the
first plot there is a clear peak of traffic flow in the morning,
at about 6 am, that can be what is usually called rush hour,
where as on the second plot the traffic flow follows a much
more subtle curve throughout the day and it only peaks at 12
pm. Moreover, there is another, smaller, peak on the first plot
at 6 pm, that can be identified as the evening rush hour. This is
relevant because it shows that traffic flow follows the patterns
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that were described in Section III and that that traffic flow is
not a completely stochastic phenomenon, making it feasible
to be predicted.

V. PREDICTIVE ANALYSIS

In this section the focus will be on describing the developed
models throughout the past months and on discussing the
prediction results in order to draw conclusions on which
methods obtain the best performance for the task at hand.

A. Freeway Data

The freeway traffic data source was the first one to be tested
in order to act as a result benchmark for this project, given that
the results can be compared to other published papers on the
subject and, perhaps more importantly, because freeways are
much more stable environments than city centers and therefore
more predictable.

1) Time-series forecasting: As it was previously discussed
in Section III-A the first attempts on traffic flow prediction
were based on statistical methods such as auto-regression and
moving average. In the context of this project a Seasonal
ARIMA model (SARIMA) was developed in order to predict
traffic flow. The data was split into two sets, a training and a
test set with an 80%-20% ratio, respectively.

In order to find, in an automatic manner, the best parameters
for the model, the function auto.arima from the Forecast
package in R was used. The SARIMA setting that was found
by the algorithm to be the most fit was (3,0,2)x(0,1,0)96. After
the optimal setting was found, the next step was to predict and
test the accuracy of the predictions, measured by the Mean
Average Precision Error (MAPE).

This model was tested in two different scenarios using walk-
forward validation. The first approach consists in predicting
values one step at a time, which translates to 15 minutes in
this case, and re-feeding the model after each evaluation, the
next row of the test set. Due to the high computational cost
of this approach, another scenario was tested where the model
was only re-fed once every 24h. The first approach achieved
largely better results, achieving a MAPE of 2.72% for a test
set of one day. The second approach achieved worse results,
since it consisted in predicting one day at a time, with an
average MAPE of 19.79%.

2) Neural Network: After the data was fully integrated and
the missing values were dealt with, and given that after a
thorough research on related work (Chapter III), it seemed that
the state-the-art models were based on deep learning the next
model to be developed was a feed-forward neural network.

The base model is composed by one input layer, 2 hidden
layers and an output layer. The activation function of the input
and hidden layers is a Rectified Linear Function Unit (RELU)
which is one of the most widely used activation functions in
machine learning at the moment.

The optimization algorithm Adam was used in order to
update the networks weights according to the training data. In
the first runs of the model the validation loss was considerably

higher than the training loss, suggesting that the model was
overfitted so weight regularization was applied.

In addition to this, early stopping was also used in the
training. Early stopping consists in monitoring the evolution of
the validation loss and stopping the training if there is a clear
degradation of the performance of the model on the validation
set.

The plot shown in Fig. 6 shows the variation of the mean av-
erage percentage error with the increase in the number of past
observations used in the predictions (time window size). In
this test we started with tw = 1, meaning that only the past 15
minutes were considered in the model, and ended with tl = 10,
which means that the past 2h30 of traffic flow measurements
were used. It is also visible that the error decreases almost
in a linear fashion from tl=1 to tl=3, which it was expected
according to the literature on traffic prediction. In order to

Fig. 6. Mape variation with the increase in the time window

evaluate the performance of the developed model MAPE was
used. With the objective of evaluating the performance of the
model, one freeway was selected as the target. Concretely, in
the case of this simple feed-forward neural network the results
for 15 min prediction achieved an average MAPE of 10.81%
on the training set and 8.18% on the testing set.

Even though the raw data in our possession shows a 15
minute granularity and most of the literature on traffic flow
prediction suggests that this is the most commonly used
prediction horizon, our model is prepared to predict with
different time windows. As it was expected, the error increased

MAPE
(Train)

MAPE
(Test)

15-min prediction 10.81% 8.18%
30-min prediction 10.45% 8.58%
45-min prediction 12.00% 10.69%
60-min prediction 13.33% 12.99%

TABLE III
MAPE VARIATION WITH THE INCREASE IN THE PREDICTION HORIZON

slightly as the prediction horizon was larger, as is displayed in
Table III. It is also visible that there is not a large difference
in the error between 15-min prediction and 30-min prediction,
showing an increase of only 0.45% in the training set and
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0.35% in the testing set. The same can not be said for the 45-
min and 60-min prediction, which showed a steeper growth.
This can be explained by the fact that traffic flow is somewhat
unstable and although it is possible to predict accurately the
future of traffic flow in a short-term fashion (15/30 minutes),
if the prediction horizon is expanded, the error will increase
rapidly.

3) Long Short-Term Memory Network: In an attempt to
better capture the temporal dependencies of traffic flow, a Long
Short-Term Memory Network was developed with the data in
our possession.

In order to be able to adequately compare the performance
of this method versus the previously mentioned methods, the
data was divided into two different sets, in the same way as the
others. Concretely, the training set is composed by 80% of the
data and the testing set by the remaining 20%. In an attempt
to avoid overfitting of the network, there is also a validation
set composed by 20% of the training set. This network is
composed by one input layer, one hidden layer and one output
layer.

Fig. 7. Mape variation with the increase in the time window

The plot shown in Fig. 7 shows the variation of the error
as the input size increases and it represents the average of
5 runs in order to improve accuracy. There is a clear, and
somewhat steep, decrease in the prediction error from tw=1
to tw=5, which is a similar behaviour as the one showed by
the feed-forward network (see Fig. 6). However, from tw=8 to
tw=10, the error, that was relatively stable before, diminished
even further.

The values shown in Table. IV show a decrease in prediction
power as the prediction horizon increases. Similarly to what

MAPE
(Train)

MAPE
(Test)

15-min prediction 10.02% 8.48%
30-min prediction 10.16% 9.54%
45-min prediction 12.10% 11.95%
60-min prediction 19.47% 17.40%

TABLE IV
MAPE VARIATION WITH THE INCREASE IN THE PREDICTION HORIZON

happened on the feed-forward network, the prediction power

of the LSTM decreases as the prediction horizon is larger. The
average MAPE for 15 and 30-min prediction is very similar,
with a difference of less than 1%. There is a more clear
increase in error when predicting the next 45 minutes, showing
an increase of 2% relatively to the 30-minute prediction.
However, there was a much steeper increase in the error in
the 60-min prediction, reaching 17.4%.

B. Lisbon Sensor Data

One of the main goals of this project was to test the
predictability of traffic flow in urban areas. Accordingly, in this
section all the previously developed models are going to be
applied to the Lisbon Sensor Data with the needed adaptations.

1) Time-Series Forecasting: The first challenge of this task
was altering the structure of the data to transform it into a
time-series format. Due to the large amount of data and to
the inefficiency showed by the ARIMA model in the previous
section, only one year of data was used to train and test the
model.

The next step was to find the best SARIMA configuration
for the training data. This was done using the auto.arima
function in R. The SARIMA setting that was found by the
algorithm to be the most fit was ARIMA(5,0,1)x(0,1,0)96. This
means that we have an ARIMA model with a auto-regression
coefficient (p) equal to 5. In practical terms this means that in
order to predict one timestep ahead, the past 5 observations
are considered, each with a given weight. This value is also
higher than the one found by the same method in the freeway
data section (see Section V-A1), which could indicate that in
an urban environment, the repercussions of traffic flow events
affect future traffic flow on a wider time span than in freeway
environments.

The testing procedure was the same as the one applied to
the freeway data and it is composed by two scenarios, both
based on walk-forward validation.

The first test scenario consisted on re-feeding new observa-
tions to the model at each timestep, repeating this process for
a duration of a full day, which means that this process was
performed 96 times. Table. V demonstrates the performance
metric values achieved by this experiment. The first row of

MAPE MAE RMSE

1-step prediction 27.19% 7.09 9.60
96-step prediction 28.7% 8.20 11.20

TABLE V
METRIC RESULTS OBTAINED BY THE SARIMA MODEL.

the table corresponds to the application of the walk-forward
validation for 96 iterations, with one-step predictions (15-min)
per iteration. The last entry on the table corresponds to the
application of a similar methodology but instead of 15-min
predictions the model predicted an entire day of traffic flow.
This process was repeated for test 14 days and the values are
the average of the values obtained for each of these days.
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2) Neural Network: Unlike the freeway data, the urban the
data is much morevnoisy, showing multiple inexplicably high
traffic flow volumes. Given that these peaks are not going
to be ”learned” by the network and are going to hurt the
performance of the model, a smoothing function was applied
to the data.

The base model is composed by one input layer, 2 hidden
layers and one output layer. The activation function chosen
for the hidden layers was the Rectified Linear Function Unit
(RELU) and ADAM was the chosen optimizer.

In order to avoid overfitting, weight regularization and early
stopping methods were applied. The plot shown in Fig. 8
shows the variation of the mean average percentage error in
the increase in the size of the time window. By analysing

Fig. 8. Variation of the relative error according to the number of past
observations used in the predictions.

the plot in Figure. 8 it is visible that the number of past
observations that minimizes the relative error is 9 (2h15 of past
observations). As it was previously mentioned, literature in
traffic flow prediction suggests that the temporal dependencies
start to fade after 1 hour. However, theses studies mainly
refer to freeway traffic patterns and since this is an urban
environment, this may not apply directly. Moreover, since the
data is rather noisy and full of peaks, a larger number of
past observations may help the network in the predictions in
cases where one or more of the past observations are peaks.
The values present in this plot are an average of 5 test runs,
performed in the same conditions.

3) Long Short-Term Memory Network: In order to try to
capture the temporal dependencies present in the data, a LSTM
network was developed and the procedure was similar to the
one described in Section V-A3. The train-test split was 80%-
20%, respectively. In order to avoid overfitting, 20% of the
training set was used as a validation set during training. Still
on the topic of overfitting, early stopping was also applied,
monitoring the validation loss. The network has the same
structure as the one developed for the freeway data.

The first test that was performed with this model was the
variation of the size of the input layer or, in other terms,
the number of past observations being considered in the
predictions. The plot shown in Fig. 9 shows the variation of

the relative error as the number of past occurrences used in
the predictions increases. Through the analysis of the graph

Fig. 9. Variation of the relative error according to the number of past
observations used in the predictions.

it is visible that the error suffers from a steep decrease from
tw=1 to tw=2 and then it decreases, in a more gradual manner
from tw=4 to tw=10. Similarly to what happened on the
same test performed on the feed-forward neural network, the
number of timelags that produce the most accurate predictions
is considerably higher than the one used in the freeway dataset.

VI. RESULT ANALYSIS

As it was previously mentioned, the more classical mod-
els, in this case, the SARIMA model, performed relatively
well, achieving a mean absolute error of 7.09, which is
slightly worse than the performance of the deep learning based
methods. However, this was achieved by performing just 96
iterations of walk-forward validation, in order to safely assume
that this would be a stable method it should be tested for longer
periods of time. This was tested just for a single day due to
the large amount of time it takes to run.

The deep learning approach in this project consisted in
the development of two different networks, a feed-forward
neural network and a long short-term memory network. The
performance of both methods was similar, however, the LSTM
performed better in predicting within shorter time spans, as it
is shown by the mean MAPE values for the 15 and 30-minute
predictions. However, for larger time spans both networks
performed similarly, achieving significantly close relative er-
rors. Both showed the same tendency to perform better as
the prediction horizon grew larger. This can be explained by
the amount of noise present in the data and due to the fact
that changing the granularity of the data may have acted as a
smoothing method. Table. VI shows the prediction results for
the Lisbon Sensor Data achieved by the deep learning based
methods.

After a thorough analysis of the results, I realized that
MAPE, although it is a useful tool to compare the performance
of the different models it shows some limitations. In the urban
dataset, at night, the traffic flow counts are extremely small,
usually lower than 10 cars per 15 minutes. Lets say that,
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LSTM Feed-Forward NN
MAE MAPE RMSE MAE MAPE RMSE

15-min prediction 6.84 20.90% 9.81 5.60 23.33% 7.72
30-min prediction 14.11 16.81% 23.11 10.11 18.28% 14.56
45-min prediction 24.02 16.09% 40.30 15.70 15.70% 23.77
60-min prediction 35.64 17.10% 58.76 20.92 16.24% 31.35

TABLE VI
PERFORMANCE METRICS RESULTS OF THE DEEP LEARNING METHODS.

for example, the real count is 2 and the network predicted
6, this would mean a MAE of 4 and a MAPE of 200%.
Therefore, this could be another reason why the MAPE values
are considerably higher in the urban data versus the freeway
data.

Keeping in mind the main goal of this project, which is
to develop a prediction mechanism that would supply crucial
information about future possible traffic flow congestion in or-
der to try to avoid them, perhaps it would not be unreasonable
to emphasize the importance of the MAE. As it is shown on
Table. VI, the MAE for both methods is around 6 cars per 15
minutes, which seems like a reasonable error when predicting
high volume traffic flow.

VII. DISCUSSION

The main purpose of this project was to test the feasibility
of the application of a short-term prediction mechanism on an
urban context. The developed methods achieved better results
on the freeway data. This can be explained by two main
reasons. First, an urban environment is much more unstable
than a freeway environment, which as itself alone is a reason
for the decrease in the performance of the models. The second
reason that could explain the large error in the predictions is
the large variance and extreme values that are present in almost
all of the sensors. Therefore, one of the conclusions that can be
drawn from this work is that, in order to implement a working
traffic flow prediction system, there should be an investment
towards more accurate traffic flow data collection.

VIII. FUTURE WORK

An interesting experiment that could be an extension of this
project could be the inclusion of other urban data sources
such as Waze and TomTom Data to test the difference in
the models’ performance. The development of other types of
algorithm, such as K-NN based methods, as the one developed
by Filmon G. Habtemichael and Mecit Cetin [16] would be
interesting since it achieved promising results when tested with
freeway data. Finally, the exploration of spatial dependencies
of traffic data such as the influence that traffic conditions on
arterial roads might have on other roads int the city. This might
be an important addition to improve the performance of the
developed algorithms on urban traffic prediction.

As the world’s population keeps growing and cities become
more crowded, the topic of urban mobility is becoming
increasingly relevant. Through technological advances, new
traffic sensor technologies are emerging, making the amount
of traffic data increase exponentially as we enter the era of big
data in transportation systems. Traffic management and control
are becoming increasingly data-driven, creating a renewed

interest in the field of traffic flow prediction. The main purpose
of this work was the development and application of state-
of-the-art methods in traffic flow prediction to establish the
practical foundations that will allow the implementation of a
working real-world prediction model in an urban environment.
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